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Uvod

PredloZeny text prednésky predstavuje elementarny ivod do tedrie enumeracii grafovych struktuar.
Na mnohych miestach vSak poznamenavame, Ze uvedené pristupy mozno aplikovat aj na inych
diskrétnych strukturach, ako su grafové.

Teoéria enumerécii grafovych objektov je pomerne burlivo sa rozvijajica ¢ast diskrétnej mate-
matiky.

Je zname, Ze nemalo tloh vo fyzike, chémii, biologii, ekonémii, Statistike a lingvistike sa trans-
formuje na urcenie poc¢tu grafovych objektov istych vlastnosti. Niektoré z takych tuloh boli uz
davnejSie vyrieSené, iné zasa nie su vyrieSené do dne$nych dni. Najst v explicitnej forme vyjadre-
nie pre pocet zodpovedajicich objektov sa ndm spravidla vzdy nepodari. No na druhej strane, ak
pouzijeme zndme enumeracné vety a metody, mozeme ziskat cely rad uZitoénych vztahov medzi
Giselnymi charakteristikami skimanych objektov a odhadnut radovo niektoré potrebné parametre.

Pri priprave uvedeného textu prednasky velky kus prace odviedli studenti Peter Kostolanyi a
Frantisek Durié, patri im za to moje Gprimné podakovanie.

Bratislava 1. méja 2011



Kapitola 1

Enumeracia oznacenych objektov

1.1 Pocet sposobov, ktorymi moZeme oznadit graf

Graf G radu n sa sklada z konefnej neprazdnej mnoziny V = V(G), obsahujtucej n vrcholov
a mnoziny E obsahujicej m neusporiadanych dvojic réznych vrcholov. Pri takejto definicii sa
automaticky vynechévaji slucky, nasobné hrany a orientécia. Dvojica e = {u, v} vrcholov, patriaca
mnozine F, sa nazyva hranou grafu G a hovorime, Zze hrana e spaja vrcholy u a v. Vrcholy u a v
sa pritom nazyvaja susedné; vrchol u a hrana e a taktiez aj vrchol v a hrana e st incidentnymi
navzajom. Graf s n vrcholmi a m hranami sa nazyva (n, m)-grafom.

U1 V2

V4 U3

Obrazok 1.1: Graf so Styrmi vrcholmi a piatimi hranami.

V oznacenom grafe rddu n sa vrcholom pripisuji celé ¢isla od 1 po n. Napriklad graf zobrazeny
na obrazku 1.1 moze byt oznaceny Siestimi roznymi sposobmi, ktoré st ukazané na obrazku 1.2.

1 4 1 4 1 3 2 4 2 3 3 2
3 2 2 3 2 4 1 3 1 4 1 4
Obrazok 1.2: Sest roznych rozdeleni znaciek v grafe.

Takymto sposobom, dva oznacené grafy G; a G5 pokladame za rovnaké a nazyvame izomorfné
prave vtedy, ked existuje vzajomne jednozna¢né zobrazenie mnoziny V(G1) na mnozinu V(Gs)
zachovavajtice nielen susednost, ale aj rozdelenie znadiek. Lahko sa moéZeme presveddit o tom,

7e na obrazku 1.2 st zobrazené vSetky rozne rozdelenia znaciek grafu zobrazeného na obrazku s
¢islom 1.1.
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Vznikaji dve prirodzené otazky. Prva: ,Kolko existuje oznadenych grafov radu n?” Druhé:
JKolko existuje grafov radu n?” Prva otazka je natol'ko l'ahka, Ze ju moZzeme riesit ihned. Druhéa
otéazka je omnoho tazsia.

Na Tahku otézku odpovieme tak, Ze nepatrne zovSeobecnime tlohu nasledujicim sposobom:
najst pocet oznacenych grafov s danym poctom vrcholov a hran. Nech G, (z) je mnohoclen, u
ktorého koeficient pri z* je rovny poc¢tu oznalenych grafov radu n, ktoré maji rovno k hran.
Takyto mnohoc¢len spravidla nazyvame generujuca funkcia pre oznacené grafy s danym poctom
vrcholov a hran. Ak mame mnoZzinu V' s n-vrcholmi, potom existuje (72’) réznych neusporiadanych
dvojic tychto vrcholov. V kazdom oznatenom grafe s mnozinou vrcholov V' je l'ubovolna dvojica
vrcholov bud susedné bud nie je susedné. Z toho vyplyva, Ze poet oznacenych grafov s k hranami

je rovny ((%))

Veta 1.1.1 Generujuca funkcia G,,(z) pre oznacené grafy radu n je uréenda nasledujtcim vztahom:

Glz) = i (f)x’f = (1+2)™, kdem = (Z) (1.1)

k=0

Pretoze G, () = (1 4+ x)™ a pocet G,, oznacenych grafov radu n je rovny G, (1), plati
G, =20). (1.2)

Pre n = 3 tuto formulu mézeme ilustrovat obrazkom

1 1 1 1 1 1 1 1
. . / \ /\ / \ /\

[ ] e 6—0° o O ® ©

2 3 2 3 2 3 2 3 2 3 2 3 2 32 3

Obrazok 1.3: Osem oznacenych grafov tretieho radu.

Takymto sposobom existuje osem oznacenych grafov radu 3 a len $tyri neoznacené grafy radu
3. Existuje 64 oznacenych grafov radu 4 a len 11 neoznacenych grafov radu 4.

Teda vznika otazka: ,Kolkymi sposobmi médZeme oznacit dany graf?”’ Aby sme odpovedali
na tuto otdzku, musime uvaZovat symetrie, alebo automorfizmy grafu. Vzajomne jednoznaéné
zobrazenie « mnoziny V(G1) na mnozinu V(Gs) zachovavajuce susednost spravidla nazyvame
izomorfizmom. Ak G; = Gy = G, potom « je automorfizmom grafu G. Mnozinu vSetkych
automorfizmov grafu G ozna¢ujeme I'(G) a vieme, Ze tvori grupu, ktord nazyvame grupou grafu
G. Takymto spdsobom prvky grupy I'(G) st permuticie posobiace na mnozine V. Napriklad
graf G zobrazeny na obrazku 1.1 ma préave Styri automorfizmy. To, ze I'(G) obsahuje nasledujuce
permutécie, zapisujeme spravidla v tvare cyklov:

(v1)(v2)(vs)(va), (v1)(v3)(vava), (v1v3)(v2)(va), (vivsvova).
Nech s(G) = |T'(G)] je rad grupy I'(G), oznacujici podet symetrii grafu G. Potom odpoved na
tlohu o poé¢te rozdeleni znaciek, ktort sme formulovali vysSie je obsiahnuta v nasledujucej vete.

Veta 1.1.2 Pocet sposobov rozdelenia znaciek v danom grafe G rddu n je rovny

n!

I(G) = @) (1.3)

Dokaz. Dokaz tohto tvrdenia vyplyva z nasledujucej skutocnosti. Ak mame dané jedno pevné
oznalenie, tak potom z neho moézeme ziskat s(G) rovnakych oznadeni, inymi slovami povedané



1.1 Pocet spdsobov, ktorymi méZeme oznadit graf 6
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Obrazok 1.4: 11 neoznacenych grafov stvrtého radu.

indikuje ndm s(G) rovnakych oznaleni. Vsetkych oznaceni je n!, a teda roznych oznaceni je
n!/s(G). V pripade grafu zobrazeného na obrazku 1.1 méame Sest roznych oznaceni. O

Hoci uvedena veta je sformulované len pre grafy, podobné tvrdenia si platné pre Iubovolné
kone¢né diskrétne struktiry s danymi grupami automorfizmov, napriklad také diskrétne struktury,
ako su zakorenené grafy, orientované grafy, atd.

Orientovany graf, alebo orgraf D radu n sa sklada z kone¢nej neprazdnej mnoziny V' roznych
objektov, ktoré sa nazyvaji vrcholmi spolu so zadanou mnozinou X, obsahujticou q usporiadanych
dvojic roznych vrcholov z mnoziny V. Dvojica = (u,v) bodov z mnoziny X sa nazyva orien-
tovanou hranou grafu D a hovorime, Ze vrchol u je susedny s vrcholom v; vrchol u a hrana x
st incidentné navzajom, taktiez aj vrchol v a hrana x. Vonkajsi polostupen vrchola u sa nazyva
pocet orientovanych hran vychadzajicich z vrchola u; vnitorny polostupen vrchola u je pocet ori-
entovanych hran, ktoré do vrchola u vchadzaju. Diagramy vSetkych orientovanych neoznacenych
grafov rddu 3 su zobrazené na obrazku 1.5.

Tak ako aj v pripade grafov pracujeme s diagramami orientovanych grafov, tak ako aj so
samotnymi orientovanymi grafmi.

V oznacenych orientovanych grafoch radu n vrcholom pripisujeme celé ¢isla od 1 po n a grupa
grafu D, oznacovana I'(D), sa sklad4 zo v8etkych permutacii mnoziny vrcholov V(D) orientovaného
grafu D zachovavajucich susednost. PretoZe pocet oznacenych orientovanych grafov radu n, ktoré
maju prave k-hran je rovny (”("kfl)), dostavame nasledujice vysledky zodpovedajiuce formuliam
(1.1) a (1.2).

Veta 1.1.3 Generujuca funkcia D,,(x) pre oznacené orientované grafy radu n je dana vztahom

n(n—1)
Dn(l‘) _ Z <n(nk— 1)>$k — (1 + x)n(n—l). (14)
k=0
Je zrejmé, ze
J Dn(z) = G3(x), (1.5)

pretoze D, (1) = 2""~1) = G2(1).
V kruhovom turnaji je dany pocet hracov, ktori hraju hru, ktorej pravidla nepripistaju ako
vysledok remizu a [ubovolni hraci sa striedaju v zapase prave jeden raz, a len jeden z nich sa stava
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Obrazok 1.5: 16 orientovanych neoznacenych grafov radu 3.

vitaz. 7Z uvedeného vyplyva, Ze turnaj predstavuje orientovany graf, v ktorom je kazda dvojica
roznych vrcholov spojené len jednou orientovanou hranou. Zakonéime tento paragraf poznamkou,
7e pocet oznacenych turnajov radu n je prave 2(3), t.j. taky, ako aj pocet oznacenych grafov
uréenych formulou (1.2). Toto pozorovanie sa potvrdzuje pre n = 3 na obréazku 1.6.

1 1 1 1 1 1 1 1
3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2

Obrazok 1.6: Osem oznacenych turnajov tretieho radu.

Okrem toho, prirodzeny vztah medzi tymito dvoma triedami grafov moézeme ukazat tak, ze
kazdy oznaleny turnaj zodpoveda tomu oznac¢enému grafu, v ktorom vrcholy so znac¢kami i a j st
susedné prave vtedy, ked i < j a orientovana hrana (i, ) sa vyskytuje v turnaji.

1.2 S1vislé grafy

Suvislym grafom nazyvame graf, v ktorom st Tubovolné dva rézne vrcholy spojené cestou. Pocet
oznacenych suvislych grafov radu 4 moZzeme vycislit trividlnym sposobom, ak formulu (1.3) ap-
likujeme na kazdy zo stvislych grafov.

Rady grip tychto grafov, poéitame od l'ava do prava, su rovné 2;4;2;8;4;24. Preto z formuly
(1.3) vyplyva, Ze pocet oznacenych stuvislych grafov stvrtého radu je rovny 38. Tento vysledok
nedéava Ziadny smer, ktory by pomohol nast formulu pre pocet C,, suvislych oznacenych grafov
rddu n. Na to, aby sme dosiahli tento ciel, st potrebné niektoré definicie.

Podgraf H grafu G ma V(H) C V(G) a E(H) C E(G). Komponent grafu predstavuje max-
imélny savisly podgraf. Graf s korefiom (alebo zakoreneny graf) ma jeden oddeleny vrchol, ktory
nazyvame korenl. Dva zakorenené grafy nazveme izomorfné, ak existuje vzajomne jednoznacné
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1 2 1 2 1 2 1 2 1 2 1 2
4 3 4 3 4 3 4 3 4 3 4 3

2 automorfizmy 6 automorfizmov 2 automorfizmy 8 automorfizmov 4 automorfizmy 24 automorfizmov

Obrazok 1.7: Sest oznacenych suvislych grafov stvrtého radu s poctami svojich symetrii.

zobrazenie mnoZziny vrcholov jedného grafu na mnozinu vrcholov druhého grafu, ktoré zachovéva
nielen susednost, ale aj korene. Analogické poziadavky sa kladu aj pri opisani zakorenenych
oznalenych grafov. Tieto pojmy moéZeme teraz pouZit na dosiahnutie nasledujtcej rekurzivnej
formuly.

Veta 1.2.1 Pocet C), suvislych oznacenych grafov vyhovuje vztahu:
c, =2 1 Sk "2 . (1.6)
n k

Na to, aby sme dokézali (1.6) poznamenavame, Ze ak v oznac¢enom grafe urobime koreiimi rozne
vrcholy, potom dostavame rozne zakorenené oznacené grafy. Z toho vyplyva, ze pocet zakorenenych
oznacenych grafov rdadu n je rovny nG,,. Pocet zakorenenych grafov radu n, u ktorych sa koren
nachédza v komponente obsahujicej prave k vrcholov je rovny kCy (Z) G- Ak spocitame tieto
stcéiny podla k od 1 po n — 1, opét dostavame vyraz pre pocet zakorenenych oznacenych grafov,
a to nestvislych, t.j. Sp— k() CkGrg.

Hodnoty pre malé hodnoty n st uvedené v nasledujucej tabulke:

n |1 2 3 4 5 6 7 8 9
Cp, |1 1 4 38 728 26704 1866256 251548592 66296291072

Tabul'ka 1.1: Pocty oznacenych suvislych grafov rddu n pre n =1, 9.

V dalgich nasich avahéch bude dolezité mat k dispozicii pojem exponencidlnej generujtcej
funkcie a mat zreteli niekol'ko vlastnosti takej funkcie. Zavedieme tieto pojmy a pouZijeme ich na
to, aby sme ziskali iny tvar pre vypocet, uréenie poc¢tu stuvislych oznacenych grafov.

Pre kazdé k = 1,2,3,... oznafime ay pocet sposobov, ktorymi mozeme oznadit vsetky grafy
radu k, ktoré maja niektoru vlastnost P(a). (V pripade, Ze k = 0, uvaZujeme aj tzv. prazdny
graf, t.j. graf bez vrcholov a hran). Potom formalny mocninovy rad

a(z) = Zakﬁ (1.7)
k=1 ’

nazyvame exponenciidlnou generujicou funkciou pre triedu vsetkych grafov, ktoré uvazujeme v
danom pripade.
Predpokladajme taktiez, ze

b(z) = Zbkﬁ (1.8)
k=1 ’

je in& exponencidlna generujica funkcia pre triedu grafov vyhovujtcich vlastnosti P(b).
Nasledujuica lema dava uzitoénu interpretaciu koeficientov saéinu a(x)b(x) tychto dvoch generu-
jacich funkcii.
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Nech a(x)b(x) = ¢(x), v pripade, Ze pripustime aj prazdny graf, pre koeficient ¢, v exponen-
cidlnej generujucej funkcii ¢(x) plati:

n

cn:aobn—i—(l

)albn_l + ...+ (Z) apbp—p + ...+ aybg.

Lema 1.2.1 (O spoé&itavani oznadenych grafov) Koeficient pri z*/k! v a(x)b(x) je rovny poé-
tu usporiadanych dvojic (G1,G2) dvoch disjunktnych grafov, G; ma vlastnost P(a), G2 ma vlast-
nost P(b); k je pocet vrcholov v G1 U G5 a znacky od 1 po k (alebo od 0 po k) si rozdelené na
grafe G U Gs.

Na ilustraciu tejto lemy zavedieme exponencialnu generujticu funkciu C(x) pre oznaené sivislé
grafy:

oo xk
Clz) = chﬁ (1.9)
k=1

Potom C(z)C(z) je generujica funkcia pre usporiadané dvojice oznadenych savislych grafov. Ak
predelime tento rad ¢islom 2, dostavame exponencidlnu generujicu funkciu pre oznacené grafy,
ktoré maju prave dva komponenty stvislosti. Analogicky, rad C™(z)/n! ma pri 2*/k! koeficient
rovny poc¢tu oznacenych grafov radu k, obsahujucich prave n komponentov suvislosti. Ak G(x)
ozna¢ime exponencialnu generujicu funkciu pre oznacené grafy, potom

Gla)=Y" C:l(!x). (1.10)

Takymto sposobom dostavame nasledujici exponencidlny vztah medzi prisluSnymi generujucimi
funkciami G(z) a C(x).

Veta 1.2.2 Exponencialne generujice funkcie G(x) a C(z) pre oznalené grafy a oznacené suvislé
grafy vyhovuju nasledujicemu vztahu:

14 G(z) =@, (1.11)

Poznamenavame, Ze (1.11) plati aj pre iné triedy grafov, napr. multigrafy. Dalej si treba uvedomit,
7e ¢islo 1 vystupuje v rovnosti (1.11) z toho dovodu, Ze vo vztahu (1.10) neuvazujeme prazdny
graf. Dalej upozoriiujeme, Ze z literattry je znamy vysledok autorov J. Riordana a C. L. Mallowsa
pre rekurentny vypocet C,, — po¢tu sivislych oznacenych n-vrcholovych grafov:

n—1
=Y (Z B f) (2% = 1)ChCoup. (1.12)

k=1

Okrem toho je zrejmé, Ze ak je znama exponencidlna generujuca funkcia pre niektoru triedu grafov,
potom exponencialnu generujicu funkciu pre zodpovedajicu triedu suvislych grafov dostaneme
tak, ze forméalne logaritmujeme prvy rad presne tak, ako v pripade (1.11) pre triedu vSetkych
grafov. To ndm umoziuje sformulovat nasledujici vSeobecny vysledok.

Dosledok 1.2.1 Ak
Z Apz™ = exp (Z amm"> ,
m=0 m=1

potom pre m > 1

1 & n
Uy = App — mZk(k>akAm_k. (1.13)
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1.3 Bloky

Vynechanim vrchola v z grafu G ziskavame podgraf G — v grafu G, ktory sa sklada zo vsetkych
vrcholov grafu G, okrem vrchola v a v8etkych hran grafu neincidujicich s vrcholom v. Artikulaciou
grafu sa nazyva taky vrchol grafu, vynechanim ktorého sa zvacsi poCet komponentov sivislosti.
Blokom alebo nerozdelitelnym grafom sa nazyva stuvisly netrividlny graf, ktory nema artikulécie. V
tejto Casti textu bude uréeny vzajomny vztah medzi generujucimi funkciami pre oznacené bloky a
oznacené suvislé grafy. Metoda, ktort tu uplatnime je tspesné len v pripade oznacenych objektov.

