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Protokoly

• Rôzne typy protokolov (účel):
• výmena (distribúcia/dohoda) kľúča
• autentizácia subjektu
• slepé podpisy, voľby, peniaze, ...

• Bezpečnosť závisí na schopnosti útočníka
• odpočúvať / modifikovať ľubovoľné správy
• legitímny subjekt prostredia / mimo
• (Zvyčajne) chceme protokol odolný voči najsilnejšiemu útočníkovi

• Najznámejšie protokoly: SSL/TLS, IPSec, SSH
• Viaceré varianty – algoritmy, spôsoby autentizácie

• Prostriedky autentizácie účastníka protokolu:
• Zdieľaná tajná informácia (heslo/kľúč)
• Znalosť súkromného kľúča k verejnému kľúču uvedenom v 

certifikáte
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Diffieho-Hellmanov protokol

• Protokol na dohodnutie kľúča
1. A  B: 𝑝, 𝑔, 𝑔𝑥 mod 𝑝

2. B  A: 𝑔𝑦 mod 𝑝

3. A vypočíta 𝐾 = 𝑔𝑦 𝑥 = 𝑔𝑥𝑦, B vypočíta 𝐾 = 𝑔𝑥 𝑦 = 𝑔𝑥𝑦

• Varianty DH protokolu použité v SSL/TLS (jedna z 
možností) a inde

• Bezpečnosť
• pri pasívnom útočníkovi

• nie je bezpečný pri aktívnom útočníkovi uprostred (MITM)

• ochrana spočíva v zabezpečení autentickosti správ (napr. dig. 
podpismi)
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Varianty DH protokolu

• TLS
• DH_anon – anonymný DH (možný MITM útok)
• DHE_RSA, DHE_DSS – server svoje parametre podpíše
• DHE_RSA, DHE_DSS – parametre sú súčasťou certifikátu 

servera

• IPSec
• Protokoly IKEv1, IKEv2 – dohodnutie kľúča
• DH protokol – autentizácia šifrovaním, digitálnym 

podpisom, MAC

• SSH2
• DH je jedna z metód, server podpisuje svoje parametre
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SSL / TLS

• SSL – Secure Socket Layer (pôvodne Netscape)

• TLS – Transport Layer Security (TLS 1.0 ~ SSL v3.1)

• Protokol na transportnej vrstve (nad TCP/IP), 
zabezpečuje intergitu a dôvernosť

• V podstate ľubovoľný protokol nad SSL (FTP, SMTP)

• Najčastejšie: HTTP/SSL (https)
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SSL / TLS

Základne charakteristiky SSL/TLS

Autentizácia servera
povinná (znalosť súkromného kľúča k verejnému kľúču z 

certifikátu)

Autentizácia klienta
voliteľná (málokedy používané, obvykle riešené po 

vytvorení TLS spojenia)

Distribúcia kľúčov
viaceré protokoly (odvodenie kľúčov pre šifrovanie 

a autentizačné kódy)

Dôvernosť
symetrické šifrovanie (podpora rôznych algoritmov 

a módov)

Autentickosť autentizačné kódy (podpora rôznych algoritmov)



SSL / TLS

• SSL protokoly:
• Record Protocol – spodná vrstva (šifrovanie, MAC, 

kompresia)

• Handshake Protocol – autentizácia (jednostranná -
server, alebo vzájomná - aj klient), dohoda o 
kryptografických algoritmoch, dohoda o šifrovacom kľúči 
a MAC kľúči

• Alert Protocol - oznamovanie chybových hlášok (napr. 
certificate_expired)

• Change Cipher Spec Protocol – „prepnutie“ aloritmov

• kryptografia v SSL, napr.: 
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SSL / TLS
TLS Record Protokol: MAC-Encode-Encrypt

MAC

SQN || HDR Payload

Padding

Encrypt

Šifrový text

MAC tagPayload

HDR
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TLS RSA výmena kľúčov
dôležitosť „forward secrecy“

10

Hello

Certifikát, verejný RSA kľúč 𝑝𝑘

RSAEncpk(AES kľúč)

AESEncAESkľúč(obsah stránky)

• Útočník poznajúci tajný kľúč servera (Lavabitu) môže
• Vystupovať ako daný server (Lavabit) pre kohokoľvek

• Dešifrovať všetkú budúcu aj minulú komunikáciu 



TLS Diffie-Hellman výmena kľúčov
dôležitosť „forward secrecy“
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Hello, 𝑔𝑥

Certifikát, verejný RSA kľúč, 𝑔𝑦

RSASignpk(𝑔
𝑥, 𝑔𝑦)

AESEnc
𝑔
𝑥𝑦(obsah stránky)

• Útočník poznajúci tajný kľúč servera (Lavabitu) môže
• Vystupovať ako daný server (Lavabit) pre kohokoľvek

• „Forward secrecy”: Nemôže dešifrovať predchádzajúcu 
komunikáciu (ak 𝑔𝑥𝑦 bolo zahodené)



IPSec

• Bezpečnostný „doplnok“ k IP vrstve

• Oblasti pôsobnosti: dôvernosť, autentickosť, správa 
kľúčov

• Výhody „nízkoúrovňového“ protokolu:
• zabezpečená celá komunikácia nad IP
• transparentné pre aplikácie
• možnosť vytvoriť VPN
• integrácia do sieťových zariadení (smerovače a pod.)

• Nevýhody:
• SW implementácia (v operačnom systéme) zaťažuje server
• Identita zariadenia, nie používateľa/aplikácie
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IPSec

• základné protokoly – AH, EPS

• AH (Authentication Header) - len autentickosť/integrita 

• ESP (Encapsulating Security Payload) - šifrovanie a 
voliteľne autentickosť/integrita

• Transportný mód (spracúvajú sa vybrané časti IP 
paketu) 

• Tunelovací mód (zabalenie celého IP paketu do nového) 
protokolov – možnosť vytvoriť VPN

• Algoritmy: HMAC-MD5/SHA-1 (96), 3DES, Blowfish, ...

• Správa kľúčov: manuálna, automatizovaná 
(ISAKMP/Oakley)
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Identifikácia a autentizácia

• Protokol medzi dvoma stranami
• Dokazovateľ P
• Overovateľ V

• Dokazovateľ P sa snaží dokázať svoju identitu 
overovateľovi V. 

• Identifikácia: predstavenie identity P overovateľovi V
• Autentizácia: dôkaz / potvrdenie identity P
• Výstup protokolu:

• akceptácia, t.j. identita P je pravá, komunikácia pokračuje
• zamietnutie, ukončenie komunikácie
• v niektorých prípadoch aj tzv. „session key“ – dočasný kľúč na 

šifrovanie danej relácie



Identifikácia a autentizácia - ciele

• Korektnosť:
• V prípade poctivých strán P, V: V akceptuje identitu P

• (Ne)prenositeľnosť:
• V nemôže zneužiť komunikáciu a vydávať za P pre tretiu 

stranu C

• (Ne)falšovateľnosť:
• Žiadna tretia strana C sa nemôže vydávať za P pre V. 

