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Úvod

Predložený text prednášky predstavuje elementárny úvod do teórie enumerácií grafových štruktúr.
Na mnohých miestach však poznamenávame, že uvedené prístupy možno aplikovať aj na iných
diskrétnych štruktúrach, ako sú grafové.

Teória enumerácií grafových objektov je pomerne búrlivo sa rozvíjajúca časť diskrétnej mate-
matiky.

Je známe, že nemálo úloh vo fyzike, chémii, biológii, ekonómii, štatistike a lingvistike sa trans-
formuje na určenie počtu grafových objektov istých vlastností. Niektoré z takých úloh boli už
dávnejšie vyriešené, iné zasa nie sú vyriešené do dnešných dní. Nájsť v explicitnej forme vyjadre-
nie pre počet zodpovedajúcich objektov sa nám spravidla vždy nepodarí. No na druhej strane, ak
použijeme známe enumeračné vety a metódy, môžeme získať celý rad užitočných vzťahov medzi
číselnými charakteristikami skúmaných objektov a odhadnúť rádovo niektoré potrebné parametre.

Pri príprave uvedeného textu prednášky veľký kus práce odviedli študenti Peter Kostolányi a
František Ďuriš, patrí im za to moje úprimné poďakovanie.

Bratislava 1. mája 2011



Kapitola 1

Enumerácia označených objektov

1.1 Počet spôsobov, ktorými môžeme označiť graf
Graf G rádu n sa skladá z konečnej neprázdnej množiny V = V (G), obsahujúcej n vrcholov
a množiny E obsahujúcej m neusporiadaných dvojíc rôznych vrcholov. Pri takejto definícii sa
automaticky vynechávajú slučky, násobné hrany a orientácia. Dvojica e = {u, v} vrcholov, patriaca
množine E, sa nazýva hranou grafu G a hovoríme, že hrana e spája vrcholy u a v. Vrcholy u a v
sa pritom nazývajú susedné; vrchol u a hrana e a taktiež aj vrchol v a hrana e sú incidentnými
navzájom. Graf s n vrcholmi a m hranami sa nazýva (n, m)-grafom.

v1 v2

v3v4

Obrázok 1.1: Graf so štyrmi vrcholmi a piatimi hranami.

V označenom grafe rádu n sa vrcholom pripisujú celé čísla od 1 po n. Napríklad graf zobrazený
na obrázku 1.1 môže byť označený šiestimi rôznymi spôsobmi, ktoré sú ukázané na obrázku 1.2.
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Obrázok 1.2: Šesť rôznych rozdelení značiek v grafe.

Takýmto spôsobom, dva označené grafy G1 a G2 pokladáme za rovnaké a nazývame izomorfné
práve vtedy, keď existuje vzájomne jednoznačné zobrazenie množiny V (G1) na množinu V (G2)
zachovávajúce nielen susednosť, ale aj rozdelenie značiek. Ľahko sa môžeme presvedčiť o tom,
že na obrázku 1.2 sú zobrazené všetky rôzne rozdelenia značiek grafu zobrazeného na obrázku s
číslom 1.1.
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Vznikajú dve prirodzené otázky. Prvá: „Koľko existuje označených grafov rádu n?” Druhá:
„Koľko existuje grafov rádu n?” Prvá otázka je natoľko ľahká, že ju môžeme riešiť ihneď. Druhá
otázka je omnoho ťažšia.

Na ľahkú otázku odpovieme tak, že nepatrne zovšeobecníme úlohu nasledujúcim spôsobom:
nájsť počet označených grafov s daným počtom vrcholov a hrán. Nech Gn(x) je mnohočlen, u
ktorého koeficient pri xk je rovný počtu označených grafov rádu n, ktoré majú rovno k hrán.
Takýto mnohočlen spravidla nazývame generujúca funkcia pre označené grafy s daným počtom
vrcholov a hrán. Ak máme množinu V s n-vrcholmi, potom existuje

(
n
2

)
rôznych neusporiadaných

dvojíc týchto vrcholov. V každom označenom grafe s množinou vrcholov V je ľubovoľná dvojica
vrcholov buď susedná buď nie je susedná. Z toho vyplýva, že počet označených grafov s k hranami
je rovný

((n
2)
k

)
.

Veta 1.1.1 Generujúca funkcia Gn(x) pre označené grafy rádu n je určená nasledujúcim vzťahom:

Gn(x) =
m∑

k=0

(
m

k

)
xk = (1 + x)m, kde m =

(
n

2

)
. (1.1)

Pretože Gn(x) = (1 + x)m a počet Gn označených grafov rádu n je rovný Gn(1), platí

Gn = 2(
n
2). (1.2)

Pre n = 3 túto formulu môžeme ilustrovať obrázkom
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Obrázok 1.3: Osem označených grafov tretieho rádu.

Takýmto spôsobom existuje osem označených grafov rádu 3 a len štyri neoznačené grafy rádu
3. Existuje 64 označených grafov rádu 4 a len 11 neoznačených grafov rádu 4.

Teda vzniká otázka: „Koľkými spôsobmi môžeme označiť daný graf?” Aby sme odpovedali
na túto otázku, musíme uvažovať symetrie, alebo automorfizmy grafu. Vzájomne jednoznačné
zobrazenie α množiny V (G1) na množinu V (G2) zachovávajúce susednosť spravidla nazývame
izomorfizmom. Ak G1 = G2 = G, potom α je automorfizmom grafu G. Množinu všetkých
automorfizmov grafu G označujeme Γ(G) a vieme, že tvorí grupu, ktorú nazývame grupou grafu
G. Takýmto spôsobom prvky grupy Γ(G) sú permutácie pôsobiace na množine V . Napríklad
graf G zobrazený na obrázku 1.1 má práve štyri automorfizmy. To, že Γ(G) obsahuje nasledujúce
permutácie, zapisujeme spravidla v tvare cyklov:

(v1)(v2)(v3)(v4), (v1)(v3)(v2v4), (v1v3)(v2)(v4), (v1v3v2v4).

Nech s(G) = |Γ(G)| je rád grupy Γ(G), označujúci počet symetrii grafu G. Potom odpoveď na
úlohu o počte rozdelení značiek, ktorú sme formulovali vyššie je obsiahnutá v nasledujúcej vete.

Veta 1.1.2 Počet spôsobov rozdelenia značiek v danom grafe G rádu n je rovný

l(G) =
n!

s(G)
. (1.3)

Dôkaz. Dôkaz tohto tvrdenia vyplýva z nasledujúcej skutočnosti. Ak máme dané jedno pevné
označenie, tak potom z neho môžeme získať s(G) rovnakých označení, inými slovami povedané
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Obrázok 1.4: 11 neoznačených grafov štvrtého rádu.

indikuje nám s(G) rovnakých označení. Všetkých označení je n!, a teda rôznych označení je
n!/s(G). V prípade grafu zobrazeného na obrázku 1.1 máme šesť rôznych označení. �

Hoci uvedená veta je sformulovaná len pre grafy, podobné tvrdenia sú platné pre ľubovoľné
konečné diskrétne štruktúry s danými grupami automorfizmov, napríklad také diskrétne štruktúry,
ako sú zakorenené grafy, orientované grafy, atď.

Orientovaný graf, alebo orgraf D rádu n sa skladá z konečnej neprázdnej množiny V rôznych
objektov, ktoré sa nazývajú vrcholmi spolu so zadanou množinou X, obsahujúcou q usporiadaných
dvojíc rôznych vrcholov z množiny V . Dvojica x = (u, v) bodov z množiny X sa nazýva orien-
tovanou hranou grafu D a hovoríme, že vrchol u je susedný s vrcholom v; vrchol u a hrana x
sú incidentné navzájom, taktiež aj vrchol v a hrana x. Vonkajší polostupeň vrchola u sa nazýva
počet orientovaných hrán vychádzajúcich z vrchola u; vnútorný polostupeň vrchola u je počet ori-
entovaných hrán, ktoré do vrchola u vchádzajú. Diagramy všetkých orientovaných neoznačených
grafov rádu 3 sú zobrazené na obrázku 1.5.

Tak ako aj v prípade grafov pracujeme s diagramami orientovaných grafov, tak ako aj so
samotnými orientovanými grafmi.

V označených orientovaných grafoch rádu n vrcholom pripisujeme celé čísla od 1 po n a grupa
grafu D, označovaná Γ(D), sa skladá zo všetkých permutácií množiny vrcholov V (D) orientovaného
grafu D zachovávajúcich susednosť. Pretože počet označených orientovaných grafov rádu n, ktoré
majú práve k-hrán je rovný

(
n(n−1)

k

)
, dostávame nasledujúce výsledky zodpovedajúce formuliam

(1.1) a (1.2).

Veta 1.1.3 Generujúca funkcia Dn(x) pre označené orientované grafy rádu n je daná vzťahom

Dn(x) =
n(n−1)∑

k=0

(
n(n− 1)

k

)
xk = (1 + x)n(n−1). (1.4)

Je zrejmé, že
Dn(x) = G2

n(x), (1.5)

pretože Dn(1) = 2n(n−1) = G2
n(1).

V kruhovom turnaji je daný počet hráčov, ktorí hrajú hru, ktorej pravidlá nepripúšťajú ako
výsledok remízu a ľubovoľní hráči sa striedajú v zápase práve jeden raz, a len jeden z nich sa stáva
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Obrázok 1.5: 16 orientovaných neoznačených grafov rádu 3.

víťaz. Z uvedeného vyplýva, že turnaj predstavuje orientovaný graf, v ktorom je každá dvojica
rôznych vrcholov spojená len jednou orientovanou hranou. Zakončíme tento paragraf poznámkou,
že počet označených turnajov rádu n je práve 2(n

2), t.j. taký, ako aj počet označených grafov
určených formulou (1.2). Toto pozorovanie sa potvrdzuje pre n = 3 na obrázku 1.6.
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Obrázok 1.6: Osem označených turnajov tretieho rádu.

Okrem toho, prirodzený vzťah medzi týmito dvoma triedami grafov môžeme ukázať tak, že
každý označený turnaj zodpovedá tomu označenému grafu, v ktorom vrcholy so značkami i a j sú
susedné práve vtedy, keď i < j a orientovaná hrana (i, j) sa vyskytuje v turnaji.

1.2 Súvislé grafy
Súvislým grafom nazývame graf, v ktorom sú ľubovoľné dva rôzne vrcholy spojené cestou. Počet
označených súvislých grafov rádu 4 môžeme vyčísliť triviálnym spôsobom, ak formulu (1.3) ap-
likujeme na každý zo súvislých grafov.

Rády grúp týchto grafov, počítame od ľava do prava, sú rovné 2; 4; 2; 8; 4; 24. Preto z formuly
(1.3) vyplýva, že počet označených súvislých grafov štvrtého rádu je rovný 38. Tento výsledok
nedáva žiadny smer, ktorý by pomohol násť formulu pre počet Cn súvislých označených grafov
rádu n. Na to, aby sme dosiahli tento cieľ, sú potrebné niektoré definície.

Podgraf H grafu G má V (H) ⊆ V (G) a E(H) ⊆ E(G). Komponent grafu predstavuje max-
imálny súvislý podgraf. Graf s koreňom (alebo zakorenený graf) má jeden oddelený vrchol, ktorý
nazývame koreň. Dva zakorenené grafy nazveme izomorfné, ak existuje vzájomne jednoznačné
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Obrázok 1.7: Šesť označených súvislých grafov štvrtého rádu s počtami svojich symetrií.

zobrazenie množiny vrcholov jedného grafu na množinu vrcholov druhého grafu, ktoré zachováva
nielen susednosť, ale aj korene. Analogické požiadavky sa kladú aj pri opísaní zakorenených
označených grafov. Tieto pojmy môžeme teraz použiť na dosiahnutie nasledujúcej rekurzívnej
formuly.

Veta 1.2.1 Počet Cn súvislých označených grafov vyhovuje vzťahu:

Cn = 2(n
2) − 1

n

n−1∑
k=1

k

(
n

k

)
2(n−k

2 )Ck. (1.6)

Na to, aby sme dokázali (1.6) poznamenávame, že ak v označenom grafe urobíme koreňmi rôzne
vrcholy, potom dostávame rôzne zakorenené označené grafy. Z toho vyplýva, že počet zakorenených
označených grafov rádu n je rovný nGn. Počet zakorenených grafov rádu n, u ktorých sa koreň
nachádza v komponente obsahujúcej práve k vrcholov je rovný kCk

(
n
k

)
Gn−k. Ak spočítame tieto

súčiny podľa k od 1 po n− 1, opäť dostávame výraz pre počet zakorenených označených grafov,
a to nesúvislých, t.j.

∑n−1
k=1 k

(
n
k

)
CkGn−k.

Hodnoty pre malé hodnoty n sú uvedené v nasledujúcej tabuľke:

n 1 2 3 4 5 6 7 8 9
Cn 1 1 4 38 728 26704 1866256 251548592 66296291072

Tabuľka 1.1: Počty označených súvislých grafov rádu n pre n = 1, 9.

V ďalších našich úvahách bude dôležité mať k dispozícii pojem exponenciálnej generujúcej
funkcie a mať zreteli niekoľko vlastností takej funkcie. Zavedieme tieto pojmy a použijeme ich na
to, aby sme získali iný tvar pre výpočet, určenie počtu súvislých označených grafov.

Pre každé k = 1, 2, 3, . . . označíme ak počet spôsobov, ktorými môžeme označiť všetky grafy
rádu k, ktoré majú niektorú vlastnosť P (a). (V prípade, že k = 0, uvažujeme aj tzv. prázdny
graf, t.j. graf bez vrcholov a hrán). Potom formálny mocninový rad

a(x) =
∞∑

k=1

ak
xk

k!
(1.7)

nazývame exponenciálnou generujúcou funkciou pre triedu všetkých grafov, ktoré uvažujeme v
danom prípade.

Predpokladajme taktiež, že

b(x) =
∞∑

k=1

bk
xk

k!
(1.8)

je iná exponenciálna generujúca funkcia pre triedu grafov vyhovujúcich vlastnosti P (b).
Nasledujúca lema dáva užitočnú interpretáciu koeficientov súčinu a(x)b(x) týchto dvoch generu-

júcich funkcií.
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Nech a(x)b(x) = c(x), v prípade, že pripustíme aj prázdny graf, pre koeficient cn v exponen-
ciálnej generujúcej funkcii c(x) platí:

cn = a0bn +
(

n

1

)
a1bn−1 + . . . +

(
n

k

)
akbn−k + . . . + anb0.

Lema 1.2.1 (O spočítavaní označených grafov) Koeficient pri xk/k! v a(x)b(x) je rovný poč-
tu usporiadaných dvojíc (G1, G2) dvoch disjunktných grafov, G1 má vlastnosť P (a), G2 má vlast-
nosť P (b); k je počet vrcholov v G1 ∪ G2 a značky od 1 po k (alebo od 0 po k) sú rozdelené na
grafe G1 ∪G2.

Na ilustráciu tejto lemy zavedieme exponenciálnu generujúcu funkciu C(x) pre označené súvislé
grafy:

C(x) =
∞∑

k=1

Ck
xk

k!
. (1.9)

Potom C(x)C(x) je generujúca funkcia pre usporiadané dvojice označených súvislých grafov. Ak
predelíme tento rad číslom 2, dostávame exponenciálnu generujúcu funkciu pre označené grafy,
ktoré majú práve dva komponenty súvislosti. Analogicky, rad Cn(x)/n! má pri xk/k! koeficient
rovný počtu označených grafov rádu k, obsahujúcich práve n komponentov súvislosti. Ak G(x)
označíme exponenciálnu generujúcu funkciu pre označené grafy, potom

G(x) =
∞∑

n=1

Cn(x)
n!

. (1.10)

Takýmto spôsobom dostávame nasledujúci exponenciálny vzťah medzi príslušnými generujúcimi
funkciami G(x) a C(x).

Veta 1.2.2 Exponenciálne generujúce funkcie G(x) a C(x) pre označené grafy a označené súvislé
grafy vyhovujú nasledujúcemu vzťahu:

1 + G(x) = eC(x). (1.11)

Poznamenávame, že (1.11) platí aj pre iné triedy grafov, napr. multigrafy. Ďalej si treba uvedomiť,
že číslo 1 vystupuje v rovnosti (1.11) z toho dôvodu, že vo vzťahu (1.10) neuvažujeme prázdny
graf. Ďalej upozorňujeme, že z literatúry je známy výsledok autorov J. Riordana a C. L. Mallowsa
pre rekurentný výpočet Cn – počtu súvislých označených n-vrcholových grafov:

Cn =
n−1∑
k=1

(
n− 2
k − 1

)
(2k − 1)CkCn−k. (1.12)

Okrem toho je zrejmé, že ak je známa exponenciálna generujúca funkcia pre niektorú triedu grafov,
potom exponenciálnu generujúcu funkciu pre zodpovedajúcu triedu súvislých grafov dostaneme
tak, že formálne logaritmujeme prvý rad presne tak, ako v prípade (1.11) pre triedu všetkých
grafov. To nám umožňuje sformulovať nasledujúci všeobecný výsledok.

Dôsledok 1.2.1 Ak
∞∑

m=0

Amxm = exp

( ∞∑
m=1

amxn

)
,

potom pre m ≥ 1

am = Am − 1
m

∞∑
k=1

k

(
n

k

)
akAm−k. (1.13)
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1.3 Bloky
Vynechaním vrchola v z grafu G získavame podgraf G − v grafu G, ktorý sa skladá zo všetkých
vrcholov grafu G, okrem vrchola v a všetkých hrán grafu neincidujúcich s vrcholom v. Artikuláciou
grafu sa nazýva taký vrchol grafu, vynechaním ktorého sa zväčší počet komponentov súvislosti.
Blokom alebo nerozdeliteľným grafom sa nazýva súvislý netriviálny graf, ktorý nemá artikulácie. V
tejto časti textu bude určený vzájomný vzťah medzi generujúcimi funkciami pre označené bloky a
označené súvislé grafy. Metóda, ktorú tu uplatníme je úspešná len v prípade označených objektov.

Nakoľko sa zaoberáme úlohou vyčíslenia označených objektov, budeme používať exponenciálne
generujúce funkcie. Nech B(x) označuje rad pre označené bloky, potom

B(x) =
∞∑

n=2

Bn
xn

n!
, (1.14)

kde Bn je počet blokov s n vrcholmi. Ako vyplýva z formuly pre určenie počtu spôsobov rozdelenia
značiek v grafe, je koeficient pri xn v B(x) rovný súčtu veličín prevrátených k rádom grúp blokov
s n-vrcholmi.

1

2

1

2 3

1 4

32

1 4

32

1 4

32

2 automorfizmy 6 automorfizmov 8 automorfizmov 4 automorfizmy 24 automorfizmov

Obrázok 1.8: Najmenšie bloky a počty ich symetrií.

Ak využijeme uvedený obrázok, tak pre B(x) získavame niekoľko prvých členov:

B(x) =
1
2
x2 +

1
6
x3 +

5
12

x4 + . . . =
1 · x2

2!
+

1 · x3

3!
+

10 · x4

4!
+ . . . . (1.15)

Našim cieľom je dokázať nasledujúcu vetu, kde C ′(x) a B′(x) označujú obyčajnú formálnu
deriváciu príslušných radov.