Nakolko sa zaoberame tlohou vyéislenia oznacenych objektov, budeme pouZivat exponenciilne
generujuce funkcie. Nech B(x) oznacuje rad pre oznacené bloky, potom

B(z) = ZBn%T, (1.14)
n=2 '

kde B,, je pocet blokov s n vrcholmi. Ako vyplyva z formuly pre urcenie po¢tu spésobov rozdelenia
znadiek v grafe, je koeficient pri ™ v B(x) rovny stactu veli¢in prevratenych k radom grup blokov
s n-vrcholmi.

1 1 4 1 4 1 4
1 D E E
2 2 3 2 3 2 3 2 3
2 automorfizmy 6 automorfizmov 8 automorfizmov 4 automorfizmy 24 automorfizmov

Obrazok 1.8: Najmensie bloky a poc¢ty ich symetrii.

Ak vyuzijeme uvedeny obrazok, tak pre B(z) ziskavame niekol'ko prvych ¢lenov:

1 1 5 1-2> 1-2% 102
Blw)= 2+ -2+ —at 4. = — L =

11
2 T T2 o1 31 a (1.15)

Nagim cielom je dokazat nasledujacu vetu, kde C’(z) a B’(x) oznacuju oby¢ajnta formélnu
derivaciu prislusnych radov.

Veta 1.3.1 Exponencidlne generujuce funkcie B(xz) a C(z) pre oznacené bloky a suvislé grafy
vyhovuju nasledujicemu vztahu:

InC’(x) = B'(2C'(z)). (1.16)

Dokaz. Na to, aby sme preverili tito identitu ozna¢ime R(z) exponencidlnu generujicu funkeciu
pre savislé oznacené grafy s korefiom, takZe koeficient pri z" je R, /n!. Pretoze R, = nC, pre
vSetky n, dostdvame rovnost

R(z) = zC'(x). (1.17)

Ozna¢me R, (z) exponencialny rad pre stuvislé oznacené grafy s korefiom, u ktorych prave p blokov
obsahuje koreni. Takymto spdsobom Ry(x) = x a sucasne plati, Ze

R(z) =Y Ry(x). (1.18)
p=0

Okrem toho si treba viimnut, ze R;(x) vycisluje zakorenené suvislé grafy, u ktorych prave jeden
blok inciduje s korenom. Predpokladajme, 7e S(z) je zodpovedajici rad pre ten pripad, ked koren
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nie je oznadeny, t.j. koeficient pri z™/n! je rovny poctu zakorenenych stuvislych grafov s n + 1
vrcholmi, u ktorych je korei neoznaceny. Potom z lemy o spocitavani oznacenych grafov a z
vlastnosti nasobenia exponencialnych generujucich funkcii oznacenych grafov vyplyva, ze R;(x) =
xS(x) a teda S(x) = Ry(x)/x.
Na zaklade tej istej lemy rad
(R (x)/x)”
p!

vy¢isluje p-mnoziny takych grafov, priGom kazdy koren nie je oznaceny. Ak tychto p korefiov sto-
toZnime a zavedieme pre ne jednu znacku, potom budeme mat vy¢islenie zakorenenych oznacéenych
suvislych grafov, u ktorych prave p blokov inciduje s korefiom. Ustanovenie ozna¢eného koreia
uskutoénime jednoducho prendsobenim x. Teda dostavame

(Ba(z)/x)"

R,(x) =T (1.19)
Kombinaciou dvoch poslednych formul dostavame nasledujuci vztah:
R(z) =z exp (Ri(x)/x). (1.20)

Teraz sa poktsime vyjadrit Ri(z) pomocou B(z) a R(x). Poznamenavame, Ze rad (R(z)/z)*~!
spocitava sibory z k — 1 zakorenenych oznacenych suvislych grafov, pricom v tychto siboroch je
k — 1 korehov neoznacenych a nie st zahrnuté do poctu spocitavanych vrcholov. Inymi slovami,
koeficient pri z™/n! v tomto rade predstavuje pocet siborov, z ktorych kazdy sa sklada z k —
1 zakorenenych grafov, priom korene grafov si neoznacené a celkovy pocet vrcholov v sibore
vratane korenov je rovny n + k — 1. Vynésobenim tohto radu s Bj dostavame rad vyéislujici
zakorenené suvislé grafy, u ktorych koren inciduje s jedinym blokom a pre znacky tohoto bloku
sme pouzili len ¢isla od 1 po k. Nakoniec, aby sme vzali do uvahy rozdelenie vSetkych znaciek,
treba aby sme vietko vynasobili z* /k!. Dostavame
k
k- Bi(R(@)/2)* " 75 = 2 Bu(R(@) ™/ (k= 1)L

Teda rad z- By, (R(x))*~!/(k—1)! vy&isluje zakorenené oznagené sivislé grafy, u ktorych s korefiom
inciduje prave jeden blok radu k. Ak spocitame podla k, dostavame vztah

Ri(x) :xin(R(x))H/(kf ). (1.21)
k=2

Kombinovanim formul (1.20) a (1.21) dostédvame nasledujuci vysledok:

n(R()/2) = 3 BolR()*/(k - 1)L, (122)
k=2
InC'(z) = Z By(zC"(2))*/(k — 1)! = B'(C'(x)).
k=2

O

Poznamka 1.3.1 Ak porovnavame koeficienty pri 2™ vo vyrazoch, ktoré stoja v pravej a v lavej
Casti formuly (1.16) moZzeme ziskat rekurzivnu formulu pre B,. Koeficient pri 2™ v Tavej Casti
formuly (1.16) moze byt vyjadreny pomocou koeficientov funkcie C(x). Pouzijeme vztah (1.13) z
désledku uvedenom v ¢asti 1.2. Kvoli vhodnosti oznaéme ako h(n, k) koeficient pri 2" v (zC’(x))*.
Potom koeficient pri ™ v pravej ¢asti formuly (1.16) je

Zn: Bih(n,k —1)/(k — 1)\. (1.23)
k=2
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Z toho vyplyva, Ze pocet B, oznacenych blokov mozeme vyjadrit pomocou poc¢tu C,, oznacenych
suvislych grafov, ak pouZijeme vztah (1.16).

Opisana metoda moze byt rozsirena bez velkych tazkosti tak, Ze miesto druhého parametra
moZeme zobrat pocet hran.

1.4 Eulerovské grafy

V tejto ¢asti odvodime generujicu funkciu pre oznacené eulerovské grafy. Stupfiom vrchola v
(oznadujeme ako deg v) v grafe G nazyvame pocet hran grafu G, ktoré s incidentné s vrcholom
v. Ak kazdy vrchol grafu G ma parny stupeii, potom graf nazyvame parny. Eulerovsky graf je
stuvisly parny graf.

Nech W, je pocet oznacenych parnych grafov radu n. Potom plati nasledujtca, tak trocha
neoCakavané, veta.

Veta 1.4.1 Pocet oznacenych parnych grafov radu n je rovny poctu oznaéenych grafov radu n—1,
teda o
w, =2("2"). (1.24)

Dokaz. Aby sme dokazali tento vysledok, ustanovime vzajomne jednozna¢ény vztah medzi
tymito dvoma triedami grafov. UvaZujme Tubovolny oznaceny graf G radu n — 1. Graf G musi
mat parny pocet vrcholov neparneho stupiia. Pridame k nemu vrchol v, ktorému pripiSeme znacku
n. Nakoniec z grafu G vyrobime graf G’ tak, Ze spojime vrchol v s kaZdym vrcholom grafu G,
ktory m4 neparny stupeii. Tento graf G’ je oznaceny péarny graf radu n. Lahko vidiet, Ze opisany
vztah je vzajomne jednoznaény, a Ze kazdy oznaeny parny graf radu n moéZeme dostat takymto
sposobom z niektorého grafu radu n — 1. O

Aby sme dokéazali formulu pre pocet oznaéenych eulerovskych grafov, vyuZzijeme generujice
funkcie. Nech W (x) je exponencidlna generujtca funkcia pre oznacené parne grafy. Potom plati:

’I'L

i ("2") (1.25)

Dalej, nech U, je poCet oznacenych eulerovskych grafov radu n, takze

i % (1.26)

je zopovedajica exponencialna generujuca funkcia.

Veta 1.4.2 Exponencialna generujuca funkcia U(x) pre oznacené eulerovské grafy vyhovuje vzta-
hom

U(z) =In(W(z)+1) (1.27)
U, =2("2" %Z () "=y, (1.28)

Formula (1.27) vyplyva z toho faktu, Ze ak je znama generujica funkcia pre Tubovolnu triedu
grafov, potom zodpovedajicu generujucu funkciu pre zodpovedajuce suvislé grafy dostaneme po-
mocou formélneho logn - logaritmovania prvého radu. Rekurentny vztah 1.60 je dosledkom vlast-
nosti uvednych tried grafov.

Pre niekol'ko prvych ¢lenov radu U(x) mame rovnost

x> 3zt 38x°
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Styri eulerovské grafy radu 5 st zobrazené na nasledujicom obrazku spolu s radmi ich grap. V
stalade so znamou formulou, veli¢iny obratené k tymto &islam musia daf v sacte &islo 22, ktoré

HE
predstavuje koeficient x° v rade U(z), a ony ju skoto¢ne davaji.

YN N, A

o,

10 8 12 120

Dalej budeme uvazovat fazsiu tlohu; urdit podet oznacenych eulerovskych grafov s danym
po¢tom vrcholov a hran. Pokusime sa ustanovit nasledujuci vysledok.

Veta 1.4.3 Mnoho¢len wy,(x), u ktorého koeficient pri 27 je rovny po¢tu oznaénych grafov, ktoré
maju n vrcholov parneho stupnia a g hran, je uréeny formulou

wp(z) = 2iﬂu +2)(®) zn: (Z) (m)k(n_k) (1.30)

k=0
Poznamenavame, Ze pre malé n plati: wy(z) = we(z) = 1, w3(x) = 1 + 23, wy(z) = 1+ 42 + 32,

Dokaz. Nech L je mnozina vSetkych oznacenych grafov radu n, ktoré maju prave g hran.
Uvazujme Tubovolny graf G z mnoZziny L a l'ubovolnym spdsobom vynasobime kazdi zo znadiek
1,...,n &slom +1 alebo -1. Pretoze znac¢ky budu kladné alebo zéporné, kazdy vrchol mozeme
uvazovat ako kladne nabity alebo zaporne nabity v zavislosti od znamienka znacky. Kazdej hrane
potom pripisujeme ¢&islo +1 alebo -1 rovné sucinu znamienok vrcholov incidujicich s hranou.
Znamieko grafu G oznacujeme ako o(G); definujeme ho ako sa€in znamienok hran. Je zrejmé, Ze
existuje 2" sposobov, ktorymi moézu byt pripisané znamienka znackam daného grafu.

Z druhej strany, predpokladajme, Ze znamienka st uz rozdelené po n - celym ¢&islam, ktoré
slazia ako znacky; potom existuje ((g)) roznych grafov s ¢ hranami, a s takymi n vrcholmi,
ktorych znamienka st uréené v sulade s danym rozdelenim znamienok v mnozine znaciek. Tieto
pojmy ilustrujeme na nasledujicom obrazku

Gy G
—1
.+1 ®_4 .+1 —_— 0_3
-1
+1 +1 -1 -1
®_ o o _ o_4 ®_o
+ 1 3 1 +

Pretoze o(G) je znamienko su¢inu kladnych a zapornych ¢isiel, zodpovedajicich susednym
vrcholom, potom kladné vrcholy v tomto stc¢ine moZzeme vynechat. Takymto sposobom

o(G) = (~1)° (1.31)

o(G) = (—1)° (1.32)
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kde b je pocet zapornych hran grafu G, z ktorych kazda spaja zaporny vrchol s kladnym vrcholom.
Dalej uvazujme stdet > o(G), kde sucet robime podla vietkych ozna¢nych grafov G' z mnoziny L
a vzhladom na mnozinu S, ktora sa sklada z 2™ moznych rozdeleni ¢isel +1 a -1 podla znadiek,
ktoré su pripisané vrcholom. Ako vyplyva z predchadzajucich vyrazov, tento stcet mozeme zapisat
(vyjadrit) dvoma réznymi sposobmi

> (Z(—l)“> =3 (Z (—1)b> (1.33)

GeL S S GeL

Najprv uvazujme Tava Cast vztahu (1.33). Ak G je parny graf, potom a je péarne ¢islo pri
Tubovolnych rozdeleniach z mnoziny S. Z toho vyplyva, ze > (—1)* = 2" a graf G prispieva
do Tavej casti rovnosti (1.33) vkladom 2". Ak graf G nie je parny, potom aspoii jeden jeho vr-
chol v ma nepéarny stupein. Podmnozina rozdeleni z S, pre ktoré je znac¢ka vrchola v kladna, a
podmnozina rozdeleni z S, pre ktoré je znacka zaporna, si rovnakej mohutnosti a vklad do suc¢tu
> g (=1)% je rézny v znamienku a rovnaky ¢o do mohutnosti.

Z toho vyplyva, Ze graf G ni¢ neprinaSa do lavej Casti rovnosti (1.33). Takymto sposobom,
lava Cast vztahu (1.33) je rovna 2" vzata tolkokrat, kolko je parnych grafov v mnozine L.

Dalej sa sustredime na porovnanie pravej ¢asti rovnosti (1.33) a uvazujeme také rozdelenie
z mnoziny S, pre ktoré je k vrcholov kladnych a m = n — k zapornych. Existuje (Z) takychto
rozdeleni, a ak vyberieme [ hran, ktoré spajajua kladné vrcholy so zdpornymi, tak ho mozeme
uskutocnit (T’;k) roznymi sposobmi. Vynechanie ¢ — [ hran modZeme uskutocnit

k m
(2) + (2) 1.34
( q—1 ) (134
roznymi sposobmi. Ak séitame podla [ od 0 po ¢, dostavame vyraz
q k(k—1) m(m—1)
k k(k—1) | m(m-1)
3 (1)1( m) ( 7 T2 > (1.35)
— l q-—1

ktory sa pridava do pravej casti vztahu (1.33) s kazdym rozdelenim z mnoziny S s danymi k,m.
Tento vyraz predstavuje samotny koeficient pri ¢ v mnohoc¢lene

k(k—1) | m(m—1)
=t

(1—z)"(1+z) (1.36)

Preto prava ¢ast rovnosti (1.33) je koeficient pri 27 v sucte

n

> <Z>(1 — ) (L) (1.37)

k=0

a tento koeficient je rovny 2" vzaty tolkokrat, kol'ko je parnych grafov v L. Poznamenavame, Ze

(5+(0)-() s

A tak dostdvame konecény vysledok: hladany podet parnych grafov je rovny koeficientu pri x4
vo vyraze stojacemu v pravej ¢asti formuly (1.30). (]

Poznamenéavame, Ze celkovy pocet oznacenych parnych grafov je rovny &slu w,, (1), ktoré dosta-
vame, ak v (1.30) kladieme z = 1 a prijimame dohodu, Ze y° = 1 aj v pripade, ze y = 0:

wn(1) = 2("2") (1.39)

ktora je potvrden4 formulou (1.30).
MoéZeme pouzit formulu (1.30), aby sme ziskali mnohoclen

ws(z) = 14 102° + 152* + 122° + 152° + 1027 + 2*° (1.40)
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a 64 oznacenych parnych grafov, vyéislenych mnohoc¢lenom ws (), ktory mozeme zostrojit aj tak,
ze vyjdeme zo siedmych parnych oznacenych grafov radu 5, ktoré sme zobrazili na nasledujicom
obrazku

o o o ®
AN RN
o [ D) [ YR 3} [ J— 3% [ 13 L D)
o, o3 o, o3 o — o3 ®, — o3
120 12 8 10
L3 o o
/\ VANERYZ/AN
o5 [ D) o5 L) oy (D)
(7 o3 (7 o3 oy e3
8 12 120

Parne grafy piateho radu s po¢tami symetrii.

Exponencidlna generujica funkcia w(x,y), vycislujuca vietky oznafené parne grafy je urcena
vztahom -
wn (2)y"
w(z,y) = Z nT (1.41)
n=1

Aby sme dostali generujtcu funkciu u(x,y) pre oznacené eulerovské grafy, ktoré maju dany
pocet vrcholov a hran, treba prelogaritmovat rad 1+ w(z,y):

w(z,y) =1In(1+w(z,y)) (1.42)

Tato poznamka vyplyva z variantu lemy pre nésobenie exponencidlnych generujuich funkcii oz-
nacenych grafov pre pripad dvoch premennych.

1.5 Pocet k-zafarbiteInych grafov

Zafarbitelny graf sa sklada z grafu G' s mnozinou vrcholov V' a takého vztahu ekvivalencie na V,
7e Tubovolné dva susedné vrcholy nie st ekvivalentné. Triedy ekvivalencie uvaZzujeme ako rozne
farby a graf G sa nazyva k-zafarbitelnym podla poctu tried ekvivalencie. Dva k-zafarbitelné grafy
st izomorfné, ak existuje vzajomne jednozna¢né zobrazenie medzi ich mnozinami vrcholov, ktoré
zachovéiva susednosti aj farbu. Treba poznamenat, Ze farby nemusia byt dané vzdy pevne, ale
mozu byt vzajomne zamenitelné. Teda dany graf moze byt k-zafarbitelny mnohymi spdsobmi.
Napriklad, vSetky 3-zafarbenia niektorého oznaceného grafu G radu 6 si uvedené na obrazku 1.9,
kde pismena a, b, ¢ oznacuju farby a prirodzené ¢isla oznac¢uju znacky vrcholov. Poznamenavame,
7e na danom obrazku si farby dané pevne.

Nech nq,ns,...,n; su celé kladné ¢isla, ktoré tvoria usporiadant particiu éisla n, tak Zze ndm
plati:

k
Zni =n. (1.43)
i=1

Ak ozna¢ime {n} l'ubovolnu usporiadant particiu ¢isla n, potom mozeme sformulovat nasledujuce
tvrdenie:
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2 a c a ¢
6 4 a c a c a ¢ a c
Obrazok 1.9: Vietky 3-zafarbenia grafu.
Veta 1.5.1 Pocet C,, (k) k-zafarbitelnych oznacenych grafov radu n je rovny
Cp(k) = ;'{Zn; (nh ” mk)z(”z— nd)/2, (1.44)

Doékaz. Poznamenavame, Ze pocet k-zafarbiteInych oznacenych grafov radu n, u ktorych farby
nie su fixované, je rovny k!C,, (k). Preto uvazujme k fixovanych farieb. Kazdé rieSenie {n} urc¢uje
usporiadany rozklad &isla n na k Casti, a preto hladame pocet oznadenych grafov, u ktorych n;
vrcholov ma i-tu farbu. Podet spdsobov, ktorymi moézu byt vybrané farby pre vrcholy, je uréeny
polynomiélnym koeficientom
n
(nl,ng,. N ,’I’Lk>.