• Robustnosť:
• Predchádzajúce vlastnosti zostávajú v platnosti aj v prípade 

veľkého množstva vykonaní protokolu. 

• “Real-time”:
• Autentizácia sa musí uskutočniť v realnom čase. 



Autentizácia – základ

Autentizácia môže prebiehať na základe:

1. Toho čo viem – heslo, PIN, tajný kľúč

2. Toho čo mám – pas, kreditná karta, smart karta, 
token, mobil,…

3. Toho čo som – moje fyzikálne charakteristiky: 
odtlačok prsta, podpis, vzor dúhovky, hlas...



Využitie I & A

• Primárne využitie:
• (Kontrolovaný) prístup k zdrojom

• Logovanie / monitoring používateľov (kto čo robí)

• Účtovanie (kto čo využíva)

• Ďalšie využitie:
• Napr. vytvorenie session kľúča



Vlastnosti protokolov na I & A

• Reciprocita
• jednostranná vs. vzájomná autentizácia

• Efektívnosť
• Výpočtová náročnosť (# operácii)
• Komunikačná zložitosť (# správ, prenesené bity)

• Zapojenie tretej strany
• Dôveryhodná vs. nedôveryhodná 3. strana
• Online vs. offline

• Bezpečnostné vlastnosti
• Spôsob ukladania tajných hesiel / kľúčov
• Dokázateľná bezpečnosť, Zero-knowledge



Heslá

• Poskytujú tzv. slabú autentizáciu

• Zdieľané tajomstvo medzi používateľom a 
systémom
• UserID používateľa identifikuje, heslo slúži ako dôkaz

identity

• Dôsledky:
• Systém musí mať uložené heslá (v nejakej forme)

• Používateľ musí systému ukázať svoje heslo (cez nejaký 
komunikačný kanál)



Uloženie hesiel

Súbor s heslami v otvorenom tvare:

• Bez akejkoľvek ochrany súboru
• Zjavne nebezpečné - ktokoľvek môže získať heslo

• Read / write ochrana v operačnom systéme
• Administrátor / root ma prístup ku všetkým heslám

• Backup súboru nemusí byť chránený



Uloženie hesiel

• Zle:
• Šifrované
• Odtlačok s jednoduchou aplikáciou hašovacej funkcie

• Dobre: ireverzibilne + soľ + iterácie
• Soľ – (náhodný) individuálny reťazec

• Pridávaná pri výpočte odtlačku
• Znemožňuje útočníkovi predvýpočty, paralelné prehľadávanie 

rovnakých hesiel (vedú k rôznym odtlačkom)

• Iterácie – spomalenie výpočtu odtlačku
• Spomalenie overenia hesla (nevadí), spomalenie útoku 

(vyhovuje)

• Vhodné algoritmy: PBKDF2, bcrypt, scrypt
• Zlé heslo je zlé bez ohľadu na uloženie (slovníkový útok)
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Posielanie hesiel

• Používateľ pošle heslo v otvorenom tvare
• Systém ho zahašuje (prípadne pridá soľ) a porovná s 

uloženým záznamom
• Administrátor nevie získať žiadne heslo
• Backup obsahuje iba haš hesiel
• Heslo je možné odpočuť

• Alternatívne, používateľ heslo zahašuje a haš pošle 
na server
• Útočník nevie odpočuť heslo
• Soľ (ak sa využíva) musí byť uložená aj na klientovi

• V obidvoch prípadoch však útočník môže zopakovať 
odpočutú správu



Príklad autentizácie na základe 
hesla
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Používateľ Adam
(prihlasovacie meno, heslo)

Počítač / Server

Prihlasovacie meno, heslo Vypočítaj
H(heslo)

meno1 H(heslo1)

meno2 H(heslo2)

meno3 H(heslo3)

⋮ ⋮

menoN H(hesloN)

Eva sa snaží uhádnuť Adamove heslo



Heslá: útoky

• Opakovaním
• Ak je možné odpočúvať komunikáciu

• Úplné preberanie
• Útočník skúša všetky možné heslá

• Ochrana: zvýšiť veľkosť hesiel a / alebo limitovať počet 
(online) pokusov

• Offline útok: 
• útočník môže generované heslá porovnávať priamo so súborom

(ak má prístup k súboru / databáze)



Heslá: útoky

• Slovníkový útok
• Väčšina používateľov si volí heslá z malej podmnožiny 

všetkých hesiel

• Útočník skúša iba heslá zo slovníka – aj najväčší slovník 
má iba 250 000 slov, čo je menej ako 264.

• Existujú aj špeciálne slovníky na „heslá“

• Využiteľné najmä pri offline útokoch
• V súčastnosti na to existujú šikovné programy – heslo odhalia v 

priebehu niekoľkých minút až hodín



Heslá: útoky



Náhodnosť používateľských hesiel

Dĺžka hesla

PIN 

(10 znaková 

abeceda)

Všeobecné heslá

(94 znaková 

abeceda)

4 9 10

8 13 18

10 15 21

16 21 30

22 27 38
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• Príklad: 2012, LinkedIn, 6,5 mil. používateľských účtov 
• 4 hodiny + slovníkový útok  cca. 900 tisíc hesiel
• Pokračovanie slovníkového útoku  cca. 2 mil. hesiel



Hľadanie hesla – úplné preberanie

• Online úplné preberanie
• skúšame všetky možné heslá, vypočítame ich haš
• Výpočtová zložitosť: N := |A| (A množina všetkých hesiel)

• Pamäť: 0
• Predvýpočet: 0

• Úplné preberanie s predvýpočtom
• Predvýpočítame si tabuľku všetkých možných hesiel a ich 

hašov
• Online výpočtová zložitosť: 0
• Pamäť: N
• Predvýpočet: N
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Time-memory trade-off



Hellmanove tabuľky, 1980

• Namiesto ukladania celej množiny 
možných hesiel a ich hašov počítame tzv. 
reťazce hašov

• Heslá sú organizované v reťazcoch hašov, 
iba prvý a posledný prvok reťazca je 
zapamätaný v tabuľke

• Pri predvýpočte vytvoríme 𝑚 reťazcov 
dĺžky 𝑡

S1

E1

H

R

Heslá Odtlačky

Reťazec:

R – redukčná funkcia
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Predvýpočet, reťazce

• 𝐻:𝐴 → 𝐵 – hašovacia funkcia (MD5, SHA1)