Veta 1.3.1 Exponenciálne generujúce funkcie B(x) a C(x) pre označené bloky a súvislé grafy
vyhovujú nasledujúcemu vzťahu:

lnC ′(x) = B′(xC ′(x)). (1.16)

Dôkaz. Na to, aby sme preverili túto identitu označíme R(x) exponenciálnu generujúcu funkciu
pre súvislé označené grafy s koreňom, takže koeficient pri xn je Rn/n!. Pretože Rn = nCn pre
všetky n, dostávame rovnosť

R(x) = xC ′(x). (1.17)

Označme Rp(x) exponenciálny rad pre súvislé označené grafy s koreňom, u ktorých práve p blokov
obsahuje koreň. Takýmto spôsobom R0(x) = x a súčasne platí, že

R(x) =
∞∑

p=0

Rp(x). (1.18)

Okrem toho si treba všimnúť, že R1(x) vyčísluje zakorenené súvislé grafy, u ktorých práve jeden
blok inciduje s koreňom. Predpokladajme, že S(x) je zodpovedajúci rad pre ten prípad, keď koreň
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nie je označený, t.j. koeficient pri xn/n! je rovný počtu zakorenených súvislých grafov s n + 1
vrcholmi, u ktorých je koreň neoznačený. Potom z lemy o spočítavaní označených grafov a z
vlastnosti násobenia exponenciálnych generujúcich funkcií označených grafov vyplýva, že R1(x) =
xS(x) a teda S(x) = R1(x)/x.

Na základe tej istej lemy rad
(R1(x)/x)p

p!
vyčísluje p-množiny takých grafov, pričom každý koreň nie je označený. Ak týchto p koreňov sto-
tožníme a zavedieme pre ne jednu značku, potom budeme mať vyčíslenie zakorenených označených
súvislých grafov, u ktorých práve p blokov inciduje s koreňom. Ustanovenie označeného koreňa
uskutočníme jednoducho prenásobením x. Teda dostávame

Rp(x) = x
(R1(x)/x)p

p!
. (1.19)

Kombináciou dvoch posledných formúl dostávame nasledujúci vzťah:

R(x) = x exp (R1(x)/x) . (1.20)

Teraz sa pokúsime vyjadriť R1(x) pomocou B(x) a R(x). Poznamenávame, že rad (R(x)/x)k−1

spočítava súbory z k − 1 zakorenených označených súvislých grafov, pričom v týchto súboroch je
k − 1 koreňov neoznačených a nie sú zahrnuté do počtu spočítavaných vrcholov. Inými slovami,
koeficient pri xn/n! v tomto rade predstavuje počet súborov, z ktorých každý sa skladá z k −
1 zakorenených grafov, pričom korene grafov sú neoznačené a celkový počet vrcholov v súbore
vrátane koreňov je rovný n + k − 1. Vynásobením tohto radu s Bk dostávame rad vyčíslujúci
zakorenené súvislé grafy, u ktorých koreň inciduje s jediným blokom a pre značky tohoto bloku
sme použili len čísla od 1 po k. Nakoniec, aby sme vzali do úvahy rozdelenie všetkých značiek,
treba aby sme všetko vynásobili xk/k!. Dostávame

k ·Bk (R(x)/x)k−1 · xk

k!
= x ·Bk(R(x))k−1/(k − 1)!.

Teda rad x ·Bk(R(x))k−1/(k−1)! vyčísluje zakorenené označené súvislé grafy, u ktorých s koreňom
inciduje práve jeden blok rádu k. Ak spočítame podľa k, dostávame vzťah

R1(x) = x

∞∑
k=2

Bk(R(x))k−1/(k − 1)!. (1.21)

Kombinovaním formúl (1.20) a (1.21) dostávame nasledujúci výsledok:

ln(R(x)/x) =
∞∑

k=2

Bk(R(x))k−1/(k − 1)!, (1.22)

čiže

lnC ′(x) =
∞∑

k=2

Bk(xC ′(x))k−1/(k − 1)! = B′(xC ′(x)).

�

Poznámka 1.3.1 Ak porovnávame koeficienty pri xn vo výrazoch, ktoré stoja v pravej a v ľavej
časti formuly (1.16) môžeme získať rekurzívnu formulu pre Bn. Koeficient pri xn v ľavej časti
formuly (1.16) môže byť vyjadrený pomocou koeficientov funkcie C(x). Použijeme vzťah (1.13) z
dôsledku uvedenom v časti 1.2. Kvôli vhodnosti označme ako h(n, k) koeficient pri xn v (xC ′(x))k.
Potom koeficient pri xn v pravej časti formuly (1.16) je

n∑
k=2

Bkh(n, k − 1)/(k − 1)!. (1.23)
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Z toho vyplýva, že počet Bn označených blokov môžeme vyjadriť pomocou počtu Cn označených
súvislých grafov, ak použijeme vzťah (1.16).

Opísaná metóda môže byť rozšírená bez veľkých ťažkostí tak, že miesto druhého parametra
môžeme zobrať počet hrán.

1.4 Eulerovské grafy
V tejto časti odvodíme generujúcu funkciu pre označené eulerovské grafy. Stupňom vrchola v
(označujeme ako deg v) v grafe G nazývame počet hrán grafu G, ktoré sú incidentné s vrcholom
v. Ak každý vrchol grafu G má párny stupeň, potom graf nazývame párny. Eulerovský graf je
súvislý párny graf.

Nech Wn je počet označených párnych grafov rádu n. Potom platí nasledujúca, tak trocha
neočakávaná, veta.

Veta 1.4.1 Počet označených párnych grafov rádu n je rovný počtu označených grafov rádu n−1,
teda

Wn = 2(n−1
2 ). (1.24)

Dôkaz. Aby sme dokázali tento výsledok, ustanovíme vzájomne jednoznačný vzťah medzi
týmito dvoma triedami grafov. Uvažujme ľubovoľný označený graf G rádu n − 1. Graf G musí
mať párny počet vrcholov nepárneho stupňa. Pridáme k nemu vrchol v, ktorému pripíšeme značku
n. Nakoniec z grafu G vyrobíme graf G′ tak, že spojíme vrchol v s každým vrcholom grafu G,
ktorý má nepárny stupeň. Tento graf G′ je označený párny graf rádu n. Ľahko vidieť, že opísaný
vzťah je vzájomne jednoznačný, a že každý označený párny graf rádu n môžeme dostať takýmto
spôsobom z niektorého grafu rádu n− 1. �

Aby sme dokázali formulu pre počet označených eulerovských grafov, využijeme generujúce
funkcie. Nech W (x) je exponenciálna generujúca funkcia pre označené párne grafy. Potom platí:

W (x) =
∞∑

n=1

2(n−1
2 ) xn

n!
(1.25)

Ďalej, nech Un je počet označených eulerovských grafov rádu n, takže

U(x) =
∞∑

n=1

Un
xn

n!
(1.26)

je zopovedajúca exponenciálna generujúca funkcia.

Veta 1.4.2 Exponenciálna generujúca funkcia U(x) pre označené eulerovské grafy vyhovuje vzťa-
hom

U(x) = ln (W (x) + 1) (1.27)

Un = 2(n−1
2 ) − 1

n

n−1∑
k=1

k

(
n

k

)
2(n−k−1

2 )Uk (1.28)

Formula (1.27) vyplýva z toho faktu, že ak je známa generujúca funkcia pre ľubovoľnú triedu
grafov, potom zodpovedajúcu generujúcu funkciu pre zodpovedajúce súvislé grafy dostaneme po-
mocou formálneho log n - logaritmovania prvého rádu. Rekurentný vzťah 1.60 je dôsledkom vlast-
ností uvedných tried grafov.

Pre niekoľko prvých členov radu U(x) máme rovnosť

U(x) = x +
x3

3!
+

3x4

4!
+

38x5

5!
+ . . . (1.29)
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Štyri eulerovské grafy rádu 5 sú zobrazené na nasledujúcom obrázku spolu s rádmi ich grúp. V
súlade so známou formulou, veličiny obrátené k týmto číslam musia dať v súčte číslo 38

5! , ktoré
predstavuje koeficient x5 v rade U(x), a ony ju skotočne dávajú.
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Ďalej budeme uvažovať ťažšiu úlohu; určiť počet označených eulerovských grafov s daným
počtom vrcholov a hrán. Pokúsime sa ustanoviť nasledujúci výsledok.

Veta 1.4.3 Mnohočlen wn(x), u ktorého koeficient pri xq je rovný počtu označných grafov, ktoré
majú n vrcholov párneho stupnňa a q hrán, je určený formulou

wn(x) =
1
2n

(1 + x)(
n
2)

n∑
k=0

(
n

k

)(
1− x

1 + x

)k(n−k)

(1.30)

Poznamenávame, že pre malé n platí: w1(x) = w2(x) = 1, w3(x) = 1 + x3, w4(x) = 1 + 4x3 + 3x4.

Dôkaz. Nech L je množina všetkých označených grafov rádu n, ktoré majú práve q hrán.
Uvažujme ľubovoľný graf G z množiny L a ľubovoľným spôsobom vynásobíme každú zo značiek
1, ..., n číslom +1 alebo -1. Pretože značky budú kladné alebo záporné, každý vrchol môžeme
uvažovať ako kladne nabitý alebo záporne nabitý v závislosti od znamienka značky. Každej hrane
potom pripisujeme číslo +1 alebo -1 rovné súčinu znamienok vrcholov incidujúcich s hranou.
Znamieko grafu G označujeme ako σ(G); definujeme ho ako súčin znamienok hrán. Je zrejmé, že
existuje 2n spôsobov, ktorými môžu byť pripísané znamienka značkám daného grafu.

Z druhej strany, predpokladajme, že znamienka sú už rozdelené po n - celým čislam, ktoré
slúžia ako značky; potom existuje

((n
2)
q

)
rôznych grafov s q hranami, a s takými n vrcholmi,

ktorých znamienka sú určené v súlade s daným rozdelením znamienok v množine značiek. Tieto
pojmy ilustrujeme na nasledujúcom obrázku

G1

•+2

•+1

•−3

•−4

+1
−1

?????????????

−1

+1

G2

•−4

•+1

•+2

•−3

−1

−1

−1

−1

Pretože σ(G) je znamienko súčinu kladných a záporných čisiel, zodpovedajúcich susedným
vrcholom, potom kladné vrcholy v tomto súčine môžeme vynechať. Takýmto spôsobom

σ(G) = (−1)a (1.31)

kde a je súčet stupňov zápornych vrcholov. Zdruhej strany, je zrejmé, že

σ(G) = (−1)b (1.32)
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kde b je počet záporných hrán grafu G, z ktorých každá spája záporný vrchol s kladným vrcholom.
Ďalej uvažujme súčet

∑
σ(G), kde súčet robíme podľa všetkých označných grafov G z množiny L

a vzhľadom na množinu S, ktorá sa skladá z 2n možných rozdelení čísel +1 a -1 podľa značiek,
ktoré su pripísané vrcholom. Ako vyplýva z predchadzajúcich výrazov, tento súčet môžeme zapísať
(vyjadriť) dvoma rôznymi spôsobmi

∑
G∈L

(∑
S

(−1)a

)
=
∑
S

(∑
G∈L

(−1)b

)
(1.33)

Najprv uvažujme ľavú časť vzťahu (1.33). Ak G je párny graf, potom a je párne číslo pri
ľubovoľných rozdeleniach z množiny S. Z toho vyplýva, že

∑
(−1)a = 2n a graf G prispieva

do ľavej časti rovnosti (1.33) vkladom 2n. Ak graf G nie je párny, potom aspoň jeden jeho vr-
chol v má nepárny stupeň. Podmnožina rozdelení z S, pre ktoré je značka vrchola v kladná, a
podmnožina rozdelení z S, pre ktoré je značka záporná, sú rovnakej mohutnosti a vklad do súčtu∑

S (−1)a je rôzny v znamienku a rovnaký čo do mohutnosti.
Z toho vyplýva, že graf G nič neprináša do ľavej časti rovnosti (1.33). Takýmto spôsobom,

ľavá časť vzťahu (1.33) je rovná 2n vzatá toľkokrát, koľko je párnych grafov v množine L.
Ďalej sa sústredíme na porovnanie pravej časti rovnosti (1.33) a uvažujeme také rozdelenie

z množiny S, pre ktoré je k vrcholov kladných a m = n − k záporných. Existuje
(
n
k

)
takýchto

rozdelení, a ak vyberieme l hrán, ktoré spájajú kladné vrcholy so zápornými, tak ho môžeme
uskutočniť

(
mk
l

)
rôznymi spôsobmi. Vynechanie q − l hrán môžeme uskutočniť((k

2

)
+
(
m
2

)
q − l

)
(1.34)

rôznymi spôsobmi. Ak sčítame podľa l od 0 po q, dostávame výraz
q∑

l=0

(−1)l

(
km

l

)(k(k−1)
2 + m(m−1)

2

q − l

)
(1.35)

ktorý sa pridáva do pravej časti vzťahu (1.33) s každým rozdelením z množiny S s danými k,m.
Tento výraz predstavuje samotný koeficient pri xq v mnohočlene

(1− x)km(1 + x)
k(k−1)

2 +
m(m−1)

2 . (1.36)

Preto pravá časť rovnosti (1.33) je koeficient pri xq v súčte

n∑
k=0

(
n

k

)
(1− x)km(1 + x)

k(k−1)
2 +

m(m−1)
2 (1.37)

a tento koeficient je rovný 2n vzatý toľkokrát, koľko je párnych grafov v L. Poznamenávame, že(
k

2

)
+
(

m

2

)
=
(

n

2

)
− k(n− k) (1.38)

A tak dostávame konečný výsledok: hľadaný počet párnych grafov je rovný koeficientu pri xq

vo výraze stojacemu v pravej časti formuly (1.30). �

Poznamenávame, že celkový počet označených párnych grafov je rovný číslu wn(1), ktoré dostá-
vame, ak v (1.30) kladieme x = 1 a prijímame dohodu, že y0 = 1 aj v prípade, že y = 0:

wn(1) = 2(n−1
2 ) (1.39)

ktorá je potvrdená formulou (1.30).
Môžeme použiť formulu (1.30), aby sme získali mnohočlen

w5(x) = 1 + 10x3 + 15x4 + 12x5 + 15x6 + 10x7 + x10 (1.40)
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a 64 označených párnych grafov, vyčíslených mnohočlenom w5(x), ktorý môžeme zostrojiť aj tak,
že výjdeme zo siedmych párnych označených grafov rádu 5, ktoré sme zobrazili na nasledujúcom
obrázku
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Párne grafy piateho rádu s počtami symetrii.

Exponenciálna generujúca funkcia w(x, y), vyčislujúca všetky označené párne grafy je určená
vzťahom

w(x, y) =
∞∑

n=1

wn(x)yn

n!
(1.41)

Aby sme dostali generujúcu funkciu u(x, y) pre označené eulerovské grafy, ktoré majú daný
počet vrcholov a hrán, treba prelogaritmovať rad 1 + w(x, y):

w(x, y) = ln (1 + w(x, y)) (1.42)

Táto poznámka vyplýva z variantu lemy pre násobenie exponenciálnych generujúich funkcii oz-
načených grafov pre prípad dvoch premenných.

1.5 Počet k-zafarbiteľných grafov
Zafarbiteľný graf sa skladá z grafu G s množinou vrcholov V a takého vzťahu ekvivalencie na V ,
že ľubovoľné dva susedné vrcholy nie sú ekvivalentné. Triedy ekvivalencie uvažujeme ako rôzne
farby a graf G sa nazýva k-zafarbiteľným podľa počtu tried ekvivalencie. Dva k-zafarbiteľné grafy
sú izomorfné, ak existuje vzájomne jednoznačné zobrazenie medzi ich množinami vrcholov, ktoré
zachováva susednosti aj farbu. Treba poznamenať, že farby nemusia byť dané vždy pevne, ale
môžu byť vzájomne zameniteľné. Teda daný graf môže byť k-zafarbiteľný mnohými spôsobmi.
Napríklad, všetky 3-zafarbenia niektorého označeného grafu G rádu 6 sú uvedené na obrázku 1.9,
kde písmená a, b, c označujú farby a prirodzené čísla označujú značky vrcholov. Poznamenávame,
že na danom obrázku sú farby dané pevne.

Nech n1, n2, . . . , nk sú celé kladné čísla, ktoré tvoria usporiadanú partíciu čísla n, tak že nám
platí:

k∑
i=1

ni = n. (1.43)

Ak označíme {n} ľubovoľnú usporiadanú partíciu čísla n, potom môžeme sformulovať nasledujúce
tvrdenie:
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Obrázok 1.9: Všetky 3-zafarbenia grafu.

Veta 1.5.1 Počet Cn(k) k-zafarbiteľných označených grafov rádu n je rovný

Cn(k) =
1
k!

∑
{n}

(
n

n1, . . . , nk

)
2(n2−

∑k
i=1 n2

i )/2. (1.44)

Dôkaz. Poznamenávame, že počet k-zafarbiteľných označených grafov rádu n, u ktorých farby
nie sú fixované, je rovný k!Cn(k). Preto uvažujme k fixovaných farieb. Každé riešenie {n} určuje
usporiadaný rozklad čísla n na k častí, a preto hľadáme počet označených grafov, u ktorých ni

vrcholov má i-tu farbu. Počet spôsobov, ktorými môžu byť vybrané farby pre vrcholy, je určený
polynomiálnym koeficientom (

n

n1, n2, . . . , nk

)
.

Je zrejmé, že existuje (
n

2

)
−

k∑
i=1

(
ni

2

)
(1.45)

dvojíc vrcholov, ktoré majú rôzne farby. Pretože každá taká dvojica môže byť buď susedná, alebo
nie susedná, potom keď umocníme 2 na výraz (1.45) a použijeme rovnosť (1.43), dostávame pre
celkový počet grafov s ni vrcholmi farby i práve ten výraz, ktorý sa nachádza pod znakom súčtu vo
formule (1.44). Ak spočítame podľa všetkých {n} dostávame súčin k!Cn(k). Tým je však formula
(1.44) dokázaná. �

Poznamenávame, že koeficient pri xq v mnohočlene

1
k!

∑
{n}

(
n

n1, . . . , nk

)
(1 + x)(n

2−
∑k

i=1 n2
i )/2

je rovný počtu k-zafarbiteľných označených (n, q)-grafov. Ak aplikujeme toto tvrdenie v prípade
n = 4, q = 5, k = 3, dostávame číslo 6, t.j. počet zafarbení grafu znázorneného na obrázku.

Nie je ťažké dostať pre Cn(k) rekurzívnu formulu

Cn(k) =
1
k

n−1∑
r=1

(
n

r

)
2r(n−r)Cr(k − 1), (1.46)

pričom preverenie formuly (1.46) možno uskutočniť tak, že vyjadríme generujúcu funkciu pre
Cn(k) pomocou generujúcej funkcie Cn(k−1). Hodnoty súčinu k!Cn(k) pre n ≤ 7 môžeme zostaviť
do tabuľky pomocou známych výsledkov.