(Z) - z; (’;) (1.45)

dvojic vrcholov, ktoré maju rozne farby. Pretoze kazda taka dvojica moze byt bud susedné, alebo
nie susedné, potom ked umocnime 2 na vyraz (1.45) a pouzijeme rovnost (1.43), dostavame pre
celkovy pocet grafov s n; vrcholmi farby i préave ten vyraz, ktory sa nachadza pod znakom sucétu vo
formule (1.44). Ak spoc¢itame podla vetkych {n} dostavame suc¢in k!C,, (k). Tym je vSak formula
(1.44) dokazana. O

Je zrejmé, ze existuje

Poznamenavame, Ze koeficient pri ¢ v mnohoclene

1 n 2 k 2
- 1 (n"=32521m7)/2
k!;(nl,...,n;)( +2)

je rovny poc¢tu k-zafarbitelnych oznadenych (n, q)-grafov. Ak aplikujeme toto tvrdenie v pripade
n=4,q=>5,k =3, dostavame ¢islo 6, t.j. pocCet zafarbeni grafu znazorneného na obrazku.
Nie je tazké dostat pre C, (k) rekurzivnu formulu

Cp(k) = %nz_: <:f> or(n=)C, (k — 1), (1.46)

pri¢om preverenie formuly (1.46) moZno uskuto¢nit tak, Ze vyjadrime generujucu funkciu pre
C, (k) pomocou generujticej funkcie Cy, (k—1). Hodnoty stéinu k!C), (k) pre n < 7 modzeme zostavit
do tabulky pomocou znamych vysledkov.

Poznamenavame, ze formula vyjadrujiaca vztah medzi koeficientami exponencialnych generu-
jucich funkeii pre triedy grafov a prislusné triedy suvislych grafov sa v pripade k-zafarbitelnych a
stuvislych k-zafarbitelnych grafov pouZzit neda, problém sposobuje susednost.



1.6 Acyklické orientované grafy 17

1.6 Acyklické orientované grafy

Orientovany sled dlzky n v orientovanom grafe D sa definuje postupnostou vrcholov vy, vy, . . ., Up,
v ktorom vrchol v; je susedny s vrcholom wv;11 pre ¢ < n. V uzavretom orientovanom slede
pocdiatoény a koncovy vrchol st totozné. Uzavrety orientovany sled

'U17€1,U2,627 A 7’U’I’L717e’n717vn7en71}17

v ktorom vSetky vrcholy st navzajom rdzne a pre hrany ey, ..., e, plati, Zze e; = (v;,vi41),1 =
I,n—1ae, = (v, v1) nazyvame cyklus. Acyklicky orientovany graf nem4 orientovanych cyklov.
Vy¢islenie ozna¢nych acyklickych orientovanych grafov uskutocnime nasledujucim spésobom.

Orientovany graf E sa nazyva rozSirenim orientovaného grafu D, ak D je orientovanym pod-
grafom orientovaného grafu F indukovanym podmnozinou tych vrcholov orientovaného grafu E,
ktoré maju kladné vnitorné polostupne.

Obrazok 1.10: Rozsirenie acyklického orientovaného grafu.

Kazdy acyklicky orientovany graf musi obsahovat aspon jeden vrchol s nulovym vnatornym
polostupiiom. Mozno to dokazat indukciou vzhladom na podet vrcholov alebo pocet hran.

Z uvedeného vyplyva, ze kazdy acyklicky orientovany graf, ktory mé aspoii jednu orientovani
hranu, je rozsirenim jediného vlastného orientovaného podgrafu. Okrem toho, kazdy acyklicky
orientovany graf ma mnoho rozgireni, no vsetky musia byt acyklickymi orientovanymi grafmi.

Predpokladajme, ze D je acyklicky orientovany graf, ktory ma prave ¢ > 1 vrcholov u;, ktorych
vnatorny stupei je rovny nule a s ostatnych vrcholov v;. MdZeme zostrojit rozsirenie E oriento-
vaného grafu D obsahujtce rovno k vrcholov s nulovym vnutornym polostupfiom tak, Ze pridame k
novych vrcholov w; a nové orientované hrany také, ze kazdy z t vrcholov u; je susedny s niektorym
novym vrcholom w;.

Taktiez rovnako kazdy vrchol w; moZe byt susedny s Tubovolnym vrcholom v; orientovaného
grafu D. Na obrazku 1.10 st nové pridané vrcholy oznacené ako wi,ws a ws; kazdy stary vrchol
u1 a ug s nulovym vnitornym polostupnom je susedny s niektorym vrcholom w;.

Takymto spésobom vsetky acyklické orientované grafy radu n moéZeme dostat pomocou rozsire-
nia acyklickych orientovanych grafov rad ktorych je mensi ako n. PresnejSie, nech a, je pocet
oznacenych acyklickych orientovanych grafov radu n, dalej a, — poCet takych orientovanych
grafov, u ktorych rovno & vrcholov ma nulovy vnutorny polostupenn. Ak k = n, potom a, , = 1,
v tomto pripade vyhovuje len tplne nesuvisly orientovany graf. Zrejme, ze pre vSetky n

an = Zan’k' (1.47)
k=1

Teraz ukadZeme, ako moézu byt vyjadrené a, j pomocou a,_j, pre r > n — k. Najskoér dokadzeme,
Ze vietky mozné rozsirenia vietkych a,,_ , orientovanych grafov s n — k vrcholmi, z ktorych préve
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r vrcholov méa nulovy vnatorny polostupeni, dava do hodnoty a, ; vklad rovny

(2k — 1)rokn=—r—Fk) (Z) Gnbor (1.48)

HTadame pocet oznacenych rozsireni E vS8etkych a,_ , oznacenych acyklickych orientovanych
grafov D. Pre kazdy z (Z) sposobov ako rozostavit znacky u k£ novych vrcholov w; v rozsireni
E existuje an—p, rozdeleni znaciek v orientovanych grafoch D, ktoré mozu byt rozsirené. To
objashuje ¢initel (Z) Gn—k,r vo vyraze 1.48. Kazdy z r vrcholov s nulovym vnutornym polostupiiom
v orientovanom grafe D musi byt susedny s aspon jednym novym vrcholom w; (1 < i < k). Z
toho vyplyva, Ze existuje 2¥ — 1 moznosti orientovat hrany do kazdého z tychto r vrcholov, &o
dava (2% — 1)" pre vietky vrcholy. Kazdy novy vrchol moze byt alebo nebyt susedny s kazdym s
n —k —r vrcholov, ktoré maju v orientovanom grafe D kladny vnutorny polostupeii. To znamena,
7e existuje 2" ~*~" moznych kombinacii pre kazdy z novych vrcholov a teda (2"~ "~*)* kombin4cii
pre vietky také vrcholy. Ak vynasobime vsetky tieto vyrazy, dostavame (1.48). Ak spoditame
(1.48) podla r, dostavame vztah pre ay k.

Veta 1.6.1 Pocet a,, ; oznacenych orientovanych acyklickych grafov radu n, ktoré maja rovno k
vrcholov s nulovym vnutornym polostupiiom, vyhovuje vztahu

n—=k
Un,k = Z(Qk - 1)r2k(n7r7k) (Z) An—k,r (149)

r=1

Takymto sposobom pre najdenie a, moézeme pouzit formuly (1.47) a (1.49). Tieto vyrazy
mozeme taktieZ vyjadrit generujucimi funkciami. Nech v rade a(z,y) koeficient pri x%y"~% je
rovny po¢tu oznacenych orientovanych acyklickych grafov s n vrcholmi, z ktorych préave k vrcholov

mé nulovy vnutorny polostupen.

Dy Dy

Obrazok 1.11: Dva acyklické orientované grafy tretieho radu, ktoré maja po dva vrcholy s nulovym
vnitornym polostupiiom.

Potom niekolko prvych ¢lenov radu a(z,y) je uréenych vyrazom

a(w,y) =z + 2 + 2zy +2° + 9%y + 150y” + a* + 2827y + 19827y +

+ 316zy> + 2° 4+ 75ty + 161023y% + 107102%y> + 168852y* + ...

Napriklad existuje Sest sposobov rozostavenia znaciek v acyklickom orientovanom grafe D; a
tri spoésoby ako rozostavit znacky v acyklickom orientovanom grafe Do, ktoré st zobrazené na obr.
1.11. Spolu teda devit sposobov, ¢o zodpoveda ¢lenu 922y v rade a(x,y).

1.7 Stromy

Stromom sa nazyva suvisly graf, ktory neméa kruznicu. Je dobre zname, Ze kazdy netriviadlny strom
ma aspon dva vrcholy, ktoré maju stupeni jedna. To vyplyva z toho, ze ak T' je strom s n vrcholmi
a ¢ hranami, potom

g=n—1 (1.50)
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Vgetky stromy s nie viacej ako piatimi vrcholmi st zobrazené na obr. 1.12 spolu s po¢tami
sposobov, ktorymi moézu byt oznacené.

o—o——o0
O\
o—o0o—0

1 1 3 12 4 60 60 5

Obrazok 1.12: Stromy, rady ktorych nie sii vyssie ako 5, a pocet sposobov rozdelenia znaciek u kazdého
z tychto stromov.

Odtial vyplyva, Ze poCet t,, oznacenych stromov s n vrcholmi mé nasledujtce najmensie hod-
noty: 1, 1, 3, 16, 125. Mmnohi autori spravne predpokladali, vychadzajic z tejto postupnosti
hodnot, Ze formula na spocéitavanie oznacenych stromov je dana nasledujicou vetou.

Veta 1.7.1 (Cayley) Pocet ¢, oznacenych stromov radu n je rovny
tp =n""2 (1.51)

Toto tvrdenie dokdZeme niekol’kymi spdsobmi, no zaroveii poznamenavame, Ze existuje eSte cely
rad d'al'sich dokazov, ktoré su zaujimavé a mozno ich najst asopiseckej a monografickej literature.

Cayley vyslovil predpoklad, Ze existuje vztah medzi oznafenymi stromami a funkciami zo-
brazujicimi mnozinu s n — 2 objektami do mnoziny s n objektami. Napriklad, ak n = 5, potom
existuje 5° funkcii z {a, b, c} do {v1,vs,vs,v4,v5}. Tieto funkcie vy&islujeme mnohoclenom

(1)1 + v +U3+1}4+U5)3. (152)

Séitance tohto mnoho¢lena priradujeme funkcidm prirodzenym sposobom. Napriklad v zod-
poveda konstantnej funkcii f(x) = vy, s¢itanec 3v1v3 zodpoveda trom funkciam, ktoré zobrazujt
len jeden prvok na v; a ostatné dva na vz a 6vgvzvs dava Sest funkcii zobrazujucich po jednom
prvku do v, v3 a vs.

Teraz vynasobime mnohoclen (1.52) s v1vavsv4vs a dostavame

(’Ul “+ vo + v3 + vq4 + ’05)3’01112’031}4115. (153)

Ustanovujeme tym rovnym vztah medzi séitancami z tohoto siéinu a oznac¢enymi stromami radu
5. Tento vztah s pouzitim s¢itanca 31}%1}21}%1}41}5 = 311111%(111112@31)4115) demonstrujeme na obrazku
1.13. Poznamenévame, Ze v stromoch zodpovedajticich séitancovi v¥vav3vavs, stupeii vrchola
oznaceného ¢islom k je rovny exponentu mocniny u vg.

Platnost tohto vyroku moéze byt dokadzana aj vo vieobecnom pripade. Pocet oznacenych stro-
mov, u ktorych vrcholy oznacené ¢islom k maju stupen dy, je rovny polynomickému koeficientu

n—2
1.54
<d1 1,d21,...,dn1> ( )
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Obrazok 1.13: Oznadené stromy vy&islené vyrazom vZvav3v4vs.

Najprv uvedieme kombinatoricky vyznam polynomickych koeficientov.

( " ) (L2} > {12k} £ 1= ()] = 0}
Nyy...,Ng

kde ni,....,nx € NT a ny + ... + nx = n, teda polynomicky koeficient ndm poéita podet tzv.
predpisanych surjekcii z mnoZiny {1,2,...,n} na mnozinu {1,2, ..., k}.

Nech d; < ds < ... < d,, st kladné celé ¢isla. Oznacme t(n;dy, ..., d,) pocet rdoznych stromov
G na danej mnozine V = {v1, ..., v, }, ktoré spliajua podmienku dg(v;) = d;. Potom

n—2
t(n,dl, ,dn) - <d1 _ 1,d2 -1, 7dn — 1>

n—2 —0
di—1,dy—1,....d, —1)

> da(vi) #2.
i=1

Podl'a definicie

ak

To je v8ak v poriadku, lebo ak je G strom, potom Z?:l dg(vi) = 2n—2. Pretoze d; < ds < ... < d,
su kladné celé ¢isla, je nutné aby d; = 1.
Zakladom dokazu je nasledujiica rekurencia:

t(nidy, . dy) = Y tn—Lidy,.odi — 1, dy)  di > 2 (1.55)
d;i>2

Na pravej strane vzorca spocitavame cez vietky 4, pre ktoré plati d; > 2. Platnost vztahu ukaZeme
nasledovne: nech G; je mnozina vsetkych stromov G = (V, E), pre ktoré¢ dg(v;) = d; pre j =
1,2,...,n a naviac {vy,v;} € E. G; st disjunktné mnoziny a naviac G; = (), ak d; = 1. Zrejme
U G; je mnoZina vSetkych stromov na mnozine V' a kone¢ne plati

|G1| = t(n - ].,dz, ,dz — ].7 7dn)

v pripade, Ze d; > 2. Odtial vyplyva vysledok (1.55).
Tvrdenie vety teraz dokdZeme indukciou vzhladom na n. Pre n = 2 tvrdenie plati, lebo

(00) =1

Pouzitim vztahu (1.55) na zaklade indukéného predpokladu pre n > 2 dostéavame, Ze

n—3
Hnid, e dn) = 3 <d1 yedy — 2,y — 1)
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kde spocitavame cez v8etky ¢ pre ktoré d; > 2. Plati v8ak vztah:

Z n—3 _ n—2
di—1,...,d;—2,...d,—1) \di—1,...,d, — 1

ktory ihned vyplyva napriklad z kombinatorického vyznamu polynomického koeficientu. To dokazuje
nasu vetu.

Désledok 1.7.1 Poéet stromov na danej n-vrcholovej mnozine je n™ 2.

Dokaz. Stadi nam vediet, Ze plati:

n—2 _ ) n—2
Z (d1 iy 1...d, _1> = (1+ .n krat.. + 1)

kde spocitavame cez vSetky usporiadané n-tice kladnych prirodzenych ¢&isel, pre ktoré plati dy +
ds + ... + d, = 2n — 2. To vSak vyplyva priamo po dosadeni do polynomického vzorca. O

Oznacme t, (k) pocet oznaenych stromov s n-vrcholmi, v ktorych vybrany vrchol, povedzme
v, ma stupen k. Budeme hladat vyraz pre t,(k) a potom potrebny vysledok pre celkovy pocet
stromov na n vrcholoch dostaneme spocitanim podla k od 1 do n — 1.

Nech A je Tubovolny oznaéeny strom radu n, v ktorom deg(v) = k — 1. Vynechanie lubovolnej
hrany {w, z} z A neincidentnej s v ndm dava dva podstromy, z ktorych jeden obsahuje v a jeden
z vrcholov w alebo z (pripustme, Ze w) a druhy obsahuje z. Ak spojime vrchol v a z, potom
dostaneme strom B, v ktorom deg(v) = k. Dvojicu (A, B) ozna¢enych stromov nazveme spojenim,
ak B mozeme dostat z A sposobom opisanym vysSie. NaSa tloha je spocitat pocet vSetkych
moznych spojeni (4, B).

A B

N N

v w o

TN TN

[¢]

o

Pretoze A mozeme vyrobit lubovolnym z t,,(k—1) sposobov a B st jednozna¢ne uréené hranou
{w, z}, ktora modZeme vybrat (n — 1) — (k — 1) spodsobmi, potom podet vSetkych spojeni (A, B)
je rovny (n — k)t,(k — 1). Z druhej strany, nech B je oznaleny strom, v ktorom deg(v) = k
a nech t',t2,...,t* si podstromy, ktoré dostaneme z B vynechanim vrchola v s kazdou hranou
s nim incidentnou. Potom oznafeny strom A, u ktorého je deg(v) = k — 1, mozeme dostat z B
vynechanim jednej z tychto hran (povedzme {v,w;}, kde w; lezi v t*), a spojenim w; s l'ubovolnym
vrcholom u patriacim Tubovolnému podstromu #/. Je zrejmé, e zodpovedajtca dvojica (A, B)
oznadenych stromov tvori spojenie, a Ze vSetky vSetky spojenia moZeme dostat takymto sposobom.
Pretoze B mozeme vybrat t,(k) spdsobmi a pocet hran spajajucich w; s vrcholmi l'ubovolného
iného podstromu #/ je rovny (n—1)—n; (kde n; oznacuje pocet vrcholov t*). Potom pocet vetkych
spojeni (A, B) je rovny

ta(k)[(n—1—n1)+ ..+ (n— 1 —np)] = (n— 1)(k — Dt (k)

pretoze n; + ... +np =n — 1.
Takymto sposobom sme ukazali, ze

(n— k)tn(k —1) = (n — 1)(k — Dtn(k)

Pomocou iteracii, ak berieme do uvahy zrejmia rovnost t,(n — 1) = 1, dostavame, ze t,(k) =

(Zj) (n — 1)"~k=1 Ak spoéitame podla vietkych moznych hodnét k, dostavame, Ze pocet t,, -
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oznacenych stromov s n vrcholmi - je rovny

= = n—2 n—k—1 n—2 n—2
tn:Ztn(k):Z(k_1>(n—l) =((n-1)+1)""=n

Désledok 1.7.2 Pocet kostier K, je rovny n" 2.

1.7.1 Polyova metéda

Dalej rozoberieme Polyovu metdédu pre najdenie poctu oznacenych stromov. Pretoze pocet zako-
renenych oznacenych stromov radu n je rovny nt,, potom exponencialna generujica funkcia pre
tieto stromy je urcena vyrazom:

oo :En
y = Znt"ﬁ (1.56)
n=1

Polya nasiel funkcionalnu rovnicu pre y a potom pre najdenie ¢, aplikoval Lagrangeovu inverzni
formulu. Tuto funkcionalnu rovnicu pre y teraz odvodlme Z lemy pre nasobenie exponencialnych
generujicich funkeif pre oznacné grafy vyplyva, ze L je exponencidlna generujica funkcia pre
n-mnoziny zakorenenych oznacenych stromov. Tieto n-mnoziny zodpovedaju prave tym zakore-
nenym oznacenym stromom, u ktorych ma koreni stupen n a nie je oznaceny. Presnejsie povedané,
tento vztah dostavame tak, Ze spociatku pridame ku kazdej n mnoZine novy vrchol, no neozna¢ime
ho, potom spojime tento novy vrchol s kazdym zo starych korefiov (pozri obr. 1.14)

.7\°3/.9 :z oy o5 .7\°3/.9 ::
NV N

Obrazok 1.14: 3-mnozina zakorenenych stromov zodp. strom, ktorého koreii mé stupen 3.

