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KAPITOLA 1
Rozklady prirodzenych cisel

1.1. Particie — rozklady

Teéria particii predstavuje jednu z najzaujimavejSich Casti klasickej kombinatoriky. Dodnes
existuje okolo nich vela nevyrieSenych zavaznych problémov. V tomto odseku ukizeme niekolko
uzitocénych jednoduchych metod.

Definicia 1.1. Particiou celého kladného &sla n € NT nazyvame vyjadrenie &sla n v tvare suctu
celych kladnych ¢isel: n = a; +as + -+ ag, kde a; € Nt prei =1,... k.

Obycajne sa pri studiu rozliSuja dva pripady: dve particie, ktoré sa liSia len poradim sc¢itancov
povazujeme za rozne alebo rovnaké.

(a) Najprv sa budeme zaoberat pripadom, ked dve particie ligiace sa len poradim séitancov
povazujeme za rozne: napr. particie 2+ 3 4+ 1 a 14+ 2 + 3 ¢isla 6 pokladdme za rézne. Oznacme
pocet vSetkych takychto particii ¢isla n pozostavajicich z presne r s¢itancov (r < m) symbolom
p(n,r)  hovorime o usporiadangch particidch ¢isla n.

Uréime ¢éislo p(n,r) nasledujicim spdsobom: Nakreslime vedla seba n bodov; medzi nimi
dostavame n— 1 medzier. Zvolme z nich r—1 medzier (tato volba sa d4 uskuto¢nit (::11) spOsobmi)
a ulozme do nich zvislé ¢iarky  oddelovace. Tym sa povodnych n bodov rozdeli na r ¢asti, pricom
roznym volbam zmienenych r — 1 medzier zodpovedaji rézne rozklady — aspon ¢o do poradia,
Cize usporiadané particie ¢isla n na r Casti.

Priklad 1.2. Pren=5ar =2 je to
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teda dostavame 4 rézne particie.

7 vyssie povedaného vlastne vyplyva, Ze sme dokazali nasledujiicu vetu.

v ;. ~ v , 7 es w2 v ’ 3 —1
Veta 1.3. Pocet navzajom réznych (aspon poradim) particii ¢isla n na r ¢asti sa rovna (27]).

Priklad 1.4. Ak n =6, r = 3, tak p(6,3) = (3) = 10. Ide o tieto particie: 14+2+3, 1+ 3+ 2,
241+3,2+3+1,3+24+1,3+1+2,1+1+4,4+1+1,14+4+1,2+2+2.

Teraz uz Tahko urc¢ime pocet vetkych réznych (aspon poradim) particii ¢isla n; ak toto ¢islo
oznatime p(n), tak zrejme plati

Pouzitim vety 1.3 dostavame

p(n) = (”51>+<”11>+...+<Z—D _oni

(b) Preskimajme teraz pripad, ked dve particie, liSiace sa len poradim sé¢itancov povaZujeme
za totoZné (t.j. 1 + 2+ 3, 2 + 3+ 1 neodliSujeme).

Tento pripad je o nieco zlozitejsi ako predchadzajici. Oznaéme pocet takychto particii ¢isla n
o r s¢itancoch symbolom p'(n,r).

Nech n = a; + as + - - - + a;, je nejakd particia ¢isla n na k Casti. Priradme k nej particiu ¢isla

n—k=(a —1)+(aa—1) 4+ (ar — 1)

Takto sa kazdej particii ¢isla n na k cCasti priradi nejakd particia ¢isla n — k na k alebo menej
Casti (pretoze niektoré a; — 1 sa mézu rovnat aj nule). Pritom dvom particidm &isla n, ktoré sa
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OBR. 1.

navzajom lisia nielen poradim, prisliichaja rézne particie ¢isla n — k. Teda pocet particii ¢isla n
na k Casti sa rovnd stic¢tu poctu particii ¢isla n — k na k alebo menej Casti, ¢ize
k
p(nk) =Y p'(n—ki) (1)
i=1
Zrejme pre kazdé j > m je p'(m, j) = 0, preto pomocou rekurentného vztahu (1) mozno vypocitat
hodnotu p'(n,r) pre lubovolné priridzené ¢isla n a r, r < n.