Poznamenávame, že formula vyjadrujúca vzťah medzi koeficientami exponenciálnych generu-
júcich funkcií pre triedy grafov a príslušné triedy súvislých grafov sa v prípade k-zafarbiteľných a
súvislých k-zafarbiteľných grafov použiť nedá, problém spôsobuje susednosť.
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1.6 Acyklické orientované grafy
Orientovaný sled dĺžky n v orientovanom grafe D sa definuje postupnosťou vrcholov v0, v1, . . . , vn,
v ktorom vrchol vi je susedný s vrcholom vi+1 pre i < n. V uzavretom orientovanom slede
počiatočný a koncový vrchol sú totožné. Uzavretý orientovaný sled

v1, e1, v2, e2, . . . , vn−1, en−1, vn, en, v1,

v ktorom všetky vrcholy sú navzájom rôzne a pre hrany e1, . . . , en platí, že ei = (vi, vi+1), i =
1, n− 1 a en = (vn, v1) nazývame cyklus. Acyklický orientovaný graf nemá orientovaných cyklov.
Vyčíslenie označných acyklických orientovaných grafov uskutočníme nasledujúcim spôsobom.

Orientovaný graf E sa nazýva rozšírením orientovaného grafu D, ak D je orientovaným pod-
grafom orientovaného grafu E indukovaným podmnožinou tých vrcholov orientovaného grafu E,
ktoré majú kladné vnútorné polostupne.

u1 u2

v1

v2 v3

w1

w2

w3

D

E :

Obrázok 1.10: Rozšírenie acyklického orientovaného grafu.

Kazdý acyklický orientovaný graf musí obsahovať aspoň jeden vrchol s nulovým vnútorným
polostupňom. Možno to dokázať indukciou vzhľadom na počet vrcholov alebo počet hrán.

Z uvedeného vyplýva, že každý acyklický orientovaný graf, ktorý má aspoň jednu orientovanú
hranu, je rozšírením jediného vlastného orientovaného podgrafu. Okrem toho, každý acyklický
orientovaný graf má mnoho rozšírení, no všetky musia byť acyklickými orientovanými grafmi.

Predpokladajme, že D je acyklický orientovaný graf, ktorý má práve t ≥ 1 vrcholov ui, ktorých
vnútorný stupeň je rovný nule a s ostatných vrcholov vi. Môžeme zostrojiť rozšírenie E oriento-
vaného grafu D obsahujúce rovno k vrcholov s nulovým vnútorným polostupňom tak, že pridáme k
nových vrcholov wi a nové orientované hrany také, že každý z t vrcholov ui je susedný s niektorým
novým vrcholom wi.

Taktiež rovnako každý vrchol wi môže byť susedný s ľubovoľným vrcholom vi orientovaného
grafu D. Na obrázku 1.10 sú nové pridané vrcholy označené ako w1, w2 a w3; každý starý vrchol
u1 a u2 s nulovým vnútorným polostupňom je susedný s niektorým vrcholom wi.

Takýmto spôsobom všetky acyklické orientované grafy rádu n môžeme dostať pomocou rozšíre-
nia acyklických orientovaných grafov rád ktorých je menší ako n. Presnejšie, nech an je počet
označených acyklických orientovaných grafov rádu n, ďalej an,k – počet takých orientovaných
grafov, u ktorých rovno k vrcholov má nulový vnútorný polostupeň. Ak k = n, potom an,n = 1,
v tomto prípade vyhovuje len úplne nesúvislý orientovaný graf. Zrejme, že pre všetky n

an =
n∑

k=1

an,k. (1.47)

Teraz ukážeme, ako môžu byť vyjadrené an,k pomocou an−k,r pre r ≥ n− k. Najskôr dokážeme,
že všetky možné rozšírenia všetkých an−k,r orientovaných grafov s n−k vrcholmi, z ktorých práve
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r vrcholov má nulový vnútorný polostupeň, dáva do hodnoty an,k vklad rovný

(2k − 1)r2k(n−r−k)

(
n

k

)
an−k,r. (1.48)

Hľadáme počet označených rozšírení E všetkých an−k,r označených acyklických orientovaných
grafov D. Pre každý z

(
n
k

)
spôsobov ako rozostaviť značky u k nových vrcholov wi v rozšírení

E existuje an−k,r rozdelení značiek v orientovaných grafoch D, ktoré môžu byť rozšírené. To
objasňuje činiteľ

(
n
k

)
an−k,r vo výraze 1.48. Každý z r vrcholov s nulovým vnútorným polostupňom

v orientovanom grafe D musí byť susedný s aspoň jedným novým vrcholom wi (1 ≤ i ≤ k). Z
toho vyplýva, že existuje 2k − 1 možností orientovať hrany do každého z týchto r vrcholov, čo
dáva (2k − 1)r pre všetky vrcholy. Každý nový vrchol môže byť alebo nebyť susedný s každým s
n−k− r vrcholov, ktoré majú v orientovanom grafe D kladný vnútorný polostupeň. To znamená,
že existuje 2n−k−r možných kombinácií pre každý z nových vrcholov a teda (2n−r−k)k kombinácií
pre všetky také vrcholy. Ak vynásobíme všetky tieto výrazy, dostávame (1.48). Ak spočítame
(1.48) podľa r, dostávame vzťah pre an,k.

Veta 1.6.1 Počet an,k označených orientovaných acyklických grafov rádu n, ktoré majú rovno k
vrcholov s nulovým vnútorným polostupňom, vyhovuje vzťahu

an,k =
n−k∑
r=1

(2k − 1)r2k(n−r−k)

(
n

k

)
an−k,r (1.49)

Takýmto spôsobom pre nájdenie an môžeme použiť formuly (1.47) a (1.49). Tieto výrazy
môžeme taktiež vyjadriť generujúcimi funkciami. Nech v rade a(x, y) koeficient pri xkyn−k je
rovný počtu označených orientovaných acyklických grafov s n vrcholmi, z ktorých práve k vrcholov
má nulový vnútorný polostupeň.

◦

◦ ◦

D1

����
��

��
�

◦

◦ ◦

D2

����
��

��
�

��?
??

??
??

Obrázok 1.11: Dva acyklické orientované grafy tretieho rádu, ktoré majú po dva vrcholy s nulovým
vnútorným polostupňom.

Potom niekoľko prvých členov radu a(x, y) je určených výrazom

a(x, y) = x + x2 + 2xy + x3 + 9x2y + 15xy2 + x4 + 28x3y + 198x2y2+

+ 316xy3 + x5 + 75x4y + 1610x3y2 + 10710x2y3 + 16885xy4 + ...

Napríklad existuje šesť spôsobov rozostavenia značiek v acyklickom orientovanom grafe D1 a
tri spôsoby ako rozostaviť značky v acyklickom orientovanom grafe D2, ktoré sú zobrazené na obr.
1.11. Spolu teda deväť spôsobov, čo zodpovedá členu 9x2y v rade a(x, y).

1.7 Stromy
Stromom sa nazýva súvislý graf, ktorý nemá kružnicu. Je dobre známe, že každý netriviálny strom
má aspoň dva vrcholy, ktoré majú stupeň jedna. To vyplýva z toho, že ak T je strom s n vrcholmi
a q hranami, potom

q = n− 1 (1.50)
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Všetky stromy s nie viacej ako piatimi vrcholmi sú zobrazené na obr. 1.12 spolu s počtami
spôsobov, ktorými môžu byť označené.

◦

1

◦

◦

1

◦

◦

◦

3

◦

◦

◦

◦

12

◦

◦

◦ ◦

4

��
��

��
�

??
??

??
?

◦

◦

◦

◦

◦

60

◦

◦

◦

◦ ◦

60

��
��

��
�

??
??

??
?

◦

◦

◦

◦ ◦

5

Obrázok 1.12: Stromy, rády ktorých nie sú vyššie ako 5, a počet spôsobov rozdelenia značiek u každého
z týchto stromov.

Odtiaľ vyplýva, že počet tn označených stromov s n vrcholmi má nasledujúce najmenšie hod-
noty: 1, 1, 3, 16, 125. Mnohí autori správne predpokladali, vychádzajúc z tejto postupnosti
hodnôt, že formula na spočítavanie označených stromov je daná nasledujúcou vetou.

Veta 1.7.1 (Cayley) Počet tn označených stromov rádu n je rovný

tn = nn−2. (1.51)

Toto tvrdenie dokážeme niekoľkými spôsobmi, no zároveň poznamenávame, že existuje ešte celý
rad ďaľších dôkazov, ktoré su zaujímavé a možno ich nájsť časopiseckej a monografickej literatúre.

Cayley vyslovil predpoklad, že existuje vzťah medzi označenými stromami a funkciami zo-
brazujúcimi množinu s n − 2 objektami do množiny s n objektami. Napríklad, ak n = 5, potom
existuje 53 funkcií z {a, b, c} do {v1, v2, v3, v4, v5}. Tieto funkcie vyčíslujeme mnohočlenom

(v1 + v2 + v3 + v4 + v5)3. (1.52)

Sčítance tohto mnohočlena priraďujeme funkciám prirodzeným spôsobom. Napríklad v3
4 zod-

povedá konštantnej funkcií f(x) = v4, sčítanec 3v1v
2
3 zodpovedá trom funkciám, ktoré zobrazujú

len jeden prvok na v1 a ostatné dva na v3 a 6v2v3v5 dáva šesť funkcií zobrazujúcich po jednom
prvku do v2, v3 a v5.

Teraz vynásobime mnohočlen (1.52) s v1v2v3v4v5 a dostávame

(v1 + v2 + v3 + v4 + v5)3v1v2v3v4v5. (1.53)

Ustanovujeme tým rovným vzťah medzi sčítancami z tohoto súčinu a označenými stromami rádu
5. Tento vzťah s použitím sčitanca 3v2

1v2v
3
3v4v5 = 3v1v

2
3(v1v2v3v4v5) demonštrujeme na obrázku

1.13. Poznamenávame, že v stromoch zodpovedajúcich sčítancovi v2
1v2v

2
3v4v5, stupeň vrchola

označeného číslom k je rovný exponentu mocniny u vk.
Platnosť tohto výroku môže byť dokázaná aj vo všeobecnom prípade. Počet označených stro-

mov, u ktorých vrcholy označené číslom k majú stupeň dk, je rovný polynomickému koeficientu(
n− 2

d1 − 1, d2 − 1, ..., dn − 1

)
(1.54)
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Obrázok 1.13: Označené stromy vyčíslené výrazom v2
1v2v

2
3v4v5.

Najprv uvedieme kombinatorický význam polynomických koeficientov.(
n

n1, . . . , nk

)
= |{f : {1, 2, ..., n} → {1, 2, ..., k} : |f_(i)| = ni}|

kde n1, ..., nk ∈ N+ a n1 + ... + nk = n, teda polynomický koeficient nám počíta počet tzv.
predpísaných surjekcií z množiny {1, 2, ..., n} na množinu {1, 2, ..., k}.

Nech d1 ≤ d2 ≤ ... ≤ dn sú kladné celé čísla. Označme t(n; d1, ..., dn) počet rôznych stromov
G na danej množine V = {v1, ..., vn}, ktoré spĺňajú podmienku dG(vi) = di. Potom

t(n; d1, ..., dn) =
(

n− 2
d1 − 1, d2 − 1, ..., dn − 1

)
.

Podľa definície (
n− 2

d1 − 1, d2 − 1, ..., dn − 1

)
= 0

ak
n∑

i=1

dG(vi) 6= 2.

To je však v poriadku, lebo ak je G strom, potom
∑n

i=1 dG(vi) = 2n−2. Pretože d1 ≤ d2 ≤ ... ≤ dn

sú kladné celé čísla, je nutné aby d1 = 1.
Základom dôkazu je nasledujúca rekurencia:

t(n; d1, ..., dn) =
∑
di≥2

t(n− 1; d2, ..., di − 1, ..., dn) di ≥ 2 (1.55)

Na pravej strane vzorca spočítavame cez všetky i, pre ktoré platí di ≥ 2. Platnosť vzťahu ukážeme
nasledovne: nech Gi je množina všetkých stromov G = (V,E), pre ktoré dG(vj) = dj pre j =
1, 2, ..., n a naviac {v1, vi} ∈ E. Gi sú disjunktné množiny a naviac Gi = ∅, ak di = 1. Zrejme⋃

Gi je množina všetkých stromov na množine V a konečne platí

|Gi| = t(n− 1, d2, .., di − 1, ..., dn)

v prípade, že di ≥ 2. Odtiaľ vyplýva výsledok (1.55).
Tvrdenie vety teraz dokážeme indukciou vzhľadom na n. Pre n = 2 tvrdenie platí, lebo(

0
0, 0

)
= 1.

Použitím vzťahu (1.55) na základe indukčného predpokladu pre n ≥ 2 dostávame, že

t(n; d1, ..., dn) =
∑(

n− 3
d1 − 1, ..., di − 2, ..., dn − 1

)
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kde spočítavame cez všetky i pre ktoré di ≥ 2. Platí však vzťah:∑(
n− 3

d1 − 1, ..., di − 2, ..., dn − 1

)
=
(

n− 2
d1 − 1, ..., dn − 1

)
ktorý ihneď vyplýva napríklad z kombinatorického významu polynomického koeficientu. To dokazuje
našu vetu.

Dôsledok 1.7.1 Počet stromov na danej n-vrcholovej množine je nn−2.

Dôkaz. Stačí nám vedieť, že platí:∑(
n− 2

d1 − 1, d2 − 1, ..., dn − 1

)
= (1 + ..n krát.. + 1)n−2

kde spočítavame cez všetky usporiadané n-tice kladných prirodzených čísel, pre ktoré platí d1 +
d2 + ... + dn = 2n− 2. To však vyplýva priamo po dosadení do polynomického vzorca. �

Označme tn(k) počet označených stromov s n-vrcholmi, v ktorých vybraný vrchol, povedzme
v, má stupeň k. Budeme hľadať výraz pre tn(k) a potom potrebný výsledok pre celkový počet
stromov na n vrcholoch dostaneme spočítaním podľa k od 1 do n− 1.

Nech A je ľubovoľný označený strom rádu n, v ktorom deg(v) = k − 1. Vynechanie ľubovoľnej
hrany {w, z} z A neincidentnej s v nám dáva dva podstromy, z ktorých jeden obsahuje v a jeden
z vrcholov w alebo z (pripusťme, že w) a druhý obsahuje z. Ak spojíme vrchol v a z, potom
dostaneme strom B, v ktorom deg(v) = k. Dvojicu (A,B) označených stromov nazveme spojením,
ak B môžeme dostať z A spôsobom opísaným vyššie. Naša úloha je spočítať počet všetkých
možných spojení (A,B).
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Pretože A môžeme vyrobiť ľubovoľným z tn(k−1) spôsobov a B sú jednoznačne určené hranou
{w, z}, ktorú môžeme vybrať (n− 1)− (k − 1) spôsobmi, potom počet všetkých spojení (A,B)
je rovný (n − k)tn(k − 1). Z druhej strany, nech B je označený strom, v ktorom deg(v) = k
a nech t1, t2, ..., tk sú podstromy, ktoré dostaneme z B vynechaním vrchola v s každou hranou
s ním incidentnou. Potom označený strom A, u ktorého je deg(v) = k − 1, môžeme dostať z B
vynechaním jednej z týchto hrán (povedzme {v, wi}, kde wi leží v ti), a spojením wi s ľubovoľným
vrcholom u patriacim ľubovoľnému podstromu tj . Je zrejmé, že zodpovedajúca dvojica (A,B)
označených stromov tvorí spojenie, a že všetky všetky spojenia môžeme dostať takýmto spôsobom.
Pretože B môžeme vybrať tn(k) spôsobmi a počet hrán spájajúcich wi s vrcholmi ľubovoľného
iného podstromu tj je rovný (n−1)−ni (kde ni označuje počet vrcholov ti). Potom počet všetkých
spojení (A,B) je rovný

tn(k)[(n− 1− n1) + ... + (n− 1− nk)] = (n− 1)(k − 1)tn(k)

pretože n1 + ... + nk = n− 1.
Takýmto spôsobom sme ukázali, že

(n− k)tn(k − 1) = (n− 1)(k − 1)tn(k)

Pomocou iterácií, ak berieme do úvahy zrejmú rovnosť tn(n − 1) = 1, dostávame, že tn(k) =(
n−2
k−1

)
(n − 1)n−k−1. Ak spočítame podľa všetkých možných hodnôt k, dostávame, že počet tn -



1.7 Stromy 22

označených stromov s n vrcholmi - je rovný

tn =
n−1∑
k=1

tn(k) =
n−1∑
k=1

(
n− 2
k − 1

)
(n− 1)n−k−1 =

(
(n− 1) + 1

)n−2 = nn−2

Dôsledok 1.7.2 Počet kostier Kn je rovný nn−2.

1.7.1 Polyova metóda
Ďalej rozoberieme Polyovu metódu pre nájdenie počtu označených stromov. Pretože počet zako-
renených označených stromov rádu n je rovný ntn, potom exponenciálna generujúca funkcia pre
tieto stromy je určená výrazom:

y =
∞∑

n=1

ntn
xn

n!
. (1.56)

Polya našiel funkcionálnu rovnicu pre y a potom pre nájdenie tn aplikoval Lagrangeovu inverznú
formulu. Túto funkcionálnu rovnicu pre y teraz odvodíme. Z lemy pre násobenie exponenciálnych
generujúcich funkcií pre označné grafy vyplýva, že yn

n! je exponenciálna generujúca funkcia pre
n-množiny zakorenených označených stromov. Tieto n-množiny zodpovedajú práve tým zakore-
neným označeným stromom, u ktorých má koreň stupeň n a nie je označený. Presnejšie povedané,
tento vzťah dostávame tak, že spočiatku pridáme ku každej n množine nový vrchol, no neoznačíme
ho, potom spojíme tento nový vrchol s každým zo starých koreňov (pozri obr. 1.14)
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Obrázok 1.14: 3-množina zakorenených stromov zodp. strom, ktorého koreň má stupeň 3.

Vynásobenie výrazu yn

n! výrazom x zodpovedá pripísanie značky novému koreňu a začlenením
ho do počtu spočítavaných vrcholov. Takýmto spôsobom xyn

n! spočítava zakorenené označené
stromy, u ktorých koreň má stupeň n. Ak spočítame podľa n dostaneme

y =
∞∑

n=0

x
yn

n!
(1.57)

a teda dostávame funkcionálnu rovnicu
y = xey. (1.58)

Aby sme dostali riešenie rovnice (1.58) vyjadríme y ako funkciu premennej x a budeme aplikovať
špeciálny prípad Lagrangeovej formuly.

Inverzná Lagrangeova formula

Definícia 1.7.1 Hovoríme, že funkcia f je analytická v bode a, ak existuje také okolie bodu a, že
v každom jeho bode má f spojitú deriváciu (spojitá sa dá vynechať).
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Nech funkcia φ(y) je analytická v niektorom okolí bodu y = 0 (t.j. analytická v každom bode
okolia), potom rovnica

x =
y

φ(y)
(1.59)

má jediné riešenie určené generujúcou funkciou

y =
∞∑

k=1

ckxk (1.60)

koeficienty ktorej sú určené formulou

ck =
1
k!

