Teéria mnozin

To, Zze medzi mnozinami A, B existuje bijektivne zobrazenie, budeme symbolicky ozna-
covat A ~ B alebo A = B. Vtedy hovorime, ze mnoziny A, B st ekvivalentné. Hovorime
tiez, ze také mnoziny A, B maju rovnaki mohutnost.

Ozna¢me n mohutnost mnoziny N,, = {0,1,...,n — 1}, kde n € N. Kazda mnozinu,
pre ktoru plati, ze A ~ N,, nazyvame konecnou, pricCom n nazyvame poctom jej prvkov.
Mnozina, ktoréd nie je konecna, sa nazyva nekonecnd. Kazdi mnozinu A, ekvivalentni s
mnozinou N = {0, 1, ...}, nazyvame spocitatelnou a jej mohutnost oznacujeme .

Kazda mnozinu A, ekvivalentni s mnozinou vSetkych realnych ¢isel R, nazyvame
kontinudlnou a jej mohutnost oznacujeme c.

Mohutnosti Tubovolnych mnozin sa nazyvaju kardindlnymi cislami. Kardinalne ¢isla
kone¢nych mnozin sa nazyvaju koneéné a kardinalne ¢isla nekoneé¢nych mnozin nekonec¢né.
Kardinalne ¢islo ¢ sa nazyva mohutnost kontinua.

Budeme hovorit, ze |A| < |B|, ak A je ekvivalentna niektorej podmnozine mnoziny
B. Budeme hovorit, ze |A| < |B|, ak |A| < |B|, ale A a B nie st ekvivalentné.

1. Dokézte, ze
(a) A~ A (reflexivnost)
(b) ak A ~ B, tak B ~ A (symetrickost)
(c) ak A~ Ba B~ C,tak A~ C (tranzitivnost)

2. Dokéazte, ze
(a) A~B <= |A|l=|B|
(b) ak |[Ai] = |Asl, |Bi| = |Ba| a |A1| < | By, tak |As| < | By

(c) ak existuje surjektivne zobrazenie z A do B, tak |B| < |A]
3. Nech AD A; D Ay a A~ Ay. Dokdzte, ze A ~ Aj.
4. Dokazte, ze ak |A| < |B| a |B| < |A|, tak |A| = | B| (Cantor-Bersteinova veta).
5. Dokézte, ze
(a) kazda podmnozina koneénej mnoziny je koneéné;
(b) zjednotenie koneéného poc¢tu koneénych mnozin je koneénéd mnozina;
c) kartezidnsky sucin koneéného po¢tu koneénych mnozin je kone¢na mnozina.
)

Dokazte, ze koneéna mnozina nie je ekvivalentna ziadnej svojej vlastnej pod-
mnozine a ziadnej svojej nadmnozine.

(b) Dokazte, ze dve koneéné mnoziny st ekvivalentné prave vtedy, ked obsahuji
rovnaky pocet prvkov.

(c) Dokazte, ze kardinalnych ¢isel je nekonecne vela.
7. Dokazte, Ze z kazdej nekonecnej mnoziny mozeme vydelit spoéitatel nii podmnozinu.

8. Dokéazte, Ze mnozina je nekone¢na vtedy a len vtedy, ked je ekvivalentna niektorej
svojej podmozine.
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Dokazte, ze kazda podmnozina spocitatel nej mnoziny je spoc¢itatelna alebo kone¢na.

(a) Nech obor definicie funkcie je spoé¢itatelna mnozina. Dokazte, Ze obor hodnot
tejto funkcie je kone¢na alebo spocitatelna mnozina.

(b) Dokazte, ze neprazdna mnozina A je spocitatelnéa alebo kone¢na prave vtedy,

ked je mnozinou hodnot niektorej funkcie z N do A.

Dokéazte, ze ak zo spocitatelnej mnoziny vynechame koneéni podmnozinu, tak zo-

stavajica mnozina nekonecné.