• 𝑅: 𝐵 → 𝐴 – „ľubovoľná“ funkcia (redukcia)

• 𝑓: 𝐴 → 𝐴, kde 𝑓 ≔ 𝑅 ∘ 𝐻

Reťazce:

𝑆1 = 𝑥1,1→
𝑓
𝑥1,2→

𝑓
𝑥1,3→

𝑓
…→
𝑓
𝑥1,𝑡 = 𝐸1

𝑆2 = 𝑥2,1→
𝑓
𝑥2,2→

𝑓
𝑥2,3→

𝑓
…→
𝑓
𝑥2,𝑡 = 𝐸2

⋮

𝑆𝑚 = 𝑥𝑚,1→
𝑓
𝑥𝑚,2→

𝑓
𝑥𝑚,3→

𝑓
…→
𝑓
𝑥𝑚,𝑡 = 𝐸𝑚

S1

E1

H

R

A B

S1 E1

S2 E2

S3 E3

⋮ ⋮

Sm Em
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Online fáza

Pre daný haš 𝑦 ∈ 𝐵, vypočítame 𝑦1 = 𝑅(𝑦) a 
postupne generujeme 𝑦𝑖 = 𝑓 𝑦𝑖−1 , pre 𝑖 = 2,… , 𝑡. 

• Pre každé yi kontrolujeme, či to nie je nejaké 𝐸𝑗 (t.j. či sa 
nenachádza v tabuľke), 

• Ak sme našli 𝐸𝑗, môžeme predobraz 𝑦 získať postupným 
hašovaním z 𝑆𝑗

predobraz
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TMTO: Hellmanove tabuľky

• N – veľkosť množiny hesiel

• Predvýpočet: 𝑃 = 𝑡2𝑚 = 𝑁

• Online zložitosť: 𝑇 = 𝑡2

• Pamäť: 𝑀 = 𝑡𝑚

• Ak chceme minimalizovať 𝑇 +𝑀, potom optimálna 
voľba je 

𝑇 = 𝑀 = 𝑁2/3
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TMTO: Dúhové tabuľky

Optimalizácia Hellmanových tabuliek

• N – veľkosť množiny hesiel

• Predvýpočet: 𝑃 = 𝑁

• Online zložitosť: 𝑇 =
𝑡 𝑡−1

2

• Pamäť: 𝑀 = 𝑡𝑚

• Výhody oproti Hellmanovým tabuľkám
• Polovičná zložitosť online fázy 𝑡(𝑡 − 1)/2 vs 𝑡2
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Time-memory trade-off útoky

• TMTO útok nie je nikdy celkovo rýchlejší ako brute-force

• TMTO má význam v nasledovných prípadoch
• Útok sa opakuje niekoľko krát
• „Útok počas obednej prestávky“
• Útočník nie je veľmi výkonný, avšak má možnosť stiahnuť si tabuľky

• Podmienky, aby bolo možné TMTO použiť
• Problém rozumnej veľkosti
• Jednosmerná funkcia (alebo CPA útok na šifrovom texte)

• Použitie soli pri ukladaní hesiel zabraňuje TMTO útokom
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Heslá: ochrana voči útokom

• Kontrola sily hesla
• Zabrániť používateľom zvoliť si slovníkové heslo. 
• max. doba platnosti hesla, min. doba platnosti hesla

• Použiť pomalú hašovaciu funkciu 
• Napr. iterovať štandardnú hašovaciu funkciu niekoľko krát

• Pridanie náhodnej soli
• Pred zahašovaním hesla P k nemu pridáme náhodnú soľ S
• C = h(S, P), zapamätáme si S, C
• Dve rovnaké heslá majú rôznu soľ, t.j. rôzne šifrovanie
• Zvačší sa zložiťosť slovníkového útoku (ale nie pre daného používateľa)

• Frázové heslá

• Expirácia hesiel

• Blokovanie prístupu po x neúspešných prihláseniach

• Spomaľovanie odozvy po neúspešnom prihásení, atď.



Heslá v UNIXe



Manažment hesiel

• Ako identifikovať používateľa ak ešte nemá heslo?
• Ako ste dostali Vaše heslo pri nástupe na FMFI?

• Zabudnuté heslá
• Zaslanie hesla nesprávnej osobne

• Neposkytovať zabudnuté heslo volajúcemu, ale zavolajte 
naspäť na overené číslo používateľa

• Phishing
• Dostanete email od banky vyžadujúci zmenu hesla



Manažment hesiel

• K obmedzeniam hesiel treba pristupovať rozumne
• Ak heslo musí byť príliš zložité

• používateľ si ho zapíše

• Ak si heslo musí používateľ často meniť
• zvolí si jednoduchšie heslo

• Veľa systémov vyžadujúcich heslo
• Koľko máte rôznych hesiel?

• Treba nájsť rovnováhu medzi bezpečnosťou a 
prívetivosťou pre používateľov



PIN

PIN – Personal Identification Number
• Používané spolu s nejakým tokenom, smart-kartou, 

kreditkou a pod. 

• PIN je malý, zvyčajne 4-8 číslic 
• Môže a nemusí byť uložený v tokene (online vs. offline)
• Môže byť odvoditeľný (hašovaním) z tajného kľúča a identity 

uloženej v tokene
• Token obsahuje údaje na identifikáciu, PIN slúži na overenie 

vlastníctva tokenu – dvojstupňová autentizácia

• Na zamedzenie online útoku preberaním sa limituje 
počet nesprávnych pokusov. 



Passkey

Password derived key

• Z PINu / hesla sa pomocou jednosmernej funkcie 
vygeneruje kľúč

• Kľúč je následne použítý na zabezpečenie komunikácie

• Overovateľ pozná PIN / heslo, môže si teda vygenerovať 
kľúč

• Možné skombinovať heslo so soľou – zakaždým nový 
kľúč

• Podobné slabiny ako v prípade fixných hesiel 
• Nutnosť pamätať si heslá na serveri 



Jednorázové heslá

• Snaha o elimináciu útoku opakovaním

• Zdieľaný zoznam hesiel
• Každý prvok použitý iba raz

• Variácia: Tabuľka challenge-response dvojíc
• Overovateľ pošle challenge, používateľ odpovie príslušným 

párom z tabuľky

• Sekvenčne aktualizované heslá
• Začináme so zdieľaným heslom

• Pri autentizácii s použitím hesla i, používateľ pošle nové 
heslo i+1, zašifrované heslom i



Jednorázové heslá
Lamportova schéma

• Sekvencie hesiel s využítím jednosmernej funkcie: 
Lamportova schéma

• Set-up:
• Dokazovateľ P má tajné heslo w. H je hašovacia funkcia

• Určíme konštantu t – počet možných autentizácii
• Po t autentizáciách je potrebné znovu vygenerovať w

