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2.1 Prirodzené cCisla a matematicka indukcia

Kombinatorika je matematickd disciplina, ktora sa zaobera tlohami o Struk-
tarach definovanych na konec¢nych mnozinach. NajcéastejSie ide o podmnoziny,
usporiadané n-tice, relacie, zobrazenia, rozklady a mnozstvo inych objektov,
ktoré jednotne nazyvame kombinatorickymi konfigurdciami. Aj ked korene kom-
binatoriky siahaji hlboko pred nas letopocet, rozvoj kombinatoriky ako moder-
nej discipliny je tizko spojeny s nastupom informatiky. Kombinatrika tvori jeden
zo zékladnych pilierov tohto vedného odboru. Dnesna kombinatoriku charak-
terizuje niekol'ko vSeobecnych typov tloh. Spomedzi nich st najdoélezitejsie:

(1) zostrojit konfiguracie pozadovanych vlastnost;

(2) nekonstruktivnymi metédami dokazat existenciu alebo neexistenciu konfi-
gurécie istych vlastnosti;

(3) uréit pocet vsetkych konfiguracii daného typu;

(4) charakterizovat také konfiguracie pomocou inych pojmov, vlastnosti a pa-
rametrov;
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(5) najst algoritmus, ktory umoziuje vietky pozadované konfiguracie zostrojit;

(6) spomedzi v8etkych konfiguracii vybrat optimalnu (alebo extremalnu — ma-
ximalnu, ¢ minimalnu) podla danych kriterii.

Spomedzi nich sa v tejto kapitole budeme stretévat s tlohami typu (4) , (3) a (1).

Ako sme povedali, kombinatorika sa zaoberé prevazne koneénymi Struktira-
mi. Je tu vSak jedna nekone¢na mnozina, ktorda méa pre kombinatoriku pod-
statny vyznam: mnozina N = {0,1,2,...} vSetkych prirodzenych ¢isel. O tejto
mnozine uz vieme, Ze je linearne usporiadana beznou relaciou < podla velkosti.
Toto usporiadanie mé jednu velmi dolezitu vlastnost (vlastnost dobrého uspo-
riadania): KaZdd neprdzdna podmnoZina mnoziny N md najmensi prvok. (To,
7e prirodzené ¢isla maju tato vlastnost sa nahliadne Tahko sporom: keby exis-
tovala v N neprazdna podmnozina M bez najmensieho prvku, tak by sme l'ahko
skonstruovali ostro klesajicu nekoneént postupnost ng > ny > ng > ... prvkov
mnoziny M. Lenze taka postupnost v N o¢ividne neexistuje.)

Dalsia dolezita vlastnost mnoziny N je zadkladom metoédy matematickej in-
dukcie, ktora je v kombinatorike prakticky vSadepritomna. Znie takto:

Nech M C N je podmnozina spliiajica dve podmienky:

(I1) 0 € M;
(I2) ak x € M, tak potom aj (x +1) € M.

Potom M = N.
Princip matematickej indukcie méZeme teraz sformulovat takto.

Teoréma 2.1. Nech (V(n))nen je postupnost vgrokov. Predpokladajme, Ze
(i) plati virok V(0);
(i) pre kaZdé prirodzené éislo n, ak plati V(n) , tak potom plati V(n + 1),
Potom vyrok V (n) plati pre kazdé prirodzené éislo.

Poznamka. Bod (i) sa nazyva bdza indukcie a bod (ii) sa nazyva indukcny
krok.

Dokaz. Definujme mnozinu A = {n € N; plati vyrok V(n)} . Podmienka (i)
nasej teorémy znamend, %e 0 € A . Podmienka (ii) hovori, Ze plati implikacia
-akn € A, tak aj (n+ 1) € A. To znamen4, Z%e st splnené vysgie spomenuté
podmienky (I1) a (I12), a preto A = N. O

BeZne sa vyuziva niekolko modifikicii teorémy 2.1. Stava sa, Ze vlastnost
V(n) plati iba pre prirodzené &sla n > ng pre nejaké ¢islo ng. V tom pripade
najprv overime pravdivost vyroku V(ng) a potom dokaZeme pravdivost implika-
cie - pre kazdé n > ng, ak plati V(n), tak plati aj V(n + 1). Tym je potom
dokézana pravdivost vyroku V' (n) pre kazdé n > ng. Niekedy je vyhodné pouzit
d'algi variant matematickej indukcie - uplni matematicki indukciu.
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Teoréma 2.2. Predpokladajme, Ze z platnosti vyroku V (k) pre kaZdé k < n
vyplgva aj platnost viroku V(n). Ak plati vijrok V(0), tak vgrok V(n) plati pre
kazdé prirodzené éislo n.

Poznamenajme, Ze overenie platnosti V(0) nemoZno vynechat.

2.2 Dirichletov princip

V tejto Gasti sa budeme zaoberat jednoduchym no velmi délezitym principom,
ktory méa Siroké pouzitie pri rieSeni rozliénych problémov a ¢asto vedie k pre-
kvapujucim zaverom. Je znamy v roznych formach. Najjednoduchsia je azda
tato:

Ak n + 1 predmetov ukladdme do n priecinkov, tak aspoti jeden priecinok
bude obsahovat dva alebo viac predmety.

Exaktnejsie mdzeme tento princip sformulovat takto:

Neezistuje injektivne zobrazenie (n+1)-prokovej mnoZiny do n-prvkovej mno-
zZiny.

Dokazeme vSeobecnejsie tvrdenie

Teoréma 2.3. Nech A a B su konecné mnoziny, pricom |A| = n, |B| =m a
n > m Potom neexistuje Ziadne injektivne zobrazenie f : A — B.

Dokaz. Nech S je mnozina vSetkych prirodzenych ¢isel s takych, Ze existuje
s-prvkova mnozina, ktora sa da injektivne zobrazit na t - prvkovi, kde ¢ < s.
Nasim cielom je ukazat, e S = (). Predpokladajme, sporom, %e S # ). Potom
(na zaklade principu dobrého usporiadania) S mé najmensi prvok - nech n je naj-
mens{ prvok mnoziny S a nech f: {ay,a9,...,a,} = A — B ={b1,ba,..., b}
je injekcia, kde m < n. Zrejme m > 2, lebo inak by boli vSetky zobrazenia
A — B konstantné, a teda nie injektivne. Predpokladajme, ze f(a,) = b,
pre nejaké r € {1,2,...,m}. Keby kazdy z prvkov f(a1), f(az2),..., f(an—1)
bol rézny od b, , tak zOZenie zobrazenia f na mnozinu ai,as,...,d,—1 by
bolo injektivnym zobrazenim A — {a,} — B — {b,} . To by v8ak bol spor
s vol'bou ¢isla n. Preto musi existovat j € {1,2,...,n — 1}, ze f(a;) = bn.
KedZe f je injekcia, f(an) # b, takze r < m — 1 . No potom zobrazenie
g: A—{a,} — B — {by} definované predpisom

g(aj) = by
g(a;) fla;) prei#j, ie{l,2,...,n—1}

je opét injektivne. Znova sme dostali spor s definiciou ¢isla n, a teda mnoZina
S je prazdna. O

Prvykrat upozornil na tento jednoduchy princip nemecky matematik 19.
storoc¢ia P. Dirichlet. Dnes je znamy aj ako ,holubnikovy princip* podla toho,
ze ak viac ako n holubov pouziva n holubnikovych dier, tak asponn dva holuby
vychédzaju tou istou dierou. Poznamenajme, Ze tento princip nedéva nijaky
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navod ako najst dieru pouZivanu viac ako jednym holubom. Preto je tento
princip Casto existencny.

Medzi dosledky Dirichletovho principu patri aj skuto¢nost, Ze ak koneéna
mnozina ma m prvkov aj n prvkov, tak m = n.

Priklad 2.1. V Bratislave sa v kazdom okamihu vyskytuja aspont dvaja ludia,
ktori maju rovnaky pocet vlasov na hlave. Nech A je mnoZina obyvatelov
Bratislavy a B = {0,1,...,200000}. Zobrazenie f : A — B priraduje bratis-
lav¢anovi x jeho pocet vlasov f(x) € B (pocet vlasov ¢loveka neprevysuje 200
000). Kedze |A| > 200001, zobrazenie nemdze byt injektivne. Poznamenajme,
Ze toto zobrazenie sa kazdu chvilu meni — sta¢i sa ucesat.