Vynasobenie vyrazu %3 vyrazom z zodpoveda pripisanie znaéky novému korenu a zaclenenim

ho do poctu spocitavanych vrcholov. Takymto sposobom xy spocitava zakorenené oznacené
stromy, u ktorych korenn ma stupeii n. Ak spocitame podla n dostaneme

oo yn
= Z_ 1.57
y ;::0 v (1.57)
a teda dostavame funkcionalnu rovnicu
y = xe’. (1.58)

Aby sme dostali rieSenie rovnice (1.58) vyjadrime y ako funkciu premennej = a budeme aplikovat
$pecidlny pripad Lagrangeovej formuly.
Inverzna Lagrangeova formula

Definicia 1.7.1 Hovorime, Ze funkcia f je analytickd v bode a, ak existuje také okolie bodu a, Ze
v kazdom jeho bode ma f spojita derivaciu (spojita sa da vynechat).
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Nech funkcia ¢(y) je analyticka v niektorom okoli bodu y = 0 (t.j. analytickd v kazdom bode

okolia), potom rovnica

r=_9 (1.59)

(y)

maé jediné rieSenie uréené generujicou funkciou
o0
y=> ca” (1.60)
k=1

koeficienty ktorej st urcené formulou

k—1
_,j,((;;) <¢<y>>’f> . (161

y=0
Ak aplikujeme inverzna formulu k rovnici (1.58), kde ¢(y) = e¥, dostavame

o0

L
y=>_k R (1.62)
k=1

Porovnanim tohto vyrazom z (1.56) opit dostdvame formulu n"~2 pre t,.

Zovseobecnena Lagrangeova metoda

Pri rieSeni niektorych enumeraénych tloh pre ozna¢nené objekty je vhodné pouzit zovseobecnentu
formulu (1.61). K podmienkam, kladenym na funkciu ¢, predpokladame, Ze je dana este jedna
funkcia f(y) analyticka v niektorom okoli bodu y = 0. ZovSeobecnena Lagrangeova metoda tvrdi,
7e funkcia f(y) moze byt vyjadrend mocninovym radom premennej x nasledujicim spésobom:

o] l'k k—1
=0+ 5 ((jy) (f’(y)ask(y))) (163)
k=1

y=0

Pri f(y) = y z tejto formuly dostavame (1.60) a (1.61).

1.7.2 Dokaz so stavovcami

Definujeme, ¢o je to stavovec na mnozine vrcholov V uvaZzovaného tplného grafu K,, (pozri nasle-
dujuci obr. (a)): je to kostra, u ktorej je jeden vrchol oznaceny Stvoréekom a jeden vrchol kriazkom
(vylucujeme, Ze jeden a ten isty vrchol je oznaceny Stvoréekom a krtzkom). Oznadme mnoZinu
vSetkych stavovcov pismenom O.

Z kazdej kostry mozeme vytvorit prave n? roéznych stavovcov, preto poéet vietkych kostier je
rovny ‘%. Uk4zeme teraz:

Lema 1.7.1 Existuje bijekcia f medzi mnozinou O vSetkych stavovcou a mmnozinou vsetkych
zobrazeni mnoziny V' do seba, do mnoziny V.

Pocet zobrazeni n prvkovej mnoZiny do seba je n", stavovcov je podla lemy rovnako, a teda
kostier je n™2.

Dokaz. Konstrukciu bijekcie f ukdzeme na priklade. Vyjdeme zo stavovca O nakresleného
na obrazku (a). Oznacené vrcholy (O a O st spojené jedinou cestou, ktord nazveme chrbtica.

VypiSeme si &isla vrcholov chrbtice do riadku v poradi podla velkosti, a potom do dalgieho
riadku znova v poradi, ako ida od () k [

4
4
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Obrazok 1.15: (a) Stavovec o 19 vrcholoch, (b) jemu zodpovedajuci graf zobrazeni.

Definujeme teraz na vrcholoch chrbtice pomocny orientovany graf P: urobime Sipku z kazdého
vrcholu z horného riadku do vrcholu napisaného pod nim v dolnom riadku. Pretoze z kazdého
vrcholu vychadza prave jedna sipka a taktiez do kazdého vrcholu jedna $ipka vchadza, je graf P dis-
junktnym zjednotenim orientovanych cyklov (pripadne samotnych vrcholov so sluckou). MoZzeme
taktieZ povedat, Ze chrbtica definuje permutaciu svojich vrcholov a P pozostava prave z cyklov
tejto permutacie. V naSom priklade st postupnosti vrcholov tychto cyklov, porovnané v poradi
podla sipiek, (3,8,9), (4), (7,14) a (15).

Pozrime sa teraz naspit na stavovec O. Odoberieme z neho na chvilu vSetky hrany chrbtice,
rozpadne sa na jednotlivé komponenty (opédt stromy). Orientujme hrany kazdého komponentu
tak, Ze smerujt k (jedinému) vrcholu chrbtice v tomto komponente. Tym vznikne d'alsia mnozina
orientovanych hran na mnozine V.

Definujme teraz orientovany graf G na mnozine V, ktorého hranami buda jednak préave defi-
nované orientované hrany komponent, jednak v8etky hrany pomocného grafu P. Na obrazku je
to velmi nazorné: nakreslime cykly grafu P, a potom ku kaZdému vrcholu (p6vodne chrbtice)
prikreslime strom, ktory cez neho bol zaveseny na chrbticu stavovca, vid. obr. (b).

Tvrdime teraz, Ze vysledny orientovany graf G je grafom zobrazenia, to znamena, zZe z kazdého
vrchola vychédza préave jedna hrana. Pre vrcholy chrbtice sme ho uZ skonstruovali. Pre ostatné
vrcholy je to preto, ze v stavovci O z nich vedie jedina cesta do chrbtice.

Definujeme teda kone¢né zobrazenie f = F(O) : {1,2,...n} — {1,2,...,n} prislachajtce
stavovcu O. Pre kazdé i, ¢o je vrchol grafu G, polozime f(i) = j, kde j je ten vrchol G, do
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ktorého ide Sipka z i. V nasom konkrétnom pripade dostavame zobrazenie

1—-7
2 —15
3—38
4—4
55— 2
6 —5
7T— 14
8§—9
9—3
10 — 4
11 — 10
12 -4
13 — 12
14 -7
15— 15
16 -7
17 — 16
18 —1
19 — 8

Takto kazdy stavovec urc¢uje zobrazenie.
Zostava nam eSte ukazat, ze z takto zostrojeného zobrazenia mozeme zpétne pévodného stavovca
zrekonStruovat, a Ze kazdé zobrazenie sa dostane z nejakého stavovca.
O

1.7.3 Dokaz zatial' asi najjednoduchsi

Aj v dobre preskimanych oblastiach matematiky je ¢o objavovat. Tak napriklad celkom nedévno
nagiel matematik — Statistik Jim Pitman z Kalifornskej univerzity v Berkeley novy, velmi jednoduchy
dokaz Cayleyho formuly. Zaziari v fiom poé&itanie dvoma spdsobmi, zdanlivo velmi jednoduchy
trik, o jeho uZito¢nosti sme sa uz presved¢ili napriklad pri poéitani eulerovskych grafov. NepouZije
sa priamo, ale na vhodné zjemnenie pévodnej tlohy.

V tomto dokaze Cayleyho formuly budeme poéitat dvoma sposobmi povykosy. Co je to
povykos? Skrateny nazov pre postup vyroby korefiového stromu. Formaélne je povykos defino-
vany ako usporiadana trojica (7T',r,¢), kde T je strom na mnoZzine vrcholov V' = {1,2,... n},
r € V je jeho koren a ¢ je o€islovanie hran, alebo bijekcia ¢ : E(T) — {1,2,...,n—1}. Na obrazku
je priklad povykosu.

MoZeme si predstavovat, Ze zatneme s prazdnym grafom na mnozine vrcholov V' a vyrabame
korenovy strom postupnym pridavanim hran; ocislovanie ¢ kéduje poradie pridavania hréan. Pre
kazdy strom T moZeme koreli r volit n spésobmi a pre o€islovanie hran ¢ je (n — 1)! moZnosti,
takze pocet povykosov je n(n — 1)lt,.

Pre druhy sposob poéitania povykosov budeme korefiovy strom uvazovat ako orientovany
strom, kde vSetky Sipky smeruji ku korenu.

Naopak, kazda orientacia stromu, pre ktort existuje prave jeden vrchol, ktory nie je poc¢iatkom
Ziadnej 8ipky odpoveda jednozna¢ne korehiovému stromu (zmieneny jediny vrchol je korenl). Aj
povykos teraz budeme interpretovat v tejto orientovanej podobe a budeme poéitat, kol'ko povykov
mozeme dostat, ak zaéneme z prazdneho orientovaného grafu a budeme postupne pridavat sipky
v n — 1 krokoch.
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KOREN °

Obrazok 1.16: Priklad povykosu.

KOREN

Obrazok 1.17: Orientovany strom, kde vSetky Sipky smeruju ku korenu.

Prva sipka musi spojovat dva rozne vrcholy, a teda moZeme ju pridat n(n — 1) spésobmi. Pre
druht sipku v poradi mame este dalsie obmedzenie (obmedzujticu podmienku): nesmie vychadzat
z toho istého vrchola ako Sipka prva. Aké si v8eobecné obmedzenia na pridanie dalsej Sipky?

(A) Nesmieme vytvorit kruznicu (v neorientovanom zmysle), teda nova Sipka musi spojovat dva
rozne komponenty vytvoreného grafu (komponenty sa opat myslia bez ohl'adu na orientéciu).

(B) Na konci musi z kazdého vrcholu aZ na jediny vychadzat nejaka Sipka, pricom mame k dis-
pozicii n—1 §ipiek. Nesmieme teda preméarnit ani jedind, a kazdéa nova Sipka musi vychadzat
z vrchola, z ktorého dosposial Ziadna Sipka nevychadzala.

Klucdové pozorovanie je, ze v kazdom komponente uz vytvoreného grafu je prave jeden vrchol,
z ktorého nevychadza ziadna $ipka. To je preto, zZe komponent mé nejakych m vrcholov a m — 1
hran, a z kazdého vrchola vychédza nanajvys jedna Sipka, lebo sme aj v predchadzajticom postupe
dodrziavali podmienku (B).

Po pridani k 8ipiek s dodrziavanim (A) a (B) ma graf n — k komponent (overte). Obrazok
ukazuje situaciu po pridani Styroch sipok podla povykosu na prvom obrazku:

Dalsia sipka, ¢islo k+ 1, moZe teraz viest do Tubovolného vrcholu v nejakom z komponentov, a
vychéadzat musi z korefia niektorého iného komponentu, a pre jej pridanie mame preto n(n—k—1)
moznosti.

Kazdy taky postup dava po n — 1 krokoch prave jeden povykos. Preto povykosov je

n—2

H n(n—k—1) =nln""2

k=0

Porovnanim obidvoch vyrazov pre pocet povykosov dostavame t, = n" 2.
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Obrazok 1.18: Situécia po pridani Styroch $ipok podla povykosu na prvom obrazku.

1.7.4 Dokaz pomocou Priiferovho kédu

Ukazeme, ako kazdu kostru grafu K,, zakodujeme (n — 2)-¢lennou postupnostou, ktorej kazdy ¢len
je niektoré z ¢isel 1,2,...,n. Toto kodovanie bude definovat bijekciu medzi vSetkymi kostrami a
vietkymi postupnostami uvedeného typu. Pretoze takych postupnosti je zrejme n™ 2, bude tym
Cayleyho formula dokézana.

Majme kostru T'; priklad pozri nasledujici obrazok (a).

3 2
krok 2 krok 1
1
. krok 3 krok 5 4 Kok 4.7
(a) Kostra s kodom (5,1,1,4,5,1). (b) Postup jej rekonstrukcie z kodu.

Obrazok 1.19: Kostra s kédom (5,1,1,4,5,1) a postup jej rekunstrukcie z kodu.

PopiSeme, ako zostrojime postupnost P = P(T) = (p1,...,Pn—2), tzv. Priiferov kod kostry
T. Zakladna myslienka (trochu vandalska) je, Ze zo stromu T budeme postupne odtrhavat listy,
pokym z neho neostane len jeding hrana. Budeme teda konstruovat pomocnt postupnost stromov
Ty = T,11,Ts,...,T,_o = Ky a pritom vyrabat postupnost P. Predpokladajme, Ze uZ sme
skonstruovali T;_1 (na zaciatku mame Ty = T'). Ako vieme, ma aspoii jeden list (vrchol stupia
jedna). Vezmeme najmensi z listov T;_; (pripomefime, Ze vrcholy T st ¢isla 1,2, ..., n), a utvorime
T; odstranenim tohoto listu z T;_1, spolu s prislusnou hranou. Pritom definujeme i-ty ¢len, p;,
konstruovanej postupnosti ako suseda prave odtrhnutého listu (teda nie ako list sam, to je hlavny
trik!). Urobime toto pre i =1,2,...,n — 2, definovali sme postupnost P = P(T).

Predpokladajme teraz, Ze dana postupnost P vznikla vysSie uvedenou konstrukciou z nejakej
(nam doposial neznamej) kostry 7. Odvodime, ako spétne vytvorit T. Pytajme sa, ako z pos-
tupnosti P poznat, ktory vrchol kostry T bol odtrhnuty ako prvy; oznacme ho l; (musel to byt
list). Zrejme l; sa nesmie vyskytovat nikde v postupnosti P (pretoZe do P sa zapisuju len vrcholy
doposial pritomné v otrhanom strome). Dalej kazdy vrchol, ktory nie je obsiahnuty v mnozine
{p1,p2,--,Pn—2}, musi byt listom stromu T (inak by sme od neho v niektorej faze odtrhli list
a tym by sa ocitol v postupnosti P). Podla pravidla odtrhavania listov je teda /; minimum z
mnoziny {1,2,...,n}\ {p1,p2,...,Pn—2}. Tato mnozina je vzdy neprazdna, a preto je minimum
dobre definované. MoZeme teraz [; nakreslit ako prvy vrchol kostry, a pripojit k nemu hranou
vrchol p; ako na obrazku 1.19 (b).
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Balej postupujeme podobne; ak pozname uz listy li,ls,...,l;—1 odtrhnuté v krokoch 1 az
i — 1, budeme urcovat list I;. Nemoze to byt ziaden z vrcholov p;, pit+1,...,Pn—2, & OvSem ani z
li,...,l;—1 — bude to teda minimum mnoziny {1,2,...,n} \ {pi, Pi+1, - -, Pn—2,01,l2,...,li—1} (t&
je zasa neprazdna). Takto urceny list {; pripojime hranou k vrcholu p;. Ak nie je [; doposial
nakresleny, nakreslime ho ovSem taktiez, podobne pre p;. Prvych 5 krokov tejto konstrukcie je
znéazorenenych na obrazku 1.19 (b), v 6. kroku by sme dokreslili hranu {1, 5}.

Po n — 2 krokoch sme nakreslili n — 2 hran kostry 7', menovite vSetky, ktoré boli pri odtrhavani
odstranené, zostava urcit, ktora bola posledna zostavajica hrana. Jeden jej koniec musi byt p,,_o,
teda sused posledného odtrhnutého listu, a druhy koniec jeden vrchol, ktory sa nevyskytuje medzi

vSetkymi odtrhnutymi listami l4,...,l,_2 a je rozny od p,_o. Na obrazku 1.19 to bude hrana
{1,8}. Tym je metoda rekonstrukcie popisané. Este ju kvoli prehladnosti zhrnieme.
Pouzijeme dvojriadkového zapisu. Do prvého riadku zapiSeme ¢&isla p1, p2, ..., Pn—3, Pn—2, Pn—2

(teda n — 1 &isel, priom p,_o na konci sa opakuje, tymto opakovanim sa elegantne zahrnie
posledny, vynimoény krok do vSeobecného pravidla). Do druhého riadku postupne vyplitujeme
¢isla Iy,1s,...,l,_1. Ak boli uz vyplnené é&isla I aZ [;_1, potom ¢islo [; je najmenSie také, Ze sa
nevyskytuje medzi predchadzajicimi ¢islami v dolnom riadku ani medzi ¢islami v hornom riadku
od i-tej pozicie (vratane) vpravo:

b1 D2 Di—1 bi Pi+1 --- Pn-3 Pn-2 Pn-2
61‘ 62‘ €i—1
l1 Iy li_1 ]

Obrazok 1.20: Dvojriadkovy zapis.
Na silne oramovanti poziciu prijde najmensie ¢islo, ktoré nie je medzi ¢islami

llwuvliflvpivpi—i_ 17"'7pn72~

Hrany eq, es, . . . rekonstruovanej kostry spajaju vzdy vrchol z horného riadku s vrcholom napisanym
pod nim.

Pre l'ubovoIna (n — 2)-¢lennt postupnost P vytvori prave uvedeny algoritmus nejaky graf G
na mnozine vrcholov {1,2,...,n} s n — 1 hranami. TieZ vieme, Ze ak postupnost P pochadzala
z nejakej kostry T, plati G = T. Nasa uloha sa tymto nekon¢i: musime sa presved¢it, Ze graf
G, ktory vznikne je vzdy strom, a Ze jeho spatnym prekédovanim do postupnosti dostaneme ti
postupnost, z ktorej sme vysli.

Oznatme G; = ({1,2,...,n},{ei, €i11,...,en—1}). Z algoritmu vypliiovania dolného riadku je
vidiet, ze do vrchola I; zasahuje hrana e; a Ziadna z hran e; 1, ..., e,_1 uZ do l; zasahovat nemdze,
takze I; ma v G; stupenn 1. Teda G; vznikne z G;y; pridanim listu, a z tvrdenia o postupnej
vystavbe stromu (vid poznamka na konci dokazu) vidime, Ze G je strom. Vo vSeobecnosti G; je
strom plus ¢ — 1 izolovanych vrcholov.