• P pošle V cez autentický kanál w0 = Ht(w) 
• V inicializuje počítadlo pre P, napr. IP = 1

• 𝐻𝑡 znamená t iterácii H, t.j. 𝐻 ∘ 𝐻 ∘ ⋯∘ 𝐻



Jednorázové heslá
Lamportova schéma

i-ta iterácia Lamportovej schémy

• P vypočíta wi = Ht-i(w) a pošle to V

• V overí, či platí
• i = iA
• H(u) = wi-1, kde u je prijatá správa od A

• Ak je overenie úspešné
• V akceptuje heslo, zvýší iP o 1

• V uloží u ako wi



Jednorázové heslá
Lamportova schéma

• Útok opakovaním nie je možný, avšak
• Schéma je zraniteľná v prípade ak útočník získa w pred 

uskutočnením protokolu
• Potrebujeme zabezpečiť autentický prenos Ht(w)

• Problémy robia straty spojenia 

• Výhoda
• Malé komunikačné nároky

• Alternatívna schéma (vyžaduje si uloženie hesla na 
serveri)
• P pošle serveru dvojicu (r, H(r, p)), kde r je zakaždým iné 

(napr. poradové číslo), p je zdieľané heslo



Challenge-response autentizácia

• Tzv. silná autentizácia

• Dokazovateľ dokáže znalosť nejakého tajomstva cez 
challenge-response protokol 
• Bez toho, aby tajomstvo počas protokolu odhalil (v 

niektorých prípadoch ho však overovateľ pozná)

• Dokazovateľ odpovedá na časovo závislý 
„challenge“

• Môže využívať
• Symetrické šifrovanie

• Asymetrické šifrovanie



Časovo závislé parametre

• Zamedzujú útokom opakovaním

• 3 základné typy:
• Náhodné hodnoty 

• Sekvenčné číslovanie

• Časové pečiatky

• “New and once” - nonce
• Hodnota parametra musí byť zakaždým iná

• Je potrebné zabezpečiť integritu parametrov – naviazať 
ich na ostatné posielané správy



Náhodné hodnoty

• Overovateľ V vygeneruje náhodnú hodnotu r
• Pošle ju P ako „challenge“

• P odpovie správou, ktorá je „zviazaná“ s r
• „zviazanosť“ s r zabezpečuje čerstvosť

• Problémy:
• Opakovanie hodnoty r (narodeninový paradox)
• Predvídateľnosť r – generovanie náhodných čísel nie je 

jednoduché
• Komunikačná zložitosť 

• oproti časovým pečiatkam a sekvenčným číslam sa vyžaduje 
jedna správa naviac



Sekvenčné číslovanie

• Číslovanie správ vymenených medzi P a V
• Monotónne rastúce číslovanie

• Problémy:
• Potreba dlhodobo uchovávať aktuálne poradové číslo 

správy

• Synchronizácia

• Potreba riešiť výpadky spojenia a pod.

• Nemožnosť detekovať „forced delay“ útok 



Časové pečiatky

• Do každej posielanej správy zakomponujeme časovú 
pečiatku
• Akceptujeme len správy s časovou pečiatkou, ktorá je v rámci 

nejakého akceptovateľného časového okna
• Môžu sa využívať aj na časové obmedzenie prístupu
• Umožňujú detekciu „forced delay“ útokov

• Nevýhody 
• Nutná synchronizácia hodín

• Ak je synchronizácia vykonaná po sieti, je potrebné komunikáciu 
zabezpečiť – zase s využitím časových pečiatok?

• Potreba ukladať prijaté časové pečiatky v rámci daného 
časového okna
• Aby sme vedeli zabrániť útokom opakovaním

• Čas sa stáva kritickým prvkom systému



Challenge-response autentizácia
s využitím symetrického šifrovania

• Obe strany A,B zdieľajú nejaký tajný kľúč k

• Základné (jednoduché) protokoly ISO/IEC 9798-2:
• S využitím časových pečiatok:

• A  B : Ek(tA, B)

• Po prijatí, B správu dešifruje a overí časovú pečiatku

• Posielanie identity druhej strany zamedzuje použitia rovnakej 
správy na autentizáciu B do A 

• S využitím náhodných čísel
• B  A :  rB

• A  B :  Ek(rB, B)

• Po prijatí, B správu dešifruje a overí rB (nemalo by sa opakovať). 



Challenge-response autentizácia
s využitím symetrického šifrovania

• Vzájomná autentizácia 
• B  A :  rB

• A  B :  Ek(rA, rB, B)
• Po prijatí B správu dešifruje a skontroluje rB

• B  A : Ek(rB, rA)
• Po prijatí A správu dešifruje a skontroluje rA

• S využitím hašovacích funkcií (ISO/IEC 9798-4):
• B  A :  rB

• A  B :   rA, hk(rA, rB, B)
• Po prijatí B zahašuje rA, rB, B a porovná s prijatou správou

• B  A : hk(rB, rA)
• Po prijatí A zahašuje rA, rB a porovná s prijatou správou



Challenge-response autentizácia
s využitím asymetrických techník

• Vzájomná autentizácia, asymetrické šifrovanie
• B  A :  PubA(rB, A)

• Po prijatí, A dešifruje a získa rB

• A  B :   PubB(rA, rB)

• Po prijatí, B dešifruje, získa rA, rB a porovná rB

• B  A :  rA



Základné challenge-response 
protokoly
• Všetky uvedené protokoly

• Sú dvojstranné protokoly, t.j. bez tretej strany
• Dokazovateľ aj overovateľ si dôverujú
• Predpokladajú distribúciu kľúčov medzi komunikujúcimi 

stranami
• T.j. strany sa navzájom poznajú, zdieľajú tajný kľúč / poznajú 

verejný kľúč druhej strany
• Problematické v prípade veľkého množstva komunikujúcich 

párov

• Ak posledný predpoklad nie je platný
• Je potrebné využiť 3. stranu na výmenu / distribúciu 

kľúčov – napr. KDC (Key Distribution Center)



Key distribution center

• Server na distribúciu kľúčov

• Každý používateľ zdieľa so serverom tajný kľúč

Alice Bob

KDC

3. Let’s talk, EBob(k) 



Needhamov-Schroederov
protokol
• Autentizácia s využitím 3. strany

1. A  S:   A, B, rA

2. S  A:   EKAS
(rA, B, KAB, EKBS

(KAB, A))
• A dešifruje. Overí aktuálnosť rA. Získa kľúč KAB

3. A  B:   EKBS
(KAB, A)

• B dešifruje, získa kľúč KAB

4. B  A:   EKAB
(rB)

• A dešifruje a získa rB.