Priklad 1.5. Vypocitajte p'(5, 3).

Riesenie: Budeme k tomu potrebovat vediet hodnoty ¢&isel p'(2,i) pre i = 1,2,3: p'(2,3) = 0,
p'(2,2) =1,p'(2,1) = 1. Dostavame teda p'(5,3) = 14+ 140 = 2. Ide o particie 1+1+3, 1+2+2.

Znakom p'(n) ozna¢ime pocet vSetkych takychto particii ¢isla n (poradie neberieme do tvahy).
Tak dostavame: p'(n) = p'(n,1) + p'(n,2) + --- + p'(n, n), teda

n T
pn) =Y > pn-ri
r=1i=1
Priklad 1.6. Pomocou particii, u ktorych berieme poradie s¢itancov do tivahy, odvodime vzorec
pre vypocet kombindcii s opakovanim k-tej triedy z mnoziny o n prvkoch.

Riesenie: Majme n réznych prvkov. Nech a; (i = 1,2,...,n) oznacuje pocet vyskytov prvku
s ¢islom 7 v kombinéacii s opakovanim k-tej triedy z mnoziny o n prvkoch. Potom plati, Ze a; +
+as + -+ + a, = k, niektoré a; v8ak mo6zu byt rovné 0. Pripoditajme k obom stranam ¢islo n.
Dostavame
(@ +1)+(ax+1)+--+(a,+1)=n+k

teda ku uvazovanej kombindcii sme priradili particiu éisla n + k o n séitancoch (poradie s¢itancov
berieme do tvahy). Obratene, ku kaZdej particii ¢isla n + k o n s¢itancoch méZzeme inverznou
operaciou jednoznacne priradit kombinaciu s opakovanim k-tej triedy z mnoZiny, ktord ma n prv-
kov. Pocet takych particii je (”:EI]) = (”J“,’j*]), ¢o je znamy vyraz pre vypocet kombindcii
s opakovanim k-tej triedy z mnoziny obsahujiicej n prvkov.

Uvedieme este niekolko najzaujimavej$ich vysledkov o particidch. VyuZijeme pritom ich geo-
metrick® interpretaciu, aby sme demonstrovali dal§ie zaujimavé, a pritom jednoduché kombinato-
rické myslienkové pochody. Budeme pritom uvaZzovat neusporiadané particie.

Pri dokazovani vlastnosti rozkladov sa casto pouziva ich interpretacia pomocou Ferrersovych
diagramov. Ferrersovym diagramom rozkladu ¢isla n

n=a +a+---+ag a <ax<---<ay

rozumieme n bodov v rovine, ktoré st rozmiestnené v k radoch, pri¢om v i-tomrade (i = 1,2,... k)
je a; bodov. Napriklad rozkladu 16 = 1+ 2+ 344 + 6 zodpoveda Ferrersov diagram na obrazku 1.

Poznamka 1.7. KedZe poradie s¢itancov neméa v rozklade Ziadny vyznam, mo6Zeme riadky uspo-
riadat tak, aby sa ich dlzka zhora dole neskracovala. Okrem toho, prvé body vsetkych riadkov
zobrazujeme do jedného stlpca. Takéto diagramy sa nazyvaja v literattre aj normalne.
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Pomocou Ferrersovych diagramov mézeme dokazovat rozne vlastnosti particii. Nech Z(n,m)
oznatuje pocet vSetkych particii ¢isla n (uvazujeme neusporiadané particie), pozostavajice z naj-
viac m Casti (s¢itancov). Potom Z(n,m) = p'(n,1) + p'(n,2) + --- + p'(n,m). Zrejme Z(n,n) =
=p'(n). Dalej ozna¢me Q(n,m) pocet vietkych takych particii ¢isla n, ktorych séitance neprevy-
Suju c¢islo m.

Veta 1.8. Q(n,m) = Z(n,m) pre vietky prirodzené ¢isla n > m > 1.

