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2.1 Prirodzené čísla a matematická indukcia

Kombinatorika je matematická disciplína, ktorá sa zaoberá úlohami o štruk-
túrach definovaných na konečných množinách. Najčastejšie ide o podmnožiny,
usporiadané n-tice, relácie, zobrazenia, rozklady a množstvo iných objektov,
ktoré jednotne nazývame kombinatorickými konfiguráciami. Aj keď korene kom-
binatoriky siahajú hlboko pred náš letopočet, rozvoj kombinatoriky ako moder-
nej disciplíny je úzko spojený s nástupom informatiky. Kombinatrika tvorí jeden
zo základných pilierov tohto vedného odboru. Dnešnú kombinatoriku charak-
terizuje niekoľko všeobecných typov úloh. Spomedzi nich sú najdôležitejšie:

(1) zostrojiť konfigurácie požadovaných vlastností;

(2) nekonštruktívnymi metódami dokázať existenciu alebo neexistenciu konfi-
gurácie istých vlastností;

(3) určiť počet všetkých konfigurácií daného typu;

(4) charakterizovať také konfigurácie pomocou iných pojmov, vlastností a pa-
rametrov;
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6 KAPITOLA 2. KOMBINATORIKA

(5) nájsť algoritmus, ktorý umožňuje všetky požadované konfigurácie zostrojiť;

(6) spomedzi všetkých konfigurácií vybrať optimálnu (alebo extremálnu – ma-
ximálnu, či minimálnu) podľa daných kriterií.

Spomedzi nich sa v tejto kapitole budeme stretávať s úlohami typu (4) , (3) a (1).
Ako sme povedali, kombinatorika sa zaoberá prevažne konečnými štruktúra-

mi. Je tu však jedna nekonečná množina, ktorá má pre kombinatoriku pod-
statný význam: množina N = {0, 1, 2, . . .} všetkých prirodzených čísel. O tejto
množine už vieme, že je lineárne usporiadaná bežnou reláciou ≤ podľa veľkosti.
Toto usporiadanie má jednu veľmi dôležitú vlastnosť (vlastnosť dobrého uspo-
riadania): Každá neprázdna podmnožina množiny N má najmenší prvok. (To,
že prirodzené čísla majú túto vlastnosť sa nahliadne ľahko sporom: keby exis-
tovala v N neprázdna podmnožina M bez najmenšieho prvku, tak by sme ľahko
skonštruovali ostro klesajúcu nekonečnú postupnosť n0 > n1 > n2 > . . . prvkov
množiny M . Lenže taká postupnosť v N očividne neexistuje.)

Ďalšia dôležitá vlastnosť množiny N je základom metódy matematickej in-
dukcie, ktorá je v kombinatorike prakticky všadeprítomná. Znie takto:

Nech M ⊆ N je podmnožina spĺňajúca dve podmienky :

(I1) 0 ∈ M ;

(I2) ak x ∈ M , tak potom aj (x + 1) ∈ M .

Potom M = N.
Princíp matematickej indukcie môžeme teraz sformulovať takto.

Teoréma 2.1. Nech (V (n))n∈N je postupnosť výrokov. Predpokladajme, že

(i) platí výrok V (0);

(ii) pre každé prirodzené číslo n, ak platí V (n) , tak potom platí V (n + 1),

Potom výrok V (n) platí pre každé prirodzené číslo.

Poznámka. Bod (i) sa nazýva báza indukcie a bod (ii) sa nazýva indukčný
krok .

Dôkaz. Definujme množinu A = {n ∈ N; platí výrok V (n)} . Podmienka (i)
našej teorémy znamená, že 0 ∈ A . Podmienka (ii) hovorí, že platí implikácia
- ak n ∈ A, tak aj (n + 1) ∈ A. To znamená, že sú splnené vyššie spomenuté
podmienky (I1) a (I2), a preto A = N.

Bežne sa využíva niekoľko modifikácií teorémy 2.1. Stáva sa, že vlastnosť
V (n) platí iba pre prirodzené čísla n ≥ n0 pre nejaké číslo n0. V tom prípade
najprv overíme pravdivosť výroku V (n0) a potom dokážeme pravdivosť impliká-
cie - pre každé n ≥ n0, ak platí V (n), tak platí aj V (n + 1). Tým je potom
dokázaná pravdivosť výroku V (n) pre každé n ≥ n0. Niekedy je výhodné použiť
ďalší variant matematickej indukcie - úplnú matematickú indukciu.
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Teoréma 2.2. Predpokladajme, že z platnosti výroku V (k) pre každé k < n
vyplýva aj platnosť výroku V (n). Ak platí výrok V (0), tak výrok V (n) platí pre
každé prirodzené číslo n.

Poznamenajme, že overenie platnosti V (0) nemožno vynechať.

2.2 Dirichletov princíp

V tejto časti sa budeme zaoberať jednoduchým no veľmi dôležitým princípom,
ktorý má široké použitie pri riešení rozličných problémov a často vedie k pre-
kvapujúcim záverom. Je známy v rôznych formách. Najjednoduchšia je azda
táto:

Ak n + 1 predmetov ukladáme do n priečinkov, tak aspoň jeden priečinok
bude obsahovať dva alebo viac predmety.

Exaktnejšie môžeme tento princíp sformulovať takto:
Neexistuje injektívne zobrazenie (n+1)-prvkovej množiny do n-prvkovej mno-

žiny.
Dokážeme všeobecnejšie tvrdenie

Teoréma 2.3. Nech A a B sú konečné množiny, pričom |A| = n, |B| = m a
n > m Potom neexistuje žiadne injektívne zobrazenie f : A → B.

Dôkaz. Nech S je množina všetkých prirodzených čísel s takých, že existuje
s-prvková množina, ktorá sa dá injektívne zobraziť na t - prvkovú, kde t < s.
Naším cieľom je ukázať, že S = ∅. Predpokladajme, sporom, že S 6= ∅. Potom
(na základe princípu dobrého usporiadania) S má najmenší prvok - nech n je naj-
menší prvok množiny S a nech f : {a1, a2, . . . , an} = A → B = {b1, b2, . . . , bm}
je injekcia, kde m < n. Zrejme m ≥ 2, lebo inak by boli všetky zobrazenia
A → B konštantné, a teda nie injektívne. Predpokladajme, že f(an) = br

pre nejaké r ∈ {1, 2, . . . ,m}. Keby každý z prvkov f(a1), f(a2), . . . , f(an−1)
bol rôzny od bm , tak zúženie zobrazenia f na množinu a1, a2, . . . , an−1 by
bolo injektívnym zobrazením A − {an} → B − {bm} . To by však bol spor
s voľbou čísla n. Preto musí existovať j ∈ {1, 2, . . . , n − 1}, že f(aj) = bm.
Kedže f je injekcia, f(an) 6= bm, takže r ≤ m − 1 . No potom zobrazenie
g : A− {an} → B − {bm} definované predpisom

g(aj) = br

g(ai) = f(ai) pre i 6= j, i ∈ {1, 2, . . . , n− 1}

je opät injektívne. Znova sme dostali spor s definíciou čísla n, a teda množina
S je prázdna.

Prvýkrát upozornil na tento jednoduchý princíp nemecký matematik 19.
storočia P. Dirichlet. Dnes je známy aj ako „holubníkový princíp“ podľa toho,
že ak viac ako n holubov používa n holubníkových dier, tak aspoň dva holuby
vychádzajú tou istou dierou. Poznamenajme, že tento princíp nedáva nijaký
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návod ako nájsť dieru používanú viac ako jedným holubom. Preto je tento
princíp často existenčný.

Medzi dôsledky Dirichletovho princípu patrí aj skutočnosť, že ak konečná
množina má m prvkov aj n prvkov, tak m = n.
Príklad 2.1. V Bratislave sa v každom okamihu vyskytujú aspoň dvaja ľudia,
ktorí majú rovnaký počet vlasov na hlave. Nech A je množina obyvateľov
Bratislavy a B = {0, 1, . . . , 200000}. Zobrazenie f : A → B priraďuje bratis-
lavčanovi x jeho počet vlasov f(x) ∈ B (počet vlasov človeka neprevyšuje 200
000). Keďže |A| > 200001, zobrazenie nemôže byť injektívne. Poznamenajme,
že toto zobrazenie sa každú chvíľu mení – stačí sa učesať.

Príklad 2.2. V postupnosti (a1, a2, . . . , an) ľubovoľných n prirodzených čísel
existuje súvislá podpostupnosť (ak+1, ak+2, . . . , al) taká, že súčet ak+1, ak+2, . . . ,
al je deliteľný číslom n.