((
d

dy

)k−1

(φ(y))k

)
y=0

. (1.61)

Ak aplikujeme inverznú formulu k rovnici (1.58), kde φ(y) = ey, dostávame

y =
∞∑

k=1

kk−1 xk

k!
. (1.62)

Porovnaním tohto výrazom z (1.56) opäť dostávame formulu nn−2 pre tn.

Zovšeobecnená Lagrangeova metóda

Pri riešení niektorých enumeračných úloh pre označnené objekty je vhodné použiť zovšeobecnenú
formulu (1.61). K podmienkam, kladeným na funkciu φ, predpokladáme, že je daná ešte jedna
funkcia f(y) analytická v niektorom okolí bodu y = 0. Zovšeobecnená Lagrangeova metóda tvrdí,
že funkcia f(y) môže byť vyjadrená mocninovým radom premennej x nasledujúcim spôsobom:

f(y) = f(0) +
∞∑

k=1

xk

k!

((
d

dy

)k−1 (
f ′(y)φk(y)

))
y=0

(1.63)

Pri f(y) = y z tejto formuly dostávame (1.60) a (1.61).

1.7.2 Dôkaz so stavovcami
Definujeme, čo je to stavovec na množine vrcholov V uvažovaného úplného grafu Kn (pozri nasle-
dujúci obr. (a)): je to kostra, u ktorej je jeden vrchol označený štvorčekom a jeden vrchol krúžkom
(vylučujeme, že jeden a ten istý vrchol je označený štvorčekom a krúžkom). Označme množinu
všetkých stavovcov písmenom O.

Z každej kostry môžeme vytvoriť práve n2 rôznych stavovcov, preto počet všetkých kostier je
rovný |O|

n2 . Ukážeme teraz:

Lema 1.7.1 Existuje bijekcia f medzi množinou O všetkých stavovcou a množinou všetkých
zobrazení množiny V do seba, do množiny V .

Počet zobrazení n prvkovej množiny do seba je nn, stavovcov je podľa lemy rovnako, a teda
kostier je nn−2.

Dôkaz. Konštrukciu bijekcie f ukážeme na príklade. Výjdeme zo stavovca O nakresleného
na obrázku (a). Označené vrcholy © a � sú spojené jedinou cestou, ktorú nazveme chrbtica.

Vypíšeme si čísla vrcholov chrbtice do riadku v poradí podľa veľkosti, a potom do ďalšieho
riadku znova v poradí, ako idú od © k �:

3 4 7 8 9 14 15
8 4 14 9 3 7 15
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Obrázok 1.15: (a) Stavovec o 19 vrcholoch, (b) jemu zodpovedajúci graf zobrazení.

Definujeme teraz na vrcholoch chrbtice pomocný orientovaný graf P : urobíme šípku z každého
vrcholu z horného riadku do vrcholu napísaného pod ním v dolnom riadku. Pretože z každého
vrcholu vychádza práve jedna sípka a taktiež do každého vrcholu jedna šípka vchádza, je graf P dis-
junktným zjednotením orientovaných cyklov (prípadne samotných vrcholov so slučkou). Môžeme
taktiež povedať, že chrbtica definuje permutáciu svojich vrcholov a P pozostáva práve z cyklov
tejto permutácie. V našom príklade sú postupnosti vrcholov týchto cyklov, porovnané v poradí
podľa šipiek, (3, 8, 9), (4), (7, 14) a (15).

Pozrime sa teraz naspäť na stavovec O. Odoberieme z neho na chvíľu všetky hrany chrbtice,
rozpadne sa na jednotlivé komponenty (opäť stromy). Orientujme hrany každého komponentu
tak, že smerujú k (jedinému) vrcholu chrbtice v tomto komponente. Tým vznikne ďaľšia množina
orientovaných hrán na množine V .

Definujme teraz orientovaný graf G na množine V , ktorého hranami budú jednak práve defi-
nované orientované hrany komponent, jednak všetky hrany pomocného grafu P . Na obrázku je
to veľmi názorné: nakreslíme cykly grafu P , a potom ku každému vrcholu (pôvodne chrbtice)
prikreslíme strom, ktorý cez neho bol zavesený na chrbticu stavovca, viď. obr. (b).

Tvrdíme teraz, že výsledný orientovaný graf G je grafom zobrazenia, to znamená, že z každého
vrchola vychádza práve jedna hrana. Pre vrcholy chrbtice sme ho už skonštruovali. Pre ostatné
vrcholy je to preto, že v stavovci O z nich vedie jediná cesta do chrbtice.

Definujeme teda konečné zobrazenie f = F (O) : {1, 2, ..., n} → {1, 2, ..., n} prislúchajúce
stavovcu O. Pre každé i, čo je vrchol grafu G, položíme f(i) = j, kde j je ten vrchol G, do
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ktorého ide šípka z i. V našom konkrétnom prípade dostávame zobrazenie

1 → 7
2 → 15
3 → 8
4 → 4
5 → 2
6 → 5
7 → 14
8 → 9
9 → 3

10 → 4
11 → 10
12 → 4
13 → 12
14 → 7
15 → 15
16 → 7
17 → 16
18 → 1
19 → 8

Takto každý stavovec určuje zobrazenie.
Zostáva nám ešte ukázať, že z takto zostrojeného zobrazenia môžeme zpätne pôvodného stavovca

zrekonštruovať, a že každé zobrazenie sa dostane z nejakého stavovca.
�

1.7.3 Dôkaz zatiaľ asi najjednoduchší
Aj v dobre preskúmaných oblastiach matematiky je čo objavovať. Tak napríklad celkom nedávno
našiel matematik – štatistik Jim Pitman z Kalifornskej univerzity v Berkeley nový, veľmi jednoduchý
dôkaz Cayleyho formuly. Zažiari v ňom počítanie dvoma spôsobmi, zdanlivo veľmi jednoduchý
trik, o jeho užitočnosti sme sa už presvedčili napríklad pri počítaní eulerovských grafov. Nepoužije
sa priamo, ale na vhodné zjemnenie pôvodnej úlohy.

V tomto dôkaze Cayleyho formuly budeme počítať dvoma spôsobmi povykosy. Čo je to
povykos? Skrátený názov pre postup výroby koreňového stromu. Formálne je povykos defino-
vaný ako usporiadaná trojica (T, r, c̆), kde T je strom na množine vrcholov V = {1, 2, . . . , n},
r ∈ V je jeho koreň a c̆ je očíslovanie hrán, alebo bijekcia c̆ : E(T ) → {1, 2, . . . , n−1}. Na obrázku
je príklad povykosu.

Môžeme si predstavovať, že začneme s prázdnym grafom na množine vrcholov V a vyrábame
koreňový strom postupným pridávaním hrán; očíslovanie c̆ kóduje poradie pridávania hrán. Pre
každý strom T môžeme koreň r voliť n spôsobmi a pre očíslovanie hrán c̆ je (n − 1)! možností,
takže počet povykosov je n(n− 1)!tn.

Pre druhý spôsob počítania povykosov budeme koreňový strom uvažovať ako orientovaný
strom, kde všetky šípky smerujú ku koreňu.

Naopak, každá orientácia stromu, pre ktorú existuje práve jeden vrchol, ktorý nie je počiatkom
žiadnej šípky odpovedá jednoznačne koreňovému stromu (zmienený jediný vrchol je koreň). Aj
povykos teraz budeme interpretovať v tejto orientovanej podobe a budeme počítať, koľko povykov
môžeme dostať, ak začneme z prázdneho orientovaného grafu a budeme postupne pridávať šípky
v n− 1 krokoch.
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Obrázok 1.16: Príklad povykosu.
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Obrázok 1.17: Orientovaný strom, kde všetky šípky smerujú ku koreňu.

Prvá šípka musí spojovať dva rôzne vrcholy, a teda môžeme ju pridať n(n− 1) spôsobmi. Pre
druhú šípku v poradí máme ešte ďalšie obmedzenie (obmedzujúcu podmienku): nesmie vychádzať
z toho istého vrchola ako šípka prvá. Aké sú všeobecné obmedzenia na pridanie ďalšej šípky?

(A) Nesmieme vytvoriť kružnicu (v neorientovanom zmysle), teda nová šípka musí spojovať dva
rôzne komponenty vytvoreného grafu (komponenty sa opäť myslia bez ohľadu na orientáciu).

(B) Na konci musí z každého vrcholu až na jediný vychádzať nejaká šípka, pričom máme k dis-
pozícii n−1 šípiek. Nesmieme teda premárniť ani jedinú, a každá nová šípka musí vychádzať
z vrchola, z ktorého dosposiaľ žiadna šípka nevychádzala.

Kľúčové pozorovanie je, že v každom komponente už vytvoreného grafu je práve jeden vrchol,
z ktorého nevychádza žiadna šípka. To je preto, že komponent má nejakých m vrcholov a m− 1
hrán, a z každého vrchola vychádza nanajvýš jedna šípka, lebo sme aj v predchádzajúcom postupe
dodržiavali podmienku (B).

Po pridaní k šípiek s dodržiavaním (A) a (B) má graf n − k komponent (overte). Obrázok
ukazuje situáciu po pridaní štyroch šípok podľa povykosu na prvom obrázku:

Ďalšia šípka, číslo k+1, môže teraz viesť do ľubovoľného vrcholu v nejakom z komponentov, a
vychádzať musí z koreňa niektorého iného komponentu, a pre jej pridanie máme preto n(n−k−1)
možností.

Každý taký postup dáva po n− 1 krokoch práve jeden povykos. Preto povykosov je

n−2∏
k=0

n(n− k − 1) = n!nn−2.

Porovnaním obidvoch výrazov pre počet povykosov dostávame tn = nn−2.
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Obrázok 1.18: Situácia po pridaní štyroch šípok podľa povykosu na prvom obrázku.

1.7.4 Dôkaz pomocou Prüferovho kódu
Ukážeme, ako každú kostru grafu Kn zakódujeme (n−2)-člennou postupnosťou, ktorej každý člen
je niektoré z čísel 1, 2, . . . , n. Toto kódovanie bude definovať bijekciu medzi všetkými kostrami a
všetkými postupnosťami uvedeného typu. Pretože takých postupností je zrejme nn−2, bude tým
Cayleyho formula dokázaná.

Majme kostru T ; príklad pozri nasledujúci obrázok (a).
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(a) Kostra s kódom (5, 1, 1, 4, 5, 1).
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(b) Postup jej rekonštrukcie z kódu.

Obrázok 1.19: Kostra s kódom (5, 1, 1, 4, 5, 1) a postup jej rekunštrukcie z kódu.

Popíšeme, ako zostrojíme postupnosť P = P (T ) = (p1, . . . , pn−2), tzv. Prüferov kód kostry
T . Zákládná myšlienka (trochu vandalská) je, že zo stromu T budeme postupne odtrhávať listy,
pokým z neho neostane len jediná hrana. Budeme teda konštruovať pomocnú postupnosť stromov
T0 = T, T1, T2, . . . , Tn−2 = K2 a pritom vyrábať postupnosť P . Predpokladajme, že už sme
skonštruovali Ti−1 (na začiatku máme T0 = T ). Ako vieme, má aspoň jeden list (vrchol stupňa
jedna). Vezmeme najmenší z listov Ti−1 (pripomeňme, že vrcholy T sú čísla 1, 2, . . . , n), a utvoríme
Ti odstránením tohoto listu z Ti−1, spolu s príslušnou hranou. Pritom definujeme i-ty člen, pi,
konštruovanej postupnosti ako suseda práve odtrhnutého listu (teda nie ako list sám, to je hlavný
trik!). Urobíme toto pre i = 1, 2, . . . , n− 2, definovali sme postupnosť P = P (T ).

Predpokladajme teraz, že daná postupnosť P vznikla vyššie uvedenou konštrukciou z nejakej
(nám doposiaľ neznámej) kostry T . Odvodíme, ako spätne vytvoriť T . Pýtajme sa, ako z pos-
tupnosti P poznať, ktorý vrchol kostry T bol odtrhnutý ako prvý; označme ho l1 (musel to byť
list). Zrejme l1 sa nesmie vyskytovať nikde v postupnosti P (pretože do P sa zapisujú len vrcholy
doposiaľ prítomné v otrhanom strome). Ďalej každý vrchol, ktorý nie je obsiahnutý v množine
{p1, p2, . . . , pn−2}, musí byť listom stromu T (inak by sme od neho v niektorej fáze odtrhli list
a tým by sa ocitol v postupnosti P ). Podľa pravidla odtrhávania listov je teda l1 minimum z
množiny {1, 2, . . . , n} \ {p1, p2, . . . , pn−2}. Táto množina je vždy neprázdna, a preto je minimum
dobre definované. Môžeme teraz l1 nakresliť ako prvý vrchol kostry, a pripojiť k nemu hranou
vrchol p1 ako na obrázku 1.19 (b).
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Ďalej postupujeme podobne; ak poznáme už listy l1, l2, . . . , li−1 odtrhnuté v krokoch 1 až
i − 1, budeme určovať list li. Nemôže to byť žiaden z vrcholov pi, pi+1, . . . , pn−2, a ovšem ani z
l1, . . . , li−1 – bude to teda minimum množiny {1, 2, . . . , n} \ {pi, pi+1, . . . , pn−2, l1, l2, . . . , li−1} (tá
je zasa neprázdna). Takto určený list li pripojíme hranou k vrcholu pi. Ak nie je li doposiaľ
nakreslený, nakreslíme ho ovšem taktiež, podobne pre pi. Prvých 5 krokov tejto konštrukcie je
znázorenených na obrázku 1.19 (b), v 6. kroku by sme dokreslili hranu {1, 5}.

Po n−2 krokoch sme nakreslili n−2 hrán kostry T , menovite všetky, ktoré boli pri odtrhávaní
odstránené, zostáva určiť, ktorá bola posledná zostávajúca hrana. Jeden jej koniec musí byť pn−2,
teda sused posledného odtrhnutého listu, a druhý koniec jeden vrchol, ktorý sa nevyskytuje medzi
všetkými odtrhnutými listami l1, . . . , ln−2 a je rôzny od pn−2. Na obrázku 1.19 to bude hrana
{1, 8}. Tým je metóda rekonštrukcie popísaná. Ešte ju kvôli prehľadnosti zhrnieme.

Použijeme dvojriadkového zápisu. Do prvého riadku zapíšeme čísla p1, p2, . . . , pn−3, pn−2, pn−2

(teda n − 1 čísel, pričom pn−2 na konci sa opakuje, týmto opakovaním sa elegantne zahrnie
posledný, výnimočný krok do všeobecného pravidla). Do druhého riadku postupne vyplňujeme
čísla l1, l2, . . . , ln−1. Ak boli už vyplnené čísla l1 až li−1, potom číslo li je najmenšie také, že sa
nevyskytuje medzi predchádzajúcimi číslami v dolnom riadku ani medzi číslami v hornom riadku
od i-tej pozície (vrátane) vpravo:

p1 p2 . . . pi−1 pi pi+1 . . . pn−3 pn−2 pn−2

e1

∣∣∣ e2

∣∣∣ ei−1

∣∣∣
l1 l2 . . . li−1 �

Obrázok 1.20: Dvojriadkový zápis.

Na silne orámovanú pozíciu prijde najmenšie číslo, ktoré nie je medzi číslami

l1, . . . , li−1, pi, pi + 1, . . . , pn−2.

Hrany e1, e2, . . . rekonštruovanej kostry spájajú vždy vrchol z horného riadku s vrcholom napísaným
pod ním.

Pre ľubovoľnú (n − 2)-člennú postupnosť P vytvorí práve uvedený algoritmus nejaký graf G
na množine vrcholov {1, 2, . . . , n} s n − 1 hranami. Tiež vieme, že ak postupnosť P pochádzala
z nejakej kostry T , platí G = T . Naša úloha sa týmto nekončí: musíme sa presvedčiť, že graf
G, ktorý vznikne je vždy strom, a že jeho spätným prekódovaním do postupnosti dostaneme tú
postupnosť, z ktorej sme vyšli.

Označme Gi = ({1, 2, . . . , n}, {ei, ei+1, . . . , en−1}). Z algoritmu vyplňovania dolného riadku je
vidieť, že do vrchola li zasahuje hrana ei a žiadna z hrán ei+1, . . . , en−1 už do li zasahovať nemôže,
takže li má v Gi stupeň 1. Teda Gi vznikne z Gi+1 pridaním listu, a z tvrdenia o postupnej
výstavbe stromu (viď poznámka na konci dôkazu) vidíme, že G je strom. Vo všeobecnosti Gi je
strom plus i− 1 izolovaných vrcholov.

Zostáva nám overiť, že li je najmenší z listov grafu Gi. Podľa definície li by menší list mohol
byť jedine medzi l1, l2, . . . , li−1 alebo medzi pi, . . . , pn−2. Prvá skupina neprichádza do úvahy
(pretože l1, . . . , li−1 majú v Gi stupne 0). Uvážme vrchol pk, i < k ≤ n − 2. V grafe Gk je to
sused listu lk, a pretože Gk zostáva z izolovaných vrcholov a jedného ďalšieho komponentu, ktorý
má aspoň 2 hrany, má pk v grafe Gk stupeň minimálne 2. Takže ani v Gi nie je pk listom.

Teda li je najmenší list v Gi a Gi+1 naozaj vznikne z Gi podľa procedúry Prüferovho kódovania
kostry. Tým je dôkaz tvrdenia ukončený.

Na koniec uvádzame kvôli úplnosti nasledujúce triviálne tvrdenie:

Poznámka 1.7.1 Postupná výstavba stromu. Pre daný graf G a jeho visiaci vrchol v sú nasle-
dujúce tvrdenia ekvivalentné:

a) G je strom.

b) G− v je strom.
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1.7.5 Dôkaz pomocou lineárnej algebry
Nech G je označený graf rádu n s množinou vrcholov V = {1, 2, . . . , n}. Definujme maticu typu
n× n. Nech B = B(G), v ktorej kladieme

Bij =

 −1 ak vrcholy i a j sú susedné,
0 ak i 6= j a vrcholy i a j nie sú susedné,
deg i ak i = j.

Maticu B(G) nazývame Kirchhoffovou maticou grafu G. Súčet prvkov v každom riadku a v každom
stĺpci tejto matici je rovný nule.

Lema 1.7.2 Nech B je ľubovoľná číselná n × n-matica taká, že v každom riadku a v každom
stĺpci je súčet elementov rovný nule.

n∑
j=1

Bij = 0, i = 1, n,

n∑
i=1

Bij = 0, j = 1, n.

Potom algebraické doplnky všetkých prvkov matice B sú navzájom rovné. (Špeciálne túto vlast-
nosť má aj Kirchhoffova matica ľubovoľného grafu).