Doékaz: Zoberme nejakt particiu ¢isla n = a3 +as + - - - + a,.. Nakolko nezalezi na poradi s¢itancov,
mozeme predpokladat, 7e a1 < ay < --- < a,. Tejto particii mozno priradit diagram, ktorého i-ty
riadok pozostava z a; bodov. Ak teraz diagram ¢itame vertikdlne, dostaneme (vo vSeobecnosti) ini
particiu ¢isla n s vlastnostou, Ze ziaden s¢itanec neprevySuje ¢islo r (skutocne, diagram pozostaval
z r riadkov). Teda particii s nanajvy$ r séitancami vieme priradif particiu so s¢itancami, ktoré
neprevysujii r. Lahko sa d4 overif, Ze toto priradenie je bijekcia, z ¢oho uZ vyplyva tvrdenie
vety. O

Dudglny Ferresov diagram k danému Ferrersovmu diagramu dostaneme tak, 7e transponujeme
riadky a stipce a prevedieme ho na normalny tvar, t.j. usporiadame riadky podla velkosti.

Rozklad ¢isla n nazveme samodudlnym, ak jeho Ferrersov diagram sa po transponovani a uspo-
riadani prvkov nezmeni.

O
O o O
o O o O o O
o O O O o O O O O
(a) Navzajom duélne (b) Samoduélny
diagramy diagram

OBR. 2

UkéZeme teraz tvrdenie, ktoré poukazuje na peknt vlastnost samoduélnych diagramov.

Veta 1.9. Pocet samodualnych rozkladov ¢isla n je rovnaky ako pocet rozkladov ¢isla n na rozne
neparne séitance.

Dokaz: Uvedieme priklad samoduélneho diagramu, ktorému vieme priradit jednoznac¢ne rozklad
toho istého prirodzeného c¢isla na rézne neparne s¢itance. Na obrazku 3 jen =17. O

— O0—0—0——0—0C0—-—0>0
o—0—"C0—"0—0—0—C0C—0C—-—0

OBR. 3.

Veta 1.10. Pre vSetky prirodzené ¢isla n > m > 1 plati

Q(n,m) = Q(n,m - 1) + Q(’ﬂ —m, m)
kde Q(0,m) = 1 kladieme definitoricky.

.....

m — 1, je @(n,m — 1) a pocet tych particii, ktorych nejaky séitanec je rovny m, sa rovnd Q(n —
—m,m). O
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Veta 1.11. Pocet particii ¢isla n o najviac m séitancoch je rovny poctu particii ¢isla n +m o m
s¢itancoch.

Dokaz: Diagram, ktory zobrazuje particiu ¢isla n o najviac m séitancoch, sa sklada z n bodov
rozloZzenych v najviac m riadkoch. Pripojme ku kazdému z tychto diagramov stipec, ktory sa
skladd z m bodov. Dostaneme tak diagram, ktory obsahuje n + m bodov rozmiestnenych v m
riadkoch. Ak obratene v Iubovolnom diagrame, ktory sa skladd z n + m bodov v m riadkoch,
vynechdme prvy stipec, dostaneme diagram o n bodoch, ktory mé najviac m riadkov. Situacia pre
n=25am =4 jenaobrazku 4. O

Veta 1.12. Pocet particii ¢isla n o najviac m sc¢itancoch je rovny poctu particii ¢isla n + (
na m vzajomne roznych sc¢itancov.

m;—l)

Dokaz: Kazdy rozklad ¢isla n na stCet najviac m séitancov moZzeme zndzornit diagramom o n
bodoch, ktory obsahuje najviac m riadkov. Pripojime ku kazdému takému diagramu rovnoramenny
trojuholnik o ,strane“ m riadkov a potom prevedieme tento diagram na norméalny tvar. Situdcia
pre n =6 a m = 4 je na obrazku 5.

EO\\\\ n==~6
io O\\\ m =4
o O 0 o c\)\\o o
o O O O iLQWQWQWg\)f‘)AO o O O
OBR. 5.
m(m+1)

Poéet bodov v trojuholniku je , preto novy diagram obsahuje n + w bodov.

2
rozloZzenych v m riadkoch. Pritom vSetky riadky tohoto diagramu maji vzajomne rozne diiky,
pretoze diiky riadkov povodného diagramu neubtdaju a diiky riadkov trojuholnika sa neustale
zvacsuju. To znamend, Ze po pripojeni trojuholnika dostaneme diagram, ktorého diiky riadkov
narastaji. Odtial vyplyva, 7e sa v iom nemdzu vykytovat riadky rovnakej dizky.