Aby sme sa o tom presvedčili, uvažujme n súčtov a1, a1 + a2, . . . , a1 + a2 +
+ . . . + an. Ak je medzi nimi niektorý deliteľný číslom n, sme hotoví. Nech
preto každý z nich dáva po delení číslom n nenulový zvyšok. Keďže súčtov je
n, no možných hodnôt pre zvyšky je len n − 1, dva z týchto súčtov povedzme
a1 + a2 + . . . + ar a a1 + a2 + . . . + as (pričom r < s) dávajú po delení číslom n
ten istý zvyšok z. Máme teda

a1 + a2 + . . . + ar = bn + z

a1 + a2 + . . . + as = cn + z

pre vhodné b, c ∈ Z. Odčítaním prvého súčtu od druhého dostávame

ar+1 + ar+2 + . . . + as = (c− b)n,

čo znamená, že posledný súčet je deliteľný číslom n.

Uvedieme ešte silnejšiu formu Dirichletovho princípu:

Teoréma 2.4. Ak f : A → B je zobrazenie konečných množín také, že |A| = n,
|B| = m a n/m > r−1 pre nejaké prirodzené číslo r, tak existuje prvok množiny
B, na ktorý sa zobrazí aspoň r prvkov množiny A.

Dôkaz. Nech B = {1, 2, . . . ,m} a nech ni je počet prvkov množiny A, ktoré sa
zobrazia na prvok i ∈ B. Keby pre každé z čísel ni platilo ni ≤ r − 1, tak by
sme dostali

r − 1 <
n

m
=

n1 + n2 + . . . + nm

m
≤ m(r − 1)

m
= r − 1.

Tento spor dokazuje teorému.

2.3 Základné enumeračné pravidlá
Úloha určiť počet kombinatorických konfigurácií daného typu je jednou z najty-
pickejších kombinatorických úloh. Existuje obrovské množstvo rôznych druhov
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kombinatorických konfigurácií, keďže existuje nepreberné množstvo praktických
úloh kombinatorického charakteru. Veľká väčšina úloh sa však dá zaradiť do
jednej z nasledujúcich tried s dvoma podtriedami:

1. Určiť počet neusporiadaných konfigurácií, pričom opakovanie objektov
v konfiguráciách je alebo nie je povolené.

2. Určiť počet usporiadaných konfigurácií, pričom opakovanie objektov v kon-
figuráciách je alebo nie je povolené.

Čitateľ iste pozná pojem kombinácií, ktorý spadá pod bod A, a pojem
variácií, spadajúci pod bod B. Tieto dva pojmy však na riešenie kombina-
torických úloh nestačia, pretože konfigurácie môžu kombinovať usporiadané aj
neusporiadané črty. Oveľa dôležitejšie je preto ovládať základné enumeračné
pravidlá a ovládnuť umenie „matematizácie“ kombinatorických úloh – čo zna-
mená vedieť vyabstrahovať konfigurácie v podobe podmnožín, usporiadaných
k-tic, zobrazení, relácií rozkladov a podobne, a potom na ich zrátanie enume-
račné pravidlá použiť.

Prvé z nich je veľmi jednoduché:

Teoréma 2.5 (Pravidlo súčtu). Nech X1, X2, . . . , Xn, n ≥ 2 sú navzájom
disjunktné podmnožiny konečnej množiny X, pričom X = X1 ∪ X2 ∪ . . . ∪ Xn.
Potom

|X| = |X1|+ |X2|+ . . . + |Xn|.

Dôkaz. Nech najprv n = 2. nech X1 = {a1, a2, . . . , ar} and X2 = {b1, b2, . . . , bs}.
Keďže X1 ∩X2 = ∅, platí X1 ∪X2 = {c1, c2, . . . , cr, cr+1, . . . , cr+s}, kde ci = ai

pre i ∈ {1, 2, . . . , r} a cj = bj−r pre j ∈ {r + 1, . . . , r + s}. Z tohto už ľahko
vidno, že |X| = |X1 ∪ X2| = |X1| + |X2|. Pre n ≥ 3 sa dôkaz ľahko dokončí
matematickou indukciou.

Opakovaným použitím tohto pravidla získavame ďalšie pravidlo. Je zložitej-
šie, no má častejšie použitie.

Teoréma 2.6 (Pravidlo súčinu). Nech X1, X2, . . . , Xn, n ≥ 2, sú ľubovoľné
konečné množiny. Potom |X1 ×X2 × · · · ×Xn| = |X1| · |X2| · . . . · |Xn|.

Dôkaz. Budeme postupovať indukciou vzhľadom na n, pričom v indukčnom
kroku použijeme pravidlo súčtu. Tvrdenie teorémy platí aj pre n = 1 (ale nič
nehovorí) a to využijeme ako bázu indukcie. Nech teraz tvrdenie teorémy platí
aj pre nejaké n ≥ 1. Ukážeme, že platí aj pre n + 1. Chcem určiť počet prvkov
množiny X1 ×X2 × . . .×Xn ×Xn+1. Ak Xn+1 = ∅, tak |X1 ×X2 × . . .×Xn ×
Xn+1| = 0 = |X1| · |X2| · . . . · |Xn+1|. V tomto prípade teraz tvrdenie platí.
Nech preto |Xn+1| = s ≥ 1, pričom Xn+1 = {a1, a2, . . . , as}. Položme pre každé
i ∈ {1, 2, . . . , s}

Yi = X1 ×X2 × . . .×Xn × {ai}.
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Je zrejmé, že |Yi| = |X1×X2× . . .×Xn| a podľa indukčného predpokladu teda
platí

|Yi| = |X1| · |X2| · . . . · |Xn|.

Pretože

X1 ×X2 × . . .×Xn ×Xn+1 =
s⋃

k=1

Yi.

a množiny Y1, Y2, . . . , Ys sú navzájom disjunktné, z pravidla súčtu dostávame

|X1 ×X2 × . . .×Xn+1| =
s∑

k=1

|Yk| = |X1| · |X2| · . . . · |Xn| · |Xn+1|.

Príklad 2.3. Koľko štvorciferných čísel deliteľných piatimi môžeme vytvoriť
z cifier 0, 1, 3, 5, 7? Nech M = {0, 1, 3, 5, 7} . Potom každé hľadané číslo je
charakterizované usporiadanou štvoricou, ktorá patrí do množiny U =
= (M − {0})×M ×M × {0, 5}. Podľa pravidla súčinu dostávame

|U | = 4 · 5 · 5 · 2 = 200.

Príklad 2.4. Koľkokrát za deň cifry na digitálnych hodinách ukazujú rastúcu
postupnosť? Čas na ukazateli digitálnych množín môžeme zakódovať usporia-
danou šesticou prirodzených čísel x = (x1, x2;x3, x4;x5, x6). Predpokladajme,
že x1 < x2 < . . . < x6. Hoci vo všeobecnosti čas musí spĺňať x1 ≤ 2, vidíme,
že x1 = 2 by nevyhnutne viedlo k x5 ≥ 6, čo nie je možné. Preto x1 ∈ {0, 1} a
x5 ≤ 5. Ak x1 = 1, tak x5 = 5 a ak x1 = 0, tak x5 = 4 alebo 5. Množinu X
hľadaných postupností rozdelíme takto

X1 = {x ∈ X; x1 = 1},
X04 = {x ∈ X; x1 = 0, x5 = 4},
X05 = {x ∈ X; x1 = 0, x5 = 5}.

V prvej množine sú postupnosti tvaru (1, 2; 3, 4; 5, x6), z čoho vyplýva |X1| =
= 4. V druhej sú postupnosti tvaru (0, 1; 2, 3; 4, x6), takže |X04| = 5. Počet
prvkov množiny |X05| spočítame takto: pre (x2, x3, x4) sú len tieto možnosti:
(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4). Pre x6 sú možnosti 6, 7, 8, 9. Každá postup-
nosť v X05 je charakterizovaná usporiadanou dvojicou ((x2, x3, x4), x6), ktorých
je podľa pravidla súčinu 4.4 = 16. Napokon podľa pravidla súčtu dostávame
|X| = |X1|+ |X04|+ |X05| = 4 + 5 + 16 = 25.
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2.4 Variácie
Variácie spolu s kombináciami patria medzi najjednoduchšie a najbežnejšie kom-
binatorické konfigurácie.Zatiaľ čo variácie sú usporiadané štruktúry, kombinácie
sú neusporiadané. Ukazuje sa, že jednoduchšie je začat študium usporiada-
ných konfigurácií a na neusporiadané sa dívať ako na triedy ekvivalencie uspo-
riadaných štruktúr.

Ako prvý odvodíme výsledok o počte zobrazení medzi konečnými množinami.
Pripomeňme označenie z predchádzajúcej kapitoly: pre lubovolné množiny A a
B označujeme symbolom BA množinu všetkých zobrazení A → B.