5. A  B:   EKAB
(rB-1)

• B dešifruje, overí aktuálnosť cez rB-1



Needhamov-Schroederov
protokol
• Úloha servera S

• Distribúcia kľúčov

• Nemusí byť plne online, keďže po vykonaní protokolu, A 
ani B už nepotrebujú S

• Cvičenie: modifikuje protokol tak, aby využíval 
asymetrické šifrovanie
• Aké to bude mať výhody?

• Needhamov-Schroederov protokol sa v súčasnosti 
neodporúča používať
• Alternatíva: Kerberos protokol – veľmi rozšírený



Útoky na autentizačné protokoly

Needhamov-Schroederov protokol

• Predpokladajme, že kľúč KAB bol kompromitovaný
1. A  S:   A, B, rA

2. S  A:   EKAS
(rA, B, KAB, EKBS

(KAB, A))

3. Z(A)  B:   EKBS
(KAB, A)

4. B  Z(A):   EKAB
(rB)

5. Z(A)  B:   EKAB
(rB-1)

• Z sa úspešne autentizovalo ako A



Útoky na autentizačné protokoly

• Paralelný beh protokolov
• Odpočuté / prijaté správy v jednom protokole využijeme pri 

paralelnom behu druhého protokolu

• Útok zrkadlením
• Špeciálny prípad predošlého útoku
• Príklad: 2 paralelné šachové partie – raz som čierny, raz biely

• “Chosen text” útok
• Útočník si volí hodnoty parametrov tak, aby jednoduchšie 

odhalil informácie o tajnom kľúči
• CPA /  CCA útok na šifrovaciu schému

• „Forced delay“ útok
• Útočník odpočuje správu (zvyčajne obsahujúcu sekvenčné 

číslo) a použije ju neskôr (po prípadnom dešifrovaní hrubou 
silou)



Protokoly na I & A
zhrnutie

• Cieľ: Dokázať (vzájomnú) identitu
• Počas behu protokolu, dokazovateľ by nemal odhaliť svoje 

tajomstvo útočníkovi

• Fixné heslá
• Ak je heslo posielané v otvorenom tvare, útočník ho odpočuje
• Ak je heslo posielané šifrovane, útočník ho môže zopakovať

• Challenge-response protokoly
• Zabraňujú útokom opakovaním s využitím časovo závislých 

parametrov
• Útočník však môže získať nejakú informáciu o tajomstve

• „Chosen-text“ útoky, 

• Overovateľ môže poznať tajomstvo



Zero Knowledge protokoly

• Dokazovateľ dokáže overovateľovi znalosť 
tajomstva bez toho, aby odhalil akúkoľvek 
informáciu o tajomstve

• Postavené na interaktívnych dôkazoch:
• Pravdepodobnostná verzia „dôkazu“
• Úlohou dokazovateľa je presvedčiť overovateľa o 

pravdivosti nejakého tvrdenia cez výmenu správ

• Interaktívne dôkazy na autentizáciu
• Dôkaz znalosti nejakého tajomstva na základe 

odpovedania na otázky,  pričom správne odpovede 
vyžadujú znalosť tohto tajomstva



Interaktívne dôkazy

• Úplnosť: interaktívny dôkaz je úplný:
• Ak sú obidve strany čestné, dôkaz (protokol) skončí 

úspešne s veľkou pravdepodobnosťou

• Korektnosť: interaktívny dôkaz je korektný, ak 
existuje efektívny algoritmus M, ktorý 
• Ak je útočník schopný úspešne prebehnúť protokol 

(presvedčiť overovateľa),

• potom M môže byť použité na extrakciu informácie z 
daného útočníka, ktorá môže byť použitá na ďalšie 
úspešné absolvovanie protokolu 
• Inak povedané, M pozná to tajomstvo



Zero-knowledge protokoly

• Protokol ma vlastnosť „zero-knowledge“ ak
• Existuje efektívny algoritmus - „simulátor“ S, ktorý

• dostane na vstupe tvrdenie, ktoré má dokázať

• bez interakcie s dokazovateľom je schopný generovať transcript
neodlíšiteľný od skutočného behu protokolu

• T.j. dokazovateľ neodhalí žiadnu informáciu o 
svojom tajomstve, okrem tej, ktorá je vypočítateľná 
z verejne dostupných údajov
• Aj keď komunikuje s nečestným overovateľom



Zero-knowledge protokoly

V porovnaní s ostatnými protokolmi na I & A:
• Dlhodobé opakovanie protokolu neznižuje bezpečnosť

• Odolnosť vočí „chosen-text“ útokom

• Nevyžadujú šifrovanie (politické dôvody)

• Zvyčajne menej efektívne
• Väčšia komunikačná aj výpočtová náročnosť

• Postavené na nedokázaných predpokladoch
• Podobne ako v prípade asymetrických techník, napr. problém 

faktorizácie

• „Asymptotické“ dôkazy ZK vlastnosti



Fiatov-Shamirov protokol

• Postavený na probléme počítania odmocnín 
modulo veľké n = p.q
• Ekvivaletné problému faktorizácie

• Setup:
• Dôveryhodný server T vyberie n = p.q, prvočísla p aj q

ostávajú utajené. 

• Každý dokazovateľ A si vyberie tajomstvo s = 1…n-1, 
ktoré je nesúdeliteľné s n
• Vypočíta v = s2 (mod n)

• v je verejný kľúč, A ho registruje na serveri T



Fiatov-Shamirov protokol

• Komunikácia počas behu protokolu (A dokazovateľ, 
B overovateľ)
• A  B: x = r2 mod n, kde r je náhodné 1 ≤ r ≤ n-1

• B A: náhodný bit e 

• A  B: y = r * se (mod n)

• B zamietne, ak y = 0, inak
• akceptuje, ak y2 = x.ve (mod n)



Fiatov-Shamirov protokol

• Pozorovanie:
• Útočník C nepozná s, pravdepodobnosť, že odpovie 

správne je ½ (keďže nevie počítať odmocniny modulo n)

• Pozorovanie:
• C môže zvoliť x = r2/v (mod n), vtedy dokáže odpovedať 

správne pre e=1

• Pre e = 0  musí poznať odmocinu z x

• Pravdepodobnosť úspechu ½

• t-násobným opakovaním protokolu dosiahneme 
pravdepodobnosť podvádzania 2-t



Fiatov-Shamirov protokol

• Odhalená informácia o tajnom kľúči
• y = r (mod n) – žiadna informácia o s

• y = rs (mod n) – žiadna informácia o s, keďže r je 
náhodné a neznáme pre B resp. útočníka
• Inak by vedeli počítať odmocniny