Priklad 2.2. V postupnosti (a1, ag, ..., a,) lubovolnych n prirodzenych &isel

existuje suvisla podpostupnost (ag+1, agro, .- ., a;) taka, ze sucet ag11, agao, .- -,
a; je delitelny éislom n.
Aby sme sa o tom presved¢ili, uvazujme n suc¢tov ay, a1 +as,...,a1 +as +

+...4+ a,. Ak je medzi nimi niektory delitelny ¢islom n, sme hotovi. Nech
preto kazdy z nich dava po deleni ¢islom n nenulovy zvySok. KedZe suctov je
n, no moznych hodnét pre zvysky je len n — 1, dva z tychto suctov povedzme
ay+ag+...+a,aa;+as+...+as (pricom r < s) davaji po deleni ¢islom n
ten isty zvySok z. Méame teda

ai+as+...+ta, =bn+z
a+a+...+as =cn—+=z
pre vhodné b, ¢ € Z. Odé&itanim prvého siétu od druhého dostavame
ry1+ Qrao+ ... +as = (c—b)n,
¢o znamend, ze posledny sucet je delitelny &islom n.
Uvedieme este silnejsiu formu Dirichletovho principu:

Teoréma 2.4. Ak f: A — B je zobrazenie konecnijch mnoZin také, Ze |A| = n,
|B| = m an/m >r—1 pre nejaké prirodzené c&islo r, tak existuje prvok mnoZiny
B, na ktory sa zobrazi aspori v prvkov mnoZiny A.

Dékaz. Nech B = {1,2,...,m} a nech n; je pocet prvkov mnoziny A, ktoré sa
zobrazia na prvok ¢ € B. Keby pre kazdé z &isel n; platilo n; < r — 1, tak by
sme dostali

-1
Pl oMttt mr =)
m m m
Tento spor dokazuje teorému. O

2.3 Zakladné enumeracné pravidla

Uloha uréit pocet kombinatorickych konfiguracii daného typu je jednou z najty-
pickejsich kombinatorickych tloh. Existuje obrovské mnozstvo réznych druhov
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kombinatorickych konfiguracii, kedZe existuje nepreberné mnozstvo praktickych
iloh kombinatorického charakteru. Velkd vadsina tloh sa v8ak da zaradit do
jednej z nasledujucich tried s dvoma podtriedami:

1. Uréit pocet neusporiadanych konfigurdcii, pri¢om opakovanie objektov
v konfiguréaciach je alebo nie je povolené.

2. Urcit pocet usporiadanich konfigurdcii, pricom opakovanie objektov v kon-
figuraciach je alebo nie je povolené.

Citatel iste pozné pojem kombinacii, ktory spadid pod bod A, a pojem
variacii, spadajuci pod bod B. Tieto dva pojmy vSak na rieSenie kombina-
torickych tuloh nestacia, pretoze konfiguracie mozu kombinovat usporiadané aj
neusporiadané ¢rty. Ovela dolezitejsie je preto ovladat zakladné enumeracné
pravidla a ovladnut umenie ,matematizacie* kombinatorickych tloh — ¢o zna-
mené vediet vyabstrahovat konfiguracie v podobe podmnozin, usporiadanych
k-tic, zobrazeni, relacii rozkladov a podobne, a potom na ich zratanie enume-
ra¢né pravidla pouZit.

Prvé z nich je velmi jednoduché:

Teoréma 2.5 (Pravidlo st¢tu). Nech X1, Xo,...,X,, n > 2 si navzdjom
disjunktné podmnoziny konecénej mnoziny X, pricom X = X; UXoU...UX,,.
Potom

| X| = |X1]| + | Xa| + ... + | Xal-

Dokaz. Nechnajprvn = 2. nech X7 = {ay,as,...,a,} and Xo = {b1,ba,...,bs}.
Kedze X1 N Xy =0, plati X; UXs = {c1,¢2,---,CryCra1y-- -, Cris}, kde ¢; = a;
prei € {1,2,...,r} ac; = bj_, pre j € {r+1,...,7 + s}. Z tohto uz lahko
vidno, ze |X| = | X3 U X3| = | X1| + |X2|. Pre n > 3 sa dokaz lahko dokonéi
matematickou indukciou. O

Opakovanym pouzitim tohto pravidla ziskavame dalsie pravidlo. Je zloZitej-
Sie, no ma CastejSie pouzitie.

Teoréma 2.6 (Pravidlo st¢inu). Nech X1, Xo,...,X,, n > 2, si lubovolné
konecné mnoZiny. Potom | X1 x Xg x --- x X,,| = | Xq| - | Xa| - ... - | X0

Doékaz. Budeme postupovat indukciou vzhladom na n, pricom v indukénom
kroku pouZijeme pravidlo stuétu. Tvrdenie teorémy plati aj pre n = 1 (ale nié
nehovori) a to vyuzijeme ako bazu indukcie. Nech teraz tvrdenie teorémy plati
aj pre nejaké n > 1. UkadZeme, Ze plati aj pre n + 1. Chcem ur¢it podet prvkov
mnoziny X1 X Xo X ... X X, X Xp41. Ak X1 =0, tak | X7 x Xo x ... x X, ¥

Xn+1l = 0 = |X1] - |X2| - .. | Xnt1]- V tomto pripade teraz tvrdenie plati.
Nech preto | X, +1| = s > 1, pricom X, 11 = {a1,as,...,as}. Polozme pre kazdé
ie{1,2,...,s}

Y:i=X1 x Xo x...x X, x{a;}.
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Je zrejme, ze |Y;| = | X1 x Xo x ... x X,,| a podla indukéného predpokladu teda
plati

Y| = | Xq1] - [ Xa| ... | Xal
Pretoze
S
X1 % Xy x o x X X Xpr = | Vi
k=1
a mnoziny Y7, Yo, ...,Y; st navzidjom disjunktné, z pravidla suc¢tu dostavame
S
X1 % Xo X oo X K| = Y |Ya| = X0 |- [Xa| - [ Xn] - [Xnga .

k=1

O

Priklad 2.3. Kolko $tvorcifernych ¢isel delitelnych piatimi moéZzeme vytvorit
z cifier 0, 1, 3, 5, 77 Nech M = {0,1,3,5,7} . Potom kazdé hladané ¢islo je
charakterizované usporiadanou stvoricou, ktora patri do mnoziny U =

= (M —{0}) x M x M x {0,5}. Podla pravidla su¢inu dostavame

U =4-5-5-2=200.

Priklad 2.4. Kol'kokrat za den cifry na digitalnych hodinach ukazujua rasticu
postupnost? Cas na ukazateli digitdlnych mnozin moézeme zakodovat usporia-
danou Sesticou prirodzenych ¢isel x = (x1, x2; x3, 24; Ts5,26). Predpokladajme,
7e 1 < x9 < ... < xg. Hoci vo v8eobecnosti ¢as musi spfﬁat’ r1 < 2, vidime,
7e 1 = 2 by nevyhnutne viedlo k x5 > 6, ¢o nie je mozné. Preto x; € {0,1} a
x5 < 5. Ak z1 = 1, tak 25 = 5 a ak 21 = 0, tak x5 = 4 alebo 5. MnoZinu X
hladanych postupnosti rozdelime takto

Xl = {IEXa ‘lel}v
Xoas = {zeX; x1=025 =4},
Xos = {l‘ e X; x1=0,z5 :5}

V prvej mnozine si postupnosti tvaru (1, 2; 3, 4; 5, 26), z Goho vyplyva | X1 | =
= 4. V druhej st postupnosti tvaru (0, 1;2,3;4,x¢), takZe |Xos| = 5. Pocet
prvkov mnoziny |Xos5| spo¢itame takto: pre (xo,x3,x4) st len tieto moZnosti:
(1,2,3),(1,2,4),(1,3,4),(2,3,4). Pre 2 st moZnosti 6,7,8,9. Kazda postup-
nost v Xos5 je charakterizovana usporiadanou dvojicou ((z2, x3,x4), ), ktorych
je podla pravidla su¢inu 4.4 = 16. Napokon podla pravidla sa¢tu dostavame
| X] = [X1| + [Xoa| + [Xo5| =4+ 5+ 16 = 25.
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2.4 Variacie

Variacie spolu s kombinéciami patria medzi najjednoduchsie a najbeznejsie kom-
binatorické konfiguracie.Zatial ¢o variacie st usporiadané struktury, kombinécie
st neusporiadané. Ukazuje sa, Ze jednoduchsie je zacat Studium usporiada-
nych konfigurécii a na neusporiadané sa divat ako na triedy ekvivalencie uspo-
riadanych struktuar.