Teoréma 2.7. Ak A a B sú konečné množiny, pričom |A| = n a |B| = m, tak∣∣BA
∣∣ = |B||A| = mn

Dôkaz. Teorému dokážeme indukciou vzhľadom na n. Pre n = 0 (a každé
prirodzené císlo m = |B|) teoréma platí, lebo B∅ = {∅}. Predpokladajme teraz,
že teoréma platí pre nejaké n ≥ 0 a všetky prirodzené čísla m. Nech |A| = n+1,
pričom A = {a1, . . . , an, an+1}. Ak B = ∅, tak ∅A = ∅ a tvrdenie platí. Ak
m ≥ 1 a B = {b1, b2, . . . , bm}, pre k ∈ {1, 2, . . . ,m} položíme

Yk = {f ∈ BA; f(an+1) = bk}

Množiny Yk sú navzájom disjunktné a BA = ∪m
k=1Yk. Okrem toho zúže-

nia zobrazení f ∈ Yk na množinu A − {an+1} sú po dvoch rôzne a dávajú
všetky zobrazenia {a1, a2, . . . , an} → B, z indukčného predpokladu dostávame
|Yk| = mn. Napokon

∣∣BA
∣∣ =

m∑
k=1

|Yk| = m ·mn = mn+1 = |B||A|

Pre A = {1, 2, . . . , n} a |B| = m sa prvky množiny BA nazývajú variácie
s opakovaním n-tej triedy z m prvkov (množiny B). V súhlase s označením zave-
dením v članku ?? namiesto šípkového označenia pre tieto zobrazenia používame
označenie sekvenciálne f : {1, 2, . . . , n} → B označujeme

(f(1), f(2), . . . , f(n)) = (f1, f2, . . . , fn) . Z tohto vyjadrenia je zrejmé,
že existuje bijekcia B{1,2,...,n} → B ×B × . . .×B (n-krát) a teda teoréma 2.7
vyplýva aj priamo z pravidla súčinu.

Napríklad ak B = {a, b}, tak všetky variácie tretej triedy z množiny B sú
(usporiadané lexikograficky):

(a, a, a), (a, a, b), (a, b, a), (a, b, b), (b, a, a), (b, a, b), (b, b, a), (b, b, b).

Poznámka. Teorémy (2.5-2.7) sú základom definície súčtu, súčinu a mocnenia
ľubovolných kardinálnych čísel, ako sme ich zaviedli v článku ??. Tieto definície
teda zovšeobecňujú našu praktickú skúsenosť z konečných množín na nekonečné
množiny ľubovolnej kardinality.
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Teoréma 2.7,5 Nech A je konečná množina, |A| = n. Potom počet všetkých
podmnožín množiny A je |P(A)| = 2n.

Teraz určíme počet všetkých injektívnych zobrazení medzi dvoma množina-
mi.

Teoréma 2.8. Nech A a B sú konečné množiny, pričom |A| = n a |B| = m.
Potom počet všetkých injektívnych zobrazení z A do B je

m · (m− 1) . . . (m− n + 1) =
n−1∏
i=0

(m− i)

Dôkaz. Nech IA
B označuje počet injekcií A → B. Budeme postupovať indukciou

vzhľadom na n. Ak A = ∅ , tak existuje jediná injekcia A → B. V súčine
−1∏
i=0

(m − i) máme nulový počet činiteľov, a taký súčin sa definitoricky kladie

za 1. Teda v tomto prípade výsledok platí. Predpokladajme, že tvrdenie našej
teorémy je správne pre nejaké n ≥ 0 a pre všetky prirodzené čísla m. Nech
|A| = n + 1 a nech A = {a1, a2, . . . , an, an+1}. Ak B = ∅, tak BA = ∅ a
tvrdenie platí. Nech teda m ≥ 1 a B = {b1, b2, . . . , bm}. Definujme teraz pre
k ∈ {1, 2, . . . ,m} množinu

Yk = {f ∈ BA; f je injektívne a f(an+1) = bk}

Množiny Y1, Y2, . . . , Ym sú navzájom disjunktné a každá injekcia A → B
patrí do nejakej z nich. Preto |Y1|+ |Y2|+ . . . + |Ym| = IA

B

Určíme |Yk| pre ľubovolné k. Kedže zúžením injekcie je opät injekcia, zúženia
zobrazení f ∈ Yk a množinu A − {an+1} sú injekcie A − {an+1} → B − {bk}.
Naviac medzi zúženiami sa každá taká injekcia vyskytuje práve raz. Preto

|Yk| = I
A−{an+1}
B−{bk}

Podľa indukčného predpokladu

|Yk| =
n−1∏
i=0

(m− 1− i) =
n∏

i=1

(m− i)

Odtiaľ vyplýva, že

IA
B = m

n∏
i=1

(m− i) =
n∏

i=0

(m− i)
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Všimnime si, že ak |A| > |B|, tak teoréma 2.8 hovorí, že neexistuje žiadna
injekcia A → B, čo je obsah teorémy 2.3. Dirichletov princíp je teda dôsledkom
teorémy 2.8.

Injekcie z množiny A = {1, 2, . . . , n} do množiny B, kde |B| = m, sa nazý-
vajú variácie (bez opakovania) n-tej triedy z m prvkov (množiny B).

Na označenie počtu variácií bez opakovania n-tej triedy z m prvkov použí-
vame symbol mn = m(m− 1) . . . (m− n + 1), pričom v súhlase s teorémou 2.8
platia vzťahy m0 = 1 a m1 = m číslo mn sa nazýva n-tý klesajúci faktoriál z m.
Číslo mm = m(m− 1) · . . . · 2 · 1 sa označuje m! a nazýva sa m-faktoriál.

Príklad 2.5. Máme zostaviť vlajku z troch rovnakých vodorovných farebných
prvkov, alebo troch rovnakých zvislých prvkov, pričom máme k dispozícií látky
n rôznych farieb (v neobmedzenom množstve ) . Nech H je množina vlajok
prvého a V množina vlajok druhého druhu. Zrejme H ∩ V = ∅ a |H| = |V |.
Každú vlajku z množiny H charakterizuje usporiadaná trojica rôznych farieb,
čiže injekcia {1, 2, 3} → F , kde F je množina farieb. Z teorémy 2.8 vyplýva, že
|H| = n(n− 1)(n− 2) = n3, a teda počet rôznych vlajok je 2n3.

Napríklad variácie bez opakovania druhej triedy z prvkov množiny B = {1, 2,
3} sú (v lexikografickom usporiadaní) (1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2). Ak
A == {1, 2, . . . , n} a |B| = n, tak variácie n-tej triedy z n prvkov množiny B
nie sú nič iné ako bijekcie A → B a ich počet je podľa teorémy 2.8 n · (n− 1) ·
. . . · 2 · 1 = n!. Tieto variácie sa nazývajú permutáciami množiny B. (Niekedy je
o permutáciach výhodné predpokladať, že A = B.)

Zo zápisu permutácie ako postupnosti, v ktorej sa vyskytujú bez opakovania
všetky prvky množiny B je zrejmé, že každá permutácia množiny B určuje
nejaké lineárne usporiadanie množiny B. Obrátene, každé lineárne usporiadanie
množiny B definuje permutáciu f množiny B – ak b ∈ B je i-ty najmenší prvok
množiny B (t.j. i-ty z ľava), stačí položiť f(i) = b.

Teoréma 2.9. Existuje vzájomne jednoznačná korešpondencia medzi permutá-
ciami ľubovolnej množiny B a lineárnymi usporiadaniami množiny B. Preto
počet lineárnych usporiadaní n-prvkovej množiny je n!

Na záver vyslovíme ešte zovšeobecnené pravidlo súčinu, ktoré je zosilnením
teorémy 2.8. Dôkaz indukciou prenechávame čitateľovi.

Teoréma 2.10. Nech X je konečná množina. Nech A ⊆ Xk, k ≥ 2, je pod-
množina karteziánskeho súčinu Xk, ktorej prvky označíme (x1, x2, . . . , xk) a
ktorá splňa podmienky:

(1) prvok x1 je možné z množiny X vybrať n1 spôsobmi;

(2) pre každé i ∈ {1, . . . , k − 1}, po akomkoľvek výbere usporiadanej i-tice
(x1, x2, . . . , xi) je možné prvok xi+1 vybrať vždy ni+1 spôsobmi.

Potom |A| = n1 · n2 · . . . · nk
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2.5 Kombinácie bez opakovania

Kombinácie bez opakovania sú neusporiadané súbory neopakujúcich sa prvkov
- inými slovami podmnožiny nejakej základnej množiny. Presnejšie, kombinácie
(bez opakovania) k-tej triedy z n prvkov množiny A sú k-prvkové podmnožiny
množiny A s mohutnosťou |A| = n.