Identifikácia a autentizácia: Záver

Rôzne autentizačné schémy

• Heslá
• Jednoduchý útok opakovaním
• Slovníkový útok

• Jednoduché challenge-response protokoly
• Poskytujú ochranu voči útokom opakovaním
• Vyžadujú zdieľané tajomstvo, resp. dôveryhodnú distribúciu 

verejných kľúčov

• Key distribution center
• Využitie dôveryhodnej 3. strany na distribúciu kľúča
• Užitočné v prípade veľkého množstva komunikujúcich strán

• Zero-knowledge protokoly
• Neposkytujú žiadnu informáciu o tajomstve
• Nie je potrebné pamätať si tajné kľúče na serveri



Zdieľanie tajomstva
Shamirova schéma
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Zdieľanie tajomstva
motivácia

• Svedomitý bankový manažér
• Má pod sebou 8 zamestnancov

• Chce, aby mohol byť trezor otvoreny iba keď je 
prítomných aspoň polovica zamestnancov

• Ako to urobiť?
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Zdieľanie tajomstva

• Máme tajomstvo 𝑆

• 𝑛 ľuďom chceme rozdeliť podiely tak, aby
• Ak poznáme aspoň 𝑡 z 𝑛 podielov, vieme rekonštruovať tajomstvo 𝑆
• Ak poznáme najviac t−1 podielov, nevieme o tajomstve nič povedať

• 𝑡, 𝑛 -prahová schéma na zdieľanie tajomstva

→ Každý podiel musí byť aspoň tak dlhý ako tajomstvo S
• Z 𝑡 − 1 podielov nevieme nič o 𝑆 => posledny 𝑡-ty podiel musí 

obsahovať toľko informácie ako samotné tajomstvo S

→ Všetky schémy na zdieľanie tajomstva využívajú náhodnosť
• Distribúcia 1-bitového tajomstva S medzi 𝑡 ľudí
• 𝑡 − 1 podielov nesmie nič prezradiť o bite 𝑆 => podiely musia byť 

„náhodné“

71



Shamirova schema - idea

• Polynóm 𝑓 stupňa 𝑛 môžeme popísať 𝑛 + 1 bodmi
• T.j. 𝑛 + 1 dvojicami (𝑥, 𝑓(𝑥))
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Shamirova schema (𝑡, 𝑛) schéma

Inicializácia a rozdelenie tajomstva (vykonáva 
dôveryhodná autorita):

1. Zvolíme prvočíslo 𝑝 ≥ 𝑛 + 1 a tajnú informáciu 
𝑆 ∈ ℤ𝑝

2. Zvolíme náhodný polynóm 𝑓 𝑥 stupňa najviac 
𝑡 − 1, tak aby 𝑓 0 = 𝑆

𝑓 𝑥 = 𝑎𝑡−1𝑥
𝑡−1 +⋯+ 𝑎1𝑥 + a0,

kde 𝑎𝑡−1, … , 𝑎1 ∈𝑅 ℤ𝑝 a 𝑎0 = 𝑆

3. Účastník 𝑃𝑖 dostane podiel 𝑓(𝑖), pre 𝑖 = 1,… , 𝑛

73



Shamirova schema (𝑡, 𝑛) schéma

Rekonštrukcia tajomstva 𝑆

• 𝑡 účastníkov má k dispozícii
𝑓 𝑥1 = 𝑎𝑡−1𝑥1

𝑡−1 +⋯+ 𝑎1𝑥1 + a0,

𝑓 𝑥2 = 𝑎𝑡−1𝑥2
𝑡−1 +⋯+ 𝑎1x2 + a0,

⋮

𝑓 𝑥𝑡 = 𝑎𝑡−1𝑥𝑡
𝑡−1 +⋯+ 𝑎1𝑥𝑡 + a0,

• Sústava t lineárnych rovníc o t neznámych má práve 
jedno riešenie

• Vypočítame 𝑎𝑡−1, … , 𝑎0 a následne rekonštruujeme 
𝑆 = 𝑓(0)
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Shamirova schema (𝑡, 𝑛) schéma
bezpečnosť

• Veľkosť podielu je rovnaká ako veľkosť tajomstva

• Skupina 𝑡 − 1 účastníkov nevie o tajomstve 
vypočítať nič
𝑓 𝑥1 − 𝑠′ = 𝑎𝑡−1𝑥1

𝑡−1 +⋯+ 𝑎1𝑥1,

𝑓 𝑥2 − 𝑠′ = 𝑎𝑡−1𝑥2
𝑡−1 +⋯+ 𝑎1x2,

⋮

𝑓 𝑥𝑡−1 − 𝑠′ = 𝑎𝑡−1𝑥𝑡−1
𝑡−1 +⋯+ 𝑎1𝑥𝑡−1,

pre každé 𝑠′ existuje 𝑓′, také že 𝑓′ 𝑥𝑖 = 𝑓(𝑥𝑖) pre 𝑖 = 1,… , 𝑡 − 1

• Nečestný účastník

• Čo ak účastník podhodí falošný podiel?

• Čo ak účastník po odhalení 𝑡 − 1 podielov svoj podiel neodhalí?
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Vizuálne zdieľanie tajomstva
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Kryptografia a 
zraniteľnosti
Niektoré zraniteľnosti súvisiace kryptografiou
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Kryptografia a zraniteľnosti

• Útoky na kryptografické mechanizmy
• Obvykle sú slabiny v správe kľúčov a v implementácii

• Protokoly – zvyčajne slabiny v protokole, bez ohľadu na 
algoritmy

• Niektoré implementačné slabiny/útoky
• Útok postrannými kanálmi (napr. timing útok)

• Nesplnenie bezpečnostných predpokladov (napr. 
náhodnosť)

• Slabiny v protokoloch (napr. útoky na SSL/TLS)

• Slabé algoritmy (napr. proprietárne algoritmy ako CCS)
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Kryptografia a zraniteľnosti

• NIST: NVD (National Vulnerability Database)
• SW zraniteľnosti a ich klasifikácia (typ, závažnosť a pod.)