Ako prvy odvodime vysledok o poé¢te zobrazeni medzi koneénymi mnoZzinami.
Pripomefime oznacenie z predchadzajicej kapitoly: pre lubovolné mnoziny A a
B oznatujeme symbolom B4 mnozinu vietkych zobrazeni A — B.

Teoréma 2.7. Ak A a B si konecné mnoZiny, pricom |A| =n a |B| =m, tak
154) = 5] =

Dokaz. Teorému dokazeme indukciou vzhladom na n. Pre n = 0 (a kazdé
prirodzené cislo m = |B|) teoréma plati, lebo B? = {(}. Predpokladajme teraz,
Ze teoréma plati pre nejaké n > 0 a vSetky prirodzené ¢isla m. Nech |A| = n+1,
pricom A = {ay,...,an,ans1}. Ak B = (), tak ) = 0 a tvrdenie plati. Ak
m>1aB={by,ba,...,bn}, pre k € {1,2,...,m} poloZzime

Vi, = {f € B*; flans1) = bi}

Mnoziny Yj st navzajom disjunktné a B4 = UP.,Y,. Okrem toho ztZe-
nia zobrazeni f € Y; na mnozinu A — {a,4+1} st po dvoch rézne a davaji
v8etky zobrazenia {ai,as,...,a,} — B, z indukéného predpokladu dostavame
|Yi] = m™. Napokon

m
[BY = Wil =momt=m =B
k=1
O
Pre A = {1,2,...,n} a |B| = m sa prvky mnoziny B4 nazyvaju varidcie

s opakovanim n-tej triedy z m prvkov (mnoziny B). V sthlase s oznacenim zave-
denim v ¢lanku ?? namiesto Sipkového oznacenia pre tieto zobrazenia pouzivame
oznadenie sekvencialne f: {1,2,...,n} — B oznafujeme

(f(1), f(2),...,f(n)) = (f1,f2,...,fn) . Z tohto vyjadrenia je zrejmé,
7e existuje bijekcia B2} — B x B x ... x B (n-krat) a teda teoréma 2.7
vyplyva aj priamo z pravidla sacinu.

Napriklad ak B = {a,b}, tak vsetky variacie tretej triedy z mnoziny B st
(usporiadané lexikograficky):

(a,a,a), (a,a,b), (a,b,a), (a,b,b), (b,a,a), (b,a,b), (b,b,a), (b,b,b).

Poznamka. Teorémy (2.5-2.7) st zakladom definicie su¢tu, sa¢inu a mocnenia
Tubovolnych kardinalnych ¢isel, ako sme ich zaviedli v ¢lanku ??. Tieto definicie
teda zov8eobeciiuji nasu prakticki skusenost z kone¢nych mnoZin na nekonecéné
mnoZiny ubovolnej kardinality.



12 KAPITOLA 2. KOMBINATORIKA

Teoréma 2.7,5 Nech A je konecnd mnoZina, |A| = n. Potom pocet vSetkijch
podmnoZin mnoZiny A je |[P(A)| = 2.

Teraz uré¢ime pocet vSetkych injektivnych zobrazeni medzi dvoma mnoZina-
mi.

Teoréma 2.8. Nech A a B si koneéné mnoZiny, pricom |A| = n a |B| = m.
Potom pocet vsetkijch injektivnych zobrazeni z A do B je

n—1

m~(m—1)...(m—n+1):H(m—i)

=0

Dokaz. Nech I g oznacuje pocet injekcii A — B. Budeme postupovat indukciou

vzhladom na n. Ak A = () , tak existuje jedina injekcia A — B. V stcine
-1

H(m — 1) mame nulovy podcet ¢initelov, a taky sucin sa definitoricky kladie

i=0
za 1. Teda v tomto pripade vysledok plati. Predpokladajme, Ze tvrdenie nasej

teorémy je spravne pre nejaké n > 0 a pre vSetky prirodzené ¢&isla m. Nech
|Al = n+1 anech A = {aj,az,...,an,an11}. Ak B = 0, tak B4 = () a
tvrdenie plati. Nech teda m > 1 a B = {b1,ba,...,b,}. Definujme teraz pre
ke {1,2,...,m} mnozinu

Yy = {f € BY, fjeinjektivne a f(an;1) = by}

Mnoziny Y7,Ys,...,Y,, st navzadjom disjunktné a kazd4 injekcia A — B
patri do nejakej z nich. Preto |Yi|+ |Ya| + ...+ |Yin| = I4
Uréime |Yy| pre Tubovolné k. KedZe zuZenim injekcie je opét injekcia, ziZenia
zobrazeni f € Y, a mnozinu A — {a,+1} st injekcie A — {an41} — B — {bx}.
Naviac medzi zuZeniami sa kazdé taka injekcia vyskytuje prave raz. Preto

il = 15~ foy

B—{b}
Podl'a induk¢éného predpokladu
n—1 n
Vil = [[m=1=4)=]](m—1)
i=0 i=1

Odtial vyplyva, ze
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Vsimnime si, ze ak |A| > |B|, tak teoréma 2.8 hovori, Ze neexistuje ziadna
injekcia A — B, ¢o je obsah teorémy 2.3. Dirichletov princip je teda dosledkom
teorémy 2.8.

Injekecie z mnoziny A = {1,2,...,n} do mnoziny B, kde |B| = m, sa nazy-
vaju varidcie (bez opakovania) n-tej triedy z m prvkov (mnoZiny B).

Na oznacenie poctu variacii bez opakovania n-tej triedy z m prvkov pouzi-
vame symbol m =m(m — 1)...(m —n+ 1), pricom v sihlase s teorémou 2.8
platia vztahy m2 = 1 a mi = m ¢islo m2 sa nazyva n-ty klesajiici faktoridl z m.
Cislo m™ = m(m — 1) -...- 21 sa ozna¢uje m! a nazyva sa m-faktoridl.

Priklad 2.5. Mame zostavit vlajku z troch rovnakych vodorovnych farebnych
prvkov, alebo troch rovnakych zvislych prvkov, pricom méame k dispozicii latky
n roznych farieb (v neobmedzenom mnoZzstve ) . Nech H je mnozina vlajok
prvého a V mnozina vlajok druhého druhu. Zrejme HNV = 0 a |H| = |V].
Kazdu vlajku z mnoZiny H charakterizuje usporiadané trojica roznych farieb,
Cize injekcia {1,2,3} — F', kde F je mnoZina farieb. Z teorémy 2.8 vyplyva, ze
|H| =n(n—1)(n —2) =n2, a teda pocet r6znych vlajok je 2n2.

Napriklad variacie bez opakovania druhej triedy z prvkov mnoziny B = {1, 2,
3} st (v lexikografickom usporiadani) (1,2), (1,3),(2,1),(2,3),(3,1),(3,2). Ak
A ==1{1,2,...,n} a |B| = n, tak variacie n-tej triedy z n prvkov mnoZiny B
nie sd ni¢ iné ako bijekcie A — B a ich pocet je podla teorémy 2.8 n - (n —1) -
...+2.1 =nl. Tieto variacie sa nazyvaju permutdciami mnoZiny B. (Niekedy je
o permutaciach vyhodné predpokladat, ze A = B.)