Obratene, z kazdého diagramu, ktory zobrazuje rozklad ¢isla n + W na m vzdjomne
roznych séitancov, je mozné ,,odstranit“ rovnoramenny trojuholnik obsahujici m riadkov a ziskat
tak diagram znéazorhujici rozklad ¢isla n na sicet najviac m scitancov.

Toto priradenie diagramov oboch typov ukazuje, ze ich pocty st rovnaké. Tym je veta doka-
zand. O

Pouzitim duality particii méZzeme porovnavat particie podliehajtiice niektorym obmedzujticim
podmienkam, tykajiicim sa velkosti.

Veta 1.13. Pocet particii ¢isla n o m scitancoch je rovny poctu particii na sc¢itance, z ktorych

ziaden nie je vac8i ako m a zaroven aspon jeden je rovny m (pozri obrazok 6).

Veta 1.14. Pocet rozkladov ¢isla n na stcet parnych ¢isel je rovny poc¢tu particii, v ktorych sa
kazdy zo s¢itancov vyskytuje parny pocet krat (pozri obrazok 7).

Rovnakym spdsobom sa moZzeme presvedcit, ze plati aj nasledujiace tvrdenie.
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O
o O O
O O O O O
o O O O o O O
o O O O O O O O O
O O O O O O O O O O O
OBR. 7.

Veta 1.15. Pocet rozkladov ¢isla n na stcet neparnych ¢isel je rovny poc¢tu rozkladov, v ktorych

.....

pocet krat (pozri obréazok 8).
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OBR. 8.

V nasledujtcej casti dokdzeme o particidch dve zlozitejsie tvrdenia.

Veta 1.16. Pocet rozkladov ¢isla n na navzajom rozne séitance je rovny poctu rozkladov ¢isla n
na neparne scitance, t.j. kazdy s¢itanec je neparne cislo.

Dokaz: Uréime vzajomne jednozna¢ny vztah medzi mnoZinami rozkladov, o ktorych sa hovori vo
vyssie uvedenej vete. Uvazujme rozklad ¢isla n na nepdrne scitance by,...,b,, teda n = b; + by +
+ -+ 4 by, kde sa scitanec b; vyskytuje v rozklade r;-krét, 1 <4 < p. Nech r; = 29 4292 4 ...
(g1 > q2 > --+) je zapis Cisla r; v tvare stétu mocnin 2. Teraz uskutoénime zdmenu r; s¢itancov
b; na po dvoch rozne séitance b;27", b;29>, ... (tdto zdmena zachovéava stcet s¢itancov rozkladu).
Ak zopakujeme t0to operdciu pre kazdé i, 1 < i < p a usporiadame sc¢itance neklesajico, ako
vysledok dostavame rozklad ¢isla » na navzajom rézne sc¢itance. To vyplyva z toho faktu, Ze kazdé
prirodzené ¢islo mozeme jednoznacne vyjadrit v tvare stéinu neparneho ¢isla s mocninou 2. Ako
priklad uvedieme opisant transforméciu pre rozklad 26 = 7+5+5+3+3+14+14+1=7-20 4+
+5-2'4+3-2"4+1-(2'+29)=7410+6+24+1=1+2+6+ 7+ 10.
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LCahko vidno, %e moZeme ziskat aj obratenti transforméciu pre Iubovolny rozklad na navza-
jom rozne séitance, ak vyjadrime kazdy sc¢itanec ako p2?, kde p je neparne ¢islo, dalej zdruzime
sCitance v zdvislosti od ,neparneho ¢initela“ p a zamenime kazda taka skupinu p27', p292, ...
na r = 29 4 292 4 ... g¢itancov rovnych p. Takymto spOosobom opisand transformécia definuje
vzdjomne jednoznacny vztah medzi rozkladmi na neparne séitance a rozkladmi na po dvoch rozne
séitance. [