• Najčastejšie zraniteľnosti v „Cryptographic Issues“:
• použitie nekvalitného zdroja náhodnosti pri generovaní 

kľúčov,

• nedostatočná (neúplná) kontrola certifikátov,

• nekorektná implementácia kryptografických algoritmov 
alebo protokolov,

• fixné heslá servisných účtov alebo heslá odvodené 
z verejne známych údajov

79



Format String Vulnerability

Link Following

Credentials Management

Design Error

Authentication Issues

Code Injection

Cross-Site Request Forgery (CSRF)

SQL Injections

Resource Management Errors

Permissions, Priviledges and Access Control

Buffer Errors

0 100 200 300 400 500 600 700 800

Počty zraniteľností publikovaných v roku 2012 podľa NVD
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Generátory náhodných čísel

• Častá príčina zlyhania kryptografických systémov
• Generovanie skutočne náhodných čísel je ťažké

• (Ne)kryptografické generátory pseudo-náhodných čísel 
bývajú predvídateľné

• Určite nepoužívajte “rand()” funkciu zabudovanú v 
programovacom jazyku 
• srand(seed) inicializuje generátor, nastaví state=seed
• rand():

• state=f(state), kde f je nejaká lineárna funkcia
• return state;

• Generovanie 128-bitového kľúča 
KEY=rand()∥rand()∥rand()∥rand()

• Entropia kľúča je iba 32 bitov!
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Generátory náhodných čísel

• Generátor pseudo-náhodných čísel použiteľný v 
kryptografii
• Výstup neodlíšiteľný od úplne náhodného akýmkoľvek 

efektívnym algoritmom 
• Pokiaľ možno, zakaždým reinicializovaný novým zdrojom 

entropie
• Malo by byť ťažké uhádnuť interný stav generátora

• Napr. entropia by nemala pochádzať iba z času (súborov)

• „Cold boot“ problémy
• Server práve naštartoval a potrebuje zdroj náhodnosti ... je 

možné získať dosť entropie, ak server beží len pár sekúnd?
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Generátory náhodných čísel
najznámejšie zraniteľnosti

• Netscape, implementácia SSL, 1995
• Pseudonáhodný generátor inicializovaný na základe času, ID 

procesu a ID nadradeného procesu – všetko ľahko predvídateľné 
hodnoty

• Generátor nebol verejne dostupný („security through obscurity“), 
na analýzu využili reverzné inžinierstvo

• Windows 2000 / XP, 2007
• Leo Dorrendorf - Cryptanalysis of the Random Number Generator of 

the Windows Operating System, http://eprint.iacr.org/2007/419.pdf
• Vážne nedostatky vstavaného generátora
• Ak sa útočníkovi podarilo získať stav generátora (napr. cez buffer 

overflow), mohol predpovedať všetky predchádzajúce aj 
nasledujúce vygenerované hodnoty (napr. SSL šifrovacie kľúče)

• Opravené v XP SP3
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Generátory náhodných čísel
najznámejšie zraniteľnosti

• Debian OpenSSL, 2008
• Debian distribúcie Linuxu
• Zmeny v kóde pseudo-náhodného generátora 

drasticky znížili entropiu 
• Chyba bola spôsobená vývojárom, ktorý na základe 

upozornení kompilátora odstránil na pohľad zbytočný 
kód

MD_Update(&m,buf,j); /* neinicializovaná hodnota */
[ .. ]
MD_Update(&m,buf,j); /* neinicializovaná hodnota */

• Odstránený kód zabezpečoval zvýšenie entropie
• Po jeho odstránení bol generátor inicializovaný len na 

základe ID procesu 
(max. 32 768 hodnôt)

• Chyba umožnila odhaliť vygenerované súkromné kľúče
• Veľké množstvo kľúčov a certifikátov muselo byť 

vygenerovaných znovu
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Generátory náhodných čísel
najznámejšie zraniteľnosti

• PlayStation 3, 2010
• Sony využíva ECDSA 

algoritmus na 
podpisovanie softvéru pre 
PlayStation 3

• ECDSA vyžaduje dobrý 
PRNG

• Opakované použitie 𝑘
vedie k odhaleniu 
súkromného kľúča

• SONY použilo zakaždým tú 
istú hodnotu 𝑘

Podpisovanie v ECDSA 
Sig𝑥 𝑚 :

1. 𝑘 
$
1,… , 𝑛 − 1

2. 𝑥1, 𝑦1 = 𝑘 × 𝐺

3. 𝑟 = 𝑥1 mod 𝑛

4. 𝑠 = 𝑘−1(𝐻(𝑚) +
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Generátory náhodných čísel
najznámejšie zraniteľnosti

• Implementácia Bitcoinov v Androide, 2013
• Chyba v Java triede SecureRandom - možné kolízie v hodnote 
𝑘 pri použití ECDSA  

• Kolízia vedie k odhaleniu súkromného kľuča – možnosť 
ukradnúť Bitcoiny z Androidovej peňaženky

• DUAL_EC_DRBG, 2007, 2013
• NIST Special Publication 800-90 – kolekcia pseudo-náhodných 

generátorov
• DUAL_EC_DRBG – odporúčaný / navrhovaný aj NSA

• Kryptografia nad eliptickými krivkami - štandard obsahuje aj sadu 
odporúčaných kriviek / konštánt

• 2007, Shumow, Ferguson ukázali, že konštanty mohli byť 
skonštruované tak, aby umožňovali „zadné vrátka“ k náhodnému 
generátoru

• 2013, REUTERS – Snowden: NSA zaplatilo firme RSA $10 mil., 
aby bol predvolený generátor práve DUAL_EC_DRBG
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Heartbleed

• Apríl 2014

• Zraniteľnosť v rozšírení „Hearbeat“ pre OpenSSL
• „keep alive“ pre TLS 

• Každá stránka obsahuje veľa súčastí (obrázky, skripty, 
štýly)

• Rozšírenie heartbeat zabezpečovalo, aby nebolo 
potrebné zakaždým negociovať nové kľúče

• Chyba v implementácii umožnila na diaľku čítať 
pamäť servera
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http://xkcd.com/1354/
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http://xkcd.com/1354/
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http://xkcd.com/1354/
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Heartbleed

buffer 
= OPENSSL_malloc(

1 + 2 + payload
+ padding

);

Payload + padding – hodnota 
ovládaná klientom

Zakaždým bolo možné získať max. 
64kb obsahu pamäte servera
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Apple goto fail

• Február 2014

• iOS < 7.0.5

• OS X < 10.9.2

• Chyba v implementácii 
SSL/TLS klienta

• Nedochádza k správnemu 
overeniu digitálneho 
podpisu servera

• Možný „man in the middle
útok“ 

Prvé kroky TLS:

C → 𝑆: Zoznam podporovaných 
šifrovacích algoritmov

𝑆 → C: S vyberie „Ephemeral
Diffie Hellman“, 
vygeneruje DH parameter 
𝑔𝑎
pošle to podpísané svojim 
tajným klientovi

𝐶 → 𝑆: C overí podpis 
parametrov,
vygeneruje 𝑔𝑏, pošle to S 

𝐶 ↔ 𝑆 : „session“ kľuč 𝑔𝑎𝑏

• ďalšia komunikácia je šifrovaná 
týmto kľúčom
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Tento riadok tu nemá byť, zakaždým sa vykoná

Kód zakaždým preskočí sem a err obsahuje hodnotu 
reprezentujúcu úspešné overenie podpisu

Apple goto fail
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BEAST útok, 2011