Zo zépisu permutacie ako postupnosti, v ktorej sa vyskytuji bez opakovania
v8etky prvky mnoziny B je zrejmé, Ze kazda permutacia mnoziny B urcuje
nejaké linearne usporiadanie mnoziny B. Obratene, kazdé linearne usporiadanie
mnoziny B definuje permutaciu f mnoziny B — ak b € B je i-ty najmensi prvok
mnoziny B (t.j. i-ty z lava), sta¢i polozit f(i) = b.

Teoréma 2.9. FExistuje vzdjomne jednoznacnd korespondencia medzi permutd-
ciami lubovolnej mnoZiny B a linedrnymi usporiadaniami mmnoZiny B. Preto
pocet linedrnych usporiadani n-prvkovej mnoZiny je n!

Na zaver vyslovime eSte zovseobecnené pravidlo siucinu, ktoré je zosilnenim
teorémy 2.8. Dokaz indukciou prenechévame Citatelovi.

Teoréma 2.10. Nech X je koneénd mnozina. Nech A C X*, k > 2, je pod-
mnoZina kartezidnskeho sucinu X*, ktorej proky oznacime (z1,72,...,7%) a
ktord spliia podmienky:

(1) prvok x1 je mozné z mnoZiny X vybrat nq spésobmi;

(2) pre kazdé i € {1,...,k — 1}, po akomkolvek vybere usporiadanej i-tice
(x1,29,...,2;) je moiné prvok x; 1 vybrat vidy n;y1 spésobmi.

Potom |Al=ny -ng ... ng
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2.5 Kombinacie bez opakovania

Kombinécie bez opakovania st neusporiadané stbory neopakujicich sa prvkov
- inymi slovami podmnoziny nejakej zakladnej mnoziny. Presnejsie, kombindcie
(bez opakovania) k-tej triedy z n prokov mnoziny A st k-prvkové podmnoziny
mnoZiny A s mohutnostou |A| = n.

Mnozina vSetkych k-prvkovych podmnoZin mnoziny A sa oznacuje Pj(A)
alebo (4) a ich pocet (7). Symbol (}) sa nazyva kombinacngm cislom alebo
binomickym koeficientom (dovody pochopime neskor).

Bezprostredne z definicie symbolu (Z) vyplyvaju tieto jeho vlastnosti:

e Prekazdén > 0 plati (g) =1, lebo kazda mnozina méa préave jednu prazdnu
mnozinu.

e Pre kazdé n > 0 plati (Z) = 1, lebo kazda n-prvkova mnozina mé préave
jednu n-prvkovi podmnozinu, totiz samu seba.

e Pre kazdé n > 0 plati () = n, lebo kazdé n-prvkové mnoZina ma prave n

roznych 1-prvkovych podmnozin.

e Pre kazdé¢ k < n plati (}) = (,",). Pocet k-prvkovych podmnozin
Tubovolnej n prvkovej mnoziny A je ten isty ako pocet (n — k)-prvkovych
podmnoZzin mnoziny A, lebo zobrazenie (‘2) — (nfk), T +— A—x je bijek-
cia.

e Pre kazdé k > n plati (Z) = 0, lebo n-prvkova mnozina nema podmnoziny
s viac ako n prvkami.

Uréime teraz hodnotu symbolu (Z)

Teoréma 2.11. Nech A je koneénd mnozina, pricom |A| = n. Potom pocet
k-kombindcii z mnoZiny A je

_(n\ _nn-1)...(n—k+1) nk
P(A) = (k) - k(k—1)...1 TR

Doékaz. Nech K ={0,1,...,k —1}. Budeme skamat injekcie K — A, ¢iZe na
mnozine IX. Na I zavedieme binarnu relaciu R takto:

f R g prave vtedy, ked f({0,1,...,k—1})=¢({0,1,...,k—1})

Potom R je reldcia ekvivalencie. Kazda trieda ekvivalencie C' na mnozine If je
jednoznaé¢ne urc¢ena jednou k-prvkovou podmnozinou M, na ktord zobrazenia
z mnoziny C zobrazia mnozinu {0,1,...,k — 1}. Ak v tychto zobrazeniach
zamenime koobor A za M, dostaneme prave vSetky permutacie mnoZiny M.
Preto |C| = k!. KaZda trieda ekvivalencie na I{ mé k! prvkov. Preto k!(}) =
=nk=1 ff . Poéet k-prvkovych podmnoZzin mnoZiny A je teda, podla teorémy
2.8, (Z) = |IK|/k! = nk/k\. O
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Kombina¢né &isla maji velké mnoZstvo zaujimavych vlastnosti. Uvedieme
aspon niektoré z nich.

Teoréma 2.12. Pre lubovolné prirodzené ¢isla n a k plati:

n n n+1
(k> * <k+1) N <k:+1>

Dokaz. Tvrdenie je mozné lahko dokézat pomocou vyjadrenia (Z) = tak, ze
upravou vztahu na lavej strane dostaneme kombina¢né ¢islo na pravej strane.
My v8ak dokaZeme tuto rovnost pomocou mnoZinovej interpretacie. Nech A je
mnoZina, ktord ma |A| = n+ 1 a nech b € A je pevny prvok. MnoZinu (,HA_l)
rozlozime na dve ¢asti By a By: By bude zdruZzovat (k + 1)-podmnoziny, ktoré
neobsahuju prvok b, naproti tomu B; bude zdruZzovat vsetky tie, ktoré prvok
b obsahujiu. Ked7e kazda mnozina v By je podmnoZinou mnoziny A — {b},
dostévame |By| = ( kil) Kazda mnozina v By zas urcuje k-prvkovi podmnoZinu
mnoZziny A — {b}. Preto |Bi| = (}). Odtial

(Zﬁ) B (kf—l) = [Bol + 1541 = <kj—1> i <Z>

Tento rekurentny vztah je zakladom umiestnenia kombinaénych ¢isel v rovine
do tvaru trojuholnika, v ktorom je mozné postupne vycislovat kombinaéné ¢isla
s pouzitim jediného faktu, Ze (g) = (Z) =1 pre kazdé n.

nk
B

O

Priklad 2.6. Majme domino (variant znamej spolo¢enskej hry), ktorého kazdy
kamen je rozdeleny na dve Casti a na kazdej polovici je vyznacené jedna z hodnot
0,1,...,n; Ziadna z dvoch ¢asti sa neda odligit ako prva alebo druha. Aka je
pravdepodobnost toho, Ze dva ndhodne vybrané kamene sa daja k sebe priloZit,
¢ize obsahuju rovnakia hodnotu aspoil na jednej strane? (Poznamenajme, Ze
bezné domino ma n = 6.) Kameif, na ktorom st napisané hodnoty i,j €
€ {0,1,...,n}, mdZeme jednoznacne zakodovat mnozinou {4, j}. Kedze sa moze
stat, ze ¢ = j (takym kamefiom sa hovori dublety), mame 1 < |{i,5}] < 2.
gelkovy pocet kametiov je teda ("Tl) + (";rl) = (”JQFQ), podla teorémy 2.12.
Specidlne pre n = 6 dostavame (g) = 28. Pocet vSetkych moznych vyberov
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<("§2)) g

Uréime teraz pocet dvojic kamenov, ktoré sa daju prilozit k sebe. Toto ¢islo je
zhodné s po¢tom neusporiadanych dvojic mnozin {i, j}, {k,1} € P2 ({0,1,...,n})
takych, ze {i,7} N{k,1} # 0. Pre kazdé i € {0,1,...,n} zistime, aky je pocet
dvojic kamenov, ktoré majiu spolo¢ni hodnotu ¢. V8imnime si, Ze okrem hodno-
ty ¢ sa na tychto kamefioch objavuju este dve dalsie hodnoty j a k, pri¢om j # k;
moze sa vSak stat, Ze jedna z tychto hodnoét je totoZna s i. Z tohto je jasné, Ze
kazdu dvojicu kametnov so spolo¢nou hodnotou ¢ mézeme jednoznaéne reprezen-
tovat dvojprvkovou mnoZinou {j, k}. Takto dostavame (";1) dvojic kamenov
so spolo¢nou hodnotou i. Vzhladom na pocet vyberov hodnoty i, dostavame
(n + 1)(";1) dvojic kameiiov domina, ktoré sa daja prilozit k sebe. Z toho
vyplyva, Zze pravdepodobnost javu, Ze pri ndhodnom vybere dvojice kameiiov je
mozné tieto kamene prilozit k sebe, je
(n+ (") _ 2+ 1)(")

@) CHEP -0

Pre bezné domino (n = 6) dostavame pravdepodobnost 7/18 < 0,4.

dvoch kamenov je potom

Dolezitym vysledkom o kombina¢nych ¢islach je nasledujtca teoréma, ktora
vysvetluje, pre¢o kombinacné ¢isla nazyvaju aj binomické koeficienty.