Dokazte, ze

(a) ak A a B st spocitatelné mnoziny, tak A U B je tiez spocitatelna;

(b) ak vSetky A; st konefné, neprazdne a po dvoch disjunktné mnoziny, tak
U
ieN

je spocitatel na mnozina.
Dokézte, ze

(a) ak A je nekoneénd mnozina a B je konefné alebo spoéitatelnd mnozina, tak

AUB ~ A;

(b) ak A je nekonecna a nespocitatelnd mnozina a B je kone¢né alebo spocitatelna
mnozina, tak A\ B ~ A.

Dokazte, ze ak Ay, ..., A, (n > 1) st spoéitatelné mnoziny, tak aj A; x --- x A, je
spocitatel na mnozina.

Dokézte, ze

(a) mnozina celych ¢isel je spocitatelna;

(b) mnozina racionalnych ¢isel je spocitatelna;
(c) mnozina racionélnych ¢isel intervalu (a, b) je spocitatelna pre a < b;
(d) mnozina dvojic (x,y), kde = a y st racionélne ¢isla, je spocitatelna.

Dokézte, ze mnozina vSetkych konenc¢nych postupnosti, vytvorenych z prvkov nie-
ktorej spocitatelnej mnoziny je spocitatelna.

Dokéazte, Ze mnozina vSetkych konecénych podmnoZin spoéitatelnej mnoziny je spo-
Citatelné.

Dokazte, ze mnozina mnohoc¢lenov jednej premennej s celoc¢iselnymi koeficientami je
spocCitatelna.

Dokazte, ze mnozina algebraickijch cisel, t.j. ¢isel, ktoré si koreiimi mnohoclenov

jednej premennej s celoéiselnymi koeficientami, je spocitatelna.

Dokéazte, 7ze Tubovolna mnozina po dvoch disjunktnych otvorenych intervalov na
realnej priamke nie je vacsia neZ spocitatelna.
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Dokazte, Ze mohutnost I'ubovolnej mnoziny po dvoch disjunktnych pismen 7" v ro-
vine nie je vacsia ako spocitatelna.

Dokazte, ze ak A C R a existuje 6 > 0 také, ze pre vSetky rozne prvky x,y € A
také, ze plati |z — y| > d, tak A je konecna alebo spocitatelna.

Dokazte, ze mnozina bodov nespojitosti rydzomonoténnej funkcie na realnej osi nie
je viac ako spocitatelna.

Dokézte, ze

(a) (0,1) ~(0,1) ~(0,1) ~ (0, 1);
(b) (a,b) ~ (c,d), kde a < b ac<d;
(¢) (a,b) ~R.

Dokazte, ze mnoziny bodov Stvorca a tsecky st ekvivalentné.
Dokazte, ze mnoziny bodov dvoch kruznic st ekvivalentné.
Dokazte, ze R™ ~ R™ (n,m > 1).

Zostrojte bijektivne zobrazenie medzi bodmi Stvorca a roviny.
Dokéazte, ze mnozina bodov intervalu (0, 1) nie je spocitatelna.
Aka je mohutnost mnoziny vSetkych iracionalnych ¢isel 7
Dokazte existenciu transcendentnych (t.j. nealgebraickych) éisel.

Dokazte, ze zjednotenie konecného alebo spocitatelného poctu mnozin mohutnosti
¢ méa mohutnost c.

Dokézte, ze mnozina vSetkych spocitatelnych postupnosti prirodzenych ¢&isel mé

mohutnost c.

Dokazte, ze

(a) mnozina v8etkych spocitatelnych postupnosti zlozenych z 0 a 1 méa mohut-
nost c¢;

(b) IP(N)| =c.

Dokézte, ze

(a) ak vsetky A; st kontinuélne, tak |A; x -+ X A,| = ¢
(b) ak pre v8etky i plati |A;| =i a |I| = R, tak

e

iel

= C.