Dôkaz. Je zrejmé, že hodnosť matice B je menšia ako n. Lebo vektory, ktoré tvoria maticu
B sú lineárne závislé. Ak je hodnosť matice B menšia ako n − 1, potom algebraické doplnky
všetkých prvkov tejto matice sú rovné 0. Nech hodnosť matice B je rovná n− 1 a C je priradená
matica pre maticu B, t.j. prvok Cij je rovný algebraickému doplnku Aji prvku Bji v matici B,
i = 1, n, j = 1, n. Z lineárnej algebry je známe, že BC = (det B) ·E, v našom prípade det B = 0,
pričom E je jednotková matica a B · C = 0. Z toho vyplýva, že pre stĺpce matice C s číslom j,
j = 1, n platia rovnosti

Bi1C1j + Bi2C2j + . . . + BinCnj = 0, i = 1, n

t.j.
Bi1Aj1 + Bi2Aj2 + . . . + BinAjn = 0, i = 1, n.

Tieto rovnosti môžeme považovať ako systém lineárnych homogénnych rovníc s maticou B vzhľadom
na neznáme Aj1, Aj2, . . . , Ajn.

Pretože hodnosť matice B je rovná n − 1, potom všetky riešenia uvažovaného systému sú
násobkami vektora (1, . . . , 1), ktorý vyhovuje systému, preto

Aj1 = Aj2 = . . . = Ajn, j = 1, n,

ak berieme do úvahy, že CB = 0, analogicky dostávame

A1i = A2i = . . . = Ani, i = 1, n,

z toho vyplýva, že
Aij = Akl, i, k, j, l = 1, n.

�

Nakoniec definujme maticu incidencie grafu. Nech G je (n, m)-graf. V = {1, 2, . . . , n} a
E = {e1, e2, . . . , em}. Definujme binárnu n×m-maticu I = I(G) podmienkami:

Ik,l =
{

1 ak vrchol k a hrana ek incidujú,
0 v opačnom prípade.

Matica I sa nazýva maticou incidencie grafu G. V každom jej stĺpci sú práve dve jednotky. Vzťah
G → I(G) je bijekcia množiny označených (n, m)-grafov s očíslovanými hranami na množinu
n×m-matíc vyhovujúcich opísaným podmienkam.
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Pre orientované grafy definovanie matice incidencie má nasledujúci tvar

Ik,l =

 1 ak vrchol k je začiatkom orientovanej hrany al,
−1 ak vrchol k je koncom orientovanej hrany al,

0 ak vrchol k a hrana al neinciduje.

Rovnako v prípade matíc incidencie a susednosti pre izomorfné grafy resp. orientované grafy
platí nasledujúce tvrdenie.

Lema 1.7.3 Grafy (orientované grafy) sú izomorfné práve vtedy, keď vieme matice incidencie
(susednosti) dostať jednu z druhej vhodným prestavením riadkov a stĺpcov. T.j. vhodným pre-
menovaním objektov.

Poznámka 1.7.2 Štvorcovú maticu P = (tij)n
i,j=1 nazveme permutačná, ak jej prvky sú 0 alebo

1 a v každom riadku a v každom stĺpci matice P je práve jeden nenulový prvok. Ekvivalentne P
je permutačná matica práve vtedy, keď existuje permutácia π na množine {1, 2, . . . , n} taká, že
aij = 1, ak j = π(i), a aij = 0 v opačnom prípade.

Potom G = (V,E) a G′ = (V ′, E′) sú izomorfné práve vtedy, keď AG = PAT
G′ , pričom PT je

transponovaná matica k matici P .
Bezprostredne priamym výpočtom môžeme preveriť planosť nasledujúceho tvrdenia.

Lema 1.7.4 Nech B je Kirchhoffova matica grafu G a I je matica incidencie nejakej jeho orientácie
H (očíslovanie vrcholov v H je to isté, ako v grafe G), potom B = I · IT (tu opäť T označuje
operáciu transponovania matice).

Poznamenávame, že v každom súvislom grafe existuje faktor, ktorý je strom a nazývame ho
kostrou grafu. Vo všeobecnom prípade sa kostra definuje nejednoznačne. Prirodzene vzniká otázka:
koľko je kostier v grafe? Počet kostier v súvislom grafe určuje implicitne nasledujúca veta.

Veta 1.7.2 (Kirchhoffova) Počet kostier v súvislom grafe G rádu n ≥ 2 je rovný algebraickému
doplnku ľubovoľného prvku Kirchhoffovej matice B(G).

Dôkaz sa opiera o nasledujúce tvrdenie.

Lema 1.7.5 Nech H je (m + 1,m)-graf, I – matica incidencie ľubovoľnej jeho orientácie, M
– ľubovoľný subdeterminant (minor) rádu n matice I. Potom, ak H nie je strom, tak potom
|M | = 0, ak H je strom, potom |M | = ±1.

Dôkaz. Predovšetkým poznamenávame, že môžeme ľubovoľne zmeniť numeráciu (očíslovanie)
vrcholov a hrán grafu H, tak uvažovaný minor môže len zmeniť znamienko.

Nech a je vrchol, zodpovedajúci riadku matici I, ktorý vystupuje v minore M . Ak graf H nie
je strom, potom nie je nesúvislý. Nech K = {1, 2, . . . , k} – je oblasť súvislosti neobsahujúca vrchol
a. Pomocou vhodného prečíslovania hrán grafu H maticu I prevedieme na blokovo-diagonálny
tvar I = diag[I1, I2], kde I1 matica incidencie komponenty H(K). Minor M obsahuje všetkých
prvých k riadkov matice I1, ktorých súčet je rovný nulovému riadku. Z toho vyplýva, že M = 0.
(v každom stĺpci sú dva nenulové prvky +1 a −1).

Nech teraz H je strom. Opäť prečíslujeme vrcholy aj hrany grafu H nasledujúcim spôsobom.
Jeden z visiacich vrcholov V , rôzny od vrcholu a, taktiež hrane incidentnej vrcholu v, pripíšeme
číslo 1. Ďalej uvažujeme strom T1 = H − v. Ak jeho rád je väčší ako 1, potom jeden z jeho
koncových vrcholov u rôzny od a, vrcholu a hrane incidentnej s u priradíme číslo 2. Uvažujeme
strom T2 = T1− u. Ak budeme iterovať tento proces, dostaneme novú numeráciu vrcholov a hrán
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stromu H, pričom vrchol a bude mať číslo m + 1. Matica I pritom nadobúda tvar
±1 0 . . . 0
∗ ±1 . . . 0

. . . . . . . . . . . .
∗ ∗ . . . ±1
∗ ∗ . . . ∗

 .

Tu symbol ∗ označuje tie elementy alebo bloky matice, hodnoty, ktorých nemajú vplyv na chod
úvah. Minor M zostávajúci po vynechaní posledného riadku tejto matice je rovný ±1. �

Ešte jeden fakt z lineárnej algebry použijeme pri dôkaze Kirchhoffovej vety. Formulu Binet-
Cauchyho; nech A resp. B sú matice n × m resp. typu m × n; C = A · B a m ≥ n. Minor B′

rádu n matice B nazveme zodpovedajúcim, alebo priradeným k minoru A′ rádu n matice A, ak
množiny čísel riadkov prvého z nich B′ a čísel stĺpcov druhého z nich A′ sú totožné.

Veta 1.7.3 (Formula Binet-Cauchy) Nech A resp. B sú matice n×m resp. m× n, n ≤ m a
C = A×B. Potom

det C =
∑

1≤k1<...<kn≤m

A

(
1 2 . . . n
k1 k2 . . . kn

)
B

(
k1 k2 . . . kn

1 2 . . . n

)
. (1.64)

Inými slovami, pri n ≤ m determinant matice je súčtom súčinov všetkých možných minorov rádu
n v A so zodpovedajúcimi (priradenými) minormi B toho istého rádu n.

Skôr než uvedieme dôkaz uvedeného tvrdenia, ilustrujeme ho nasledujúcim príkladom.

Príklad 1.7.1 Nech A =
(

1 0 2
−1 1 1

)
a B =

 −1 −1
−2 0
1 1

. Potom C =
(

1 1
0 2

)
a det C =

2. Podľa vyššie uvedenej formuly dostávame

det C =
∑

1≤k1<k2≤3 A

(
1 2
k1 k2

)
B

(
k1 k2

1 2

)
= A

(
1 2
1 2

)
B

(
1 2
1 2

)
+

+ A

(
1 2
1 3

)
B

(
1 3
1 2

)
+ A

(
1 2
2 3

)
B

(
2 3
1 2

)
=
∣∣∣∣ 1 0
−1 1

∣∣∣∣ · ∣∣∣∣ −1 −1
−2 0

∣∣∣∣+
+

∣∣∣∣ 1 2
−1 1

∣∣∣∣ · ∣∣∣∣ −1 −1
1 1

∣∣∣∣+ ∣∣∣∣ 0 2
1 1

∣∣∣∣ · ∣∣∣∣ −2 −0
1 1

∣∣∣∣ = 1(−2) + 3 · 0 + (−2)(−2) = 2.

Dôkaz vety: Najprv pripomenieme, že det A =
∑

P (−1)t(P )a1j1a2j2 . . . anjn
, kde t(P )

označuje počet transpozícií permutácie P , súčet uskutočňujeme pre všetkých n! permutácií.
Pretože cij =

∑m
k=1 aikbkj môžeme maticu C napísať v nasledujúcom tvare

C =


∑m

α1=1 a1α1bα11 . . .
∑m

αn=1 a1αn
bαnn

...
. . .

...∑m
α1=1 anα1bα11 . . .

∑m
αn=1 anαnbαnn

 .

Determinant je aditívna a homogenna funkcia každého zo svojich stĺpcov. Ak použijeme tento
fakt pre každý zo stĺpcov v det C, vyjadrujeme det C v tvare súčtu mn determinantov:

det C =
m∑

α1=1

. . .
m∑

αn=1

det

 a1α1bα11 . . . a1αnbαnn

. . . . . . . . .
anα1bα11 . . . anαn

bαnn

 =

=
m∑

α1=1

. . .
m∑

αn=1

A

(
1 2 . . . n
α1 α2 . . . αn

)
bα11bα22 . . . bαnn. (1.65)
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Tie členy súčtu, ktoré majú totožné dva alebo viac indexov α1, . . . , αn sú rovné nule, pretože v
týchto prípadoch minory budú mať aspoň dva rovnaké stĺpce. Takým spôsobom treba uvažovať
len tie m!/(m − n)! členov súčtu, u ktorých sú indexy α rôzne. Rozdelíme všetky ostatné členy
na
(
m
n

)
skupín po n! členov takým spôsobom, že v každej skupine rozlišujeme členy len poradím

indexov α1, α2, . . . , αn.
Poznamenávame, že môžeme napísať:

A

(
1 2 . . . n
α1 α2 . . . αn

)
= (−1)t(P )A

(
1 2 . . . n
k1 k2 . . . kn

)
, kde k1 < k2 < . . . < kn,

P – permutácia α1, . . . , αn čísel k1, . . . , kn. Z toho vyplýva, že súčet podľa n! členov, v ktorých
α1α2 . . . αn – permutácia čísel k1, k2, . . . , kn je určená výrazom

A

(
1 2 . . . n
k1 k2 . . . kn

)∑
P

(−1)t(P )bα11bα22 . . . bαnn.

Ak prestavíme prvky b tak, aby prvé indexy boli v rastúcom poradí, prevedieme výraz na tvar

A

(
1 2 . . . n
k1 k2 . . . kn

)∑
Q

(−1)t(Q)bk1j1bk2j2 . . . bknjn

kde Q je permutácia j1, j2, . . . , jn čísel 1, 2, . . . , n a je zrejmé, že t(P ) = t(Q). Z definície funkcie
determinantu teraz vyplýva, že tento výraz je proste

A

(
1 2 . . . n
k1 k2 . . . kn

)
B

(
k1 k2 . . . kn

1 2 . . . n

)
.

Preto rovnosť (1.65) sa transformuje na rovnosť (1.64). �

Dôkaz Kirchhoffovej vety. Nech I je matica incidencie nejakej orientácie (n, m) grafu G.
Vzhľadom na tvrdenie, že B(G) = I · IT , pretože G je súvislý graf, potom m ≥ n − 1 (aspoň
strom). Nech B je podmatica zostávajúca po vynechaní posledného riadka a stĺpca z B(G), nech
C je podmatica, zostávajúca po vynechaní posledného riadku z I, potom v dôsledku uvedeného
tvrdenia B = CCT . Algebraický doplnok An,n elementu, ktorý zaujíma v matici B(G) pozíciu
(n, n), je rovný det B. Z formuly Binet-Cauchy vyplýva, že An,n je rovný súčtu štvorcov všetkých
minorov rádu n − 1 matice C. Na základe tvrdenia lemy 1.7.5 je každý minor M rovný ±1, ak
faktorový podgraf grafu G, hrany ktorého zodpovedajú stĺpcom, ktoré vystupujú v M je strom a
nula v opačnom prípade. Z toho vyplýva, že An,n je rovný počtu faktorových stromov v grafe G.
Pretože algebraické doplnky všetkých elementov matice B(G) sú rovné, potom je veta dokázaná.
�

Dôsledok 1.7.3 Počet komponentov súvislosti K(G) n-vrcholového grafu G je rovný : K(G) −
hodnost B(G), keďže graf G je súvislý, má aspoň jednu kostru, a teda algebraický doplnok rádu
n− 1 je rôzny od nuly.

Ak graf G je súvislý, potom je v ňom obsiahnutá kostra. V súlade s predchádzajúcou vetou
hodnosť B(G) ≥ n−1. lebo inak by tam neexistovala kostra. Z druhej strany vždy det(B(G)) = 0.
Z toho vyplýva, že hodnosť B(G) = n− 1.

Nech teraz graf G má rovno k komponentov. Potom pri vhodnom očíslovaní vrcholov, matici
B(G) zodpovedá blokovo diagonálna matica diag(B1, B2, ..., Bk), ktorej diagonalne bloky Bi sú
Kirchhoffove matice zodpovedajúce komponentom. Berúc do úvahy dokázané, dostávame, že
hodnost B(G) = n− k.

Dôsledok 1.7.4 Pre n > 1 počet kostier v kompletnom grafe Kn je rovný nn−2.
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Uvažujme algebraický doplnok A11 elementu matice

B(Kn) =


n− 1 −1 . . . −1
−1 n− 1 . . . −1
...
−1 −1 . . . n− 1


zaujímajúceho pozíciu (1,1). Rovná sa determinnatu∣∣∣∣∣∣∣∣∣

n− 1 −1 . . . −1
−1 n− 1 . . . −1
...
−1 −1 . . . n− 1

∣∣∣∣∣∣∣∣∣
rádu n− 1. Ďalej máme

A11 =

∣∣∣∣∣∣∣∣∣
n− 1 −1 . . . −1
−1 n− 1 . . . −1
...
−1 −1 . . . n− 1

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣
1 1 . . . 1
0 n . . . 0
...
0 0 . . . n

∣∣∣∣∣∣∣∣∣ = nn−2

Prvý determinant vznikne pripočítaním súčtu n− 2 riadkov k prvému riadku, druhý determi-
nant vznikne pripočítaním prvého riadku ku každému.

Je zrejmé, že počet kostier v Kn je rovný počtu označených stromov rádu n. Preto pred-
chádzajúci dôsledok môžeme zformovať v tvare Cayleyovej vety z roku 1897.

Príklad. Uvažujme graf G

•3

•1

•2

•4

•6

•5

�����

??
??

? �����

??
??

?

B(G) =


2 −1 −1 0 0 0
−1 2 −1 0 0 0
−1 −1 3 −1 0 0
0 0 −1 3 −1 −1
0 0 0 −1 2 −1
0 0 0 −1 −1 2


Podľa Kirchhoffovej vety je počet kostier grafu G rovný determinantu

B11 =

∣∣∣∣∣∣∣∣∣∣
2 −1 0 0 0
−1 3 −1 0 0
0 −1 3 −1 −1
0 0 −1 2 −1
0 0 −1 −1 2

∣∣∣∣∣∣∣∣∣∣
= 2

∣∣∣∣∣∣∣∣
3 −1 0 0
−1 3 −1 −1
0 −1 2 −1
0 −1 −1 2

∣∣∣∣∣∣∣∣ +

∣∣∣∣∣∣∣∣
−1 −1 0 0
0 3 −1 −1
0 −1 2 −1
0 −1 −1 2

∣∣∣∣∣∣∣∣ =

= 2.3

∣∣∣∣∣∣
3 −1 −1
−1 2 −1
−1 −1 2

∣∣∣∣∣∣ + 2

∣∣∣∣∣∣
−1 0 0
−1 2 −1
−1 −1 2

∣∣∣∣∣∣ −
∣∣∣∣∣∣

3 −1 −1
−1 2 −1
−1 −1 2

∣∣∣∣∣∣ = 18− 6− 3 = 9

Teda graf G má 9 kostier, o čom sa ľahko môžeme presvedčiť tým, že každá kostra grafu G
musí obsahovať hranu {3, 4}.

Záverom poznamenávame, že Kirchhoffova veta počíta kostry pre ľubovoľný súvislý graf, nielen
pre kompletné grafy.
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1.8 Eulerovské orientované ťahy v orientovaných grafoch
Ukázali sme, že maticová veta o stromoch pre grafy dáva jednu z niekoľkých metód spočítania
označených stromov, založenú na určení počtu kostier označeného grafu Kn. Uvedieme len for-
muláciu tvrdenia zovšeobecňujúceho túto vetu na orientované grafy a určujúceho počet kostier
daného orientovaného grafu D, každá z nich je orientovaná v smere k niektorému svojmu vrcholu.

Hlavnou úlohou tejto časti prednášky bude aplikovať maticovú vetu o stromoch pre orientované
grafy a označené eulerovské orientované grafy D, za účelom dosiahnutia presnej formuly pre počet
eulerovských ťahov v orientovanom grafe D.

Vnútorný strom (vstupujúci do koreňa v) dostaneme zo zakoreneného stromu T s koreňom v
orientáciou všetkých jeho hrán smerom k vrcholu v.

Vonkajší strom (vystupujúci z vrchola v) je orientáciou duálny k vnútornému stromu.
Je zrejmé, že obe tieto množiny orientovaných stromov sú vo vzájomne jednoznačnom vzťahu

s množinou zakorenených stromov.
Uvažujme orientovaný graf D, ktorý je zobrazený na obr. 1.21, a ktorého vrcholy sú označené

číslami 1, 2, 3, 4, 5. Existujú práve štyri kostry, vychádzajúce z vrchola 1 a 2 kostry vstupujúce do
vrchola 1.