Teoréma 2.13 (Binomicka veta). Pre kaZdé redlne ¢islo x a prirodzené éislo n

plati
ey =3 ()"

k=0

Dékaz. Tvrdenie zrejme plati pre n = 0. Dalej budeme postupovat indukciou
vzhladom na n. Ak predpokladame platnost tvrdenia pre nejaké n > 0, tak
pouzitim tvrdenia 2.12 dostavame:

(1+2)"" = (Q+4+2)"(1+2)

¢o bolo treba dokazat. O
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ry st . 3 P 3 n AV ~as . .
Poznamka. Definiciu binomického koeficientu ( k) mozeme rozsirit z prirodze-

ného &isla n na I'ubovolné realne ¢islo z, ak na zaklad jeho rozsirenia zoberieme
teorému 2.11.
Polozme

k)T R k!

(z) 22 2(z—1)...(z—k+1)
Pre takéto binomické koeficienty je mozné dokazat anal6g binomickej teorémy,
ktory v tomto pripade vyzera takto:

Pre lubovolné z € R a pre kaZdé redlne cislo z také, Ze |x| < 1 plati

(1+2)° = i (Z)a:k

k=0

Ak z € N, tak v8etky binomické koeficienty pre k > z st nulové a dostavame
opéat tvrdenie teorémy 2.13 (pre |z| < 1, ¢o nie je az také podstatné). Takato
roz§irend binomicka teoréma je uzito¢na pri dokazovani rozlicnych vlastnosti
kombinaénych ¢isel. Dokaz zovseobecnenej binomickej teorémy presahuje ramec
tohto textu.

Désledok 2.14. Platia tieto identity (n > 1)

(a) kZi; (Z) =2,
) g)(—l)k(’;) ~0
0 505 0

0<k<n, 0<k<n,
k pdrne k nepdrne

Doékaz. Tvrdenie (a) dostaneme priamo z binomickej teorémy, ak polozime x = 1
a (b) dostaneme, ak polozime x = —1.

Jednu z rovnosti v (c¢) dostaneme, ak s¢itame identity (a) a (b) a vydelime
dvoma, druht rovnost ziskame podobne odé&itanim.

Identitu (a) moZzeme lahko dokazat aj kombinatorickou uvahou: na pravej
strane mame 2", ¢o je |P(A)|, kde |A| = n. To isté ¢islo moéZzeme vyjadrit aj
v tvare sactu

P(A) = IPu(4)]
k=0
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Teoréma 2.15 (Cauchyho séitaci vzorec). Pre vietky prirodzené éisla m a n
plati

k

Z m n _(m +n
, i J\k—i) k
=0
Dokaz. Nech A; a A, st disjunktné mnoziny, pricom |A;] = m a |43 = n.

Polozme A = A; U A3. Nech X C A. Potom X NA = XN(4UA,) =
=(XNA;)U(XNAy). Oznacme X; = X NA;,i =1,2,.... Potom X; a X5 st
disjunktné podmnoziny A; resp. As a X = X; U Xo.

Sktmajme zobrazenie

fiPr(A) — U (Pi(A1) x Pr_i(A))
X +— (.’1,‘1,.132)

Ked7e kazdt podmnozinu X mozeme vyjadrit ako zjednotenie mnoziny X; =
= X N A; s mnozinou Xo = X N Ay, vidime, Ze zobrazenie f je bijektivne.

Z teorémy 2.11 a pravidla sa¢inu vieme, ze |P; (A1) X Pr_;(A2)| = <m> (k: ! ) )
7 —1

Pozitim pravidla suc¢tu napokon dostavame

k
m+n m n
= |Pr(A)| = | Uiy Pi(A1) x Pe_1(A2)| = :
< k > | k( )| | i=0 L( 1) kl( 2)‘ ;(2)(1€—Z)
Tym je dokaz skonceny. O
Poznamka. Tvrdenie 2.15 mozeme dokézat aj pomocou binomickej teorémy
takto. Zrejme plati (14+x)™™" = (1+z)™(1+x)". Ak rozpiSeme pravi aj lavi
stranu tejto rovnosti podla teorémy 2.13, dostaneme

S = (50 (5 0))

Sucty na pravej strane roznasobime podla distributivneho zakona a roztrie-
dime podl'a mocnin premennej z. Zistime, Ze pri 2* sa vyskytuje koeficient

> (1) (")

Na Tavej strane sa pri ¥ vyskytuje koeficient ( i ) KedZe dva mno-

hocleny sa rovnaju prave vtedy, ked pri rovnakych mocninach premennej sa
vyskytuju rovnaké koeficienty, musi platit

k

S (6= (")
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Rovnakou metodou je mozné dokazat cely rad dalgich identit-vztahov medzi
kombina¢nymi ¢islami. Citatel si moze sdm vyskugat, akd identita vyplyva
zo vztahu (1 + z)"*! = (1 4+ 2)"(1 + ). Na zaver tohto ¢lanku sa pozrieme na

n
¢islo ( k> ako na funkciu premennej k pri pevnom n.
Teoréma 2.16. Pre kazdé prirodzené &islo n plati:

(a) ak n je pdrne, tak

@ - @ s (n/2n 1) - (n%) g <n/2n+ 1) T @

(b) ak n je nepdrne, tak

(3) - (Tf) s ((n nl)/?) - ((n +n1>/2> T (nn 1) g @

Doékaz. Skiimajme pomer

(R) nEGE-1)! n-k+1

() TR LT

Lahko zistime, Ze pre k < n/2 je tento pomer vi&si ako 1, a teda (Z) > <k: " 1).

Ak n je neparne, z rovnosti ) = " dostavame rovnost " —
je nepérne, L= n-12) =
= ((n +n1) /2> Odtial uz vyplyva tvrdenie. O

Z tohto tvrdenia vyplyva, Ze funkcia nadobuda svoju najvacsiu hodnotu

n
k
v strede celo¢iselneho intervalu (0,n), pricom ak n je parne sa tato hodnota
n
nadobuda raz, ak n je neparne — dvakrat. Po tuto hodnotu funkcia ( k) rastie,

od nej potom klesé.

2.6 Kombinacie s opakovanim, permutacie
s opakovanim, polynomicka veta

Najprv sa budeme venovat kombinaciam s opakovanim. Z nazvu tychto kon-
figuracii vyplyva, Ze ide o konfiguricie, v ktorych sa nerozliSuje poradie, no
prvky sa mozu opakovat. Pri ich presnej definicii budeme vychadzat z variacii
s opakovanim, teda zobrazeni {1,2,...,k} — A. VsSimnime si najprv, Ze na
mnozine A2k} vSetkych variacii s opakovanim k-tej triedy v mnozine B
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mozeme zaviest relaciu ekvivalencie R takto: Nech f,g € A{L2k: - polozme
fRg prave vtedy ked |f~1({z})| = |9~ ({z})| pre kazdy prvok z € A.

Inymi slovami, dve variacie s opakovanim budu ekvivalentné prave vtedy,
ked v oboch sa rovnaké prvky opakujt rovnaky pocet krat.

Kombindcie s opakovanim k-tej triedy z m prvkov mnoZiny A (kde |A| = m)
su triedy ekvivalencie R na mnozine ALk}

Ako priklad uvedieme vyssie definovant ekvivalenciu R na mnozine
{a,b} {1234} Triedy tejto ekvivalencie budi kombinécie s opakovanim Stvrtej
triedy v mnozine {a, b}. Variacie patriace do tej istej triedy rozkladu st uvedené
v tom istom stlpci. Vnutri kazdej triedy st variacie zobrazené lexikograficky.
Variacie st napisané ako slova-bez zatvoriek a ¢iarok.

aaaa | aaab | aabb | abbb | bbbb
aaba | abab | babb
abaa | abba | bbab
baaa | baab | bbba
baba,
bbaa

Pocet kombinacii s opakovanim Stvrtej triedy z dvoch prvkov je teda 5.