Množina všetkých k-prvkových podmnožín množiny A sa označuje Pk(A)
alebo

(
A
k

)
a ich počet

(
n
k

)
. Symbol

(
n
k

)
sa nazýva kombinačným číslom alebo

binomickým koeficientom (dôvody pochopíme neskôr).
Bezprostredne z definície symbolu

(
n
k

)
vyplývajú tieto jeho vlastnosti:

• Pre každé n ≥ 0 platí
(
n
0

)
= 1, lebo každá množina má práve jednu prázdnu

množinu.

• Pre každé n ≥ 0 platí
(
n
n

)
= 1, lebo každá n-prvková množina má práve

jednu n-prvkovú podmnožinu, totiž samú seba.

• Pre každé n ≥ 0 platí
(
n
1

)
= n, lebo každá n-prvková množina má práve n

rôznych 1-prvkových podmnožín.

• Pre každé k ≤ n platí
(
n
k

)
=
(

n
n−k

)
. Počet k-prvkových podmnožín

ľubovoľnej n prvkovej množiny A je ten istý ako počet (n− k)-prvkových
podmnožín množiny A, lebo zobrazenie

(
A
k

)
→
(

A
n−k

)
, x 7→ A− x je bijek-

cia.

• Pre každé k > n platí
(
n
k

)
= 0, lebo n-prvková množina nemá podmnožiny

s viac ako n prvkami.

Určíme teraz hodnotu symbolu
(
n
k

)
.

Teoréma 2.11. Nech A je konečná množina, pričom |A| = n. Potom počet
k-kombinácií z množiny A je

|Pk(A)| =
(

n

k

)
=

n(n− 1) . . . (n− k + 1)
k(k − 1) . . . 1

=
nk

k!

Dôkaz. Nech K = {0, 1, . . . , k − 1}. Budeme skúmať injekcie K → A, čiže na
množine IK

A . Na IK
A zavedieme binárnu reláciu R takto:

f R g práve vtedy, keď f ({0, 1, . . . , k − 1}) = g ({0, 1, . . . , k − 1})

Potom R je relácia ekvivalencie. Každá trieda ekvivalencie C na množine IK
A je

jednoznačne určená jednou k-prvkovou podmnožinou M , na ktorú zobrazenia
z množiny C zobrazia množinu {0, 1, . . . , k − 1}. Ak v týchto zobrazeniach
zameníme koobor A za M , dostaneme práve všetky permutácie množiny M .
Preto |C| = k!. Každá trieda ekvivalencie na IK

A má k! prvkov. Preto k!
(
n
k

)
=

= nk = IK
A . Počet k-prvkových podmnožín množiny A je teda, podľa teorémy

2.8,
(
n
k

)
= |IK

A |/k! = nk/k!.
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Kombinačné čísla majú veľké množstvo zaujímavých vlastností. Uvedieme
aspoň niektoré z nich.

Teoréma 2.12. Pre ľubovoľné prirodzené čísla n a k platí:(
n

k

)
+
(

n

k + 1

)
=
(

n + 1
k + 1

)
Dôkaz. Tvrdenie je možné ľahko dokázať pomocou vyjadrenia

(
n
k

)
= nk

k! tak, že
úpravou vzťahu na ľavej strane dostaneme kombinačné číslo na pravej strane.
My však dokážeme túto rovnosť pomocou množinovej interpretácie. Nech A je
množina, ktorá má |A| = n + 1 a nech b ∈ A je pevný prvok. Množinu

(
A

k+1

)
rozložíme na dve časti B0 a B1: B0 bude združovať (k + 1)-podmnožiny, ktoré
neobsahujú prvok b, naproti tomu B1 bude združovať všetky tie, ktoré prvok
b obsahujú. Keďže každá množina v B0 je podmnožinou množiny A − {b},
dostávame |B0| =

(
n

k+1

)
. Každá množina v B1 zas určuje k-prvkovú podmnožinu

množiny A− {b}. Preto |B1| =
(
n
k

)
. Odtiaľ(

n + 1
k + 1

)
=
(

A

k + 1

)
= |B0|+ |B1| =

(
n

k + 1

)
+
(

n

k

)

Tento rekurentný vzťah je základom umiestnenia kombinačných čísel v rovine
do tvaru trojuholníka, v ktorom je možné postupne vyčísľovať kombinačné čísla
s použitím jediného faktu, že

(
n
0

)
=
(
n
n

)
= 1 pre každé n.

(
0
0

)
(
1
0

) (
1
1

)
(
2
0

) (
n
1

) (
2
2

)
(
3
0

) (
3
1

) (
3
2

) (
3
3

)

1

1 1

1 2 1

1 3 3 1

Príklad 2.6. Majme domino (variant známej spoločenskej hry), ktorého každý
kameň je rozdelený na dve časti a na každej polovici je vyznačená jedna z hodnôt
0, 1, . . . , n; žiadna z dvoch častí sa nedá odlíšiť ako prvá alebo druhá. Aká je
pravdepodobnosť toho, že dva náhodne vybrané kamene sa dajú k sebe priložiť,
čiže obsahujú rovnakú hodnotu aspoň na jednej strane? (Poznamenajme, že
bežné domino má n = 6.) Kameň, na ktorom sú napísané hodnoty i, j ∈
∈ {0, 1, . . . , n}, môžeme jednoznačne zakódovať množinou {i, j}. Keďže sa môže
stať, že i = j (takým kameňom sa hovorí dublety), máme 1 ≤ |{i, j}| ≤ 2.
Celkový počet kameňov je teda

(
n+1

1

)
+
(
n+1

2

)
=
(
n+2

2

)
, podľa teorémy 2.12.

Špeciálne pre n = 6 dostávame
(
8
2

)
= 28. Počet všetkých možných výberov
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dvoch kameňov je potom ((n+2
2

)
2

)
= 28.

Určíme teraz počet dvojíc kameňov, ktoré sa daju priložiť k sebe. Toto číslo je
zhodné s počtom neusporiadaných dvojíc množín {i, j}, {k, l} ∈ P2 ({0, 1, . . . , n})
takých, že {i, j} ∩ {k, l} 6= ∅. Pre každé i ∈ {0, 1, . . . , n} zistíme, aký je počet
dvojíc kameňov, ktoré majú spoločnú hodnotu i. Všimnime si, že okrem hodno-
ty i sa na týchto kameňoch objavujú ešte dve ďalšie hodnoty j a k, pričom j 6= k;
môže sa však stať, že jedna z týchto hodnôt je totožná s i. Z tohto je jasné, že
každú dvojicu kameňov so spoločnou hodnotou i môžeme jednoznačne reprezen-
tovať dvojprvkovou množinou {j, k}. Takto dostávame

(
n+1

2

)
dvojíc kameňov

so spoločnou hodnotou i. Vzhľadom na počet výberov hodnoty i, dostávame
(n + 1)

(
n+1

2

)
dvojíc kameňov domina, ktoré sa dajú priložiť k sebe. Z toho

vyplýva, že pravdepodobnosť javu, že pri náhodnom výbere dvojice kameňov je
možné tieto kamene priložiť k sebe, je

(n + 1)
(
n+1

2

)((n+2
2 )
2

) =
2(n + 1)

(
n+1

2

)(
n+2

2

) ((
n+2

2

)
− 1
) .

Pre bežné domino (n = 6) dostávame pravdepodobnosť 7/18 < 0,4.

Dôležitým výsledkom o kombinačných číslach je nasledujúca teoréma, ktorá
vysvetľuje, prečo kombinačné čísla nazývajú aj binomické koeficienty.

Teoréma 2.13 (Binomická veta). Pre každé reálne číslo x a prirodzené číslo n
platí

(1 + x)n =
n∑

k=0

(
n

k

)
xk.

Dôkaz. Tvrdenie zrejme platí pre n = 0. Ďalej budeme postupovať indukciou
vzhľadom na n. Ak predpokladáme platnosť tvrdenia pre nejaké n ≥ 0, tak
použitím tvrdenia 2.12 dostávame:

(1 + x)n+1 = (1 + x)n(1 + x)

=
( n∑

k=0

(
n

k

)
xk

)
(1 + x)

= 1 +
((

n

0

)
+
(

n

1

))
x +

((
n

1

)
+
(

n

2

))
x2 + . . .

+
((

n

n− 1

)
+
(

n

n

))
xn + xn+1

=
n+1∑
k=0

(
n + 1

k

)
xk

čo bolo treba dokázať.
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Poznámka. Definíciu binomického koeficientu
(

n

k

)
môžeme rozšíriť z prirodze-

ného čísla n na ľubovoľné reálne číslo z, ak na základ jeho rozšírenia zoberieme
teorému 2.11.