Nech D je orientovaný graf (rozumieme orientovaný graf bez násobných hrán a orientovaných
slučiek) s maticou susednosti A = (aij) [aij = 1, ak (i, j) patrí do D, ak (i, j) nepatrí do D,
tak aij = 0]. Ďalej definujeme diagonálnu maticu M0 – vonkajšiu, u ktorej prvok (i, i) je rovný
vonkajšiemu stupňu vrchola vi. Potom kladieme C0 = M0−A. V takomto prípade súčet všetkých
prvkov v matici C0, ktoré sa nachádzajú v jednom riadku, je rovný nule, no nie nutne sa to spĺňa
pre stĺpce. Skutočne, ako uvidíme neskôr, súčet prvkov, ktoré stoja v jednom a v tom istom
stĺpci je rovný nule práve vtedy, keď D je orientovaný eulerovský graf. Analogickým spôsobom
definujeme maticu C1 = M1 − A, kde M1 je diagonálna matica, v ktorej prvok (i, i) je rovný
vnútornému stupňu. Sformulujeme dôležitý výsledok:

Veta 1.8.1 (Maticová veta o stromoch pre orientované grafy) Všetky algebraické doplnky
i-tého riadku matice C0 sú si rovné navzájom a ich spoločná hodnota je počet kostier vstupujú-
cich do vrchola vi v orientovanom grafe D. Duálnym spôsobom, spoločná hodnota algebraických
doplnkov i-tého stĺpca matice C1, je rovná počtu kostier vystupujúcich z vrchola vi.

Dôkaz tohto tvrdenia nebudeme robiť, zrejme by sme postupovali podobne, ako v neoriento-
vanom prípade, pravda s príslušnými modifikáciami.

Uvedené tvrdenie budeme ilustrovať na príklade orientovaného grafu D zobrazeného na obrázku
1.21. Matice C0 a C1 pre uvedený graf D majú tvar:

C0 =


2 −1 0 0 −1
0 2 −1 −1 0
0 0 1 −1 0
0 −1 0 2 −1
−1 0 0 0 1

 ; C1 =


1 −1 0 0 −1
0 2 −1 −1 0
0 0 1 −1 0
0 −1 0 2 −1
−1 0 0 0 2

 .

Ak ich použijeme, ihneď sa presvedčíme, že ak vezmeme prvý riadok matice C0 a z prvého stĺpca
matice C1, dostávame, že orientovaný graf D má práve štyri kostry vychádzajúce z vrchola 1 ako
na obrázku 1.21.

Počítajme determinanty príslušných matíc:∣∣∣∣∣∣∣∣
2 −1 −1 0
0 1 −1 0
−1 0 2 −1
0 0 0 1

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣

2 −1 −1
0 1 −1
−1 0 2

∣∣∣∣∣∣ = 4− 1− 1 = 2.

∣∣∣∣∣∣∣∣
2 −1 −1 0
0 1 −1 0
−1 0 2 −1
0 0 0 2

∣∣∣∣∣∣∣∣ = 2

∣∣∣∣∣∣
2 −1 −1
0 1 −1
−1 0 2

∣∣∣∣∣∣ = (4− 1− 1)2 = 4.
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(a) Graf D.

1 1 1 1

(b) Kostry vystupujúce z vrchola 1.

1 1

(c) Kostry vstupujúce do vrchola 1.

Obrázok 1.21: Kostry orientovaného grafu D, vystupujúce a vstupujúce do vrchola 1.

Orientovaný graf nazývame eulerovský, ak existuje uzavretý faktorový orientovaný ťah, pre-
chádzajúci cez každý vrchol, pričom každú orientovanú hranu prechádza práve jedenkrát. Taký
orientovaný ťah nazývame eulerovským ťahom. Jedno kritérium eulerovskosti orientovaného grafu
spočíva v nasledujúcom: orientovaný graf musí byť súvislý (v neorientovanom slova zmysle) a
pre každý vrchol platí, že vnútorný stupeň je rovný vonkajšiemu stupňu. Napríklad orientovaný
graf uvedený na obrázku 1.21 nie je eulerovský, ale orientovaný graf zobrazený na obrázku 1.22
eulerovský je. Z definície eulerovského orientovaného grafu vyplýva, že matice C0 a C1 majú
rovnaké diagonály, a preto sú si rovné. Pre orientovaný graf, uvedený na obrázku 1.22, táto
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Obrázok 1.22: Eulerovský orientovaný graf.

matica má tvar:

C = C0 = C1 =


2 −1 0 0 −1 0
0 2 −1 −1 0 0
0 0 1 −1 0 0
0 −1 0 2 −1 0
−1 0 0 0 2 −1
−1 0 0 0 0 1

 .

Vlastnosť matice C, súčet prvkov v ľubovoľnom riadku je rovný nule, taktiež súčet prvkov v
ľubovoľnom stĺpci je rovný nule, t.j. všetky algebraické doplnky sa navzájom rovnajú.

Prvý krok v dôkaze maticovej vety o stromoch pre grafy spočíval v poznámke, že ak súčet
elementov ľubovoľného stĺpca a taktiež súčet prvkov v ľubovoľnom riadku je rovný nule, tak potom
algebraický doplnok matice má jednu a tú istú hodnotu. V dôsledku vety má každý eulerovský
graf – orientovaný, rovnaký počet kostier, ktoré vchádzajú do každého vrchola a vychádzajúcich
z každého vrchola. Napríklad vo vyššie uvedenej matici, všetky algebraické doplnky sú rovné 4,
pretože existujú štyri kostry vstupujúce a vystupujúce z každého vrchola orientovaného grafu.

Obrázok 1.23: Kostry vstupujúce do vrchola v1, v orientovanom grafe na obrázku 1.22.
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Teraz máme všetko pripravené na to, aby sme mohli aplikovať maticovú vetu o stromoch
pre orientované grafy na odvodenie formuly pre počet eulerovských uzavretých ťahov v danom
orientovanom grafe. Pretože u každého orientovaného eulerovského grafu D platí, pre každý vrchol
vi vonkajší stupeň sa rovná vnútornému stupňu, potom môžeme toto číslo označiť ako di.

Veta 1.8.2 Počet e(D) eulerovských ťahov v označenom eulerovskom orientovanom grafe D, u
ktorého spoločná hodnota algebraických doplnkov matice C = C0 = C1 je práve c, je určený
formulou:

e(D) = c
∏

i

(di − 1)! (1.66)

Dôkaz. Nech v1 je ľubovoľný vrchol eulerovského orientovaného grafu D. Ukážeme, že každý
eulerovský ťah E orientovaného grafu D určuje jedinú kostru T vchádzajúcu do vrchola v1, a že
každá kostra T určuje práve

∏
i(di − 1)! eulerovských ťahov. A tak ako sme už ukázali, že počet

kostier orientovaného grafu D vstupujúcich do každého vrchola je práve c, potom formula (1.66)
bude dokázaná.

Aby sme zostrojili kostru vstupujúcu do vrchola v1 a určenú eulerovským ťahom E v orgrafe D,
nazveme poslednou orientovanou hranou ľub. vrchola vi 6= v1 takú hranu vystupujúcu z vi, ktorá
je posledná pri pohybe po ťahu E, ak počiatkom a koncom ťahu je vrchol v1. Takýmto spôsobom
len vrchol v1 nemá poslednú orientovanú hranu. Kostra T sa potom definuje ako taký orientovaný
faktor grafu D, u ktorého všetky orientované hrany sú poslednými hranami. V podgrafe T vonkajší
polostupeň je u vrchola v1 rovný 0 a vonkajšie polostupne všetkých iných vrcholov sú rovné 1,
potom musí byť strom vsupujúcim do vrchola v1.

Nech teraz T je niektorá kostra vstupujúca do vrchola v1 (jedna z c takých kostier). Aby sme
zostrojili všetky eulerovské ťahy E spojené s kostrou T , urobíme tak, ako v predchádzajúcom
prípade, t.j. poslednými hranami ťahu E vzhľadom na vrchol v1 budú orientované hrany kostry
T . Pretože orientovaný graf D je eulerovský, potom vonkajší stupeň vrchola sa rovná vnútornému
stupňu vrchola vi. Pri zostrojovaní ťahu E z kostry T jedna z hrán vychádzajúca z ľubovoľného
vrchola vi 6= v1 sa necháva, pretože neskôr sa použije ako posledná orientovaná hrana vystupu-
júca z vrchola v1, rezervuje sa pre použitie prvej orientovanej hrany ťahu E. A tak pre každý
vrchol vi (vrátane vrchola v1) existuje práve (di − 1)! rôznych usporiadaných orientovaných hrán
vystupujúcich z vi po ich objavení v ťahu E. Pretože tieto výbery sú nezávislé, potom ak ich
vynásobime faktoriálmi, dostávame počet eulerovských ťahov určených kostrou T . No existuje e
takých kostier, čo aj dokazuje formulu (1.66). �

Obrázok 1.24: Štyri eulerovské ťahy grafu D na obrázku 1.22.
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Dôsledok 1.8.1 Ak v eulerovskom grafe každé di je rovné buď 1 alebo 2, potom počet eu-
lerovských orientovaných ťahov je rovný počtu c kostier vstupujúcich do ľubovoľného vrchola.

Tvrdenie bezprostredne vyplýva z toho, že každé (di − 1)! = 1. Ilustrujeme tento dôsledok na
príklade orientovaného grafu D, ktorý je zobrazený na obrázku 1.22, a v ktorom každé di je rovné
buď 1 alebo 2. Z vyčíslenia alg. doplnkov, ktoré predchádzalo obr. 1.23, vieme, že orientovaný
graf D má práve štyri eulerovské orientované ťahy. Sú zobrazené na obr. 1.24 v súlade s kostrami
vstupujúcimi do vrchola 1 uvedenými na obrázku 1.23.

1.9 Binárne stromy
Ako príklad použitia generujúcich funkcií určíme počet binárnych stromov s n vrcholmi.

Pod binárnym stromom s n vrcholmi chápame prázdny strom T = ∅ ak n = 0 alebo T =< L, r, P >,
kde r je vrchol, ktorý nazývame koreň stromu, L (ľavý podstrom) binárny strom s l vrcholmi, P
(pravý podstrom) binárny strom s p vrcholmi a l+p+1 = n. Budeme hovoriť, že binárne stromy T1

a T2 sú izomorfné a písať T1
∼= T2, ak T1 = T2 = ∅ alebo T1 =< L1, r1, P1 > a T2 =< L2, r2, P2 >,

kde L1
∼= L2 a P1

∼= P2.
Označme ck počet neizomorfných binárnych stromov s k vrcholmi. Z danej rekurzívnej definície

vyplýva, že c0 = 1 a ak 0 ≤ s ≤ k − 1, potom existuje práve csck−1−s neizomorfných stromov
tvaru < L, r, P >, L binárny strom s s vrcholmi. Číslo s môže nadobúdať ľubovoľnú hodnotu
medzi 0 a k − 1. Z toho vyplýva

ck = c0ck−1 + c1ck−2 + ... + ck−1c0 (1.67)

Neizomorfné binárne stromy pre k = 0, 1, 2, 3 sú zobrazené na nasledujúcom obrázku:
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c3 = 5

•

•

•

������ ??
??

??

•

•

•

������

������
•

•

•

������

??
??

??

Uvažujme generujúcu funkciu C(x) =
∑∞

k=0 ckxk. Rovnosť (1.67) nám pripomína formulu pre
koeficienty Cauchyho súčinu C(x)C(x) = C2(x), presnejšie povedané platí nasledujúca rovnica

C(x) = xC2(x) + 1 (1.68)

alebo
xC2(x)− C(x) + 1 = 0

Ukážeme, že existuje analytická funkcia C(x) v okolí bodu 0 vyhovujúca tomuto vzťahu, tejto
rovnosti. V dôsledku vzájomne jednoznačného vzťahu medzi radmi a analytickými funkciami,
koeficienty tohto riešenia určujú formálny rad vyhovujúci rovnosti (1.68). Ak uvažujeme (1.68) ako
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kvadratickú rovnicu s neznámou C(x) (hodnota hľadanej analytickej funkcie v bode x), dostávame
pre x 6= 0

C(x) =
1±

√
1− 4x

2x
(1.69)

Rozložme
√

1− 4x = (1− 4x)
1
2 do Maclaurinovho radu.

f(x) = f(0) + f ′(0)
x

1!
+ f ′′(0)

x2

2!
+ ...

f(x) = (1− 4x)
1
2

dk

dxk
(1− 4x)

1
2 =

1
2
(
1
2
− 1)(

1
2
− 2)...(

1
2
− k + 1)(1− 4x)

1
2−k(−4)k =

=
1
2

(1− 2)
2

(1− 4)
2

(1− 6)
2

...
(1− 2k + 2)

2
(1− 4x)

1
2−k(−4)k =

=
1(−1)(−3)...(1− 2(k + 1))(1− 4x)

1
2−k(−4)k

2k
=

= 1(−1)(−3)...(1− 2(k + 1))(1− 4x)
1
2−k(−2)k =

= 2k(−1)k+k−1(1)(3)(5)...(2k − 3)(1− 4x)
1
2−k =

=
2k(−1)1.2.3.4.5.6....(2k − 3)(2k − 2)(1− 4x)

1
2−k

2.4.6...(2k − 2)
=

=
(−1)2k(2k − 2)!(1− 4x)

1
2−k

2k−1(k − 1)!
=

(−1)2(2k − 2)!(1− 4x)
1
2−k

(k − 1)!

√
1− 4x = 1− 2

∞∑
k=1

1
k

(
2k − 2
k − 1

)
xk

Odtiaľ vidno, že na to aby sme dosiahli riešenie s hľadanými koeficientami treba vybrať
znamienko mínus v (1.69). Takýmto spôsobom dostávame

C(x) =
1−

√
1− 4x

2x
=

∞∑
k=1

1
k

(
2k − 2
k − 1

)
xk−1 =

∞∑
k=0

1
k + 1

(
2k

k

)
xk

odtiaľ dostávame
C(k) =

1
k + 1

(
2k

k

)
— Catalanové čisla.



Kapitola 2

Enumerácia neoznačených objektov

2.1 Grupy a grafy
Pri určovaní počtu neoznačených grafov úlohu formulujeme tak, aby sme mohli výsledok získať
tým, že nájdeme počet orbít niektorej vhodnej grupy permutácií. Z Burnsidovej lemy určíme počet
orbít vyčíslením počtu identických prvkov vzhľadom na permutácie z uvažovanej grupy.

Uvažujme množinu X = {1, 2, ..., n} a nech A je niektorá množina permutácii množiny X
uzavretá vzhľadom na operáciu skladania permutácii. Potom A je grupou permutácii na množine
objektov X. Rád grupy A označujeme |A| a je to počet permutácii A; stupeň grupy A je počet
prvkov množiny X, teda stupeň je rovný n.

G

•4

•1 •2

•3
��

��
��

��
��

��
� α1 = (1)(2)(3)(4)

α2 = (1)(3)(24)
α3 = (13)(2)(4)
α4 = (13)(24)

Obrázok 2.1: Graf G a jeho grupa.

Poznámka 2.1.1 Graf G určuje "obraz" svojej grupy automorfizmov. Takýmto spôsobom teo-
reticko-grupové pojmy, ktoré budeme potrebovať, objasníme tak, že ich budeme skúmať spolu s
grafmi, využijeme pritom názornosť a podnety, ktoré umožňuje teória grafov.

Γ(G) - množina všetkých permutácii na množine V (G) zachovávajúcich susednosť sa nazýva
grupou grafu G a jej permutácie nazývame automorfizmami. Teda grupa grafu je grupou per-
mutácii, ktorých objektami su vrcholy grafu.

Poznámka 2.1.2 Ľahko sa možno presvedčiť, že pre ľubovoľný graf G platí Γ(Ḡ) = Γ(G).

Na vyriešenie otázky : kedy sú rovnaké dve grupy permutácii, potrebujeme jemnejšie kritérium,
ako je grupový izomorfizmus. Uvažujme tri označené grafy, ktoré sú znázornené na obr. 2.3.
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Obrázok 2.2: Komplement grafu zobrazeného na obr.1.
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Obrázok 2.3: Tri grafy s rovnakými grupami.

Tieto grafy majú rovnaké grupy, rozdiel medzi nimi spočíva len v "doplnkovosti" a označení.
Je preto vhodné stotožniť grupy permutácii, u ktorých sa permutácie lišia len "menom" permuto-
vaných objektov. Vychádzajúc z toho uvedieme nasledujúce definície.

Definícia 2.1.1 Nech A a B sú dve grupy permutácii s množinami objektov X resp. Y . Hovoríme,
že sú izomorfné, označujeme A ∼= B, ak existuje bijekcia h z A do B taká, že pre všetky permutácie
α1 a α2 z grupy A platí rovnosť

h(α1α2) = h(α1)h(α2).

Ak okrem toho existuje bijekcia φ z X do Y taká, že pre každú permutáciu α ∈ A a pre každý
prvok x ∈ X platí rovnosť

φ(αx) = h(α)φ(x)

potom grupy A a B sú identické a píšeme A = B.

Poznámka 2.1.3 Zobrazenie φ proste zamieňa označenia (názvy) objektov, na ktorých pôsobí
grupa A, označeniami zodpovedajúcimi grupe B. Grupy všetkých troch grafov uvedených na obr.
2.3 sú identické.

2.2 Cyklový index grupy permutácii
A - grupa permutácii na množine objektov X = {1, 2, ..., n}. Je známe, že každú permutáciu
α ∈ A môžeme jediným spôsobom vyjadriť v tvare súčinu po dvoch disjunktných cyklov. Pre
každé k = 1, 2, ..., n znakom jk(α) budeme označovať počet cyklov dĺžky k v rozklade permutácie
α na súčin po dvoch disjunktných cyklov. Potom cyklový index grupy A, budeme ho označovať
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ako Z(A), predstavuje mnohočlen premenných s1, s2, ..., sn určený formulou

Z(A) = |A|−1
∑
α∈A

n∏
k=1

s
jk(α)
k .

Poznámka 2.2.1 Ak budeme potrebovať zdôrazniť premenné, tak namiesto Z(A) budeme písať
Z(A, s1, ..., sn).

Príklad 2.2.1 Uvažujme symetrickú grupu Sn definovanú na množine o n prvkoch. Potom

Z(S3) =
1
3!

(s3
1 + 3s1s2 + 2s3).

Poznámka 2.2.2 Najviac sa používajú explicitné formuly pre cyklové indexy piatich známych
grúp permutácii: symetrickej, alternujúcej, cyklickej, diedrálnej a identickej.

Je známe, že každú permutáciu α na n prvkoch možno reprezentovať určitým rozkladom čísla
n prostredníctvom vektora (j) = (j1, j2, ..., jn), kde jk je počet častí rozkladu rovných k a teda

n =
n∑

k=1

kjk.

Nech h(j) je počet permutácii v grupe Sn, rozklad ktorých je určený vektorom (j). Pretože
pre každé k platí jk = jk(α), ľahko možno nahliadnuť, že

h(j) =
n!∏n

k=1 kjkjk!
. (2.1)

Takýmto spôsobom pre cyklový index Z(Sn) dostávame:

Veta 2.2.1 (Polya, Redfield) Cyklový index symetrickej grupy je určený formulou

Z(Sn) =
1
n!

∑
(j)

h(j)
n∏

k=1

sjk

k ,

kde súčet berieme vzhľadom na všetky rozklady (j) čisla n a h(j) je určená výrazom (2.1).

2.3 Burnsidova lema
Nech A je grupa permutácií na množine objektov X = {1, 2, ..., n}. Potom prvky x a y z X
budeme nazývať A-ekvivalentné, ak existuje permutácia α ∈ A taká, že αx = y.