Teoréma 2.17. Nech A je n-prvkovd mnoZina a k prirodzené c¢islo. Potom
pocet véetkych kombindcii s opakovanim k-tej triedy v mnoZine A je

!

Dokaz. Kombinécie s opakovanim k-tej triedy v mnoZine A su prvky rozkladu
mnoziny A2k} ihdukovaného relaciou ekvivalencie R popisanej vyssie. Bez
ujmy na vieobecnosti mozeme predpokladat, ze A = {1,2,...,n}. Z kazdej
triedy ekvivalencie R, ¢iZe kombinacie s opakovanim, vyberieme slovo, ktoré je
lexikograficky najmensie (to znamend, %e v hom st prvky mnoZiny A zoradené
podla velkosti). S trochou nepresnosti budeme toto slovo stotoziiovat so samot-
nou kombinaciou s opakovanim. Nech cjcs - - c; je teda kombinacia s opako-
vanim k-tej triedy v mnozine A = {1,2,...,n}, pricom ¢; < ¢3 < ... < ¢.
Priradme teraz tejto postupnosti novt postupnost dyds - - - dy, tak, Ze poloZime

fle)=di=ci+i—1, i=12,...k
O

Vsimnime si, ze d; € {1,2,....n+k —1} aze d; < dy < ... < dg, te-
da postupnost dids ... dj reprezentuje kombinaciu bez opakovania k-tej triedy
z mnoZiny {1,2,...,n+k—1}.

Napr. ak cico...cp = 22233, tak dids . ..d; = 23467.

Lahko vidiet, Ze zobrazenie cicy . ..cp — dids ... dy je injektivne. Z druhej
strany, ak
{e1,€2,...e} €{1,2,...,n+k— 1} je kombinacia bez opakovania k-tej triedy,
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mozeme predpokladat, Ze e; < es < ... < ex. Postupnosti ejes ... e, priradime
postupnost hihs ... hg takto:

hi:ei—i+17i=1,27...,k.

Lahko vidno, Ze hy < hg < ... < hyaze h; € {1,2,...,n}. Teda hihs...hy
je kombinacia s opakovanim k-tej triedy z mnoziny A. Okrem toho, f(h;) = e;.
7 uvedeného vyplyva, Ze zobrazenie

0102...Ck»—>d1d2...dk

definuje bijekciu medzi kombindciami k-tej triedy s opakovanim v mnoZine
{1,2,...,n} a kombinaciami bez opakovania k-tej triedy v mnoZine
{1,2,...,n+ k — 1}. Hladany pocet kombinéacii s opakovanim je preto

Cr)

Priklad 1. Uvazujme polynémy s viacerymi premennymi x1, 22, ..., Z,. Poly-
némy vytvarame z clenov tvaru z$ :CZ e :v;’l, kde a > 0,8 >0,...,v > 0, ktoré
sa nazyvaju monomy. Stupeil monoému je &slo o+ 8+ ...+ (v zapise auto-
maticky predpokladame, Ze iy, s, ...,% st rozne prvky mnoziny {1,2,...,n}).

Polyném je tvaru
n

Z Z Qiyiy..iy L5 TG, - T,

1=0 i1 <iz<...<i
pricom koeficienty a;,;,..; st nejaké ¢isla (mozu byt aj nuly) a ¢,0,...,7 st
kladné exponenty (v réznych monémoch mozu byt rozne). Poznamenéavame,
Ze vo vnutornej sume séitame cez vSetky kombinacie [-tej triedy z mnozZiny
{1,2,...,n}.

Kolko je rozliénych monémov stupiia k7 Ak premenné 1, xs,...,z, medzi
sebou komutuju, tak na poradi nezalezi a exponent nad premennou vyjadruje
pocet opakovani premennej v monéme - ide teda o kombinacie s opakovanim.
Preto sa pocet roznych monémov stupna k rovna éislu

n+k—1
k
Ak premenné medzi sebou nekomutujt, na poradi zalezi, a potom mame doci-

nenia s variaciami s opakovanim. V tomto pripade je po¢et monémov n”.

Priklad 2. Turista chce z dovolenky poslat k priatelom pohladnice. M4 na
vyber n druhov pohladnic. Kolkymi spésobmi moze nakupit k pohladnic?
Kol'kymi spésobmi moze nakipené pohladnice poslat?

Je o¢ividné, Ze nakipené pohladnice tvoria neusporiadany stbor a ze modzeme
z jedného druhu kupit viacero kusov pohladnic (ak k > n, zrejme ani ina
moznost nemd). Subory pohladnic preto tvoria kombinéacie s opakovanim. To

znamena, ze na nakup ma
n+k—1
k
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moznosti.

Kolkymi sposobmi méZze pohladnice poslat? Keby boli vietky pohladnice
navzajom rozne, tak pohladnice sa daju rozoslat k! spésobmi, lebo rozoslanie
predstavuje bijekciu medzi roznymi druhmi pohladnic a ich adresatmi. Ak je
v8ak z nejakého druhu viac pohl'adnic, tieto st medzi sebou zamenitelné. Pred-
pokladajme, Ze v nakupenom subore je k; pohladnic i-teho druhu, i =
= 1,2,...,n (k; > 0). Dve bijekcie z mnoZiny naktapenych pohladnic do
mnoZiny priatelov budeme povaZovat za ekvivalentné, ak v obidvoch ten isty
adresat dostane ten isty druh pohl'adnice. Ak uvazujeme I'ubovolnt pevnu bijek-
ciu, zdmenou pohladnic v i-tom druhu dostaneme z nej k;! ekvivaletnych bijek-
cii. Tieto zameny moZzeme vykonat nezavisle v kazdom druhu. Podla pravidla
sacinu dostavame, Ze kazda trieda ekvivalencie mé kq'ks!...k,! prvkov. Pocet
sposobov rozoslania pohladnic je teda

k!
kilko!. . Kyt

V predchédzajicom priklade sme skumali vlastne takuto v8eobecnu situa-
ciu. Mame dve mnoziny A (pohladnice) a B (priatelia), pricom |A| = k = |B|.
MnoZina A je rozloZena na mnoZiny Aj, A, ..., A, s mohutnostami |4;| = k;.
V tomto mieste méZeme trocha porusit definiciu rozkladu v tom, Ze pripustime
medzi mnoZinami Ay, As, ..., A, aj prazdne mnoziny. Skiimame teraz bijekcie
A — B, pri¢om dve bijekcie f a g budeme povaZovat za ekvivalentné, ak pre
kazdy prvok y € B existuje index i € {1,2,...,n} taky, Ze obidva prvky f~! aj
g~ ! patria do tej istej mnoziny A;. (V reéi predchadzajiceho prikladu: kazdy
adresat y dostal pri rozsielke f aj pri rozsielke g pohladnicu toho istého druhu
— hoci moZno nie tu ist). Tato vlastnost sa da vyjadrit aj ina¢. Nech
p: A— {A;,As,..., A,} je projekcia mnoZiny na svoj rozklad; to znamena,
Ze pre lubovolny prvok a € A plati p(a) = A; prave vtedy, ked a € A;. Potom
f aj g st ekvivalentné vtedy a len vtedy, ked pf~! = pg~!. Triedy ekvivalen-
cie tychto bijekcii sa nazyvaja permutdciami s opakovanim z ki prvkov prvého
druhu, ko prvkov druhého druhu, ..., k,, prvkov n-tého druhu. Uvahou v pred-
chadzajicom priklade sme ukézali, Ze pocet takychto permutécii s opakovanim
je

k!
kilko!. . Kl
T4 ist4 hodnota sa objavuje aj ako pocet inych konfiguracii.

Tvrdenie 2.18. Nech A a B si konecné mnoZiny, kde |A| =n a|B| = k. Nech
B = {b1,ba,...,bx}. Potom pocet zobrazeni f : A — B takych, Ze pre kazdy
prvok b; platt | f~1({b;})| = ns, kde n; si zadané nezdporné celé ¢isla so sictom
ny+ne+...+nE=n, sa rovnd

n!

nilna! .. .ng!