AKé je mohutnost mnoziny
(a) vsetkych spocitatelnych postupnosti realnych ¢isel;

(b) v8etkych spojitych funkcii na realnej priamke;
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(¢) rydzomonotonnych funkcii na realnej priamke ?

Nech A je spocitatelna mnozina bodov na realnej priamke. MoZno potom vybrat a
tak, aby {z +a |z € A}NA=07

Dokazte, ze mnozina realnych funkcii definovanych na intervale (0, 1) ma mohutnost
vacsiu ako c.

Dokézte, ze mohutnost mnoziny vsetkych funkcii definovanych na intervale (a, b) pre
a < b a nespojitych asponn v jednom bode je vic¢sia ako c.

Dokéazte, ze mnozina vsetkych podmnozin P(A) mnoZziny A ma mohutnost vacésiu

ako A.

Nech S je systém mnozin taky, ze pre kazda mnozinu A z S existuje mnozina B z S
taka, ze nie je ekvivalentné ziadnej podmnozine mnoziny A. Dokazte, Ze zjednotenie
vSetkych mnozin z S nie je ekvivalentné ziadnej podmnozine mnoziny z S.

Dokazte, ze neexistuje mnozina, ktora obsahuje vsetky mnoziny.

Budeme hovorit, ze postupnost kladnych celych ¢isel by, bs, ... rastie rijchlejsie ako
postupnost a,as, ..., ak

lim 2% = ¢

n—oo b

Dokézte, ze pre kazdu postupnost kladnych celych ¢isel existuje postupnost, rasttca
rychlejsie.



Fibonacciho ¢isla

Postupnost Fibonacciho cisel je postupnost definovanéd rekurentnym predpisom:

F():O
F1:1
Fn+2:Fn+1+Fna n > 0.

(=) (5]

1. Dokézte, ze

1
F,=—

2. Dokazte, ze

3. Dokézte, ze

n
E For1 = Foppo.
k=0

4. Dokazte, ze .
> Fy=Fou — L.
k=0

5. Dokézte, ze

(a) Foom = Fo1Fpm + FuFg, n>1m>0

(b) ak m deli n, tak F,, deli F,

(¢) NSD(F,, Fni1) =1

(d) F?+ F3+1 = Foi1

(e) Fog+ I —Fl=F

(f)  (FuFors)® + (2F01 Fuga)® = (Fonys)?

6. Kolko je retazcov zo symbolov 0 a 1 dlzky n takych, Ze v nich nenasleduja dve
jednotky za sebou 7

7. Kazdé prirodzené ¢islo r > 1 mozno jednoznacne zapisat v tvare takého siuctu Fi-
bonacciho ¢isel, ze kazdé Fibonacciho ¢islo sa v hom vyskytuje najviac raz a ziadne
dve susedné Fibonacciho ¢isla sa v hom nevyskytuju stcasne. Dokazte.

8. Nech

Go=1
Gy =2
Gn+2:Gn+1+Gn_17 nZO

Najdite vyjadrenie postupnosti GG, pomocou Fibonacciho ¢isel.

5



9.* Nech

Go=0
Gy =2
Gn+2:Gn+l+Gn+1_na n=>0

Najdite vyjadrenie postupnosti G,, pomocou Fibonacciho ¢isel.

Dirichletov princip

1.

Dokazte, ze z Tubovolnych 52 ¢isel mozno vybrat dve tak, Ze ich sucet alebo rozdiel
je deliteIny 100-mi.

V stvorci je danych 9 bodov, z ktorych zZiadne tri nelezia na jednej priamke. Dokézte,
Ze tri z tychto bodov st vrcholmi trojuholnika, ktorého obsah neprevysuje 1/8 obsahu
Stvorca.

Dokazte, ze v Tubovolnom konvexnom 11-uholniku sa najdu dve uhlopriecky s vlast-
nostou, ze uhol priamok, na ktorych lezia je mensi ako 5 stupiiov.