Ľahko možno ukázať, že horeuvedená relácia je ekvivalencia na množine X. Triedy ekvivalencie
nazývame orbitami, alebo systémy tranzitívnosti grupy A.

Pre každé x ∈ X položme
A(x) = {α ∈ A| αx = x}.

Uvedená množina A(x) sa nazýva stabilizátorom prvku x, alebo grupou izotrópie prvku x. Poz-
namenávame, že ak prvky x a y patria do jednej orbity, potom množiny A(x) a A(y) sú konjugo-
vané podgrupy grupy A a teda |A(x)| = |A(y)|. Uvedená rovnosť vyplýva z nasledujúcej úvahy:
γx = y → γ−1y = x, A(x) = {αi| αix = x}, A(y) = {βj | βjy = y}, αix = x, γαix = γx = y,
γαiγ

−1y = y → γαiγ
−1 = βi. Ľahko vidno, že ľubovoľné βi sa dá vyjadriť v uvedenom tvare.

Teraz ukážeme, že pre ľubovoľný prvok y z orbity Y = Θ(y) grupy A platí vzťah

|A| = |A(y)||Y | (2.2)
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t.j. počet elementov v orbite, ktorá obsahuje element y, je rovný indexu stabilizátora elementu y
v grupe A. Aby sme sa o tom presvedčili, najprv rozložíme grupu podľa podgrupy A(y) a grupu
A zapíšeme ako zjednotenie pravých tried rozkladu podľa uvažovanej podgrupy A(y):

A =
m⋃

i=1

αiA(y).

Teraz nám stačí ukázať vzájomne jednoznačný vzťah medzi triedami rozkladu a prvkami orbity
Y . Pre každé i = 1, 2, ...,m priradíme triede rozkladu αiA(y) prvok αiy ∈ Y . Ak i 6= j, potom
αiy 6= αjy, pretože inak by permutácia α−1

j αi patrila podgrupe A(y), a teda permutácia αi by
bola prvkom αjA(y), čo je v spore so vzťahom, že αiA(y)∩αjA(y) = ∅. To znamená, že uvedený
vzťah je jednoznačný. Pre každý objekt y′ ∈ Y pri niektorej permutácií α ∈ A je splnená rovnosť
αy = y′. Z rozkladu grupy A na triedy rozkladu vyplýva, že αiγ = α, ak γ ∈ A(y). Z toho
vyplýva, že y′ = αiγy = αiy a takýmto spôsbom každý prvok orbity Y zodpovedá niektorej triede
rozkladu. To znamená, že m je počet elementov v orbite Y a tým je formula (2.2) dokázaná.

Teraz už máme všetko pripravené na dôkaz Burnsideho lemy, ktorá udáva formulu na vyja-
drenie počtu orbít grupy A pomocou aritmetického priemeru počtu identických prvkov všetkých
permutácii grupy A.

Lema 2.3.1 (Burnsidova lema) Nech N(A) je počet orbít grupy A, potom N(A) je určený
formulou

N(A) = |A|−1
∑
α∈A

j1(α).

Dôkaz. Nech X1, X2, ..., Xm sú orbity grupy A, nech pre každé i = 1, 2, ...,m xi je prvok i-tej
orbity Xi. Potom z formuly (2.2) dostávame

N(A)|A| =
m∑

i=1

|A(xi)||Xi|. (2.3)

Ako sme už uázali predtým, že ak x a xi patria do jednej a tej istej orbity, potom |A(x)| = |A(xi)|.
Z toho vyplýva, že vzťah (2.3) možno inak zapísať takto:

N(A)|A| =
∑
x∈X

|A(x)|

alebo v iných označeniach :
N(A)|A| =

∑
x∈X

∑
α∈A
x=αx

1.

No keď si uvedomíme, že
∑

x∈X

∑
x=αx 1 je rovné práve

∑
α∈A j1(α), tak na to, aby sme dokončili

dôkaz, nám stačí, aby sme obidve časti delili |A|. �

Príklad 2.3.1 Uvažujme graf G na obr. 2.4.
Rád grupy Γ(G) je rovný 4 a každá jej permutácia zachováva identitu troch vrcholov 3, 5 a 7.

Označme permutácie nasledujúcim spôsobom:

α1 = (1)(2)(3)(4)(5)(6)(7) α2 = (12)(3)(4)(5)(6)(7)
α3 = (46)(1)(2)(3)(5)(7) α4 = (12)(46)(3)(5)(7)

Teda j1(α1) = 7, j1(α2) = j1(α3) = 5 a j1(α4) = 3. Takýmto spôsobom dostávame

N(Γ(G)) =
1
4
(7 + 5 + 5 + 3) = 5.

Je zrejmé, že orbitami tejto grupy sú množiny {3}, {5}, {7}, {1, 2}, {4, 6}. Poznamenávame, že
počet orbít je totožný s počtom spôsobov, ktorými môžeme dostať z grafu G rôzne neoznačené
zakorenené grafy.

Aby sme také všetky grafy dostali, treba ako koreň vybrať po jednom vrchole z každej orbity.
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Obrázok 2.4: Graf s troma identickými prvkami.

Niekedy je treba ohraničiť pôsobenie grupy A na niektorú podmnožinu Y množiny X, kde Y je
zjednotenie nejakých orbít grupy A. Preto označíme ako A|Y množinu permutácií, pôsobiacich na
Y , ktoré dostávame pomocou ohraničenia na podmnožinu Y , zodpovedajúcich permutácií grupy A.
Pre každú permutáciu α ∈ A počet prvkov v Y , identických vzhľadom na permutáciu α označíme
ako j1(α|Y ). Potom môžeme sformulovať dôsledok Burnsidovej formuly, ako jej ohraničenú formu,
nasledovne.

N(A|Y ) = |A|−1
∑
α∈A

j1(α|Y ).

Ďalej uvedieme zovšeobecnenie Burnsidovej formuly, ktoré nazývame jej zváženou formou.
Nech R je komutatívny okruh, obsahujúci množinu všetkých racionálnych čísel a w niektorá

funkcia, ktorú nazývame váhovou funkciou, zobrazujúcou množinu objektov X grupy A do okruhu
R. V praktických aplikáciach je váhová funkcia konštantnou na každej orbite grupy A. Teda v
tomto prípade môžeme určiť váhu ľubovoľnej orbity Xi ako váhu ľubovoľného jej prvku. Pre
každú orbitu Xi označíme jej váhu ako w(Xi) a určíme ju vzťahom w(Xi) = w(x) pre každý prvok
x ∈ Xi.

Takýmto spôsobom môžeme sformulovať zváženú formu Burnsidovej formuly: Súčet váh orbít
grupy A je určený nasledujúcou formulou;

m∑
i=1

w(Xi) = |A|−1
∑
α∈A

∑
x=αx

w(x).

Dôkaz je analogický, ako dôkaz Burnsidovej lemy. Na ilustráciu zváženej formy uvažujeme graf na
obrázku 2.4. Váhu w(k) každého vrcholu k grafu G definujeme ako cyklový index stabilizátora
vrchola k v grupe Γ(G).

w(1) =
1
2
(s7

1 + s5
1s2)

w(3) =
1
4
(s7

1 + 2s5
1s2 + s2

2s
3
1)

Poznamenávame, že w(1) = w(2) = w(4) = w(6) a w(3) = w(5) = w(7). V našom prípade súčet
váh orbít je rovný!

w(1) + w(3) + w(4) + w(5) + w(7) = 2w(1) + 3w(3).

Ak uvažujeme pravú stranu zváženej Burnsidovej formuly pre náš prípad, tak dostávame:

1
4

∑4
i=1

∑
x=αix

w(x) = 1
4

{∑
x=α1x w(x) +

∑
x=α2x w(x) +

∑
x=α3x w(x) +

∑
x=α4x w(x)

}
=

= 1
4

{
w(1) + w(2) + w(3) + w(4) + w(5) + w(6) + w(7) + w(3) + w(4)+

+ w(5) + w(6) + w(7) + w(1) + w(2) + w(3) + w(5) + w(7) + w(3)+
+ w(5) + w(7)

}
= 1

4 (8w(1) + 12w(3)) = 2w(1) + 3w(3).
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Poznamenávame, že analogicky šúčet cyklových indexov všetkých koreňových grafov, ktoré
dostaneme z niektorého grafu G, môže byť vyjadrený pomocou váh identických vrcholov grupy
Γ(G).

2.4 Polyova veta
Pretože vo väčšine prípadov pri aplikácii enumeračnej Polyovej vety potrebujeme len variant s
jednou premennou a pretože v tomto prípade sa Polyova veta chápe omnoho ľahšie, nebudeme
sa detailne zaoberať jej zovšeobecnením na n-premenných, na istom mieste uvedieme pre tento
prípad jej formuláciu.

Zavedieme pojem mocninovej grupy, ktorú budeme v ďalšom používať.
Nech A je grupa permutácií s množinou objektov X = {1, 2, . . . , n} a nech B je konečná

grupa permutácií so spočítateľnou množinou objektov Y , ktorá obsahuje aspoň dva prvky. Potom
mocninová grupa označená ako BA, má množinu objektov množinu Y X všetkých zobrazení z
množiny X do množiny Y . Permutáciami grupy BA sú všetky usporiadané dvojice permutácií α z
A a β z B zapisovaných v tvare (α;β). Obraz ľubovoľnej funkcie f z Y X pri aplikácii permutácie
(α;β) je určený formulou

((α;β)f)(x) = βf(αx)

pre všetky x ∈ X.
Na to, aby sme sformulovali klasickú enumeračnú Polyovu formulu, položíme B = E – identická

grupa na Y . Uvažujme teraz mocninovú grupu EA pôsobiacu na množine Y X . Nech w : Y →
{0, 1, 2, . . .} je zobrazenie, funkcia, ktorej obor hodnôt je množina prirodzených čísel a pre ktorú
|w−1(k)| je konečná pre každé k, kde w−1(k) je množina prvkov z Y , ktoré sa zobrazia pri w na
prirodzené číslo k. Špeciálne pre každé k = 0, 1, 2, . . . nech

ck = |w−1(k)|

bude označovať počet „figúr” váhy k.
Potom o elemente y z Y , pre ktorý w(y) = k hovoríme, že má váhu k, a funkciu w nazývame

váhovou funkciou. Ďalej nech

c(x) =
∞∑

k=0

ckxk

vzhľadom na premennú x, ktorý vyčísluje elementy množiny Y v súlade s ich váhami, nazývame
radom vyčíslujúcim figúry.

Váha funkcie f z Y X sa definuje formulou

w(f) =
∑
x∈X

w(f(x)),

nie je ťažké ukázať, že funkcie, patriace do jednej a tej istej orbity mocninovej grupy EA majú rov-
naké váhy. (Uvedené tvrdenie vyplýva z nasledujúcich vzťahov a rovností: w(f) =

∑
x∈X w(f(x));

w(g) =
∑

x∈X w(g(x)); g(x) = εf(αx) = f(αx) → f(X) = g(X)). Z toho vyplýva, že váhou w(F )
orbity F grupy EA je váha ľubovoľnej funkcie f z orbity F . Pretože |w−1(k)| je prirodzené číslo
pre každé k = 0, 1, 2, . . . , potom existuje len konečný počet orbít každej váhy. Preto označíme Ck

počet orbít váhy k. Potom rad

C(x) =
∞∑

k=0

Ckxk

vzhľadom na premennú x nazývame radom vyčísľujúcim funkcie. Teraz môžeme sformulovať
základnú vetu, ktorá vyjadruje rad C(x) v termínoch cyklového indexu Z(A) a radu c(x). V
uvedenej formule Z(A, c(x)) je skráteným zápisom pre formulu Z(A, c(x), c(x2), c(x3), . . .).
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Veta 2.4.1 (Enumeračná Polyova veta) Rad C(x) vyčíslujúci funkcie dostaneme pomocou
zámeny v cyklovom indexe Z(A) namiesto každej premennej sk radom c(xk), vyčíslujúceho figúry.
Symbolicky:

C(x) = Z(A, c(x))

alebo podrobnejší tvar

C(x) =
1

|A|−1

∑
α∈A

n∏
k=1

[c(xk)]jk(α). (2.4)

Poznamenávame, že tento výsledok sa používa tak častokrát, že namiesto „Polyova enumeračná
veta” pri vyčíslení grafov sa v stručnosti píše spravidla „Polyova veta”.

Dôkaz. Nech ε je identická permutácia na Y . Potom pre každú permutáciu α ∈ A a ľubovoľné
k = 0, 1, 2, . . . označíme ϕ(α, k) počet funkcií váhy k, pevných vzhľadom na permutáciu (α; ε). Ak
ohraničíme pre každé k pôsobnosť mocninovej grupy EA na množinu funkcií váhy k a aplikujeme
ohraničenú formu Burnsidovej lemy, dostávame

Ck = |A|−1
∑
α∈A

ϕ(α, k).

Z toho vyplýva, že

C(x) =
∞∑

k=0

|A|−1
∑
α∈A

ϕ(α, k)xk.

Ak zameníme poradie sumácie, dostávame

C(x) = |A|−1
∑
α∈A

∞∑
k=0

ϕ(α, k)xk. (2.5)

Rad
∑∞

k=0 ϕ(α, k)xk vyčísluje všetky funkcie, pevné vzhľadom na permutáciu (α; ε). Potom
((α; ε)f)(x) = εf(αx). Takým spôsobom pre všetky x musí platiť rovnosť f(αx) = f(x), t.j.
funkcia musí byť konštantou na disjunktných cykloch permutácie α. Obrátene, všetky funkcie
konštantné na cykloch permutácie α sú pevné vzhľadom na permutáciu (α; ε).

Nech zr je cyklus dĺžky r v permutácii α. Ak funkcia zobrazuje elementy cyklu zr na jeden z ck

elementov množiny Y , ktorý má váhu k, potom cyklus zr dáva vklad do váhy funkcie f hodnotu
r · k. Potom ľahko vidieť, že pre každé k koeficient pri xrk v rade

c(xr) =
∞∑

k=0

ckxrk

je rovný počtu spôsobov, ktorými môžeme určiť funkciu f na prvkoch cyklu zr tak, aby bola
pevná vzhľadom na permutáciu (α; ε) a aby vklad do váhy w(f) bol r · k. Odtiaľ vyplýva, že rad
[c(xr)]jr(α) vyčísluje v súlade s ich váhami rôzne spôsoby určenia funkcií, ktoré sú konštantné na
všetkých cykloch dĺžky r permutácie α.

Uvažujme všetky cykly permutácie α, môžeme vyjadriť rad pre funkcie, ktoré sú konštantné
na cykloch v tvare súčinu

∞∑
k=0

ϕ(α, k)xk =
n∏

k=1

[c(xk)]jk(α). (2.6)

Teraz (2.4) dostávame z (2.5) a (2.6) a definície Z(A). �

Príklad 2.4.1 Na ilustráciu Polyovej vety uvažujeme „problém náhrdelníka”. Na obrázku 2.5 sú
dva náhrdelníky, každý so štyrmi kameňmi, pričom každý z kameňov je označený číslom z množiny
X = {1, 2, 3, 4}. Dva kamene náhrdelníka sú čierne a dva biele.

Je zrejmé, že počet označených náhrdelníkov so štyrmi kameňmi, obsahujúci len kamene bielej
alebo čiernej farby, je rovný 48. Grupa automorfizmov pre kružnicu dĺžky 4 má 8 prvkov, teda
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Obrázok 2.5: Náhrdelníky so štyrmi kameňmi.

kružnica, podľa známej formuly má 3 rôzne označenia. Počet rôznych zafarbení označenej kružnice
dĺžky 4 dvomi farbami je rovný 24. Teda celkový počet označených náhrdelníkov so 4 kameňmi,
ktoré môžu byť biele alebo čierne, je rovný 3 · 24 = 48.

Na to aby sme dostali počet neoznačených náhrdelníkov, je treba stotožniť také náhrdel-
níky, ako sú na obrázku 2.5, t.j. keď jeden náhrdelník z druhého dostaneme otočením alebo
preklopením. Ak položíme Y = {a, b}, potom každá funkcia f : X → Y zodpovedá niek-
torému označenému náhrdelníku, v ktorom kamienok s číslom k má „farbu” f(k). Takýmto
spôsobom náhrdelník reprezentovaný funkciou f má |f−1(a)| kameňov jednej farby a f−1(b)
kameňov druhej farby. Nech teraz identická grupa E2 pôsobí na množinu Y . Dva náhrdel-
níky budú rovnaké po vynechaní značiek v tom prípade, ak zodpovedajúce funkcie patria k
jednej orbite mocninovej grupy ED4

2 . D4 – označuje diedrálnu grupu, v našom prípade ju tvo-
ria permutácie: (1)(2)(3)(4); (1)(3)(24); (13)(2)(4); (12)(34); (13)(24); (14)(23); (1234); (1432). Ak
položíme w(a) = 0 a w(b) = 1, potom 1 + x je vyčíslujúcim radom pre Y a funkcia váhy k bude
predstavovať náhrdelník s 4−k bielymi a k čiernymi kameňmi. Z toho vyplýva, že enumeračný rad
pre funkcie C(x) v tomto prípade vyčísluje neoznačené náhrdelníky a koeficient pri xk je rovný
počtu takých náhrdelníkov s k čiernymi kameňmi. Potom z formuly uvedenej v Polyovej vete
dostávame:

Z(D4) =
1
8
(
s4
1 + 2s2

1s2 + 3s2
2 + 2s4

)
a teda

C(x) = Z(D4; 1 + x) =
1
8
(
(1 + x)4 + 2(1 + x)2(1 + x2) + 3(1 + x2)2 + 2(1 + x4)

)
,

ak splníme technické detaily, súvisiace so zámenou vyčíslujúceho radu pre figúry 1+x do cyklového
indexu Z(D4), tak dostávame

C(x) = 1 + x + 2x2 + x3 + x4.

Šesť neoznačených náhrdelníkov so štyrmi kameňmi dvoch farieb sú uvedené na obrázku 2.6
Celkový počet neoznačených náhrdelníkov je rovný C(1), a teda to znamená, že celkový počet

Obrázok 2.6: Všetky náhrdelníky neoznačené o dvoch farbách.

môžeme dostať pomocou vyčíslenia hodnoty radu 1 + x pre figúry, pri x = 1 a zámenou každej
premennej sk v cyklovom indexe Z(D4) prirodzeným číslom 2.
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Vo všeobecnosti, keď rad c(x) vyčíslujúci figúry je mnohočlen, potom rad C(x) vyčíslujúci
funkcie je taktiež mnohočlen. V tomto prípade počet orbít funkcií (neberieme do úvahy ich váhy)
je rovný C(1), dostávame tak, že namiesto každej premennej do zodpovedajúceho cyklového indexu
dosadíme c(1).