• Aplikovateľný na šifrovacie schémy bežiace v CBC móde v 
rámci SSL 3.0 a TLS 1.0

• Využíva nedostatočnú náhodnosť IV v týchto šifrovacích 
schémach
• Teoretický útok navrhnutý už v roku 1995 (Rogaway)
• IV inicializovaný posledným blokom šifrového textu predošlého 

packetu

• Predpoklady:
• Zapnutý JavaScript – „Man in the browser“ – útočník cez JavaScript 

posiela na server dotazy
• Možnosť byť „Man in the middle“ – odpočúvať a posielať packety v 

sieti

• Útočník uprostred môže odhaliť „session cookie“ obete 
(napr. Do stránky PayPal.com) 
=> t.j. pracovať so systémom v mene obete
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BEAST útok, 2011

95

1. Podvrhnutie JavaScriptu

2. Odoslanie špeciálne vytvorenej požiadavky cez SSL 

3. Odpočúvanie komunikácie4. Feedback pre JavaScript

5. Odoslanie upravenej špeciálne vytvorenej požiadavky cez SSL
- Opakovane na základe Feedbacku

6. Dešifrovanie cookie



BEAST útok, 2011

• Prehliadače hneď vydali záplaty

• TLS 1.1 a 1.2 nie sú ovplyvnené – IV je generovaný 
náhodne

• Teoretická možnosť odhalená v roku 1995 sa stala 
praktickou
• Útoky sa časom zlepšujú!

• Útok využíval nástroje z viacerých oblastí bezpečnosti
• Man-in-the-browser cez JavaScript

• Nedostatočnú náhodnosť IV

• Možno sa budú dať tieto nástroje využiť aj pri iných útokoch
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CRIME útok, 2012

• Zneužíva možnosť kompresie posielaných údajov cez TLS

• Teoretický útok známy od roku 2004 (Kelsey)

• Idea:
• Dĺžka šifrového textu určuje dĺžku otvoreného textu
• Ak poznáme dĺžku otvoreného textu, vieme pomer kompresie
• Pomer kompresie odhaľuje niečo (hoci málo) o otvorenom texte

• Útok umožňuje odhalenie „session cookie“
• Predpoklady podobné ako v BEAST útoku 

• „man in the browser“ – JavaScript pošle na server vhodne zvolenú správu 
(CPA útok)

• „man in the middle” – Možnosť odpočúvať packety v sieti

• Zabránime mu vypnutím konverzie v prehliadači / na serveri
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CRIME útok, 2012

• Teoretická zraniteľnosť z roku 2004, praktický útok 
v roku 2012
• Útoky sa časom zlepšujú!

• Nástroje vyvinuté pre BEAST útok boli využíté aj v 
CRIME útoku
• A možno sa budú dať použiť aj inde?

• Útoky podporili rozšírenie novších (a lepších) 
štandardov TLS 1.1 resp. 1.2
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Error message attack

• Server implementujúci kryptografický protokol 
môže reagovať rôzne, ak (zašifrované) dáta ktoré 
prijal majú
• správny tvar (napr. otvorený text má správny padding)
• nesprávny tvar (napr. otvorený text má nesprávny 

padding)

• Tzv. padding oracle útoky
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Padding 
oracle

(server)
Útočník

Šifrový text

Áno / Nie



Error message attack

• 2002, Vaudenay – útok na sym. šifry v CBC móde
• Útočník môže s využitím „timing padding“ orákula dešifrovať 

správy (resp. vytvoriť správne zašifrovaný text)

• ...

• 2013, Peterson a kol. „Lucky 13“ útok na TLS
• “Timing padding oracle útok”

• TLS síce nedáva rôzne chybové hlásenia, avšak

• ak má správa zlý padding čas, odpovede je iný ako v prípade 
správneho paddingu

100



Lucky 13

Špecifikácia TLS 1.2:

…implementations MUST ensure that record processing
time is essentially the same whether or not the padding is
correct.

In general, the best way to do this is to compute the MAC 
even if the padding is incorrect, and only then reject the
packet. 

• Avšak ak je zlý padding, aký padding máme použiť?
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Lucky 13
TLS Record Protokol: MAC-Encode-Encrypt

MAC

SQN || HDR Payload

Padding

Encrypt

Šifrový text

MAC tagPayload

HDR

Problém je, ako v prípade zlého paddingu určiť, čo je Payload, MAC tag a Padding
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Lucky 13

103

For instance, if the pad appears to be incorrect, the implementation might assume
a zero-length pad and then compute the MAC.

• Tento prístup využívalo viacero implementácií vrátate OpenSSL, NSS (Chrome, 
Firefox), BouncyCastle, OpenJDK, … 

… This leaves a small timing channel, since MAC performance depends to some
extent on the size of the data fragment, but it is not believed to be large enough to 
be exploitable, due to the large block size of existing MACs and the small size of the
timing signal.



Lucky 13

• Útok voči TLS-CBC šifrám implementovaných podľa 
odporúčania špecifikácie TLS 1.2
• Útočník môže dešifrovať komunikáciu - napr. „session cookie“

• Aplikovateľný na všetky verzie SSL/TLS
• SSL 3.0, TLS 1.0, TLS 1.1, TLS 1.2 pri použití CBC šifry
• TLS 1.2 podporuje aj šifry v GCM a CCM móde, ktoré sú 

odolné 

• Využitie BEAST prístupu 
• „man in the browser“ cez JavaScript
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Poodle útok, 2014

• Ďalší padding oracle útok na CBC šifry v SSL 3.0

• Požiadavka klienta na server (rozdelená na 8 bajtové 
bloky):

• Posledný blok obsahuje padding a jeho dĺžku 
• V našom prípade 7 bajtov

• SSL 3.0 nešpecifikuje ako má vyzerať padding
• T.j. je akceptovaný vtedy a len vtedy ak posledný bajt je 7

• Útočník odpočuje šifrovanú podobu vyššie uvedenej 
požiadavky
• Duplikuje blok obsahujúci cookie a nahradí nim posledný blok
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Poodle útok, CBC dešifrovanie

• Ak SSL 3.0 server správu akceptuje (t.j. má správny padding)
• cookie blok⊕ predchádzajúci šifrový blok= xxxxxx7

=> Útočník pozná posledný znak cookie

106



Poodle útok, 2014

• Následne útočník vytvorí novú požiadavku, kde je 
cookie blok posunutý:

=> útočník získa predposledný znak cookie

⋮

=> Útočník získa celý cookie
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Ďalší útok: Bankomaty a PIN

• Pomocou termokamery je možné čítať PIN

• Niekedy je dokonca možné určiť poradie stlačenia 
kláves

• Kovové klávesy sú náchylnejšie
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