Zostéava nam overit, ze [; je najmensi z listov grafu G;. Podl'a definicie I; by mensi list mohol
byt jedine medzi ly,ls,...,l;_1 alebo medzi p;,...,p,_2. Prva skupina neprichddza do tvahy
(pretoze Iy, ...,l;—1 maju v G; stupne 0). UvaZzme vrchol p, i < k < n — 2. V grafe Gy je to
sused listu I, a pretoze Gy, zostava z izolovanych vrcholov a jedného d'alsieho komponentu, ktory
mé aspon 2 hrany, ma py v grafe G, stupeit minimélne 2. TakZe ani v G; nie je py listom.

Teda I; je najmensi list v G; a G441 naozaj vznikne z G; podl'a procediry Priiferovho kodovania
kostry. Tym je dokaz tvrdenia ukonceny.

Na koniec uvadzame kvoli iplnosti nasledujtce trividlne tvrdenie:

Poznamka 1.7.1 Postupna vystavba stromu. Pre dany graf G a jeho visiaci vrchol v st nasle-
dujice tvrdenia ekvivalentné:

a) G je strom.

b) G — v je strom.



1.7 Stromy 29

1.7.5 Doékaz pomocou linearnej algebry

Nech G je oznaceny graf radu n s mnoZinou vrcholov V = {1,2,...,n}. Definujme maticu typu
n X n. Nech B = B(G), v ktorej kladieme

-1 ak vrcholy ¢ a j st susedné,
Bijj=< 0 ak i # j a vrcholy 7 a j nie st susedné,
degi aki=yj.

Maticu B(G) nazyvame Kirchhoffovou maticou grafu G. Sucet prvkov v kazdom riadku a v kazdom
stlpci tejto matici je rovny nule.

Lema 1.7.2 Nech B je T'ubovolna ¢&iselnd n X n-matica také, Zze v kazdom riadku a v kazdom
stlpci je sucet elementov rovny nule.

n n
Y Bjj=0i=Ln, Y Bj=0j=TLn
j=1 i=1

Potom algebraické doplnky vSetkych prvkov matice B st navzajom rovné. (Speciélne tuto vlast-
nost méa aj Kirchhoffova matica T'ubovolného grafu).

Dokaz. Je zrejmé, Ze hodnost matice B je mensia ako n. Lebo vektory, ktoré tvoria maticu
B st linearne zavislé. Ak je hodnost matice B menSia ako n — 1, potom algebraické doplnky
vSetkych prvkov tejto matice st rovné 0. Nech hodnost matice B je rovna n — 1 a C je priradena
matica pre maticu B, t.j. prvok Cj; je rovny algebraickému doplnku Aj; prvku Bj; v matici B,
i=1,n,7 = 1,n. Z linearnej algebry je zname, ze BC = (det B) - F, v nafom pripade det B = 0,
pricom F je jednotkova matica a B - C' = 0. Z toho vyplyva, Ze pre stipce matice C s &islom j,
7 = 1,n platia rovnosti

Bi1C1j + BioCoi + ...+ B;p,Cj =0,i=1,n

£].
BijAji + BisAjs + ...+ BinAj, = 0,i=1,n.

Tieto rovnosti moéZeme povazovat ako systém linearnych homogénnych rovnic s maticou B vzhladom

na nezname Ajh Ajg, ey Ajn-
PretoZe hodnost matice B je rovna n — 1, potom vSetky rieSenia uvazovaného systému su
nasobkami vektora (1,...,1), ktory vyhovuje systému, preto

AjliA]Q:...:Ajn,j:Ln,

ak berieme do uvahy, ze C'B = 0, analogicky dostavame

Ali:AQi:---:Aniai:17n7

z toho vyplyva, ze

AZ] = Akl7i7k7j7l = 17”‘
Il

Nakoniec definujme maticu incidencie grafu. Nech G je (n,m)-graf. V = {1,2,...,n} a
E ={ey,ea,...,en}. Definujme bindrnu n x m-maticu I = I(G) podmienkami:

j- 1 ak vrchol k£ a hrana e, inciduji,
17 0 v opacnom pripade.

Matica I sa nazyva maticou incidencie grafu G. V kazdom jej stipci st prave dve jednotky. Vztah
G — I(G) je bijekcia mnoziny oznacenych (n,m)-grafov s odislovanymi hranami na mnoZzinu
n X m-matic vyhovujucich opisanym podmienkam.



1.7 Stromy 30

Pre orientované grafy definovanie matice incidencie ma nasledujici tvar

1 ak vrchol k je zaciatkom orientovanej hrany ay,
Iy, = —1 ak vrchol k je koncom orientovanej hrany a;,
0 ak vrchol k a hrana a; neinciduje.

Rovnako v pripade matic incidencie a susednosti pre izomorfné grafy resp. orientované grafy
plati nasledujtce tvrdenie.

Lema 1.7.3 Grafy (orientované grafy) st izomorfné préave vtedy, ked vieme matice incidencie
(susednosti) dostat jednu z druhej vhodnym prestavenim riadkov a stlpcov. T.j. vhodnym pre-
menovanim objektov.

Poznamka 1.7.2 Stvorcovi maticu P = (tij)ﬁjzl nazveme permutacna, ak jej prvky su 0 alebo
1 a v kazdom riadku a v kazdom stlpci matice P je prave jeden nenulovy prvok. Ekvivalentne P
je permuta¢na matica prave vtedy, ked existuje permutacia 7 na mnozine {1,2,...,n} taka, ze
a;; =1, ak j = (i), a a;; = 0 v opacnom pripade.

Potom G = (V,E) a G' = (V',E') st izomorfné prave vtedy, ked Ag = PAL,, pricom PT je
transponované matica k matici P.
Bezprostredne priamym vypoc¢tom moZeme preverit planost nasledujiceho tvrdenia.

Lema 1.7.4 Nech B je Kirchhoffova matica grafu G a I je matica incidencie nejakej jeho orientacie
H (o&islovanie vrcholov v H je to isté, ako v grafe G), potom B = I - IT (tu opif T oznacuje
operaciu transponovania matice).

Poznamenavame, ze v kazdom suvislom grafe existuje faktor, ktory je strom a nazyvame ho
kostrou grafu. Vo v8eobecnom pripade sa kostra definuje nejednozna¢ne. Prirodzene vznika otézka:
kolko je kostier v grafe? Pocet kostier v suvislom grafe uréuje implicitne nasledujtca veta.

Veta 1.7.2 (Kirchhoffova) Pocet kostier v savislom grafe G radu n > 2 je rovny algebraickému
doplnku Tubovolného prvku Kirchhoffovej matice B(G).

Dokaz sa opiera o nasledujice tvrdenie.

Lema 1.7.5 Nech H je (m + 1,m)-graf, I — matica incidencie lubovolnej jeho orientacie, M
— Tubovolny subdeterminant (minor) radu n matice I. Potom, ak H nie je strom, tak potom
|M| =0, ak H je strom, potom |M| = £1.

Doékaz. Predovsetkym poznamenavame, ze moZzeme ubovolne zmenit numeréciu (o¢islovanie)
vrcholov a hran grafu H, tak uvaZovany minor moze len zmenit znamienko.

Nech a je vrchol, zodpovedajici riadku matici I, ktory vystupuje v minore M. Ak graf H nie
je strom, potom nie je nesuvisly. Nech K = {1,2,...,k} — je oblast suvislosti neobsahujica vrchol
a. Pomocou vhodného preéislovania hran grafu H maticu I prevedieme na blokovo-diagonalny
tvar I = diag[I1, I5], kde I; matica incidencie komponenty H(K). Minor M obsahuje vSetkych
prvych k riadkov matice I, ktorych sucet je rovny nulovému riadku. Z toho vyplyva, ze M = 0.
(v kazdom stipci st dva nenulové prvky +1 a —1).

Nech teraz H je strom. Opét precislujeme vrcholy aj hrany grafu H nasledujicim sposobom.
Jeden z visiacich vrcholov V, rézny od vrcholu a, taktiez hrane incidentnej vrcholu v, pripiSeme
¢islo 1. Dalej uvazujeme strom 77 = H — v. Ak jeho rad je vacsi ako 1, potom jeden z jeho
koncovych vrcholov u rézny od a, vrcholu a hrane incidentnej s u priradime ¢islo 2. Uvazujeme
strom T5 = Ty — u. Ak budeme iterovat tento proces, dostaneme novt numeraciu vrcholov a hran
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stromu H, pri¢om vrchol a bude mat &slo m + 1. Matica I pritom nadobuda tvar

+1 0 ... O
* +£1 ... 0
* * ... =£1

Tu symbol * oznacuje tie elementy alebo bloky matice, hodnoty, ktorych nemaja vplyv na chod
tvah. Minor M zostavajici po vynechani posledného riadku tejto matice je rovny +1. O

Este jeden fakt z linearnej algebry pouzijeme pri dokaze Kirchhoffovej vety. Formulu Binet-
Cauchyho; nech A resp. B st matice n X m resp. typu m x n; C = A- B a m > n. Minor B’
raddu n matice B nazveme zodpovedajicim, alebo priradenym k minoru A’ radu n matice A, ak
mnoziny &sel riadkov prvého z nich B’ a &isel stlpcov druhého z nich A’ st totozné.

Veta 1.7.3 (Formula Binet-Cauchy) Nech A resp. B st matice n X m resp. m x n, n < m a
C = A x B. Potom

det C= 3, A(kl A kn)B< 12 o) (16
1<k1<...<kn<m
Inymi slovami, pri n < m determinant matice je su¢tom sucinov vSetkych moznych minorov radu

n v A so zodpovedajucimi (priradenymi) minormi B toho istého radu n.
Skoér nez uvedieme dokaz uvedeného tvrdenia, ilustrujeme ho nasledujicim prikladom.

1 0 2 -l 11
Priklad 1.7.1 Nech A = aB= -2 0 . Potom C = adet C =
-1 1 1 1 1 0 2

2. Podla vyssie uvedenej formuly dostavame

12 ki k 12 12
det € = Dicmcrss 4| g, kg)B( i 22):’4(1 2)B<1 2)+
12 13 12 2 3 1o -1 -1
+A(1 3>B 12>+A<2 3)B<12)_‘—1 1H—2 0‘+
12| =1 =1 o 2] =2 -0
+ ‘_1 N ‘+‘1 1H 11 ‘_1(—2)+3-0+(—2)(—2)_2.

Dokaz vety: Najprv pripomenieme, ze det A = 3 ,(—=1)"P)ayj asj, ... an;,, kde t(P)
oznacuje pocet transpozicii permutéacie P, stucet uskutoc¢iiujeme pre vSetkych n! permutacii.
Pretoze c;; = Z,lel airbr; moéZeme maticu C' napisat v nasledujicom tvare

m m
Zm:l ararba1 - Zanzl a1a,ba,n
C — . ) .
m m
Zalzl Anayba1 - Z(xnzl Anay,bann

Determinant je aditivna a homogenna funkcia kazdého zo svojich stipcov. Ak pouzijeme tento
fakt pre kazdy zo stlpcov v det C, vyjadrujeme det C v tvare si¢tu m” determinantov:

alalball e aflanbann

det C = zm:..‘idet =

a;=1 ap=1 analball -oo Qpa, bann

= = 1 2 ... n
— Z"'ZA<Q1 o an)ballbaﬂ...bann. (1.65)
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Tie ¢leny suctu, ktoré maji totozné dva alebo viac indexov ag, ..., q, st rovné nule, pretoze v
tychto pripadoch minory buda mat aspoii dva rovnaké stlpce. Takym sposobom treba uvazovat
len tie m!/(m — n)! ¢lenov sactu, u ktorych st indexy « rozne. Rozdelime vSetky ostatné ¢leny
na (ZL) skupin po n! ¢lenov takym sposobom, Ze v kazdej skupine rozlisujeme ¢leny len poradim
indexov aq, o, ..., 0.

Poznamenavame, Ze modZeme napisat:

1 2 ... n o \HP) 1 2 ... n
A<a1 N an>_(1) A ki ke .k , kde k1 < ko < ... < Ky,
P — permutéacia ay,...,q, ¢isel ky,...,k,. Z toho vyplyva, Ze stcet podla n! ¢lenov, v ktorych
a1Qs . ..o, — permutacia ¢isel kq, ko, ..., k, je uréena vyrazom
1 2 v n t(P)
4 ( k1 ke ... ky > ;(71) bar1baaz - - bann-

Ak prestavime prvky b tak, aby prvé indexy boli v rastiicom poradi, prevedieme vyraz na tvar

12 ... n
A( ki ky oo ke )%:(—1)“Q)bk1jlbk2j2 Dk

kde @ je permutacia ji,jo, ..., jn Cisel 1,2, ... n a je zrejmé, Ze t(P) = ¢(Q). Z definicie funkcie
determinantu teraz vyplyva, ze tento vyraz je proste

A<k1 ky .. kn)B( 12 n)

Preto rovnost (1.65) sa transformuje na rovnost (1.64). O

Dokaz Kirchhoffovej vety. Nech I je matica incidencie nejakej orientécie (n,m) grafu G.
Vzhl'adom na tvrdenie, ze B(G) = I - IT, pretoze G je suvisly graf, potom m > n — 1 (aspoii
strom). Nech B je podmatica zostévajica po vynechani posledného riadka a stlpca z B(G), nech
C je podmatica, zostavajica po vynechani posledného riadku z I, potom v dosledku uvedeného
tvrdenia B = CCT. Algebraicky doplnok A, ,, elementu, ktory zaujima v matici B(G) poziciu
(n,n), je rovny det B. Z formuly Binet-Cauchy vyplyva, ze A,, ,, je roviy suctu Stvorcov vietkych
minorov radu n — 1 matice C. Na zaklade tvrdenia lemy 1.7.5 je kazdy minor M rovny +1, ak
faktorovy podgraf grafu G, hrany ktorého zodpovedaju stipcom, ktoré vystupuja v M je strom a
nula v opa¢nom pripade. Z toho vyplyva, ze A, ,, je rovny poctu faktorovych stromov v grafe G.

Pretoze algebraické doplnky vSetkych elementov matice B(G) st rovné, potom je veta dokdzana.
O

Désledok 1.7.3 Pocet komponentov suvislosti K (G) n-vrcholového grafu G je rovny : K(G) —
hodnost B(G), kedze graf G je suvisly, ma aspon jednu kostru, a teda algebraicky doplnok radu
n — 1 je rozny od nuly.

Ak graf G je suvisly, potom je v iom obsiahnuta kostra. V stilade s predchadzajicou vetou
hodnost B(G) > n—1. lebo inak by tam neexistovala kostra. Z druhej strany vzdy det(B(G)) = 0.
Z toho vyplyva, Ze hodnost B(G) =n — 1.

Nech teraz graf G ma rovno k& komponentov. Potom pri vhodnom oéislovani vrcholov, matici
B(G) zodpoveda blokovo diagonalna matica diag(Bi, Ba, ..., Bi), ktorej diagonalne bloky B; si
Kirchhoffove matice zodpovedajice komponentom. Bertc do tvahy dokdzané, dostavame, ze
hodnost B(G) =n — k.

Désledok 1.7.4 Pre n > 1 pocet kostier v kompletnom grafe K, je rovny n" 2.
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Uvazujme algebraicky doplnok Aj; elementu matice

n—1 -1 ... -1

n—1 -1 -1
-1 n-1 -1
-1 -1 n—1
radu n — 1. Dalej méme
n—1 -1 ... -1 11 ... 1
-1 n-1 ... -1 0 n ...
A= . =. =n""?
—1 -1 ... n-1 00 ... n

Prvy determinant vznikne pripoc¢itanim suc¢tu n — 2 riadkov k prvému riadku, druhy determi-
nant vznikne pripo¢itanim prvého riadku ku kazdému.

Je zrejmé, ze pocet kostier v K, je rovny poctu oznaCenych stromov radu n. Preto pred-
chadzajuci dosledok mozeme zformovat v tvare Cayleyovej vety z roku 1897.

Priklad. Uvazujme graf G

.3704

° *
(D) / .5
2 -1 -1 0 0 O
-1 2 -1 0 0 O
-1 -1 3 -1 0 0
o 0 -1 3 -1 -1
o 0 o0 -1 2 -1
o 0 0 -1 -1 2
Podl'a Kirchhoffovej vety je pocet kostier grafu G rovny determinantu

2 -1 0 0 O

B(G) =

-3 -1 0 0 —31 31 —01 —01 01 31 —01 —01
By=|0 -1 3 -1 —-1|=2 0 -1 2 -1l Tlo 21 2 _il7
00 —1 2 -1 0 -1 -1 2 0 -1 -1 2
0 0 -1 -1 2
3 -1 -1 -1 0 © 3 -1 -1
=23|-1 2 -1l +2|-1 2 -1 —|-1 2 -1/=18-6-3=9
-1 -1 2 -1 -1 2 -1 -1 2

Teda graf G ma 9 kostier, o ¢om sa Tahko moézeme presved¢it tym, ze kazda kostra grafu G
musi obsahovat hranu {3,4}.

Zaverom poznamenavame, Ze Kirchhoffova veta pocita kostry pre Tubovolny suvisly graf, nielen
pre kompletné grafy.
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1.8 Eulerovské orientované tahy v orientovanych grafoch

Ukézali sme, Ze maticova veta o stromoch pre grafy dava jednu z niekolkych metod spoéitania
oznacenych stromov, zaloZent na urceni poctu kostier oznaceného grafu K,. Uvedieme len for-
muléciu tvrdenia zovSeobeciujiceho tito vetu na orientované grafy a urcujuceho pocet kostier
daného orientovaného grafu D, kaZzda z nich je orientované v smere k niektorému svojmu vrcholu.

Hlavnou tlohou tejto ¢asti prednasky bude aplikovat maticova vetu o stromoch pre orientované
grafy a oznacené eulerovské orientované grafy D, za ti¢elom dosiahnutia presnej formuly pre pocet
eulerovskych tahov v orientovanom grafe D.

Vniatorny strom (vstupujuci do korefia v) dostaneme zo zakoreneného stromu 7' s korefiom v
orientaciou vSetkych jeho hran smerom k vrcholu v.

Vonkajsi strom (vystupujuci z vrchola v) je orientaciou dudlny k vnatornému stromu.

Je zrejmé, Ze obe tieto mnoZiny orientovanych stromov st vo vzajomne jednozna¢nom vztahu
s mnozinou zakorenenych stromov.

Uvazujme orientovany graf D, ktory je zobrazeny na obr. 1.21, a ktorého vrcholy st oznacené
¢islami 1,2, 3,4, 5. Existuja prave styri kostry, vychadzajtce z vrchola 1 a 2 kostry vstupujtce do
vrchola 1.