Položme (
z

k

)
:=

zk

k!
=

z(z − 1) . . . (z − k + 1)
k!

Pre takéto binomické koeficienty je možné dokázať analóg binomickej teorémy,
ktorý v tomto prípade vyzerá takto:

Pre ľubovoľné z ∈ R a pre každé reálne číslo z také, že |x| < 1 platí

(1 + x)z =
∞∑

k=0

(
z

k

)
xk

Ak z ∈ N, tak všetky binomické koeficienty pre k > z sú nulové a dostávame
opäť tvrdenie teorémy 2.13 (pre |x| < 1, čo nie je až také podstatné). Takáto
rozšírená binomická teoréma je užitočná pri dokazovaní rozličných vlastností
kombinačných čísel. Dôkaz zovšeobecnenej binomickej teorémy presahuje rámec
tohto textu.

Dôsledok 2.14. Platia tieto identity (n ≥ 1)

(a)
n∑

k=0

(
n

k

)
= 2n,

(b)
n∑

k=0

(−1)k

(
n

k

)
= 0,

(c)
∑

0≤k≤n,
k párne

(
n

k

)
=

∑
0≤k≤n,

k nepárne

(
n

k

)
= 2n−1.

Dôkaz. Tvrdenie (a) dostaneme priamo z binomickej teorémy, ak položíme x = 1
a (b) dostaneme, ak položíme x = −1.

Jednu z rovností v (c) dostaneme, ak sčítame identity (a) a (b) a vydelíme
dvoma, druhú rovnosť získame podobne odčítaním.

Identitu (a) môžeme ľahko dokázať aj kombinatorickou úvahou: na pravej
strane máme 2n, čo je |P(A)|, kde |A| = n. To isté číslo môžeme vyjadriť aj
v tvare súčtu

|P(A)| =
n∑

k=0

|Pk(A)|
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Teoréma 2.15 (Cauchyho sčítací vzorec). Pre všetky prirodzené čísla m a n
platí

k∑
i=0

(
m

i

)(
n

k − i

)
=
(

m + n

k

)
Dôkaz. Nech A1 a A2 sú disjunktné množiny, pričom |A1| = m a |A2| = n.
Položme A = A1 ∪ A2. Nech X ⊆ A. Potom X ∩ A = X ∩ (A1 ∪ A2) =
= (X ∩A1)∪ (X ∩A2). Označme Xi = X ∩Ai, i = 1, 2, . . .. Potom X1 a X2 sú
disjunktné podmnožiny A1 resp. A2 a X = X1 ∪X2.

Skúmajme zobrazenie

f : Pk(A) → ∪k
i=0(Pi(A1)× Pk−i(A2))

x 7→ (x1, x2)

Keďže každú podmnožinu X možeme vyjadriť ako zjednotenie množiny X1 =
= X ∩ A1 s množinou X2 = X ∩ A2, vidíme, že zobrazenie f je bijektívne.

Z teorémy 2.11 a pravidla súčinu vieme, že |Pi(A1)×Pk−i(A2)| =
(

m

i

)(
n

k − i

)
.

Požitím pravidla súčtu napokon dostávame

(
m + n

k

)
= |Pk(A)| = | ∪k

i=0 Pi(A1)× Pk−1(A2)| =
k∑

i=0

(
m

i

)(
n

k − i

)
.

Tým je dôkaz skončený.

Poznámka. Tvrdenie 2.15 môžeme dokázať aj pomocou binomickej teorémy
takto. Zrejme platí (1+x)m+n = (1+x)m(1+x)n. Ak rozpíšeme pravú aj ľavú
stranu tejto rovnosti podľa teorémy 2.13, dostáneme

m+n∑
k=0

(
m + n

k

)
xk =

(
m∑

i=0

(
m

i

)
xi

)(
n∑

j=0

(
n

j

)
xj

)

Súčty na pravej strane roznásobíme podľa distributívneho zákona a roztrie-
dime podľa mocnín premennej x. Zistíme, že pri xk sa vyskytuje koeficient

k∑
i=0

(
m

i

)(
n

k − i

)

Na ľavej strane sa pri xk vyskytuje koeficient
(

m + n

k

)
. Keďže dva mno-

hočleny sa rovnajú práve vtedy, keď pri rovnakých mocninách premennej sa
vyskytujú rovnaké koeficienty, musí platiť

k∑
i=0

(
m

i

)(
n

k − i

)
=
(

m + n

k

)
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Rovnakou metódou je možné dokázať celý rad ďalších identít-vzťahov medzi
kombinačnými číslami. Čitateľ si môže sám vyskúšať, aká identita vyplýva
zo vzťahu (1 + x)n+1 = (1 + x)n(1 + x). Na záver tohto článku sa pozrieme na

číslo
(

n

k

)
ako na funkciu premennej k pri pevnom n.

Teoréma 2.16. Pre každé prirodzené číslo n platí:

(a) ak n je párne, tak(
n

0

)
<

(
n

1

)
< · · · <

(
n

n/2− 1

)
<

(
n

n/2

)
>

(
n

n/2 + 1

)
> · · · >

(
n

n

)
;

(b) ak n je nepárne, tak(
n

0

)
<

(
n

1

)
< · · · <

(
n

(n− 1)/2

)
=
(

n

(n + 1)/2

)
> · · · >

(
n

n− 1

)
>

(
n

n

)
.

Dôkaz. Skúmajme pomer(
n
k

)(
n

k−1

) =
nk

k!
(k − 1)!
nk−1

=
n− k + 1

k

Ľahko zistíme, že pre k ≤ n/2 je tento pomer väčší ako 1, a teda
(

n

k

)
>

(
n

k − 1

)
.

Ak n je nepárne, z rovnosti
(

n

k

)
=
(

n

n− k

)
dostávame rovnosť

(
n

(n− 1)/2

)
=

=
(

n

(n + 1)/2

)
. Odtiaľ už vyplýva tvrdenie.

Z tohto tvrdenia vyplýva, že funkcia
(

n

k

)
nadobúda svoju najväčšiu hodnotu

v strede celočíselneho intervalu 〈0, n〉, pričom ak n je párne sa táto hodnota

nadobúda raz, ak n je nepárne – dvakrát. Po túto hodnotu funkcia
(

n

k

)
rastie,

od nej potom klesá.

2.6 Kombinácie s opakovaním, permutácie
s opakovaním, polynomická veta

Najprv sa budeme venovať kombináciám s opakovaním. Z názvu týchto kon-
figurácií vyplýva, že ide o konfigurácie, v ktorých sa nerozlišuje poradie, no
prvky sa môžu opakovať. Pri ich presnej definícii budeme vychádzať z variácií
s opakovaním, teda zobrazení {1, 2, . . . , k} → A. Všimnime si najprv, že na
množine A{1,2,...,k} všetkých variácií s opakovaním k-tej triedy v množine B
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môžeme zaviesť reláciu ekvivalencie R takto: Nech f, g ∈ A{1,2,...,k}. Položme
fRg práve vtedy keď |f−1({x})| = |g−1({x})| pre každý prvok x ∈ A.

Inými slovami, dve variácie s opakovaním budú ekvivalentné práve vtedy,
keď v oboch sa rovnaké prvky opakujú rovnaký počet krát.

Kombinácie s opakovaním k-tej triedy z m prvkov množiny A (kde |A| = m)
sú triedy ekvivalencie R na množine A{1,2,...,k}.

Ako príklad uvedieme vyššie definovanú ekvivalenciu R na množine
{a, b}{1,2,3,4}. Triedy tejto ekvivalencie budú kombinácie s opakovaním štvrtej
triedy v množine {a, b}. Variácie patriace do tej istej triedy rozkladu sú uvedené
v tom istom stĺpci. Vnútri každej triedy sú variácie zobrazené lexikograficky.
Variácie sú napísané ako slová-bez zátvoriek a čiarok.

aaaa aaab aabb abbb bbbb
aaba abab babb
abaa abba bbab
baaa baab bbba

baba
bbaa

Počet kombinácií s opakovaním štvrtej triedy z dvoch prvkov je teda 5.

Teoréma 2.17. Nech A je n-prvková množina a k prirodzené číslo. Potom
počet všetkých kombinácií s opakovaním k-tej triedy v množine A je(

n + k − 1
k

)
.