Dékaz. Nech (ai,, a4y, - -, a;,) je Tubovolna permutacia mnoziny A zakédovana
ako usporiadanie. Definujme zobrazenie A — B tak, Ze prvych n; prvkov
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mnoziny A po$leme na by, druhych ns prvkov na by atd. Prvych n; prvkov
mozeme vak lubovolne spermutovat a zobrazenie sa nezmeni. Nezavisle moZzeme
permutovat aj dalie skupiny. Z toho dostaneme, Ze kqlko!. .. k,! permutacii da-
va to isté zobrazenie. Je tieZ zrejmé, Ze kazdé zobrazenie take, ze | f~1({b;})| =
= m,; pre kazdy prvok b; € B, vznikne hore uvedenym sposobom. Preto pocet

. P !
tychto zobrazeni je ——2—. O
ni1ngi... Nk !

n

) a nazyvat polynomické
n1,Nn2,...,Nk

Cisla nini,', sa zvykni oznacovat (
1:M2i... Nk
koeficienty. Ak k = 2, tak

(o) = ()= G 20) = G)

¢ize polynomické koeficienty st prirodzenym zovSeobecnenim binomickych koe-
ficientov. Vysvetlenie nézvu tychto ¢isel poskytuje nasledujuci vysledok.

Teoréma 2.19 (Polynomickd veta). Nech n a k su kladné prirodzené cisla.
Potom

n
(x1+ a0+ ... +a)" = E < >z71“3322---$2k> n; >0
N1, M2y o ny,ng,...,Nk
pridom sc¢itame cez vietky usporiadané n-tice prirodzenych cisel (ny,ng, ..., nk),

pre ktoré ny +ng 4+ ...+ nx = n.

Dékaz. Vynasobime n ¢initelov (z1+x2+. ..+ 2) a zdruzime rovnaké monomy.

Koeficient pri z7'x5? ... x.* je pritom pocet sposobov, ktorymi sa tento monom

. 2 PP . __ ,.ni,.n2 ny . ~ )
pri vynasobeni ziska. Zrejme M = zi'z5*...x.* vznikne vzdy, ked z; vy-

. e e ) L . .
berieme z ni¢initelov,zo z no Cinitelov atd. Inymi slovami, vyraz M zodpoveda
zobrazeniu z mnoziny n ¢initelov do mnoziny x1, s, ..., g pricom n; ¢initelov

je zobrazenych na x1, no ¢initelov na x9 atd. Pocet takychto zobrazeni je podla

tvrdenia 2.18
n! B ( n )
nilng! ... nyg! N1, No, ..., Nk
Poznamka. Lahko sa nahliadne,Ze

( n ) (n)(n—m) (n—nl—ng—...—nk1>
ny,n2,...,Ng ni n2 ng

Tato rovnost zodpoveda skutocnosti, Ze pocet sposobov, ktorymi vznikne

monom zi'xy? ... x.*, sa da popisat aj takto: najprv vyberieme 1 z n; ¢lenov
(x1 + 22+ ...+ x,) , o modZeme urobit (:1) sposobmi. Potom vyberieme x5 z

no spomedzi zvysnych n — n; ¢lenov, ¢o modzeme urobit (";:1) sposobmi, atd.
kym nevyberieme aj xj z ni spomedzi ostavajiacich n—nj; —ns...—ng_1 ¢lenov,

¢o mdZeme urobit ("_”1_"22'“_”’“*1) sposobmi.
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2.7 Princip zapojenia a vypojenia

Zatneme jednoduchou otézkou. Ak st dané dve kone¢né mnoziny A a B, ako
vypocitame pocet prvkov ich zjednotenia? Odpoved je o€ividna: od suétu mo-
hutnosti mnozin A a B musime odratat mohutnost ich prieniku. Inymi slovami,

|[AUB| =|A|+|B| - |ANB|.
Pre tri mnoziny je odpoved podobné:
[AUBUC|=|A|+|B|+|C|-|ANnB|—|ANC|—|BNC|+|ANnBNC|.

To znamena, Ze najprv ,zapojime“ prvky jednotlivych mnozin, potom ,vypo-
jime* prvky prienikov dvojic mnoZin a napokon opét ,zapojime* prvky prieniku
v8etkych troch mnozin. (éitatel’ovi odporuc¢ame presved¢it sa o platnosti tohto
vztahu s pomocou Vennovho diagramu pre tri prenikajiice sa mnoziny.)

Princip zapojenia a vypojenia (alebo inklizie a exklizie) je dalekosiahlym
zavieobecnenim vysgie uvedenych vztahov pre dve a tri mnoziny.

Nech My, M, ..., M, st koneéné mnoziny. Pre Tubovolné prirodzené ¢islo
k také, ze 0 < k < n polozme

S, = Z |M¢10Mizﬂ...ﬁMik|,
i1 <t <...<ip
prifom sudet prebieha cez vietky kombinacie {i1, i, ..., 4%} z indexov {1,2,...,n}.

Pre k = 0 dostavame prienik mnoZin M; z prazdnej mnoziny indexov, ¢o podla
dohody z prvej kapitoly je univerzum — zakladna mnozina X, v ktorej vedieme
v8etky tvahy o mnozinadch My, Mo, ..., M,,. Preto

So = | X]|.

Teoréma 2.20 (Princip zapojenia a vypojenia). Nech My, Mo, ..., M, si ko-
necné mnoziny. Potom

IMyUMaU...UM,| = Y (=D N M, nM;, N0 M, | =
k=1 11 <to<...<ip
- s,

k=1

Dékaz. Nech x je Tubovolny prvok z mnoziny M; N My N ... N M,. Zavedme
oznacenie

Aby sme ukazali, Ze prava a ava strana rovnosti predstavuju to isté ¢islo, v8im-
nime si, Ze prvok = je na lavej strane zaratany iba raz. Ak totiz preberame
prvky mnoziny M; N My N ... N M,, na x nadabime len raz. Kolkokrat je
zapoCitany na pravej strane?
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Predpokladajme, ze prvok x patri do p mnozin M;; to znamena, ze J, =
= {j1,742,---»Jp} € {1,2,...,n}. Z toho vyplyva, Ze v S; je prvok x zaratany
p = (?)-krat, totiz v kazdom séitanci |Mj, |, [Mj,], ..., |M;,|. V Sz je z zaratany
(h)-krat, raz za kazdy s¢itanec tvaru |Mj, N Mj,|. Vseobecne - prvok z je
zaratany v S; (’i))—krét. Celkove je teda prvok x na pravej strane zapocitany
tol’kokrat:

$or()--50r0)-0)-() e )-

k=1 k=1 k=1

(-5 )

Podla dosledku 2.14(b) dostavame

(- ()-ro-r

k=0

¢ize prvok x je aj na pravej strane zaratany prave raz. To dokazuje nasu teorému.
O

Poznamka. Teorému 2.20 mozeme l'ahko dokazat aj matematickou indukciou.
Najprv sa presved¢ime o platnosti vztahu pre dve mnoziny M; a Ms. Nech je
vztah platny pre n > 2 mnoZin. Zoberme teraz n + 1 mnozin My, M, ..., M,,
M,,+1. Na hladany pocet |M; UMy U. ..U M, U M, 1| pouzime vztah pre dve
mnoziny:

|My UMy U ...UMy UM,q|=|(MUMyU...UM,)U M| =

n
U

k=1

n
+ |Mn+1| - ‘( U Mk) m]\4'”—‘,-1 .