Príklad 2.4.2 Máme daný štvorsten, zobrazený na obrázku 2.7 (so stenami označenými číslami
1,2,3,4) a pýtame sa koľkými spôsobmi sa dajú zafarbiť jeho steny bielou a čiernou farbou tak, že
každá stena je zafarbená celá buď na čierno alebo na bielo. Problém by bol veľmi jednoduchý, ak
by boli steny geometricky rozlíšiteľné. Spôsoby zafarbenia by potom odpovedali variáciám štvrtej
triedy (steny {1, 2, 3, 4}) z dvoch prvkov ({biela farba, čierna farba}) s opakovaním, ich celkový
počet je rovný 24. Avšak v danom štvorstene sú steny 1,2 a 3 zhodné, teda štvorsten je symetrický
pri otočení 120◦ okolo vertikálnej osi, čo má za následok, že odlišným zafarbením získame objekty,
ktoré sú nerozlíšiteľné. Poznamenávame, že A – grupa symetrií daného útvaru, v našom prípade

Obrázok 2.7: Štvorsten.

štvorstenu pozostáva z troch permutácií

α1 = (1)(2)(3)(4)
α2 = (123)(4)
α3 = (132)(4).

Potom Z(A; s1, s2, s3) = 1
3 [s4

1 + 2s1s3], rad c(x) = 1 + x vyčísluje figúry. Potom

C(x) =
1
3
[
(1 + x)4 + 2(1 + x)(1 + x3)

]
je vyčíslujúci rad pre funkcie. Počet orbít je rovný

C(1) =
1
3
[24 + 2 · 2 · 2] = 8 = Z(A; 2).

Dôsledok 2.4.1 Počet orbít, určených mocninovou grupou EA
m, dostávame tak, že každú pre-

mennú v Z(A) zameníme m, teda
N(EA

m) = Z(A,m)
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Pre prípad m premenných uvedieme len formuláciu Polyovej vety. Dôkaz vety je analogický
ako v prípade jednej premennej. Nech N je množina prirodzených čísel a Nm = N × N × · · · × N
je karteziánsky súčin m kópií množiny N. Tak ako v prípade jednej premennej, množina objektov
mocninovej grupy EA je množina Y X a váhová funkcia w : Y → Nm má takú vlastnosť, že pre
každé z ∈ Nm platí, že |w−1(z)| je konečné prirodzené číslo. Aditívnosť podľa komponentov v
Nm, váha funkcie z Y X a orbity indukované grupou EA sa definujú tak, ako v prípade jednej
premennej.

Koeficient pri xr1
1 , xr2

2 , ..., xrm
m v rade c(x1, ..., xm), ktorý vyčísluje figúry, je podľa definície

rovný w−(r1, ..., rm). Koeficient pri xt1
1 , ..., xtm

m v rade C(x1, ..., xm), ktorý vyčísluje funkcie, je
rovný počtu orbít váhy (t1, ..., tm). Ak Z(A, c(x1, ..., xm)) označuje rad, ktorý dostaneme po-
mocou zámeny každej premennej sk v Z(A) radom c(xk

1 , ..., xk
m), potom výsledok, ktorý udáva

zovšeobecnená Polyova veta pre m premenných, môžeme sformulovať nasledujúcim spôsobom.

Veta 2.4.2 Nech c(x1, ..., xm) je vyčíslujúci rad pre figúry množiny Y . Potom pre orbity funkcií
z Y X , ktoré sú určené množinovou grupou EA, výčíslujeme v súlade so svojími váhami radom

C(x1, ..., xm) = Z(A, c(x1, ..., xm)).

Príklad 2.4.3 Na ilustráciu uvedenej vety sa vrátime k problému náhrdelníka. Našou úlohou
bude nájsť vyčíslujúci rad pre náhrdelník so štyrmi kameňmi a tromi prípustnými farbami. Nech
Y = {a, b, c} a uvažujme ľubovoľnú funkciu f : X → Y ako vyjadrenie náhrdelníka s |f−(a)|
červenými, |f−(b)| bielymi a |f−(c)| modrými kameňmi. Ak položíme w(a) = (0, 0), w(b) = (1, 0)
a w(c) = (0, 1), potom

w(f) =
∑
x∈X

w(f(x))

pričom w(f) je usporiadaná dvojica, ktorej prvá súradnica je rovná počtu bielych kameňov a druhá
súradnica počtu modrých kameňov. Počet červených kameňov je prirodzene rovný rozdielu medzi
|X| a počtom bielych a modrých kameňov. Ten, v súlade s definíciou vyčíslujúceho radu pre figúry,
je c(x1, x2) = 1 + x1 + x2. Z toho vyplýva, že na základe vety má vyčíslujúci rad pre náhrdelníky
tvar:

C(x1, x2) = Z(D4, 1 + x1 + x2)

pričom Z(D4) = 1
8 (s4

1+2s2
1s2+3s2

2+2s4), tak po uskutočnení predpísaných operácií pri substitúcií
vyčíslujúceho radu pre figúry do cyklového indexu Z(D4) napokon dostávame

C(x1, x2) = 1 + x1 + 2x2
1 + x3

1 + x4
1 + x2 + 2x2

2 + x3
2 + x4

2+

+ 2x1x2 + 2x2
1x2 + x3

1x2 + 2x1x
2
2 + x1x

3
2 + 2x2

1x
2
2.

Poznamenávame, že súčet koeficientov mnohočlena C(x1, x2) môžeme ľahko vyčísliť tak, že nájdeme
hodnotu Z(D4, 3) = 21, čo je to isté, ako predchádzajúci výraz pre C(1, 1).

2.5 Rad 1 + x - špecálny rad pre figúry
Existuje pomerne prirodzený dôsledok Polyovej vety, ktorý zdôrazňuje dôležitosť koeficientov mno-
hočlena, ktorý dostaneme ako výsledok zámeny radu 1 + x do cyklového indexu ľubovoľnej grupy
permutácie A. Toto tvrdenie sa ľahko dokazuje, je však veľmi dôležité, pretože každá vyčíslujúca
formula, ktorú dostaneme z Polyovej vety použitím radu 1 + x ako radu pre figúry, predstavuje
špeciálny prípad tohto dôsledku. Spomedzi takých výsledkov to budú formuly pre výpočet počtu
rôznych tried grafov.

Určíme význam tohto výsledku pre päť špeciálnych grúp, ktorých cyklové indexy sú nám už
dobré známe. Podobne ako pre prvky definujeme A-ekvivalentnosť dvoch r-podmnožín množiny
X.

Množiny S, S′ r-podmnožiny množiny X, nzývame A-ekvivalentné, ak pre niektorú permutáciu
α ∈ A platí αS = S′.
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Dôsledok 2.5.1 (Polyovej vety) Koeficient pri xr v Z(A, 1+x) je rovný počtu A-ekvivalentných
tried r-podmnožín množiny X.

Dôkaz. V rade 1 + x, ktorý vyčísluje figúry, sčítanec 1 = x0 môžeme interpretovať ako
neprítomnosť objektu z X a sčítanec x = x1 ako prítomnosť tohto objektu z X. Preto xr označuje,
že r-rôznych objektov, ktoré tvoria r-množinu, sú v množine X. Tvrdenie teraz bezprostredne
vyplýva z Polyovej vety a koeficient pri xr označuje počet orbít váhy r. �

Poznamenávame, že ak použijeme uvedený dôsledok, tak vidíme, že grupa permutácií A je
tranzitívna práve vtedy, keď koeficient pri x v Z(A, 1 + x) je rovný 1. Okrem toho, koefi-
cienty tohto mnohočlena, ktoré stoja rovnako od koncov, sú si vždy rovné, pretože počet tried
A-ekvivalentných r-podmnožín je totožný s počtom A-ekvivalentných (n− r)-podmnožín.

V ďaľšej časti uvedieme niekoľko užitočných poznámok k piatim najznámejším a často použí-
vaným permutačným grupám a potom uskutočníme substitúciu radu 1+x do príslušných cyklových
indexov.

Symetrická grupa Sn na množine {1, 2, ..., n} sa skladá zo všetkých n! permutácií.
Alternujúcu grupu An tvoria všetky párne permutácie na množine {1, 2, ..., n}. Permutácia je

párna (nepárna), ak jej rozklad na súčin transpozícií (cyklov dĺžky 2) obsahuje párny (nepárny
počet) činiteľov. Všetky tieto permutácie tvoria grupu An a ich celkový počet je rovný n!

2 . Poz-
namenávame, že každú permutáciu môžeme napísať v tvare súčinu transpozícií.

Cyklická grupa Cn je generovaná permutáciou (12...n) a obsahuje n prvkov.
Diedrálna grupa Dn obsahuje 2n prvkov a je generovaná permutáciami (12...n) a (1n)(2(n −

1))(3(n− 2))....
Identická grupa En obsahuje jeden prvok (1)(2)...(n).
Cyklové indexy uvažovaných permutačných grúp predstavujú nasledujúce mnohočleny:

Z(Sn) =
1
n!

∑
(j)

h(j)
n∏

k=1

Sjk

k

Z(An) = Z(Sn) + Z(Sn, s1,−s2, s3,−s4, ...)

Z(Cn) = n−1
∑
k|n

φ(k)sn/k
k

Z(Dn) =
1
2
Z(Cn) +


1
2s1s

(n−1)/2
2 ak n je nepárne

1
4

(
s

n/2
2 + s2

1s
(n−2)/2
2

)
ak n je párne

Z(En) = sn
1

Ak teraz uvažujeme symetrickú grupu Sn, ako vyplýva z jej definície, existuje permutácia
zobrazujúca danú r-podmnožinu na ľubovoľnú inú r-podmnožinu. Pre grupu An platí uvedená
vlastnosť, no treba poznamenať, že požadované zobrazenie uskutočňuje párna permutácia. Nasle-
dujúce dve formuly môžeme získať pomocou triviálnej substitúcie dvojčlena 1 + x do zodpoveda-
júcich cyklových indexov príslušných grúp:

Z(Sn, 1 + x) = 1 + x + x2 + ... + xn

Z(An, 1 + x) = 1 + x + x2 + ... + xn

Identická grupa prirodzene indukuje binomické koeficienty.

Z(En, 1 + x) =
n∑

r=0

(
n

r

)
xr.
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S cyklickou a diedrálnou grupou je situácia zložitejšia, ak jednoduchým spôsobom uskutočníme
formálnu substitúciu dvojčlena 1+xk namiesto premennej sk do formuly pre cyklový index cyklickej
grupy, dostávame

Z(Cn, 1 + x) = n−1
∑
k|n

φ(k)(1 + xk)n/k.

Rovnako podobnou zámenou do formuly pre cyklový index diedrálnej grupy Dn

Z(Dn) =
1
2
Z(Cn) +


1
2s1s

(n−1)/2
2 ak n je nepárne

1
4

(
s

n/2
2 + s2

1s
(n−2)/2
2

)
ak n je párne

Dostávame po formálnej stránke menej elegantný vzťah. Mechanicky túto formulu nebudeme
vyjadrovať, ale treba poznamenať, že sme sa s ňou už stretli v prípade, keď sme riešili náhrdelník
pre n = 4, kamene s dvoma farbami. Potom v prípade pre ľubovoľné n, zodpovedajúci výsledok
určuje počet možných dvojfarebných náhrdelníkov s 4 kameňmi.

2.6 Vzájomne jednoznačné funkcie
Z logického hľadiska sa ukazuje užitočné mať k dispozícií takú Polyovú vetu, ktorá bude vyjadrovať
počet zvážených navzájom jednoznačných funkcií pomocou cyklových indexov symetrických a
alternujúcich grúp a vyčíslujúcich radov pre figúry.

Tento výsledok môže mať použitie pri ustanovení vzájomného vzťahu medzi generujúcimi funk-
ciami napríklad stromov a zakorených stromov i druhých tried grafov.

Nech napríklad c(x) je rad vyčíslujúci prvky niektorej množiny Y v súlade s ich váhami a nech
jednotková grupa E má Y ako množinu objektov. Uvažujme ohraničenie mocninovej grupy EA

na podmnožinu všetkých vzájomne jednoznačných funkcií z Y X . Ak C(x) je vyčíslujúci rad pre
orbity vytvorené zo vzájomne jednoznačných funkcií a určených grupou EA, potom našu úlohu
možno sformulovať nasledujúcim spôsobom: ako možno vyjadriť C(x) "na jazyku" c(x). Najprv
uvažujme prípad A = Sn; po tomto riešení možno nájsť riešenie všeobecnej úlohy pomerne rýchlo.
Poznamenávame, že orbity vzájomne jednoznačných funkcií určených grupou ESn zodpovedajú n-
kombináciam, alebo n-podmnožinám elementov z Y . Ak dodržíme Polyove označenie, tak namiesto
výrazu pre Z(An)− Z(Sn) použijeme skrátený výraz Z(An − Sn) a kladieme Z(A0 − S0) = 1.

Veta 2.6.1 Generujúca funkcia C(x), ktorá vyčísluje vzájomne jednoznačné funkcie zobrazujúce
množinu z n vzájomne rozmeniteľných prvkov do množiny objektov s vyčíslujúcim radom pre
figúry c(x), je daná funkciou

C(x) = Z(An − Sn, c(x)).

Prv než dokážeme vyššie uvedenú vetu, najskôr ukážeme jej použitie na príklade pre n = 3.
Nech c(x) je generujúca funkcia pre množinu Y súvislých grafov tak, že koeficient pri xm v c(x)
je rovný počtu súvislých grafov rádu m. Je známe, že niekoľko prvých členov radu c(x) má tvar

c(x) = x + x2 + 2x3 + 6x4 + 11x5 + 112x6 + ...

Nech C(x) je generujúca funkcia pre grafy, ktoré majú práve tri komponenty súvislosti, pričom
všetky tri komponenty súvislosti sú v grafe rôzne. Uvažujme mocninovú grupu ES3 v množine
objektov Y X . V tomto prípade orbity vzájomne jednoznačných funkcií, definovaných grupou ES3 ,
zodpovedajú grafom vyčíslených funkciou C(x). Okrem toho váha každej orbity je rovná rádu toho
grafu, ktorý zodpovedá tejto orbite.

Formula pre cyklový index Z(A3 − S3) je určená formulou

Z(S3; s1,−s2, s3) =
1
3
(s3

1 − 3s1s2 + 2s3)
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Obrázok 2.8: Všetky súvislé grafy rádov 1,2,3,4.

lebo Z(An) = Z(Sn) + Z(Sn; s1,−s2, s3,−s4, ...). Preto ak dosadíme c(xk) namiesto každej pre-
mennej sk do tejto formuly, dostávame niekoľko prvých členov radu C(x):

C(x) = 2x6 + 7x7 + 34x8 + ...

Platnosť koeficientov preverujeme tak, že zostrojíme zodpovedajúce grafy.
Dôkaz. Na dôkaz vzťahu C(x) = Z(An − Sn, c(x)) najskôr pripomíname, že rad c(x)

vyčísluje elementy niektorej množiny Y v súlade s ich váhami, a že grupa ESn má množinu Y X

ako množinu objektov. Z Polyovej vety vyplýva, že rad vyčíslujúci orbity všetkých funkcií, ktoré
sú určené grupou ESn , je prosto Z(Sn, c(x)). Preto stačí dokázať, že rad Z(An, c(x)) spočítava
dvakrát tie orbit, ktoré sa skladajú zo vzájomne jednoznačných funkcií a všetky ostatné zostávajúce
orbity len jeden krát.

Najskôr poznamenávame, že ak funkcie vzájomne jednoznačne zobrazujú X na seba, potom
počet orbít, ktoré tvoria všetky také funkcie určené grupou EAn

n , je rovný 2. To ihneď vyplýva z
nasledujúceho ľahko dokazujúceho faktu: dve vzájomne jednoznačné funkcie sa nezhodujú v jednej
a tej istej orbite grupy EAn

n práve vtedy, keď su obidve párne, alebo obidve nepárne (chápeme
ich ako permutácie množiny X). Takýmto spôsobom rad Z(An, c(x)) spočítava dvakrát tie orbity
grupy ESn , ktoré sa skladajú zo vzájomne jednoznačných funkcií. Ďalej ukážeme, že orbity grupy
ESn skladajúce sa z funkcií, ktoré nie sú vzájomne jednoznačné, sa spočítavajú iba jeden krát.
Preto uvažujme niektorú takú orbitu a dve funkcie v nej f a g. Potom existuje permutácia α ∈ Sn

taká, že pre všetky x ∈ X platí rovnosť f(x) = g(αx). Nevyhnutne treba dokázať, že f a g patria
jednej a tej istej orbite grupy EAn .

V prípade párnej permutácie α to vyplýva z rovnosti f(x) = g(αx). V prípade nepárnej
permutácie predpokladáme, že α je nepárna permutácia, pretože funkcia f nie je vzájomne jed-
noznačná, potom pre niektoré x1 a x2 z X také, že x1 6= x2, máme f(x1) = f(x2). Nech β je
permutácia, ktorá zamieňa x1 a x2 medzi sebou ostatné prvky necháva identické, t.j. z X. Pre-
tože β je transpozícia, potom je nepárna permutácia. Potom αβ je párna permutácia a pre každé
x ∈ X, f(x) = g(αβx). To znamená, že f a g patria jednej a tej istej orbite grupy EAn , a teda
rad Z(An, c(x)) spočítava orbity grupy EAn , a teda rad Z(An, c(x)) spočítava orbity grupy ESn ,
skladajúce sa z funkcií, ktoré nie sú vzájomne jednoznačné, práve jeden krát. �

V dôsledku, ktorý uvádzame nižšie, uvažujeme všeobecný prípad, v ktorom orbity vzájomne
jednoznačných funkcií na n-objektoch definujeme nie symetrickou grupou Sn, ale ľubovoľnou
grupou stupňa n.

Dôsledok 2.6.1 Generujúca funkcia C(x), ktorá vyčísluje vzájomne jednoznačné funkcie, určené
vyčíslujúcim radom pre figúry c(x) a ľubovoľnou grupou permutácií A stupňa n, je určená formulou

C(x) =
n!
|A|

Z(An − Sn, c(x)).
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Dôkaz. Pripomíname, že c(x) vyčísluje elementy množiny Y v súlade s ich váhami, že
Z(An − Sn, c(x)) vyčísluje v súlade s ich váhami podmnožiny množiny Y obsahujúce n prvkov.
Ako obyčajne, E označuje identickú grupu s množinou objektov Y a A označuje grupu per-
mutácií stupňa n s množinou objektov X. Uvažujme ľubovoľnú n-podmnožinu Y1 množiny Y .
Našou snahou je dokázať, zoberieme si za cieľ ustanoviť, že počet orbít grupy EA

n , ohraničenej na
vzájomne jednoznačné funkcie v Y X

1 , je rovný n!
|A| . No tento záver ihneď vyplýva z ohraničenej

formy Burnsidovej lemy, pretože v grupe EA
n jedinou permutáciou zanechávajúcou identickou

ľubovoľnú vzájomne jednoznačnú funkciu v Y X
1 je identická permutácia, ktorá zanecháva identick-

ými všetkých n! takých funkcií. �

V aplikáciach tejto vety často treba spočítať mnohočleny Z(An−Sn). Niekedy píšeme Z(A∞−
S∞) namiesto

∑∞
n=0 Z(An − Sn). Riordan odvodil nasledujúcu formulu

Z(A∞ − S∞, f(x)) = exp

{ ∞∑
k=1

(−1)k+1 f(xk)
k

}
.
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