1.2. Eulerova veta

V stvislosti s niektorymi problémami particii §tudoval L. Euler nekoneény siiéin

A=(1-2)1 -1 -2%)---1—z")--- (2)
Vyndsobme v tomto sti¢ine prvych 22 ¢lenov; dostaneme vyraz
A=[1-z- 2 4+2°+2" — 2 2" + 22+ )]0 - 2) 1 - 2*) - (1 —z")--- (3)

kde bodky vo vyraze, ktory je vniitri lomenej zatvorky znacia, Ze nasleduji mocniny s exponentami
vy$§imi ako 22. Tieto ¢leny sme nevypisovali, lebo po vynasobeni vyrazu v lomenej zatvorke ¢lenmi
(1 —223), (1 —22%), atd. sa ich koeficienty menia. Vypisané ¢leny v lomenej zatvorke sa viak viac
menit nebuda. To znamend, 7e po ,,vynasobeni vietkych ¢lenov* dostaneme nekoneény rad, ktorého
niekolko prvych ¢lenov uz pozname:

2

l—z—2>+2°+2" -2 -2 + 222 + .. (4)

Je vidiet, Zze po dvoch zépornych ¢lenoch nasleduji dva kladné, potom opét dva zaporné atd. Ale
objavit zdkonitost postupnosti exponentov tychto ¢lenov je omnoho zloZitejsie. Experimentalnou
cestou dospel Euler k tomuto tvrdeniu:

Veta 1.17. V rade, ktory ziskame z nekone¢ného stacinu
(1= o)1= a?)(1 =)o (1= ") (5)

PPN « 3k2+k P . 2 . vy
st rozne od nuly len ¢leny tvaru (—1)*2~ =, kde k je lubovolné prirodzené &islo.

Dokaz: Uvedieme velmi jednoduchy geometricky dokaz Eulerovej vety. Najprv preformulujeme
tato vetu do jazyka tedrie particii.

Vynésobenim dvojélenov vo vyraze (5) vzniknl jednoéleny +z™ prave tolkokrat, kolkymi
spOsobmi je mozné rozlozit ¢islo m na rozne séitance. Ak je pocet séitancov parny, tak pdjde o z™
a ak je pocet scitancov neparny, pojde o —z™. Napriklad particii 12 = 5+ 4 + 2 + 1 zodpoveda
s¢itanec (—2°)(—z*)(—2?)(—2') = 2'? arozkladu 12 = 54+4+3 s¢itanec (—2°)(—z?)(—23) = —z'2.

Odtial dostavame, 7e koeficient pri ™ v rade (4) je rovny rozdielu poé¢tu rozkladov na parny
pocet roznych séitancov a poctu rozkladov na neparny pocet roznych scéitancov. Eulerovu vetu
teda méZzeme sformulovat takto:

2 . 7 . z w7z
Nech ¢islo m nemo6zeme pisat v tvare % kde k£ je vhodné prirodzené cislo.
Potom pocet rozkladov ¢isla m na parny pocet navzajom roéznych scitancov je
rovny poctu rozkladov ¢isla m na neparny pocet navzajom réznych séitancov.

3k>+k
2

Pre kazdé ¢islo m, ktoré je mozné pisat v tvare , je rozdiel medzi tymito

poc¢tami rovny (—1)*, t.j. ak k je parne &islo, tak potom pocet rozkladov na parny

.....

sC¢itancov; ak je k neparne ¢islo, tak je to naopak.

Na to, aby sme dokazali Eulerovu vetu, ukdzeme najprv jeden sposob zmeny diagramu s parnym
poc¢tom riadkov na diagram s neparnym poctom riadkov, ktory sa sklada z toho istého poétu bodov
a obratene. Zaoberame sa len particiami o réznych sc¢itancoch, teda diiky riadkov st rozne, a preto
diagramy tychto particii sa skladajiz niekolkych lichobeZnikov postavenych na seba.

Oznacme pocet bodov v hornom riadku diagramu pismenom s a pocet riadkov dolného licho-
beznika r. V priklade na obrazku 9 je s =2 a r = 3.
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OBR. 9.