Dôkaz. Kombinácie s opakovaním k-tej triedy v množine A sú prvky rozkladu
množiny A{1,2,...,k} indukovaného reláciou ekvivalencie R popísanej vyššie. Bez
ujmy na všeobecnosti môžeme predpokladať, že A = {1, 2, . . . , n}. Z každej
triedy ekvivalencie R, čiže kombinácie s opakovaním, vyberieme slovo, ktoré je
lexikograficky najmenšie (to znamená, že v ňom sú prvky množiny A zoradené
podľa veĺkosti). S trochou nepresnosti budeme toto slovo stotožňovať so samot-
nou kombináciou s opakovaním. Nech c1c2 · · · ck je teda kombinácia s opako-
vaním k-tej triedy v množine A = {1, 2, . . . , n}, pričom c1 ≤ c2 ≤ . . . ≤ ck.
Priraďme teraz tejto postupnosti novú postupnosť d1d2 · · · dk tak, že položíme

f(ci) = di = ci + i− 1, i = 1, 2, . . . , k

Všimnime si, že di ∈ {1, 2, . . . , n + k − 1} a že d1 < d2 < . . . < dk, te-
da postupnosť d1d2 . . . dk reprezentuje kombináciu bez opakovania k-tej triedy
z množiny {1, 2, . . . , n + k − 1}.

Napr. ak c1c2 . . . ck = 22233, tak d1d2 . . . dk = 23467.
Ľahko vidieť, že zobrazenie c1c2 . . . ck 7−→ d1d2 . . . dk je injektívne. Z druhej

strany, ak
{e1, e2, . . . ek} ⊆ {1, 2, . . . , n + k− 1} je kombinácia bez opakovania k-tej triedy,
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môžeme predpokladať, že e1 < e2 < . . . < ek. Postupnosti e1e2 . . . ek priradíme
postupnosť h1h2 . . . hk takto:

hi = ei − i + 1, i = 1, 2, . . . , k.

Ľahko vidno, že h1 ≤ h2 ≤ . . . ≤ hk a že hi ∈ {1, 2, . . . , n}. Teda h1h2 . . . hk

je kombinácia s opakovaním k-tej triedy z množiny A. Okrem toho, f(hi) = ei.
Z uvedeného vyplýva, že zobrazenie

c1c2 . . . ck 7−→ d1d2 . . . dk

definuje bijekciu medzi kombináciami k-tej triedy s opakovaním v množine
{1, 2, . . . , n} a kombináciami bez opakovania k-tej triedy v množine
{1, 2, . . . , n + k − 1}. Hľadaný počet kombinácií s opakovaním je preto(

n + k − 1
k

)
Príklad 1. Uvažujme polynómy s viacerými premennými x1, x2, . . . , xn. Poly-
nómy vytvárame z členov tvaru xα

i1
xβ

i2
. . . xγ

il
, kde α > 0, β > 0, . . . , γ > 0, ktoré

sa nazývajú monómy. Stupeň monómu je číslo α + β + . . . + γ (v zápise auto-
maticky predpokladáme, že i1, i2, . . . , il sú rôzne prvky množiny {1, 2, . . . , n}).
Polynóm je tvaru

n∑
l=0

∑
i1<i2<...<il

ai1i2...il
x%

i1
xσ

i2 . . . xτ
il

pričom koeficienty ai1i2...il
sú nejaké čísla (môžu byť aj nuly) a % , σ, . . . , τ sú

kladné exponenty (v rôznych monómoch môžu byť rôzne). Poznamenávame,
že vo vnútornej sume sčítame cez všetky kombinácie l-tej triedy z množiny
{1, 2, . . . , n}.

Koľko je rozličných monómov stupňa k? Ak premenné x1, x2, . . . , xn medzi
sebou komutujú, tak na poradí nezáleží a exponent nad premennou vyjadruje
počet opakovaní premennej v monóme - ide teda o kombinácie s opakovaním.
Preto sa počet rôznych monómov stupňa k rovná číslu(

n + k − 1
k

)
Ak premenné medzi sebou nekomutujú, na poradí záleží, a potom máme doči-
nenia s variáciami s opakovaním. V tomto prípade je počet monómov nk.
Príklad 2. Turista chce z dovolenky poslať k priateľom pohľadnice. Má na
výber n druhov pohladníc. Koľkými spôsobmi môže nakúpiť k pohladníc?
Koľkými spôsobmi môže nakúpené pohľadnice poslať?

Je očividné, že nakúpené pohľadnice tvoria neusporiadaný súbor a že môžeme
z jedného druhu kúpiť viacero kusov pohľadníc (ak k > n, zrejme ani inú
možnosť nemá). Súbory pohľadníc preto tvoria kombinácie s opakovaním. To
znamená, že na nákup má (

n + k − 1
k

)
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možností.
Koľkými spôsobmi môže pohľadnice poslať? Keby boli všetky pohľadnice

navzájom rôzne, tak pohľadnice sa dajú rozoslať k! spôsobmi, lebo rozoslanie
predstavuje bijekciu medzi rôznymi druhmi pohľadníc a ich adresátmi. Ak je
však z nejakého druhu viac pohľadníc, tieto sú medzi sebou zameniteľné. Pred-
pokladajme, že v nakúpenom súbore je ki pohľadníc i-teho druhu, i =
= 1, 2, . . . , n (ki ≥ 0). Dve bijekcie z množiny nakúpených pohľadníc do
množiny priateľov budeme považovať za ekvivalentné, ak v obidvoch ten istý
adresát dostane ten istý druh pohľadnice. Ak uvažujeme ľubovoľnú pevnú bijek-
ciu, zámenou pohľadníc v i-tom druhu dostaneme z nej ki! ekvivaletných bijek-
cií. Tieto zámeny môžeme vykonať nezávisle v každom druhu. Podľa pravidla
súčinu dostávame, že každá trieda ekvivalencie má k1!k2! . . . kn! prvkov. Počet
spôsobov rozoslania pohľadníc je teda

k!
k1!k2! . . . kn!

.

V predchádzajúcom príklade sme skúmali vlastne takúto všeobecnú situá-
ciu. Máme dve množiny A (pohľadnice) a B (priatelia), pričom |A| = k = |B|.
Množina A je rozložená na množiny A1, A2, . . . , An s mohutnosťami |Ai| = ki.
V tomto mieste môžeme trocha porušiť definíciu rozkladu v tom, že pripustíme
medzi množinami A1, A2, . . . , An aj prázdne množiny. Skúmame teraz bijekcie
A → B, pričom dve bijekcie f a g budeme považovať za ekvivalentné, ak pre
každý prvok y ∈ B existuje index i ∈ {1, 2, . . . , n} taký, že obidva prvky f−1 aj
g−1 patria do tej istej množiny Ai. (V reči predchádzajúceho príkladu: každý
adresát y dostal pri rozsielke f aj pri rozsielke g pohľadnicu toho istého druhu
– hoci možno nie tú istú). Táto vlastnosť sa dá vyjadriť aj ináč. Nech
p : A → {A1, A2, . . . , An} je projekcia množiny na svoj rozklad; to znamená,
že pre ľubovoľný prvok a ∈ A platí p(a) = Ai práve vtedy, keď a ∈ Ai. Potom
f aj g sú ekvivalentné vtedy a len vtedy, keď pf−1 = pg−1. Triedy ekvivalen-
cie týchto bijekcií sa nazývajú permutáciami s opakovaním z k1 prvkov prvého
druhu, k2 prvkov druhého druhu, . . ., kn prvkov n-tého druhu. Úvahou v pred-
chádzajúcom príklade sme ukázali, že počet takýchto permutácií s opakovaním
je

k!
k1!k2! . . . kn!

.

Tá istá hodnota sa objavuje aj ako počet iných konfigurácií.

Tvrdenie 2.18. Nech A a B sú konečné množiny, kde |A| = n a |B| = k. Nech
B = {b1, b2, . . . , bk}. Potom počet zobrazení f : A → B takých, že pre každý
prvok bi platí |f−1({bi})| = ni, kde ni sú zadané nezáporné celé čísla so súčtom
n1 + n2 + . . . + nk = n, sa rovná

n!
n1!n2! . . . nk!

.

Dôkaz. Nech (ai1 , ai2 , . . . , ain
) je ľubovoľná permutácia množiny A zakódovaná

ako usporiadanie. Definujme zobrazenie A → B tak, že prvých n1 prvkov
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množiny A pošleme na b1, druhých n2 prvkov na b2 atď. Prvých n1 prvkov
môžeme však ľubovoľne spermutovať a zobrazenie sa nezmení. Nezávisle môžeme
permutovať aj ďalšie skupiny. Z toho dostaneme, že k1!k2! . . . kn! permutácií dá-
va to isté zobrazenie. Je tiež zrejmé, že každé zobrazenie také, že |f−1({bi})| =
= mi pre každý prvok bi ∈ B, vznikne hore uvedeným spôsobom. Preto počet
týchto zobrazení je n!

n1!n2!...nk! .