V miestnosti je Tubovolne rozmiestnenych 30 stoli¢iek. 30 Tudi, sediacich na tychto
stolickach, hré nasledovnii hru: na povel v8etci vstana a snazia sa dostat na najblizsiu
susednu stolicku. Dokazte, ze o ziadnu stolicku nie je viac ako 6 zaujemcov.

V rovine je dand mnozina M 90-tich bodov, z ktorych zZiadne tri nelezia na jednej
priamke. Kazdy z nich je spojeny tseckou s aspont 10-timi dalsimi z nich. Dokazte,
7e ku kazdému bodu mnoziny M moZno vybrat tri dalsie body mnoziny M tak, Ze
vo vzniknutej $tvorici je kazdy bod spojeny aspon s dvomi dalsimi.
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Dokazte, ze pre kazdé dve redlne ¢isla a > 1, b > 1 plati:

log, b+ log,a > 2

Dokazte, ze prvocisel je nekonecne verla.
Dokézte, 7e funkcia f: y = —222 je na intervale (—oc, 0) rastica.

Dokézte, ze ak nemozno kruzidlom a pravitkom zostrojit uhol o velkosto 1°, tak nemoZno zostrojit
ani uhol s velkostou 19°.

Dok4zte, ze pre kazdé prirodzené ¢islo n je ¢islo 117+! 4 12271 delitelné ¢islom 133.

Nech sa dve kruznice pretinaja v bodoch A, B. Ak AC a AD st ich priemery, tak body B,C, D
leZia na jednej priamke. Dokézte!

Dokazte, ze pre kazdé redlne a rézne od %’r, k € Z plati:

1

+ =
cosa  sina

cosa +sinatga + cosacotga + sina =

Dokézte platnost rovnosti pre pripustné hodnoty «, 3:

(a) co0s(90° + ) cos(180° — o) + sin(90° + ) sin(180° + o) = 0

(b)

sin?(a + B) + sin®(a — )
2 cos? o cos? 3

tg? a 4 cotg? § =

Dokéazte, ze spojnice ¢islic 1, 4 a 2, 9 na ciferniku hodin s na seba kolmé.

Kruznice, ktorych priemery st odvesny pravouhlého trojuholnika, sa pretinaja na jeho prepone.
Dokazte.

Dokéazte nerovnost medzi aritmetickym a geometrickym priemerom: Pre kladné redlne ¢isla a, b
plati (a + b)/2 > Vab. Kedy plati rovnost ?

Trojuholnik ABC' je pravouhly s pravym uhlom pri vrchole C. Ozna¢me C pitu vysky z bodu C
na stranu AB, P; patu kolmice z bodu C; na stranu AC, P, pétu kolmice z bodu Cy na BC. Nech
|CCy| = 1. Dokdzte, 7e |CPi| = sina, |CPy| = cosa, |BC:| = tga, |AC;| = cotg a.

Dokéazte, ze pre kazdé prirodzené cislo n plati

1+2+--+n=n(n+1)/2

Dokazte, ze funkcia y = 2/z je klesajica na intervale (—o0,0), aj na intervale (0, 00).
Pre kazdé dve redlne ¢isla a, b plati |a| + |b| > |a + b|. Dokazte!
Dokézte, ze v trojuholniku ABC plati: a + b > 2t..

Ak m4 geometricky atvar dve na seba kolmé osi simernosti, tak je stredovo simerny. Dokazte! Plati
obratena veta ?

Dokéazte, 7ze v/5 je iracionélne &islo.

Sest druZstiev sa zGcastnilo turnaja, ktory sa hral systémom ,kazdy s kazdym“. Turnaj trval dva
dni. Dokazte, ze existuja tri druzstva, ktoré odohrali vSetky svoje zapasy pocas jedného dna.

Dokézte, ze pre uhly trojuholnika o, 3, plati

sina +sin 8 +siny = 4cos%cos§cos%