Predpokladajme, 7e diagram obsahuje aspon dva lichobezniky, pricom s < r. V tomto pripade
vynechdme prvy riadok a kazdy z poslednych m riadkov rozsirime o 1 bod. Tym sa celkovy pocet
bodov nezmeni a vSetky riadky budi mat réznu diiku, ale zmeni sa parita poctu riadkov. V
pripade diagramu z obrazku 9 teda dostédvame situdciu na obrazku 10.

o O O o O O

0 0 O O O 0 0O O O O

0 0 O O O O — 0 0O O O O O
O 0 O O 0 O O OOOOOO

OBR. 10.

Celkom tu ist1 transforméciu je mozné urobit aj v pripade, ked sa diagram sklada len z jedného
lichobeznika, pricom s < r — 1. V pripade diagramu na na obrazku 11 je s =2 a r = 4.

O O O O O O

O O O O — O O O O

O O O O O OO O O O O
OBR. 11.

Nech teraz diagram obsahuje aspon dva lichobezniky, pricom s > r. V tomto pripade odobe-
rieme z kazdého riadku po jednom bode a vyrobime z nich prvy riadok nového diagramu. Podla
predpokladu je s > r, a preto je tento novy riadok kratsi ako prvy riadok povodného diagramu.
Vzhladom k tomu, 7e sme odoberali body od v8etkych riadkov spodného lichobeznika, maja aj
v novom diagrame vsetky riadky rozne diiky. Novy diagram pritom obsahuje prave tolko bodov
ako povodny, ale parita poc¢tu riadkov sa zmenila, pretoze pribudol novy riadok. Na obrazku 12 je
s=3ar=2.

o O O o O O
0 O O O — 0 O O O
0 0 O O O 0 0 O O O

OBR. 12.

Rovnakym spdsobom mdzeme transformovat aj diagramy, ktoré sa skladaji z jediného licho-
beznika, pre ktory je r < s — 2. Na obrazku 13 je s=6 ar = 3.
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OBR. 13.

Posledné dve operacie si1 navzajom inverzné: ak vykoname najprv jednu z nich a potom druhii,
dostaneme opéat vychodzi diagram. Odtial dostdvame, 7ze v mnozine vSetkych tych diagramov
rozkladov ¢isla m, u ktorych je mozné vykonat jednu z uvedenych transformadcii, je rovnaky pocet
diagramov s neparnym poctom riadkov a diagramov s parnym poctom riadkov.

Treba nam v8ak ukazat, ktoré diagramy nepriptstaji uvedené transformécie. Je zrejmé, ze
tieto diagramy sa skladaji z jedného lichobeznika, pricom plati s = r alebo s = r + 1. Poznamena-
vame, Ze sCitance v particidch s navzajom rozne, Na obrdzku 14(a) je s = r = 3, na obrazku 14(b)
jes=r+1=4.

O O O o O O O
O O O O o O O O O
o O O O O o O O O O O
a (b)
OBR. 14.

Spocitajme pocet bodov z obrazku 14(a) a pocet bodov z obrazku 14(b). V pripade (a) vo
vSeobecnosti dostdvame
r(r+1)  3r? —r

r+r+ D)+ +2) 1) =1+ 5 5

V pripade (b) vo vSeobecnosti dostaneme

r(r+1)  3r?+r

2 2
Zhrnutie: Ak prirodzené ¢islo m nie je tvaru 3’“?", tak pocty rozkladov (particii) ¢isla m na

parny pocet roznych s¢itancov a neparny pocet roznych séitancov st rovnaké. Ak je ¢islo r parne
3r24r
2

(r+1)+(r+2)+-++r)=r"+

am = , tak zostane jeden diagram nepripastajuci uvedené transformécie a obsahuje parny
pocet s¢itancov — riadkov. Preto je rozkladov na parny pocet s¢itancov o jeden viac nez rozkladov
na neparny pocet s¢itancov. Ak je r ¢islo neparne a m = 3”22&, tak je rozkladov na neparny pocet
s¢itancov — riadkov o jeden viac nez rozkladov na parny pocet sc¢itancov.

Tym je naSa veta dokazana.



KAPITOLA 2
Kombinatoricko-logicky aparat

V tejto kapitole opiSeme charakteristické pristupy, ktoré tvoria zdklad kombinatorickych doka-
70V.