Nech D je orientovany graf (rozumieme orientovany graf bez nasobnych hran a orientovanych
slu¢iek) s maticou susednosti A = (a;;) [a;; = 1, ak (4,7) patri do D, ak (¢,7) nepatri do D,
tak a;; = 0]. Dalej definujeme diagonalnu maticu My — vonkajsiu, u ktorej prvok (i,1) je rovny
vonkajsiemu stupiiu vrchola v;. Potom kladieme Cy = My — A. V takomto pripade sucet vSetkych
prvkov v matici Cy, ktoré sa nachadzaja v jednom riadku, je rovny nule, no nie nutne sa to spliia
pre stlpce. Skutocne, ako uvidime neskor, sucet prvkov, ktoré stoja v jednom a v tom istom
stipci je rovny nule prave vtedy, ked D je orientovany eulerovsky graf. Analogickym spésobom
definujeme maticu Cy; = M; — A, kde M; je diagonalna matica, v ktorej prvok (i,4) je rovny
vnatornému stupiiu. Sformulujeme dolezity vysledok:

Veta 1.8.1 (Maticova veta o stromoch pre orientované grafy) Vsetky algebraické doplnky
i-tého riadku matice Cy st si rovné navzajom a ich spolo¢na hodnota je pocet kostier vstupuja-
cich do vrchola v; v orientovanom grafe D. Duélnym spésobom, spolo¢na hodnota algebraickych
doplnkov i-tého stipca matice C1, je rovna po¢tu kostier vystupujicich z vrchola v;.

Dokaz tohto tvrdenia nebudeme robit, zrejme by sme postupovali podobne, ako v neoriento-
vanom pripade, pravda s prislusnymi modifikaciami.

Uvedené tvrdenie budeme ilustrovat na priklade orientovaného grafu D zobrazeného na obrazku
1.21. Matice Cy a C; pre uvedeny graf D majui tvar:

2 -1 0 0 -1 1 -1 0 0 -1
0 2 -1 -1 0 0 2 -1 -1 0
Co=| 0 0o 1 -1 0 |; <=0 o 1 -1 o0
0 -1 0 2 -1 0 -1 0 2 -1
-1 0 0 0 1 -1 0 0 0 2

Ak ich pouZijeme, ihned sa presvedéime, Ze ak vezmeme prvy riadok matice Cy a z prvého stipca
matice Cy, dostavame, Ze orientovany graf D ma prave Styri kostry vychadzajice z vrchola 1 ako
na obrazku 1.21.

Pocitajme determinanty prislusnych matic:

2 -1 -1 0

2 -1 -1
0 1 -1 0_ 0 1 —-1|=4—-1-1=2.
-1 0 2 -1 1 0 9
0O 0 0 1

2 -1 -1

0o 1 -1 8 2 -1 -1

1 0 9 _1|=20 1 -1 =(4-1-12=4.

-1 0 2

o o0 0 2
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) Graf D.

UL

b) Kostry vystupujice z vrchola 1.

V5

) Kostry vstupujtce do vrchola 1.

Obrazok 1.21: Kostry orientovaného grafu D, vystupujuce a vstupujice do vrchola 1.

Orientovany graf nazyvame eulerovsky, ak existuje uzavrety faktorovy orientovany tah, pre-
chadzajuci cez kazdy vrchol, pricom kazda orientovant hranu prechadza prave jedenkrat. Taky
orientovany tah nazyvame eulerovskym tahom. Jedno kritérium eulerovskosti orientovaného grafu
spociva v nasledujicom: orientovany graf musi byt stuvisly (v neorientovanom slova zmysle) a
pre kazdy vrchol plati, Ze vnitorny stupei je rovny vonkajSiemu stupiiu. Napriklad orientovany
graf uvedeny na obrazku 1.21 nie je eulerovsky, ale orientovany graf zobrazeny na obrazku 1.22
eulerovsky je. Z definicie eulerovského orientovaného grafu vyplyva, ze matice Cy a C; maja
rovnaké diagonaly, a preto st si rovné. Pre orientovany graf, uvedeny na obrazku 1.22, tato
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Obrazok 1.22: Eulerovsky orientovany graf.

matica mé tvar:

oo o
[N}
[
—
|
—_
o
coc oo

-1 0 2 -1
-1 0 0 0 2 -1
-1 0 0 0 0 1

Vlastnost matice C, stéet prvkov v Iubovolnom riadku je rovny nule, taktiez sucet prvkov v
Tubovolnom stipci je rovny nule, t.j. vietky algebraické doplnky sa navzajom rovnajt.

Prvy krok v dokaze maticovej vety o stromoch pre grafy spocival v poznamke, Zze ak sucet
elementov I'ubovolného stipca a taktiez stéet prvkov v Tubovolnom riadku je rovny nule, tak potom
algebraicky doplnok matice mé jednu a t isti hodnotu. V désledku vety ma kazdy eulerovsky
graf — orientovany, rovnaky pocet kostier, ktoré vchadzaju do kazdého vrchola a vychadzajucich
z kazdého vrchola. Napriklad vo vysSie uvedenej matici, vSetky algebraické doplnky st rovné 4,
pretoze existuju Styri kostry vstupujiace a vystupujice z kazdého vrchola orientovaného grafu.

U

Obrazok 1.23: Kostry vstupujtce do vrchola v1, v orientovanom grafe na obrazku 1.22.
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Teraz mame v8etko pripravené na to, aby sme mohli aplikovat maticovii vetu o stromoch
pre orientované grafy na odvodenie formuly pre pocet eulerovskych uzavretych tahov v danom
orientovanom grafe. PretoZe u kazdého orientovaného eulerovského grafu D plati, pre kazdy vrchol
v; vonkajsi stupen sa rovna vnitornému stupiiu, potom mozeme toto ¢islo oznadit ako d;.

Veta 1.8.2 Pocet e¢(D) eulerovskych tahov v oznafenom eulerovskom orientovanom grafe D, u
ktorého spolo¢na hodnota algebraickych doplnkov matice C = Cy = C; je prave c, je urCeny

formulou:
e(D) =c[](d; —1)! (1.66)

Dokaz. Nech vy je Tubovolny vrchol eulerovského orientovaného grafu D. Ukazeme, Ze kazdy
eulerovsky tah F orientovaného grafu D urcuje jedinu kostru 7' vchadzajucu do vrchola vy, a Ze
kazda kostra T' urcuje prave [[,(d; — 1)! eulerovskych tahov. A tak ako sme uz ukézali, ze pocet
kostier orientovaného grafu D vstupujicich do kazdého vrchola je prave ¢, potom formula (1.66)
bude dokizana.

Aby sme zostrojili kostru vstupujiacu do vrchola v1 a uréent eulerovskym tahom E v orgrafe D,
nazveme poslednou orientovanou hranou l'ub. vrchola v; # vy taka hranu vystupujticu z v;, ktora
je posledna pri pohybe po tahu E, ak pociatkom a koncom tahu je vrchol v;. Takymto spoésobom
len vrchol v; nema poslednii orientovant hranu. Kostra 7" sa potom definuje ako taky orientovany
faktor grafu D, u ktorého vsetky orientované hrany si poslednymi hranami. V podgrafe T" vonkajsi
polostupen je u vrchola v; rovny 0 a vonkajSie polostupne vSetkych inych vrcholov st rovné 1,
potom musi byt strom vsupujicim do vrchola v .

Nech teraz T je niektora kostra vstupujtca do vrchola vy (jedna z ¢ takych kostier). Aby sme
zostrojili vSetky eulerovské tahy E spojené s kostrou T', urobime tak, ako v predchadzajucom
pripade, t.j. poslednymi hranami tahu E vzhladom na vrchol v; buda orientované hrany kostry
T. Pretoze orientovany graf D je eulerovsky, potom vonkajsi stupeii vrchola sa rovna vnutornému
stupnu vrchola v;. Pri zostrojovani tahu F z kostry T jedna z hran vychadzajica z l'ubovolného
vrchola v; # vy sa nechava, pretoze neskor sa pouZzije ako posledna orientovand hrana vystupu-
jaca z vrchola vy, rezervuje sa pre pouZitie prvej orientovanej hrany tahu E. A tak pre kazdy
vrchol v; (vratane vrchola vy) existuje prave (d; — 1)! roznych usporiadanych orientovanych hran
vystupujtcich z v; po ich objaveni v tahu E. PretoZe tieto vybery st nezévislé, potom ak ich
vynasobime faktorialmi, dostdvame pocet eulerovskych tahov uréenych kostrou T. No existuje e
takych kostier, ¢o aj dokazuje formulu (1.66). O

Obrazok 1.24: Styri culerovské tahy grafu D na obrézku 1.22.
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Dosledok 1.8.1 Ak v eulerovskom grafe kazdé d; je rovné bud 1 alebo 2, potom podet eu-
lerovskych orientovanych tahov je rovny poctu c kostier vstupujicich do l'ubovolného vrchola.

Tvrdenie bezprostredne vyplyva z toho, Ze kazdé (d; — 1)! = 1. Tlustrujeme tento dosledok na
priklade orientovaného grafu D, ktory je zobrazeny na obrazku 1.22, a v ktorom kazdé d; je rovné
bud 1 alebo 2. Z vyéislenia alg. doplnkov, ktoré predchadzalo obr. 1.23, vieme, Ze orientovany
graf D ma prave Styri eulerovské orientované tahy. St zobrazené na obr. 1.24 v sulade s kostrami
vstupujicimi do vrchola 1 uvedenymi na obrazku 1.23.

1.9 Binarne stromy

Ako priklad pouzitia generujicich funkcii uréime pocet binarnych stromov s n vrcholmi.

Pod binarnym stromom s n vrcholmi chapame prazdny strom T = ) akn = O alebo T =< L,r, P >,
kde r je vrchol, ktory nazyvame koreti stromu, L (Tavy podstrom) binarny strom s | vrcholmi, P
(pravy podstrom) binarny strom s p vrcholmi a I[+p+1 = n. Budeme hovorit, Ze binarne stromy T3
a Th st izomorfné a pisat T) = Ty, ak T = T = () alebo Ty =< L1,71, Py > a Ty =< Lo, 19, Py >,
kde L1 = L2 a P1 = P2.

Oznacme ¢ pocet neizomorfnych bindrnych stromov s k vrcholmi. Z danej rekurzivnej definicie
vyplyva, ze ¢cg = 1 a ak 0 < s < k — 1, potom existuje prave cscp_1— neizomorfnych stromov
tvaru < L,r, P >, L binarny strom s s vrcholmi. Cislo s méze nadobudat Tubovolnia hodnotu
medzi 0 a k — 1. Z toho vyplyva

Ckp = CoCk—1 + C1Ckr—2 + ... + Ckr—1Co (1.67)
Neizomorfné binarne stromy pre k = 0,1, 2,3 st zobrazené na nasledujicom obréazku:

60161:1 62:2

N

63:5

NN N S
/ \ / \

Uvazujme generujicu funkciu C(z) = > 7o ckz®. Rovnost (1.67) ndm pripomina formulu pre
koeficienty Cauchyho st¢inu C(x)C(x) = C?(x), presnejsie povedané plati nasledujiica rovnica

C(x) = 2C%(x) + 1 (1.68)

alebo
2C?*(x) —C(z) +1=0

UkéaZzeme, Ze existuje analyticka funkcia C(z) v okoli bodu 0 vyhovujica tomuto vztahu, tejto
rovnosti. V dosledku vzajomne jednozna¢ného vztahu medzi radmi a analytickymi funkciami,
koeficienty tohto rieenia uréujua formalny rad vyhovujici rovnosti (1.68). Ak uvazujeme (1.68) ako
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kvadratickt rovnicu s neznamou C(z) (hodnota hladanej analytickej funkcie v bode ), dostavame

pre x # 0
Cla) = L=V 42 ;;4% (1.69)

Rozlozme /1 — 4z = (1 — 4z)2 do Maclaurinovho radu.

fla) = f(0) + f’(O)% + f”(O)% ¥

fla) = (1—4a)®

d* . 11 1 1 1 .
(1 —42)? = 5(5 — D5 = 2)(5 — k4 11— 42)? F—a)k =
_10-21-49(1-6) (1-2%+ 2)(1 )Ry =
2 2 2 2 2

1(—1)(=8)...(1 — 2(k + 1)) (1 — 4a) 3 *(—4)F
2k

= 1(=1)(=3)-(1 = 2(k + 1)) (1 — 4a) 5 (=2)F =
— 2k (—1)FHE1(1)(3)(5)...(2k — 3)(1 — dar) 2 F =

2F(—~1)1.2.3.4.5.6....(2k — 3)(2k — 2)(1 — dx)z %
2.4.6...(2k — 2)

(=1)28(2k — 2)1(1 — 4a)2=F  (=1)2(2k — 2)!(1 — 4z)2F

2k=1(k —1)! N (k—1)!

1 /2k—2
V1—4 :1—2§ - k
v k_lk(k—1>x

Odtial vidno, Ze na to aby sme dosiahli rieSenie s hladanymi koeficientami treba vybrat
znamienko minus v (1.69). Takymto sposobom dostavame

- VT—dr  N1(2k—-2\ . o~ 1 [2k\ ,
Cla)=—7%; _Zk(k—1>m _’;k+1<k>x

k=1

Ck) = %H (if)

odtial dostavame

— Catalanové ¢isla.



Kapitola 2

Enumeracia neoznacenych objektov

2.1 Grupy a grafy

Pri uréovani po¢tu neoznacenych grafov tlohu formulujeme tak, aby sme mohli vysledok ziskat
tym, Ze ndjdeme pocet orbit niektorej vhodnej grupy permutécii. Z Burnsidovej lemy uréime pocet
orbit vyéislenim poc¢tu identickych prvkov vzhladom na permutacie z uvazovanej grupy.

Uvazujme mnozinu X = {1,2,...,n} a nech A je niektord mnozina permutécii mnoziny X
uzavretd vzhladom na operaciu skladania permutécii. Potom A je grupou permutécii na mnozine
objektov X. Rad grupy A oznaujeme |A| a je to poet permutécii A; stupell grupy A je pocet
prvkov mnoziny X, teda stupen je rovny n.

G
o — 0
ar = (1)(2)3)(4)
az = (1)(3)(24)
ag = (13)(2)(4)
ar = (13)(24)
oy —— 03

Obrazok 2.1: Graf G a jeho grupa.

Poznamka 2.1.1 Graf G urcuje "obraz" svojej grupy automorfizmov. Takymto spésobom teo-
reticko-grupové pojmy, ktoré budeme potrebovat, objasnime tak, Ze ich budeme skimat spolu s
grafmi, vyuZijeme pritom nazornost a podnety, ktoré umoziiuje teoria grafov.

I'(G@) - mnozina v8etkych permutécii na mnozine V(G) zachovavajicich susednost sa nazyva
grupou grafu G a jej permutacie nazyvame automorfizmami. Teda grupa grafu je grupou per-
mutécii, ktorych objektami su vrcholy grafu.

Poznamka 2.1.2 Tahko sa moZno presved¢it, Ze pre lubovolny graf G plati I'(G) = T'(G).

Na vyrieSenie otazky : kedy st rovnaké dve grupy permutacii, potrebujeme jemnejsie kritérium,
ako je grupovy izomorfizmus. Uvazujme tri oznacené grafy, ktoré sa znazornené na obr. 2.3.
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o] L)

oy o3

Obrazok 2.2: Komplement grafu zobrazeného na obr.1.

o — 0 L (13 .nl _

o) — @03 e, o, .n4 . .ns

Obrazok 2.3: Tri grafy s rovnakymi grupami.

Tieto grafy maju rovnaké grupy, rozdiel medzi nimi spociva len v "doplnkovosti" a oznadeni.
Je preto vhodné stotoznit grupy permutéacii, u ktorych sa permutécie lisia len "menom" permuto-
vanych objektov. Vychadzajuc z toho uvedieme nasledujtce definicie.

Definicia 2.1.1 Nech A a B st dve grupy permutécii s mnozinami objektov X resp. Y. Hovorime,
7e su izomorfné, oznacujeme A = B, ak existuje bijekcia h z A do B taka, Ze pre vSetky permutécie
a1 a ag z grupy A plati rovnost

h(alag) = h(al)h(ag).

Ak okrem toho existuje bijekcia ¢ z X do Y taki, Ze pre kazda permutéaciu o € A a pre kazdy
prvok x € X plati rovnost

¢(ax) = h(a)p(x)
potom grupy A a B su identické a piSeme A = B.

Poznamka 2.1.3 Zobrazenie ¢ proste zamieha oznacenia (nazvy) objektov, na ktorych podsobi
grupa A, oznaceniami zodpovedajicimi grupe B. Grupy vSetkych troch grafov uvedenych na obr.
2.3 su identickeé.

2.2 Cyklovy index grupy permutacii

A - grupa permutécii na mnozine objektov X = {1,2,...,n}. Je zname, Ze kazdu permutéciu
a € A mozeme jedinym sposobom vyjadrit v tvare sa¢inu po dvoch disjunktnych cyklov. Pre
kazdé k = 1,2, ...,n znakom jj;, (o) budeme oznacovat pocet cyklov dlzky k v rozklade permutacie
« na sudin po dvoch disjunktnych cyklov. Potom cyklovy index grupy A, budeme ho oznacovat
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ako Z(A), predstavuje mnohoclen premennych sq, so, ..., §,, uréeny formulou
n .
Z(A) =AY ] s
a€A k=1

Poznamka 2.2.1 Ak budeme potrebovat zdéraznit premenné, tak namiesto Z(A) budeme pisat
Z(A, 81y, Sn)-

Priklad 2.2.1 Uvazujme symetrickd grupu S,, definovani na mnozine o n prvkoch. Potom

1
— (5% 4+ 35159 + 283).

Z(53) = i

Poznamka 2.2.2 Najviac sa pouzivaju explicitné formuly pre cyklové indexy piatich znamych
grip permutécii: symetrickej, alternujtcej, cyklickej, diedrélnej a identicke;j.

Je znédme, ze kazda permutéiciu a na n prvkoch mozno reprezentovat uréitym rozkladom éisla
n prostrednictvom vektora (j) = (41,72, .., jn), kde ji je pocet asti rozkladu rovnych k a teda

n
k=1
Nech h(j) je poCet permutécii v grupe S,,, rozklad ktorych je uréeny vektorom (j). Pretoze

pre kazdé k plati jr = ji(«), Tahko moZzno nahliadnut, Ze

n!
[Ti—1 K7% !

Takymto spdsobom pre cyklovy index Z(S,,) dostavame:

h(3) (2.1)

Veta 2.2.1 (Polya, Redfield) Cyklovy index symetrickej grupy je uréeny formulou

2(50) = - ShG) [T st

() k=1

kde sucet berieme vzhladom na vSetky rozklady (j) ¢isla n a h(j) je uréena vyrazom (2.1).

2.3 Burnsidova lema

Nech A je grupa permutécii na mnoZzine objektov X = {1,2,...,n}. Potom prvky =z a y z X
budeme nazyvat A-ekvivalentné, ak existuje permutécia o € A taka, ze ax = y.
Lahko mo#no ukazat, Ze horeuvedena relacia je ekvivalencia na mnoZine X. Triedy ekvivalencie
nazyvame orbitami, alebo systémy tranzitivnosti grupy A.
Pre kazdé x € X polozme
A(z) ={a € A| ax = x}.