Na treti s¢itanec aplikujeme distributivny zékon, ¢im z neho dostaneme

n

U @ 0 M, 10)]-
k=1

Potom pouzijeme indukény predpoklad na prvy a treti séitanec. Po tdprave
dostaneme pozadovany vztah pre n+ 1. Podrobnosti prenechéavame na ¢itatela.
Predpokladajme teraz, ze mnoziny M, M5, ..., M, st podmnoZinami ne-
jakej kone¢nej mnoziny X. Aky pocet méa komplement mnoziny My U My U
U...UM, v univerze X?
Pocitajme
X —(MiUMyU...UM,)|=|X|-|M1UMU...UM,|

n

=X =) (- S = |X|+Z

k=1

S

k=0
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Tym sa dostali k nasledujucemu vysledku:

Désledok 2.21. Nech M1, M, ..., M, st podmnoZiny konecnej mnoziny X
a nech M, je komplement mnoZiny M; v univerze X, i = 1,2,...,n. Potom

IMinMyO . AM = (-1)F S
k=0

Dokaz. Vysledok vyplyva z predchadzajtceho vypoctu a z jedného z de Morga-
novych zakonov. O

Predchadzajuci vysledok je zékladom najpouzivanejSej formy principu zapo-
jenia a vypojenia, ktori teraz opiSeme.

Majme nejaku zékladnt mnozinu X, pricom | X| = N a nech ay,aq,...,a,
st nejaké vlastnosti, ktoré prvky mnoziny moézu, no nemusia, mat. Nech
Nay, , ... a4, je poCet prvkov mnoziny X, ktoré maji kazdu z vlastnosti

@iy gy .., (a pripadne aj iné vlastnosti, no tie nas nezaujimaja). Nech
N(0) = Nalah ... o}, oznatuje pocet prvkov mnoziny X, ktoré nemaju ziadnu
z vlastnosti aq, ag, . .., a,. Nadim cielom je vypocitat N(0).

Polozme

M, = {z € X; = méa vlastnost a;}.

Potom
|Mi1 mM?& m"'mMik‘ :]\/vOéiIOéiz...aik7

pri¢om prienik mnozin M ; z prazdnej mnoziny indexov dava

| Nico M| = |X|=N

IMiNMyn...Nn M, |=Ndja,...al, = N(0).

n

7 predchadzajuceho doésledku dostavame

Dosledok 2.22. V N-prvkovej mnozine nech kaZdy prvok md alebo nemd niek-

toré z vlastnosti oy, g, ...,0. Nech Naj oy, ..., oznacuje pocet prvkov,
ktoré maju kazZdu z vlastnosti o, ,,, ..., o4, pripadne aj nejaké iné. Nech
N(0) = Nojal ... al, oznacuje pocet prokov uvazovanej mnoZiny, ktoré nemaji
Ziadnu z vlastnosti oy, s, . .., a,. Potom
n n
§ : k 2 : k } :
N(O) = (71) Sk = (71) NOéilOéiQ cee Oy O
k=0 k=0 i1 <in<...<ij,

Poznamka. Existuje prakticky sposob ako si moéZzeme Tahko zapamétat pred-
chadzajuci vzorec ako aj mnoZstvo podobnych vztahov. Predpokladajme, Ze
chceme uréit pocet prvkov, ktoré maja vlastnosti a;,,u,,...,q; a nemaji
vlastnosti o, a,, ..., a5 Prirodzene predpokladame, ze {i1,ia,..., 4, j1,

s
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Joy -y dst ©41,2,...,n} a ze vietky uvazované vlastnosti st navzajom rozne.
Potom hladany podet ziskame formélnym rozvojom vyrazu
Nailam SN O‘ir(l - Oljl)(l - O[jQ) SN (1 - O(js)

podla distributivneho zadkona, pricom N.1 = N, N.o; = Na; a podobne.
Napriklad poéet prvkov, ktoré maji vlastnost oy a nemaju ani vlastnost aw
ani ag je

NOzl(l*OZQ)(l*Oég) = Na1(17a27013+0120[3):

= Naj; — Najag — Najaz + Najasas.

Specialne

N(0)=Najay...al, =N(1—ai)(1—az)...(1 —ay)

Rozvinutim posedného vyrazu dostévame napokon vztah z dosledku 2.22,

N(l—al)(l—ag)...(l—an):Z(—l)k Z Noj oy ...y,

k=0 i1 <io<...<ik

o ¢om sa Tahko presved¢ime matematickou indukciou.

V predchadzajicom dosledku sme uréili pocet N(0) v8etkych spomedzi N
prvkov, ktoré nemaju ziadnu z uvazovanych vlastnosti. Tento vysledok je mozné
zovSeobecnit - da sa totiz urcit aj pocet N(r) vSetkych prvkov, ktoré maju
prave r vlastnosti, ako aj pocet N (> r) vSetkych prvkov, ktoré maju asponi r

vlastnosti: /
n k‘
v =30 (F) s

k=r
n
k—1
N(>r)= S
=Y (1))
k=r
Niekedy je tieto saéty naméahavé presne vypoditat (¢o byva pravidlom pri suc-

toch so striedavymi znamienkami), preto sa vtedy musime uspokojit s priblizny-
mi hodnotami. Namiesto iplného stactu

N = é}—n’” (D)5

s hornou hranicou séitania n uvazujeme len stucet

N = Sy (5)si

k=r

prvych s ¢lenov uplného suc¢tu. Tieto osciluji okolo hladanej hodnoty N (r),
pricom ak s je nepéarne, ¢iasto¢ny sucet je pod hl'adanou hodnotou:

N(r)s < N(r).



28 KAPITOLA 2. KOMBINATORIKA

Ak s je parne, ¢iastoény sidet je nad hl'adanou hodnotou :
N(r)s = N(r).

Tieto vztahy a odhady nachadzaji svoje praktické uplatnenie pri vycisleni
pravdepodobnosti rozlicnych javov. Ich doékazy vSak presahuju ramec tohto
textu.

Priklad 3. Skupina N panov sa mé zacastnit vedierka. Hostitel vyzaduje
od ucastnikov forméalny odev — frak a tvrdy Cierny klobik. Pred vstupom do saly
pani odovzdaji svoje klobuky v Satni. Veéierok prebehne velmi tispesne a pani
pri svojom odchode nie st schopni rozoznat svoje klobuky. Aka je pravdepo-
bodnost toho, Ze Ziaden pan si nezoberie vlastny klobuk?

Ak péanov aj ich klobuky oéislujeme 1,2, ..., N, tak rozmiestnenie klobikov
na hlave predstavuje permutéciu mnoziny {1,2,..., N}. Nasim cielom je najprv
uréit pocet Dy permutécii, ktoré nenechavajia ziaden prvok na mieste. Pocet
permutécii, ktoré nechavaju na mieste k-prvkovi podmnozinu {i1,4s,...,ix} je
(N — k)!. S pouzitim vyssie zavedenych oznadeni dostaneme

S = <JZ)(N k)L,

odkial zistujme, Ze hladany pocet permutécii je

N N
Dy =N(0)=> (-1)*S=> (-1)* <JZ) (N — k)l =

k=0 k=0

N N
=2 (-1 k:'N k)( N'Z k'

k=0 =0

KedZe v8etkych permutécii N prvkov je N!, pravdepodobnost toho, Ze Ziaden
pan nemé na hlave svoj klobik je

._0 N
—2 s

7 matematickej analyzy pozname Taylorov rozvoj funkcie e®, ktory déva vztah

OOJS
=2

Pre x = —1 dostéavame rovnost

8

k!
k=0
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z ¢oho vidno, Ze nami uréena pravdepodobnost je N-ty ¢iastocny sucet tohto
rozvoja ¢isla e~ 1. Ak je ¢islo N dostatocne velké, tak hl'adana pravdepodobnost
je priblizne 1/e — o €osi viac ako 1/3.

Na zaver uvedieme eSte dve aplikicie principu zapojenia a vypojenia. Ich
dokaz ponechame na &itatelovi.

Dosledok 2.23. Pocet surjektivnych zobrazeni f: A — B, kde |A| =n a |B| =

o Sp = g:o(—l)k (ZL) (m—k)" O

Dosledok 2.24. Nech p(n) oznacuje pocet kladnijch prirodzenych cisel mengich

ako prirodzené ¢islo n > 1 a nesudelitelngjch s n. Nech n = p{'pg?...por
je kdnonicky rozklad c¢isla n na sucin mocnin réznych prvocisiel p1,pa, ..., Dr.
Potom

1 1 1
@(n)zn(l—pl><1—p2>...<1—pr>. O
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