Čísla n!
n1!n2!...nk! sa zvyknú označovať

(
n

n1,n2,...,nk

)
a nazývať polynomické

koeficienty. Ak k = 2, tak(
n

n1, n2

)
=
(

n

n1

)
=
(

n

n− n1

)
=
(

n

n2

)
,

čiže polynomické koeficienty sú prirodzeným zovšeobecnením binomických koe-
ficientov. Vysvetlenie názvu týchto čísel poskytuje nasledujúci výsledok.

Teoréma 2.19 (Polynomická veta). Nech n a k sú kladné prirodzené čísla.
Potom

(x1 + x2 + . . . + xk)n =
∑

n1,n2,...,nk

(
n

n1, n2, . . . , nk

)
xn1

1 xn2
2 . . . xnk

k , ni ≥ 0

pričom sčítame cez všetky usporiadané n-tice prirodzených čísel (n1, n2, . . . , nk),
pre ktoré n1 + n2 + . . . + nk = n.

Dôkaz. Vynásobíme n činiteľov (x1+x2+. . .+xk) a združíme rovnaké monómy.
Koeficient pri xn1

1 xn2
2 . . . xnk

k je pritom počet spôsobov, ktorými sa tento monóm
pri vynásobení získa. Zrejme M = xn1

1 xn2
2 . . . xnk

k vznikne vždy, keď x1 vy-
berieme z n1činiteľov,x2 z n2 činiteľov atď. Inými slovami, výraz M zodpovedá
zobrazeniu z množiny n činiteľov do množiny x1, x2, . . . , xk pričom n1 činiteľov
je zobrazených na x1, n2 činiteľov na x2 atď. Počet takýchto zobrazení je podľa
tvrdenia 2.18

n!
n1!n2! . . . nk!

=
(

n

n1, n2, . . . , nk

)

Poznámka. Ľahko sa nahliadne,že(
n

n1, n2, . . . , nk

)
=
(

n

n1

)(
n− n1

n2

)
. . .

(
n− n1 − n2 − . . .− nk−1

nk

)
Táto rovnosť zodpovedá skutočnosti, že počet spôsobov, ktorými vznikne

monóm xn1
1 xn2

2 . . . xnk

k , sa dá popísať aj takto: najprv vyberieme x1 z n1 členov
(x1 + x2 + . . . + xn) , čo môžeme urobiť

(
n
n1

)
spôsobmi. Potom vyberieme x2 z

n2 spomedzi zvyšných n− n1 členov, čo môžeme urobiť
(
n−n1

n2

)
spôsobmi, atď.

kým nevyberieme aj xk z nk spomedzi ostávajúcich n−n1−n2 . . .−nk−1 členov,
čo môžeme urobiť

(
n−n1−n2−...−nk−1

nk

)
spôsobmi.
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2.7 Princíp zapojenia a vypojenia
Začneme jednoduchou otázkou. Ak sú dané dve konečné množiny A a B, ako
vypočítame počet prvkov ich zjednotenia? Odpoveď je očividná: od súčtu mo-
hutností množín A a B musíme odrátať mohutnosť ich prieniku. Inými slovami,

|A ∪B| = |A|+ |B| − |A ∩B|.

Pre tri množiny je odpoveď podobná:

|A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |A ∩ C| − |B ∩ C|+ |A ∩B ∩ C|.

To znamená, že najprv „zapojíme“ prvky jednotlivých množín, potom „vypo-
jíme“ prvky prienikov dvojíc množín a napokon opäť „zapojíme“ prvky prieniku
všetkých troch množín. (Čitateľovi odporúčame presvedčiť sa o platnosti tohto
vzťahu s pomocou Vennovho diagramu pre tri prenikajúce sa množiny.)

Princíp zapojenia a vypojenia (alebo inklúzie a exklúzie) je ďalekosiahlym
zavšeobecnením vyššie uvedených vzťahov pre dve a tri množiny.

Nech M1,M2, . . . ,Mn sú konečné množiny. Pre ľubovoľné prirodzené číslo
k také, že 0 ≤ k ≤ n položme

Sk =
∑

i1<i2<...<ik

|Mi1 ∩Mi2 ∩ . . . ∩Mik
|,

pričom súčet prebieha cez všetky kombinácie {i1, i2, . . . , ik} z indexov {1, 2, . . . , n}.
Pre k = 0 dostávame prienik množín Mi z prázdnej množiny indexov, čo podľa
dohody z prvej kapitoly je univerzum – základná množina X, v ktorej vedieme
všetky úvahy o množinách M1,M2, . . . ,Mn. Preto

S0 = |X|.

Teoréma 2.20 (Princíp zapojenia a vypojenia). Nech M1,M2, . . . ,Mn sú ko-
nečné množiny. Potom

|M1 ∪M2 ∪ . . . ∪Mn| =
n∑

k=1

(−1)k+1
∑

i1<i2<...<ik

|Mi1 ∩Mi2 ∩ . . . ∩Mik
| =

=
n∑

k=1

(−1)k+1Sk

Dôkaz. Nech x je ľubovoľný prvok z množiny M1 ∩ M2 ∩ . . . ∩ Mn. Zaveďme
označenie

Jx = {i;x ∈ Mi}.

Aby sme ukázali, že pravá a ľavá strana rovnosti predstavujú to isté číslo, všim-
nime si, že prvok x je na ľavej strane zarátaný iba raz. Ak totiž preberáme
prvky množiny M1 ∩ M2 ∩ . . . ∩ Mn, na x naďabíme len raz. Koľkokrát je
započítaný na pravej strane?
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Predpokladajme, že prvok x patrí do p množín Mi; to znamená, že Jx =
= {j1, j2, . . . , jp} ⊆ {1, 2, . . . , n}. Z toho vyplýva, že v S1 je prvok x zarátaný
p =

(
p
1

)
-krát, totiž v každom sčítanci |Mj1 |, |Mj2 |, . . . , |Mjp

|. V S2 je x zarátaný(
p
2

)
-krát, raz za každý sčítanec tvaru |Mji ∩ Mj2 |. Všeobecne - prvok x je

zarátaný v Si

(
p
i

)
-krát. Celkove je teda prvok x na pravej strane započítaný

toľkokrát:
n∑

k=1

(−1)k+1

(
p

k

)
= −

n∑
k=1

(−1)k

(
p

k

)
=
(

p

0

)
−
(

p

0

)
−

n∑
k=1

(−1)k+1

(
p

k

)
=

=
(

p

0

)
−

n∑
k=0

(−1)k+1

(
p

k

)
.

Podľa dôsledku 2.14(b) dostávame(
p

0

)
−

n∑
k=0

(−1)k+1

(
p

k

)
= 1− 0 = 1,

čiže prvok x je aj na pravej strane zarátaný práve raz. To dokazuje našu teorému.

Poznámka. Teorému 2.20 môžeme ľahko dokázať aj matematickou indukciou.
Najprv sa presvedčíme o platnosti vzťahu pre dve množiny M1 a M2. Nech je
vzťah platný pre n ≥ 2 množín. Zoberme teraz n + 1 množín M1,M2, . . . ,Mn,
Mn+1. Na hľadaný počet |M1 ∪M2 ∪ . . .∪Mn ∪Mn+1| použime vzťah pre dve
množiny:

|M1 ∪M2 ∪ . . . ∪Mn ∪Mn+1| = |(M1 ∪M2 ∪ . . . ∪Mn) ∪Mn+1| =

=
∣∣∣∣ n⋃

k=1

Mk

∣∣∣∣+ |Mn+1| −
∣∣∣∣( n⋃

k=1

Mk

)
∩Mn+1

∣∣∣∣.
Na tretí sčítanec aplikujeme distributívny zákon, čím z neho dostaneme∣∣∣∣ n⋃

k=1

(Mk ∩Mn+1)
∣∣∣∣.

Potom použijeme indukčný predpoklad na prvý a tretí sčítanec. Po úprave
dostaneme požadovaný vzťah pre n+1. Podrobnosti prenechávame na čitateľa.

Predpokladajme teraz, že množiny M1,M2, . . . ,Mn sú podmnožinami ne-
jakej konečnej množiny X. Aký počet má komplement množiny M1 ∪ M2 ∪
∪ . . . ∪Mn v univerze X?