Uvedena mnozina A(x) sa nazyva stabilizatorom prvku z, alebo grupou izotropie prvku z. Poz-

namenavame, Ze ak prvky = a y patria do jednej orbity, potom mnoziny A(z) a A(y) st konjugo-

vané podgrupy grupy A a teda |A(x)| = |A(y)|. Uvedena rovnost vyplyva z nasledujtcej tvahy:

o=y =y =, Alz) = {ai| cur =z}, Aly) = {B5] By = v}, cur =, yur = vy =y,

vy ly =y — ya;y~t = B;. Lahko vidno, Ze Tubovolné 3; sa da vyjadrit v uvedenom tvare.
Teraz ukazeme, Ze pre lubovolny prvok y z orbity Y = ©(y) grupy A plati vztah

Al = [Ay)[IY] (2.2)
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t.j. pocet elementov v orbite, ktora obsahuje element y, je rovny indexu stabilizatora elementu y
v grupe A. Aby sme sa o tom presved¢ili, najprv rozlozime grupu podla podgrupy A(y) a grupu
A zapiSeme ako zjednotenie pravych tried rozkladu podla uvazovanej podgrupy A(y):

Teraz nam stac¢i ukazat vzajomne jednoznaény vztah medzi triedami rozkladu a prvkami orbity
Y. Pre kazdé i = 1,2, ...,m priradime triede rozkladu «; A(y) prvok cyy € Y. Ak ¢ # j, potom
oy # o y, pretoze inak by permutacia aj_lm patrila podgrupe A(y), a teda permutécia a; by
bola prvkom «;A(y), €o je v spore so vztahom, ze o; A(y) NejA(y) = 0. To znamené, ze uvedeny
vztah je jednozna¢ny. Pre kazdy objekt y’ € Y pri niektorej permutécii « € A je splnend rovnost
ay = y'. Z rozkladu grupy A na triedy rozkladu vyplyva, ze ;v = «, ak v € A(y). Z toho
vyplyva, Ze vy = a;yy = a;y a takymto sposbom kazdy prvok orbity Y zodpoved4 niektorej triede
rozkladu. To znamené, Ze m je pocet elementov v orbite Y a tym je formula (2.2) dokazana.

Teraz uz mame vsetko pripravené na dokaz Burnsideho lemy, ktora udava formulu na vyja-
drenie poc¢tu orbit grupy A pomocou aritmetického priemeru poc¢tu identickych prvkov vsetkych
permutacii grupy A.

Lema 2.3.1 (Burnsidova lema) Nech N(A) je pocet orbit grupy A, potom N(A) je urfeny
formulou
A
acA

Dokaz. Nech X, Xs,..., X,, st orbity grupy A, nech pre kazdé i = 1,2,...,m x; je prvok i-tej
orbity X;. Potom z formuly (2.2) dostavame

A)lA| = Z A1 (2.3)

Ako sme uz uézali predtym, Ze ak = a x; patria do jednej a tej istej orbity, potom |A(z)| = |A(z;)|.
Z toho vyplyva, Ze vztah (2.3) mozno inak zapisat takto:

AlAl =) Al

rzeX

AlA=2, > 1

xeEX a€A

r=ax

alebo v inych oznaceniach :

No ked si uvedomime, ze > . 1jerovné prave ) ., ji(), tak na to, aby sme dokonéili
dokaz, nam stadi, aby sme obidve casti delili |A]. O

Priklad 2.3.1 Uvazujme graf G na obr. 2.4.
Rad grupy I'(G) je rovny 4 a kazda jej permutacia zachovava identitu troch vrcholov 3, 5 a 7.
Ozna¢me permutécie nasledujicim spésobom:

ar = (1)(2)3)(4)(5)(6)(7)  az = (12)(3)(4)(5)(6)(7)
= (46)(1)(2)B)B)T) s = (12)(46)(3)(5)(7)

Teda ji(a1) =7, j1(a2) = j1(az) =5 a ji(ag) = 3. Takymto sposobom dostavame
1
NT(@)) = Z(7+5+5+3) =5.

Je zrejmé, Ze orbitami tejto grupy sa mnoziny {3}, {5}, {7}, {1,2}, {4,6}. Poznamenavame, Ze
pocet orbit je totozny s po¢tom spdsobov, ktorymi mozeme dostat z grafu G rozne neoznacené
zakorenené grafy.

Aby sme také vetky grafy dostali, treba ako koren vybrat po jednom vrchole z kazdej orbity.
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NP
N

o5 — 07

Obrazok 2.4: Graf s troma identickymi prvkami.

Niekedy je treba ohranicit posobenie grupy A na niektort podmnoZinu ¥ mnoziny X, kde Y je
zjednotenie nejakych orbit grupy A. Preto oznaéime ako A|Y mnoZzinu permutécii, pdsobiacich na
Y, ktoré dostavame pomocou ohrani¢enia na podmnozinu Y, zodpovedajucich permutécii grupy A.
Pre kazdu permutéaciu oo € A pocet prvkov v Y, identickych vzhladom na permutaciu « oznaéime
ako j1(a]Y). Potom mozeme sformulovat désledok Burnsidovej formuly, ako jej ohranident formu,
nasledovne.

N(AY) = 471 S ji(aly).

acA

Dalej uvedieme zovseobecnenie Burnsidovej formuly, ktoré nazyvame jej zvazenou formou.

Nech R je komutativny okruh, obsahujtci mnozinu vSetkych racionalnych ¢isel a w niektora
funkcia, ktort nazyvame vahovou funkciou, zobrazujicou mnozinu objektov X grupy A do okruhu
R. V praktickych aplikiciach je vahova funkcia konStantnou na kazdej orbite grupy A. Teda v
tomto pripade moéZzeme urc¢it vahu l'ubovolnej orbity X; ako vahu I'ubovolného jej prvku. Pre
kazdu orbitu X; oznacime jej vahu ako w(X;) a ur¢ime ju vztahom w(X;) = w(zx) pre kazdy prvok
r e X;.

Takymto sposobom mézeme sformulovat zvazentu formu Burnsidovej formuly: Sucet vah orbit
grupy A je urceny nasledujucou formulou;

D wX) =147 ), ) w

i=1 a€EA rz=ax

Dokaz je analogicky, ako dokaz Burnsidovej lemy. Na ilustraciu zvazenej formy uvazujeme graf na
obrazku 2.4. Vahu w(k) kaZdého vrcholu k grafu G definujeme ako cyklovy index stabilizatora
vrchola k v grupe I'(G).

1
w(l) = 5(s]+sts)
1
w(3) = 1(5{—1—25?52—#5%5‘;’)

Poznamenavame, ze w(l) = w(2) = w(4) = w(6) a w(3) = w(5) = w(7). V naSom pripade sudet
vah orbit je rovny!

w(l) +w(3) + w(4) + w(b) + w(7) = 2w(1) + 3w(3).

Ak uvaZzujeme pravu stranu zvaZzenej Burnsidovej formuly pre nas pripad, tak dostavame:

izle Zr:air 'lU(fE) 4 {ZT (ylr ) + ZT QT (.’E) + Zx:agz ( ) + Zr a47‘ l’)} =
Hw(@) +w(2) + w(3) + w4) + w(b) + w(6) + w(7) + w(3) + w(4)+
(5) + w(6) + w(?) + w( )+ w(2) +w(3) +w(d) +w(7) + w(3)+
(M}=1 )+ 12w(3)) = 2w(1) + 3w(3).

+ + 1l
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Poznamenavame, ze analogicky Sucet cyklovych indexov vSetkych korenovych grafov, ktoré
dostaneme z niektorého grafu G, moze byt vyjadreny pomocou vah identickych vrcholov grupy

I(G).

2.4 Polyova veta

Pretoze vo vacSine pripadov pri aplikacii enumerac¢nej Polyovej vety potrebujeme len variant s
jednou premennou a pretoze v tomto pripade sa Polyova veta chape omnoho Tahsie, nebudeme
sa detailne zaoberat jej zovSeobecnenim na n-premennych, na istom mieste uvedieme pre tento
pripad jej formulaciu.

Zavedieme pojem mocninovej grupy, ktori budeme v dalSom pouzivat.

Nech A je grupa permutécii s mnozinou objektov X = {1,2,...,n} a nech B je konetna
grupa permutécii so spoc¢itatelnou mnozinou objektov Y, ktora obsahuje aspon dva prvky. Potom
mocninova grupa oznacend ako B“, méa mnozinu objektov mnozinu Y ¥ vsetkych zobrazeni z
mnoziny X do mnoziny Y. Permutéaciami grupy B st vietky usporiadané dvojice permutécii o z
A a (3 z B zapisovanych v tvare (o; 3). Obraz [ubovolnej funkcie f z YX pri aplikacii permutacie
(a; B) je uréeny formulou

((a; 8)f) (@) = Bf(ax)

pre vietky = € X.

Na to, aby sme sformulovali klasickd enumeraént Polyovu formulu, polozime B = F — identickéa
grupa na Y. UvaZujme teraz mocninovi grupu E# pésobiacu na mnozine YX. Nech w : Y —
{0,1,2,...} je zobrazenie, funkcia, ktorej obor hodnét je mnoZzina prirodzenych &isel a pre ktor
lw~t(k)| je konecna pre kazdé k, kde w~!(k) je mnozina prvkov z Y, ktoré sa zobrazia pri w na
prirodzené ¢islo k. Speciélne pre kazdé k =0,1,2,... nech

cr = |w™ (k)|

bude oznacovat pocet ,figar” vahy k.
Potom o elemente y z Y, pre ktory w(y) = k hovorime, Ze ma vahu k, a funkciu w nazyvame
vahovou funkciou. Dalej nech
o0
c(z) = Z cpa®
k=0

vzhladom na premenni x, ktory vycisluje elementy mnoziny Y v stlade s ich vahami, nazyvame
radom vy¢islujicim figary.
Vaha funkcie f z YX sa definuje formulou

w(f) =Y w(f(x)),

zeX

nie je taizké ukazaf, ze funkcie, patriace do jednej a tej istej orbity mocninovej grupy E4 maji rov-
naké vahy. (Uvedené tvrdenie vyplyva z nasledujicich vztahov a rovnosti: w(f) = > .y w(f(x));
w(g) = Yo x w(9(2)); 9(x) = £f(az) = flaw) — F(X) = g(X)). Z toho vypljva, 7e vahou w(F)
orbity F grupy E# je viha l'ubovolnej funkcie f z orbity F. Pretoze |w~!(k)| je prirodzené &islo
pre kazdé k = 0,1,2, ..., potom existuje len koneény pocet orbit kazdej vahy. Preto oznac¢ime Cj,
pocet orbit vahy k. Potom rad

k=0

vzhladom na premennid x nazyvame radom vycislujucim funkcie. Teraz moZeme sformulovat
zékladna vetu, ktord vyjadruje rad C(z) v terminoch cyklového indexu Z(A) a radu c(z). V
uvedenej formule Z(A, c(z)) je skratenym zépisom pre formulu Z (A4, ¢(z), c(z?), c(z?),...).
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Veta 2.4.1 (Enumeraéna Polyova veta) Rad C(x) vy¢islujiaci funkcie dostaneme pomocou
zédmeny v cyklovom indexe Z(A) namiesto kazdej premennej s;, radom c(x*), vyéislujiceho figiry.

Symbolicky:
’ ’ Clz) = Z(A, c(z))

alebo podrobnejsi tvar

C(x) = A" 121‘[ (2.4)

acA k=1

Poznamenavame, Ze tento vysledok sa pouziva tak castokrat, Zze namiesto ,Polyova enumeracna
veta” pri vycisleni grafov sa v stru¢nosti piSe spravidla ,,Polyova veta’”.

Dokaz. Nech ¢ je identickd permutacia na Y. Potom pre kazda permutéciu a € A a Tubovolné
k=0,1,2,... oznac¢ime p(a, k) pocet funkcii vahy k, pevnych vzhladom na permutaciu («;e). Ak
ohrani¢ime pre kazdé k posobnost mocninovej grupy E4 na mnozinu funkcii vahy k a aplikujeme
ohranicenu formu Burnsidovej lemy, dostavame

Ce =417 Y wlas k).

acA

Z toho vyplyva, ze

ZIAI 'S ol k)t

a€cA

Ak zamenime poradie sumacie, dostavame

z) = |A]™! Z Z(p(a,k)xk. (2.5)

a€A k=0

Rad >°;2, ¢(a, k)z* vyéisluje vietky funkcie, pevné vzhladom na permutdciu (o;e). Potom
((a;e)f)(x) = ef(ax). Takym sposobom pre vietky x musi platit rovnost f(az) = f(x), t.]
funkcia musi byt konStantou na disjunktnych cykloch permutéicie . Obratene, vSetky funkcie
konstantné na cykloch permutacie o st pevné vzhladom na permutéciu («o;¢).

Nech z, je cyklus dlzky r v permutécii o.. Ak funkcia zobrazuje elementy cyklu z, na jeden z ¢,
elementov mnoziny Y, ktory mé vahu k, potom cyklus z, déva vklad do vahy funkcie f hodnotu
r - k. Potom Tahko vidiet, ze pre kazdé k koeficient pri z"* v rade

oo
z") = E ™
k=0

je rovny poctu sposobov, ktorymi mozeme uréit funkciu f na prvkoch cyklu z, tak, aby bola
pevna vzhladom na permutéciu («;e) a aby vklad do vahy w(f) bol r - k. Odtial vyplyva, Ze rad
[c(x7)]7r (@) vyéisluje v stlade s ich vahami rozne sposoby urcenia funkeii, ktoré s konstantné na
vietkych cykloch dizky r permutacie a.

Uvazujme v8etky cykly permutacie «, mozeme vyjadrit rad pre funkcie, ktoré st konstantné

na cykloch v tvare saéinu
Zgﬁ o, k) H )7+, (2.6)
k=
Teraz (2.4) dostavame z (2.5) a (2.6) a definicie Z(A). O

Priklad 2.4.1 Na ilustraciu Polyovej vety uvazujeme ,problém nahrdelnika”. Na obrazku 2.5 st
dva nahrdelniky, kazdy so $tyrmi kamenimi, pri¢om kazdy z kamenov je oznaceny ¢islom z mnoziny
X ={1,2,3,4}. Dva kamene nahrdelnika s ¢ierne a dva biele.

Je zrejmé, ze pocet oznacenych nahrdelnikov so §tyrmi kamenimi, obsahujtci len kamene bielej
alebo Ciernej farby, je rovny 48. Grupa automorfizmov pre kruznicu dizky 4 ma 8 prvkov, teda
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Obrazok 2.5: Néhrdelniky so Styrmi kamenmi.

kruZnica, podla znamej formuly mé 3 rozne oznacenia. Podet roznych zafarbeni oznacenej kruznice
dlzky 4 dvomi farbami je rovny 2. Teda celkovy pocet oznacenych nahrdelnikov so 4 kameiimi,
ktoré mozu byt biele alebo &ierne, je rovny 3 - 24 = 48.

Na to aby sme dostali po¢et neoznadenych nahrdelnikov, je treba stotoznit také nahrdel-
niky, ako st na obrézku 2.5, t.j. ked jeden nahrdelnik z druhého dostaneme otocenim alebo
preklopenim. Ak polozime Y = {a,b}, potom kazda funkcia f : X — Y zodpoveda niek-
torému oznafenému nahrdelniku, v ktorom kamienok s ¢islom k& ma .farbu” f(k). Takymto
sposobom nahrdelnik reprezentovany funkciou f ma |f~'(a)| kamehov jednej farby a f=1(b)
kameiiov druhej farby. Nech teraz identickd grupa Es po6sobi na mnozinu Y. Dva nahrdel-
niky buda rovnaké po vynechani znadiek v tom pripade, ak zodpovedajuce funkcie patria k
jednej orbite mocninovej grupy EQD 4. D4 — oznacuje diedrélnu grupu, v nasom pripade ju tvo-
ria permutacie: (1)(2)(3)(4); (1)(3)(24); (13)(2)(4); (12)(34); (13)(24); (14)(23); (1234); (1432). Ak
poloZzime w(a) = 0 a w(b) = 1, potom 1 + z je vy¢islujucim radom pre Y a funkcia vahy k bude
predstavovat nahrdelnik s 4 — k bielymi a k ¢lernymi kamenimi. Z toho vyplyva, Ze enumeraény rad
pre funkcie C(z) v tomto pripade vyéisluje neoznacené nahrdelniky a koeficient pri z* je rovny
poctu takych nahrdelnikov s k ¢iernymi kamenimi. Potom z formuly uvedenej v Polyovej vete
dostavame:

1
Z(Dy) = 3 (34114—23%32-1—3534-234)
a teda
1 4 2 2 2\2 4
Cla) = Z(Dw1+2) = g (L+2)* + 201 +2)*(1+2%) +3(1+2%)° +2(1 +2Y),

ak splnime technické detaily, suvisiace so zamenou vy¢islujuceho radu pre figary 1+ do cyklového
indexu Z(Dy), tak dostavame

C(x) =1+ +22% + 23 + 2.

Sest neoznacenych nahrdelnikov so Styrmi kameﬁmi dvoch farieb st uvedené na obrazku 2.6
Celkovy pocet neoznacenych nahrdelnikov je rovny C(1), a teda to znameni, ze celkovy pocet

njnjuininin

Obrazok 2.6: Vgetky nahrdelniky neoznacené o dvoch farbach.

moZzeme dostat pomocou vy¢islenia hodnoty radu 1 + x pre figary, pri x = 1 a zamenou kazdej
premennej s v cyklovom indexe Z(Dy) prirodzenym ¢islom 2.
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Vo vSeobecnosti, ked rad c¢(x) vy€islujuci figiry je mnoho¢len, potom rad C(z) vyéislujaci
funkcie je taktiez mnoho¢len. V tomto pripade pocet orbit funkcii (neberieme do tvahy ich vahy)
jerovny C(1), dostavame tak, Ze namiesto kazdej premennej do zodpovedajiceho cyklového indexu
dosadime ¢(1).

Priklad 2.4.2 Mame dany $tvorsten, zobrazeny na obrazku 2.7 (so stenami oznadenymi ¢islami
1,2,3,4) a pytame sa kolkymi sposobmi sa daju zafarbit jeho steny bielou a ¢iernou farbou tak, Ze
kazda stena je zafarben4 cela bud na erno alebo na bielo. Problém by bol velmi jednoduchy, ak
by boli steny geometricky rozlisitelné. Sposoby zafarbenia by potom odpovedali variaciam stvrtej
triedy (steny {1,2,3,4}) z dvoch prvkov ({biela farba, ¢ierna farba}) s opakovanim, ich celkovy
pocet je rovny 2*. Avsak v danom Stvorstene st steny 1,2 a 3 zhodné, teda Stvorsten je symetricky
pri otoceni 120° okolo vertikalnej osi, ¢o ma za nasledok, ze odlisnym zafarbenim ziskame objekty,
ktoré st nerozliSitelné. Poznamenavame, %Ze A — grupa symetrii daného utvaru, v naom pripade

Obrazok 2.7: Stvorsten.

Stvorstenu pozostava z troch permutéacii

ar = (1)(2)3)4)

ay = (123)(4)
as = (132)(4).
Potom Z(A;s1,s2,53) = 3[s1 + 2s1s3], rad c(x) = 1 + 2 vyd&isluje figiry. Potom

1
Oz) = 3 [(1+2)* +2(1+2)(1 +2°)]
je vy¢islujuci rad pre funkcie. Pocet orbit je rovny

c(1) = é[24+2~2-2} =8=7(4;2).

Désledok 2.4.1 Poéet orbit, uréenych mocninovou grupou EZ, dostavame tak, 7e kazda pre-

mennt v Z(A) zamenime m, teda
N(EA

m

) = Z(A,m)
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Pre pripad m premennych uvedieme len formuldciu Polyovej vety. Dokaz vety je analogicky
ako v pripade jednej premennej. Nech N je mnozina prirodzenych ¢isel a N = N x N x --- x N
je kartezidnsky sucin m kopii mnoziny N. Tak ako v pripade jednej premennej, mnozina objektov
mocninovej grupy E4 je mnozina YX a vahova funkcia w : Y — N ma taka vlastnost, Ze pre
kazdé z € N™ plati, ze |w~!(z)| je koneéné prirodzené &islo. Aditivnost podla komponentov v
N™, vaha funkcie z Y a orbity indukované grupou E4 sa definuju tak, ako v pripade jednej
premenne;j.

Koeficient pri z*,z5?, ...,z v rade c(z1,...,%n), ktory vycisluje figiry, je podla definicie
rovny w” (71, ..., 7). Koeficient pri %', ..., xtm v rade C(21, ..., %), ktory vyéisluje funkcie, je
rovny poctu orbit vahy (t1,...,tmn). Ak Z(A,c(z1,...,2m)) oznaduje rad, ktory dostaneme po-
mocou zameny kazdej premennej s, v Z(A) radom c(x¥,...,zk ), potom vysledok, ktory udava
zov8eobecnena Polyova veta pre m premennych, mozeme sformulovat nasledujicim spésobom.

Veta 2.4.2 Nech c¢(z1, ..., z,,) je vy€islujuci rad pre figary mnoziny Y. Potom pre orbity funkcif
z Y, ktoré st uréené mnozinovou grupou E4, vy¢islujeme v stlade so svojimi vahami radom

C(1, oy m) = Z(A, c(21, .oy Tm))-

Priklad 2.4.3 Na ilustraciu uvedenej vety sa vratime k problému néhrdelnika. NaSou tlohou
bude najst vyéislujici rad pre nadhrdelnik so $tyrmi kamenimi a tromi pripustnymi farbami. Nech
Y = {a,b,c} a uvazujme Tubovolna funkciu f : X — Y ako vyjadrenie nahrdelnika s |f~(a)|
Cervenymi, |f~(b)| bielymi a | f~(¢)| modrymi kamenimi. Ak polozime w(a) = (0,0), w(b) = (1,0)
a w(c) = (0,1), potom
w(f) = w(f(x)
zeX
pri¢om w(f) je usporiadana dvojica, ktorej prva siradnica je rovna poc¢tu bielych kametiov a druha
stradnica po¢tu modrych kamefiov. Pocet ¢ervenych kamenov je prirodzene rovny rozdielu medzi
| X | a po¢tom bielych a modrych kametiov. Ten, v stlade s definiciou vy¢islujaceho radu pre figary,
je c(x1,22) = 14+ 21 + 2. Z toho vyplyva, Ze na zaklade vety ma vy&islujuci rad pre nahrdelniky
tvar:
C(:L‘l, IQ) = Z(D4, 1 + 21+ IQ)

pricom Z(Dy) = é(s‘% +25%59+3s2+2s4), tak po uskutoéneni predpisanych operacif pri substittcif
vyéislujiceho radu pre figiry do cyklového indexu Z(D,) napokon dostavame

C(x1,m2) = 1+ 1 + 227 + 23 + 2 + 2o + 2235 + 23 + 25+

2 3 2 3 2,2
+ 2z129 + 22722 + TIT2 + 22125 + 2125 + 22775,

Poznamenavame, Ze sucet koeficientov mnohoclena C(x1, x2) moéZeme lahko vy¢islit tak, Ze najdeme
hodnotu Z(Dy,3) = 21, ¢o je to isté, ako predchadzajuci vyraz pre C(1,1).

2.5 Rad 1+ z - Specalny rad pre figary

Existuje pomerne prirodzeny dosledok Polyovej vety, ktory zdoraziuje dolezitost koeficientov mno-
hoclena, ktory dostaneme ako vysledok zameny radu 1+ z do cyklového indexu T'ubovolnej grupy
permutacie A. Toto tvrdenie sa Tahko dokazuje, je v8ak velmi délezité, pretoze kazda vycislujica
formula, ktord dostaneme z Polyovej vety pouZitim radu 1 + x ako radu pre figiury, predstavuje
Specialny pripad tohto désledku. Spomedzi takych vysledkov to budu formuly pre vypocet poctu
roznych tried grafov.

Uréime vyznam tohto vysledku pre pét $pecidlnych grip, ktorych cyklové indexy st nam uz
dobré zname. Podobne ako pre prvky definujeme A-ekvivalentnost dvoch r-podmnozin mnoziny
X.

Mnoziny S, S’ r-podmnoziny mnoziny X, nzyvame A-ekvivalentné, ak pre niektort permutaciu
a € A plati aS = 5.
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Dosledok 2.5.1 (Polyovej vety) Koeficient priz” v Z(A, 14x) je rovny poc¢tu A-ekvivalentnych
tried r-podmnoZzin mnoziny X.

Dokaz. V rade 1 + z, ktory vydéisluje figiry, s¢itanec 1 = 2" modzZeme interpretovat ako
nepritomnost objektu z X a sé¢itanec x = x' ako pritomnost tohto objektu z X. Preto 2™ oznacuje,
ze r-roznych objektov, ktoré tvoria r-mnozinu, st v mnozine X. Tvrdenie teraz bezprostredne
vyplyva z Polyovej vety a koeficient pri " oznacuje pocet orbit vahy r. O

Poznamenavame, Ze ak pouzijeme uvedeny dosledok, tak vidime, Ze grupa permutécii A je
tranzitivna prave vtedy, ked koeficient pri © v Z(A,1+ z) je rovny 1. Okrem toho, koefi-
cienty tohto mnohoclena, ktoré stoja rovnako od koncov, st si vzdy rovné, pretoze pocet tried
A-ekvivalentnych r-podmnozin je totoZny s po¢tom A-ekvivalentnych (n — r)-podmnozin.

V dalgej ¢asti uvedieme niekol'ko uZito¢nych pozndmok k piatim najznamejsim a ¢asto pouZi-
vanym permuta¢nym grupam a potom uskutocnime substiticiu radu 14z do prislusnych cyklovych
indexov.

Symetricka grupa S,, na mnozine {1,2,...,n} sa sklada zo vsetkych n! permutacii.

Alternujicu grupu A,, tvoria vietky parne permutacie na mnozine {1,2,...,n}. Permutacia je
parna (neparna), ak jej rozklad na suéin transpozicii (cyklov dizky 2) obsahuje parny (neparny
pocet) ¢initelov. Vietky tieto permutacie tvoria grupu A, a ich celkovy pocet je rovny 2. Poz-
namenavame, ze kazdi permuticiu mozeme napisat v tvare sucinu transpozicii.

Cyklicka grupa C, je generovana permutaciou (12...n) a obsahuje n prvkov.

Diedralna grupa D,, obsahuje 2n prvkov a je generovana permutéaciami (12...n) a (In)(2(n —
1))(3(n — 2))....

Identickd grupa F,, obsahuje jeden prvok (1)(2)...(n).

Cyklové indexy uvazovanych permutacnych grap predstavuji nasledujice mnohoéleny:

2(50) = 5 S°nG) T st

() k=1

Z(An) = Z(Sn) + Z(Sn7 81, —S52,53, —S54, )

Z2(Cp) =07t ok)sy"

k|n
. %slsénfl)/z ak n je neparne
3 (sg/z + s%sg"_z)p) ak n je parne
Z(Ey) = st

Ak teraz uvazujeme symetricka grupu S, ako vyplyva z jej definicie, existuje permutacia
zobrazujica dand r-podmnozinu na ubovolnd int r-podmnozinu. Pre grupu A, plati uvedena
vlastnost, no treba poznamenat, Ze pozadované zobrazenie uskuto¢iiuje parna permutécia. Nasle-
dujice dve formuly méZeme ziskat pomocou trividlnej substittcie dvojélena 1 + z do zodpoveda-
jacich cyklovych indexov prislusnych grup:

Z(Sp,1+2)=1+x+2>+...+2"
Z(Ap 1 +2) =14z +2>+ .. +a"

Identicka grupa prirodzene indukuje binomické koeficienty.

Z(En, 1+ 1) = zn: (:) o

r=0
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S cyklickou a diedralnou grupou je situécia zlozitejsia, ak jednoduchym spo6sobom uskutoénime
formalnu substiticiu dvojélena 14z namiesto premennej s;, do formuly pre cyklovy index cyklickej
grupy, dostdvame

Z(Cpl+a) =n"" Y o(k)(1+ k)",

k|n
Rovnako podobnou zamenou do formuly pre cyklovy index diedréalnej grupy D,

~1)/2 . .
%slsgn )/ ak n je neparne

1 (33/2 + 5%3(2"_2)/2> ak n je parne

Dostévame po formaélnej stranke menej elegantny vztah. Mechanicky tito formulu nebudeme
vyjadrovat, ale treba poznamenat, Ze sme sa s nou uz stretli v pripade, ked sme riegili nahrdelnik
pre n = 4, kamene s dvoma farbami. Potom v pripade pre l'ubovolné n, zodpovedajici vysledok
uréuje pocet moznych dvojfarebnych nahrdelnikov s 4 kamenmi.

2.6 Vzajomne jednoznacné funkcie

7 logického hladiska sa ukazuje uzitoéné mat k dispozicii takt Polyova vetu, ktora bude vyjadrovat
pocet zvazenych navzajom jednoznaénych funkcii pomocou cyklovych indexov symetrickych a
alternujucich grip a vy¢cislujucich radov pre figury.

Tento vysledok moZze mat pouzitie pri ustanoveni vzajomného vztahu medzi generujucimi funk-
ciami napriklad stromov a zakorenych stromov i druhych tried grafov.

Nech napriklad c¢(z) je rad vy¢€islujici prvky niektorej mnoziny Y v stilade s ich vahami a nech
jednotkova grupa E méa Y ako mnozinu objektov. UvaZujme ohrani¢enie mocninovej grupy F4
na podmnozinu vetkych vzajomne jednozna¢nych funkcii z YX. Ak C(z) je vy¢&islujtci rad pre
orbity vytvorené zo vzajomne jednoznaénych funkcii a uréenych grupou E4, potom nasu tlohu
mozno sformulovat nasledujicim sposobom: ako mozno vyjadrit C(z) "na jazyku" ¢(z). Najprv
uvazujme pripad A = S,,; po tomto rieSeni mozno najst rieSenie vSeobecnej tilohy pomerne rychlo.
Poznamenavame, Ze orbity vzajomne jednoznaénych funkeif uréenych grupou E°» zodpovedajt n-
kombinaciam, alebo n-podmnozinam elementov z Y. Ak dodrzime Polyove oznacenie, tak namiesto
vyrazu pre Z(A,) — Z(S,) pouzijeme skrateny vyraz Z (A, — S,) a kladieme Z(Ay — Sp) = 1.

Veta 2.6.1 Generujuca funkcia C(z), ktora vyé€isluje vzajomne jednozna¢né funkcie zobrazujice
mnozinu z n vzdjomne rozmenitelnych prvkov do mnoZziny objektov s vy&islujicim radom pre
figary c(z), je dané funkciou

C(z) = Z(A,, — Sp,c(x)).

Prv nez dokdzeme vysSie uvedent vetu, najskor ukdzeme jej pouzitie na priklade pre n = 3.
Nech ¢(x) je generujuca funkcia pre mnozinu Y savislych grafov tak, Ze koeficient pri 2™ v ¢(x)
je rovny poc¢tu suvislych grafov radu m. Je zname, Ze niekolko prvych ¢lenov radu ¢(x) ma tvar

c(x) = x4 2% 4 223 + 621 + 112° + 1122° 4 ..

Nech C(z) je generujuca funkcia pre grafy, ktoré maju prave tri komponenty savislosti, pri¢om
vietky tri komponenty stvislosti st v grafe rozne. UvaZujme mocninovi grupu E°% v mnoZine
objektov YX. V tomto pripade orbity vzajomne jednoznaénych funkcii, definovanych grupou E3,
zodpovedaji grafom vy¢islenych funkciou C'(x). Okrem toho vaha kazdej orbity je rovné radu toho
grafu, ktory zodpoveda tejto orbite.

Formula pre cyklovy index Z(As — S3) je urcené formulou

1
Z(S3;51,—52,53) = g(s‘;’ — 35182 + 253)
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Obrazok 2.8: Vsetky suvislé grafy radov 1,2,3,4.

lebo Z(A,) = Z(S,) + Z(Sy; 51, =52, 83, —S4, ...). Preto ak dosadime c(z*) namiesto kazdej pre-
mennej s do tejto formuly, dostavame niekol'ko prvych ¢élenov radu C(z):

C(z) = 22° + 727 4 3428 + ...

Platnost koeficientov preverujeme tak, Ze zostrojime zodpovedajice grafy.

Doékaz. Na dokaz vztahu C(z) = Z(A, — Sy, c(z)) najskor pripominame, ze rad c(x)
vy¢isluje elementy niektorej mnoziny Y v stlade s ich vahami, a ze grupa E°» méa mnozinu Y X
ako mnozinu objektov. Z Polyovej vety vyplyva, Ze rad vy¢islujtci orbity vSetkych funkcii, ktoré
st uréené grupou ES", je prosto Z(S,,c(z)). Preto staci dokazat, ze rad Z(A,,c(x)) spoéitava
dvakrat tie orbit, ktoré sa skladaju zo vzédjomne jednoznaénych funkcii a vSetky ostatné zostavajuce
orbity len jeden krat.

Najskor poznamenéavame, %e ak funkcie vzajomne jednozna¢ne zobrazuji X na seba, potom
pocet orbit, ktoré tvoria vietky také funkcie uréené grupou E:'». je rovny 2. To ihned vyplyva z
nasledujiceho Tahko dokazujaceho faktu: dve vzajomne jednozna¢né funkcie sa nezhoduju v jednej
a tej istej orbite grupy EA~ prave vtedy, ked su obidve parne, alebo obidve neparne (chapeme
ich ako permutéacie mnoziny X). Takymto sposobom rad Z(A,, c¢(z)) spocitava dvakrat tie orbity
grupy E°r, ktoré sa skladaju zo vzajomne jednoznacnych funkcii. Dalej ukazeme, Ze orbity grupy
ES» skladajtice sa z funkcif, ktoré nie st vzajomne jednoznaéné, sa spocitavaju iba jeden krat.
Preto uvazujme niektora taku orbitu a dve funkcie v nej f a g. Potom existuje permutéacia o € S,
taka, Ze pre vietky @ € X plati rovnost f(z) = g(ax). Nevyhnutne treba dokazat, ze f a g patria
jednej a tej istej orbite grupy E4n.

V pripade parnej permutacie « to vyplyva z rovnosti f(x) = g(axz). V pripade nepérnej
permutéacie predpokladame, Ze « je neparna permutacia, pretoze funkcia f nie je vzajomne jed-
nozna¢né, potom pre niektoré zy a xo z X také, ze x; # xo, mame f(z1) = f(x2). Nech 3 je
permutacia, ktord zamieha x; a xo medzi sebou ostatné prvky nechava identické, t.j. z X. Pre-
toze (8 je transpozicia, potom je neparna permuticia. Potom a/f je parna permutécia a pre kazdé
r € X, f(x) = g(aBz). To znamena, 7e f a g patria jednej a tej istej orbite grupy E4», a teda
rad Z(A,,c(z)) spoéitava orbity grupy E4», a teda rad Z(A,,c(z)) spoéitava orbity grupy ES»,
skladajuce sa z funkcii, ktoré nie st vzajomne jednoznac¢né, prave jeden krat. O

V désledku, ktory uvadzame nizsie, uvazujeme vSeobecny pripad, v ktorom orbity vzéjomne
jednozna¢nych funkcii na n-objektoch definujeme nie symetrickou grupou S, ale I'ubovolnou
grupou stupiia n.

Dosledok 2.6.1 Generujtca funkcia C(x), ktora vy¢isluje vzajomne jednozna¢né funkcie, uréené
vyéislujicim radom pre figtiry ¢(x) a lubovolnou grupou permutacii A stupna n, je uréené formulou

n!

C(z) = WZ

(An, — Sh,c(x)).
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Dokaz. Pripominame, Ze c¢(z) vy¢isluje elementy mnoZiny Y v stlade s ich vahami, Ze
Z (A, — Sp,c(x)) vycisluje v stlade s ich vahami podmnoZiny mnoziny Y obsahujtce n prvkov.
Ako obycajne, E oznacuje identicki grupu s mnoZinou objektov Y a A oznacuje grupu per-
mutécii stupfia n s mnozinou objektov X. Uvazujme Tubovolnt n-podmnoZzinu Y; mnoZiny Y.
Nasou snahou je dokazat, zoberieme si za ciel ustanovit, Ze pocet orbit grupy E-, ohrani¢enej na
vzajomne jednoznacné funkcie v Y;X, je rovny %. No tento zéaver ihned vyplyva z ohranicenej

formy Burnsidovej lemy, pretoze v grupe E? jedinou permuticiou zanechavajicou identickou
Tubovol'nii vzajomne jednozna¢nt funkciu v Y¥ je identickd permutécia, ktora zanechéva identick-
ymi v8etkych n! takych funkcii. O

V aplikaciach tejto vety Gasto treba spocitat mnohocleny Z(A,, —S,,). Niekedy piseme Z (A —
Soo) namiesto Y o2 Z(A,, — Sy). Riordan odvodil nasledujicu formulu

- - 1f(xk)
Z(Ass — Soo, f()) = exp {Z(UH k;} :

k=1
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