Počítajme

|X − (M1 ∪M2 ∪ . . . ∪Mn)| = |X| − |M1 ∪M2 ∪ . . . ∪Mn|

= |X| −
n∑

k=1

(−1)k+1 Sk = |X|+
n∑

k=1

(−1)k Sk

=
n∑

k=0

(−1)k Sk.
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Tým sa dostali k nasledujúcemu výsledku:

Dôsledok 2.21. Nech M1,M2, . . . ,Mn sú podmnožiny konečnej množiny X
a nech M ′

i je komplement množiny M i v univerze X, i = 1, 2, . . . , n. Potom

|M ′
1 ∩M ′

2 ∩ . . . ∩M ′
n| =

n∑
k=0

(−1)k Sk

Dôkaz. Výsledok vyplýva z predchádzajúceho výpočtu a z jedného z de Morga-
nových zákonov.

Predchádzajúci výsledok je základom najpoužívanejšej formy princípu zapo-
jenia a vypojenia, ktorú teraz opíšeme.

Majme nejakú základnú množinu X, pričom |X| = N a nech α1, α2, . . . , αn

sú nejaké vlastnosti, ktoré prvky množiny môžu, no nemusia, mať. Nech
Nαi1αi2 . . . αik

je počet prvkov množiny X, ktoré majú každú z vlastností
αi1 , αi2 , . . . , αik

(a prípadne aj iné vlastnosti, no tie nás nezaujímajú). Nech
N(0) = Nα′1α

′
2 . . . α′n označuje počet prvkov množiny X, ktoré nemajú žiadnu

z vlastností α1, α2, . . . , αn. Naším cieľom je vypočítať N(0).
Položme

M i = {x ∈ X; x má vlastnosť αi}.

Potom
|M i1 ∩M i2 ∩ . . . ∩M ik

| = Nαi1αi2 . . . αik
,

pričom prienik množín M i z prázdnej množiny indexov dáva

| ∩i∈∅ M i| = |X| = N

a
|M ′

1 ∩M ′
2 ∩ . . . ∩M ′

n| = Nα′1α
′
2 . . . α′n = N(0).

Z predchádzajúceho dôsledku dostávame

Dôsledok 2.22. V N -prvkovej množine nech každý prvok má alebo nemá niek-
toré z vlastností α1, α2, . . . , αn. Nech Nαi1αi2 . . . αik

označuje počet prvkov,
ktoré majú každú z vlastností αi1 , αi2 , . . . , αik

prípadne aj nejaké iné. Nech
N(0) = Nα′1α

′
2 . . . α′n označuje počet prvkov uvažovanej množiny, ktoré nemajú

žiadnu z vlastností α1, α2, . . . , αn. Potom

N(0) =
n∑

k=0

(−1)kSk =
n∑

k=0

(−1)k
∑

i1<i2<...<ik

Nαi1αi2 . . . αik
. �

Poznámka. Existuje praktický spôsob ako si môžeme ľahko zapamätať pred-
chádzajúci vzorec ako aj množstvo podobných vzťahov. Predpokladajme, že
chceme určiť počet prvkov, ktoré majú vlastnosti αi1 , αi2 , . . . , αir

a nemajú
vlastnosti αj1 , αj2 , . . . , αjs

. Prirodzene predpokladáme, že {i1, i2, . . . , ir, j1,
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j2, . . . , js} ⊆ {1, 2, . . . , n} a že všetky uvažované vlastnosti sú navzájom rôzne.
Potom hľadaný počet získame formálnym rozvojom výrazu

Nαi1αi2 . . . αir
(1− αj1)(1− αj2) . . . (1− αjs

)

podľa distributívneho zákona, pričom N.1 = N , N.αi = Nαi a podobne.
Napríklad počet prvkov, ktoré majú vlastnosť α1 a nemajú ani vlastnosť α2

ani α3 je

Nα1(1− α2)(1− α3) = Nα1(1− α2 − α3 + α2α3) =
= Nα1 −Nα1α2 −Nα1α3 + Nα1α2α3.

špeciálne

N(0) = Nα′1α
′
2 . . . α′n = N(1− α1)(1− α2) . . . (1− αn)

Rozvinutím posedného výrazu dostávame napokon vzťah z dôsledku 2.22,

N(1− α1)(1− α2) . . . (1− αn) =
n∑

k=0

(−1)k
∑

i1<i2<...<ik

Nαi1αi2 . . . αik
,

o čom sa ľahko presvedčíme matematickou indukciou.
V predchádzajúcom dôsledku sme určili počet N(0) všetkých spomedzi N

prvkov, ktoré nemajú žiadnu z uvažovaných vlastností. Tento výsledok je možné
zovšeobecniť - dá sa totiž určiť aj počet N(r) všetkých prvkov, ktoré majú
práve r vlastnosti, ako aj počet N(≥ r) všetkých prvkov, ktoré majú aspoň r
vlastností:

N(r) =
n∑

k=r

(−1)k−r

(
k

r

)
Sk

N(≥ r) =
n∑

k=r

(
k − 1
r − 1

)
Sk

Niekedy je tieto súčty namáhavé presne vypočítať (čo býva pravidlom pri súč-
toch so striedavými znamienkami), preto sa vtedy musíme uspokojiť s približný-
mi hodnotami. Namiesto úplného súčtu

N(r) =
n∑

k=r

(−1)k−r

(
k

r

)
Sk

s hornou hranicou sčítania n uvažujeme len súčet

N(r)s =
r+s∑
k=r

(−1)k−r

(
k

r

)
Sk

prvých s členov úplného súčtu. Tieto oscilujú okolo hľadanej hodnoty N(r),
pričom ak s je nepárne, čiastočný súčet je pod hľadanou hodnotou:

N(r)s ≤ N(r).
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Ak s je párne, čiastočný súčet je nad hľadanou hodnotou :

N(r)s ≥ N(r).

Tieto vzťahy a odhady nachádzajú svoje praktické uplatnenie pri vyčíslení
pravdepodobností rozličných javov. Ich dôkazy však presahujú rámec tohto
textu.

Príklad 3. Skupina N pánov sa má zúčastniť večierka. Hostiteľ vyžaduje
od účastníkov formálny odev – frak a tvrdý čierny klobúk. Pred vstupom do sály
páni odovzdajú svoje klobúky v šatni. Večierok prebehne veľmi úspešne a páni
pri svojom odchode nie sú schopní rozoznať svoje klobúky. Aká je pravdepo-
bodnosť toho, že žiaden pán si nezoberie vlastný klobúk?

Ak pánov aj ich klobúky očíslujeme 1, 2, . . . , N , tak rozmiestnenie klobúkov
na hlave predstavuje permutáciu množiny {1, 2, . . . , N}. Naším cieľom je najprv
určiť počet DN permutácií, ktoré nenechávajú žiaden prvok na mieste. Počet
permutácií, ktoré nechávajú na mieste k-prvkovú podmnožinu {i1, i2, . . . , ik} je
(N − k)!. S použitím vyššie zavedených označení dostaneme

Sk =
(

N

k

)
(N − k)!,

odkiaľ zisťujme, že hľadaný počet permutácií je

DN = N(0) =
N∑

k=0

(−1)kSk =
N∑

k=0

(−1)k

(
N

k

)
(N − k)! =

=
N∑

k=0

(−1)k N !
k!(N − k)!

(N − k)! = N !
N∑

k=0

(−1)k

k!

Keďže všetkých permutácií N prvkov je N !, pravdepodobnosť toho, že žiaden
pán nemá na hlave svoj klobúk je

N !
N∑

k=0

(−1)k

k!
N !

=
N∑

k=0

(−1)k

k!
.

Z matematickej analýzy poznáme Taylorov rozvoj funkcie ex, ktorý dáva vzťah

ex =
∞∑

k=0

xk

k!
,

Pre x = −1 dostávame rovnosť

e−1 =
∞∑

k=0

(−1)k

k!
,
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z čoho vidno, že nami určená pravdepodobnosť je N -ty čiastočný súčet tohto
rozvoja čísla e−1. Ak je číslo N dostatočne veľké, tak hľadaná pravdepodobnosť
je približne 1/e – o čosi viac ako 1/3.

Na záver uvedieme ešte dve aplikácie princípu zapojenia a vypojenia. Ich
dôkaz ponecháme na čitateľovi.

Dôsledok 2.23. Počet surjektívnych zobrazení f : A → B, kde |A| = n a |B| =
= m, je

SA
B =

m∑
k=0

(−1)k

(
m

k

)
(m− k)n. �

Dôsledok 2.24. Nech ϕ(n) označuje počet kladných prirodzených čísel menších
ako prirodzené číslo n > 1 a nesúdeliteľných s n. Nech n = pα1

1 pα2
2 . . . pαr

r

je kánonický rozklad čísla n na súčin mocnín rôznych prvočísiel p1, p2, . . . , pr.
Potom

ϕ(n) = n

(
1− 1

p1

)(
1− 1

p2

)
. . .

(
1− 1

pr

)
. �
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