2.1. Princip zapojenia a vypojenia

Zakladna veta, ktortt dokdzeme v tejto Casti, je zovSeobecnenie ofividnej formuly |A U B| =
= |A| + |B| — |AN B|, ktora plati pre fubovolné kone¢né mnoziny A, B.

JAUBUC| =|A|+|B| +|C| - AN B| —

AVB|=Al+|B] - AN B —|BNC|—|ANC|+|ANBNC]

OBR. 1. Jednoduché Specidlne pripady principu zapojenia a vypojenia.

Predpokladajme, 7e st dané podmnoziny A, ..., A, (nie nutne rézne) niektorej kone¢nej mno-

7iny X. Mame urcit mohutnost ich zjednotenia A; U Ay U---U A,,. Za prvé ,pribliZenie“ tejto
mohutnosti mézeme pokladat

[Auf + - + A (1)

no jednako toto ¢islo bude vo vSeobecnom pripade trochu velké, pretoze ak A; N A; # 0, tak
elementy prieniku A; N A; zapoc¢itavame dvakrat. Skiisme zlepsit situdciu odpoé¢itanim od vyrazu
(1) stictu

> JAin 4 (2)
1<i<j<n
V takom pripade dostaneme prili§ malé ¢islo, pretoze ak A; N A; N Ay # 0, tak elementy prieniku
A;NA; N A potitame v (2) trikrat. Nasledujacim krokom méze byt pridanie sactu
> AN AN Ay (3)
1<i<j<k<n

no z tej istej pri¢iny ako v predchddzajicom pripade dostavame prili§ velké ¢islo. Napriek tomu
sa ukazuje, ze po n krokoch dostavame spravny vysledok. To znamend, Ze plati nasledujica veta.

Veta 2.1. Nech A, A,,..., A, st konetné mnoziny. Pre k = 1,...,n poloZzme
S = > |Ai, N N Ay
1<i1 <ia<---<ixg<n

9
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kde sumaény symbol sa vztahuje na v8etky k-prvkové podmnoZiny {i1,...,ix} mnoziny {1,2, ...,
n}. Potom
n
AU UA,] = (-)ks, (4)
k=1

Dokaz: Pre kazdé ¢ € Ay U---U A, nech J, je mnozina vSetkych tych j € {1,...,n}, pre ktoré
xz € Aj. Polozme |J,;| = m. Potom je prvok = zapoCitany m-krat v sacte Si, (?)—krét v stéte Sy
a vieobecne, v sicte Sy, je zapocitany (7)-krat. Odtial vyplyva, ze v sacte Y-, (—1)*1 Sy je =
zapocCitany s ndsobnostou:

m

m m
i (™M™ g i (M) 2 ST = (M) s -1 =
Z()<i 11+Z(1) 7: 12(1)7: 1-(1-1)™=1 O
=1 =1 i=0
Uvedieme este dalsie dokazy vety 2.1 matematickou indukciou.

Dokaz: Pre n = 1 je tvrdenie vety zrejmé, tak isto, ako aj pre n = 2 v pripade, Ze mnoziny A,
a A, st disjunktné. VSeobecne plati

[ A1 U As| = [Ag] + A2\ Ay

[ Az \ Ar] = [As] — [41 N A
a teda |Ay U As| = |41 + |A2| — A1 N Ay|. Tymto je veta dokdzand pre n = 2. Nech teraz n > 2.

Podobne plati:
n+1 n

[U Al = [U Al + [Ania | = [(U A) 0 A
k=1 k=1 k=1

Ak predpokladame, Ze veta plati pre n mnozin, tak pouzitim tohoto predpokladu na mnoZiny
AiU---UA,a(ATNAp) U U (A, N Apyr), dostdvame

Ay U Udpr] = AL+ + [Apgr | — [A N Ay — - — A N Apgq| — - —
n+1
—Ap N Appa| + -+ (DA N N A | = D (DRSS,
k=1

¢o je tvrdenie pre n + 1 mnoZzin. Poznamenavame, Ze v dokaze sme vyuzivali identickd rovnost:

I

Ap) ﬁAn+1| = ‘U (Ax ﬁAn+1)| O
1 k=1

C s

k

Dokaz: Teraz urobime dokaz matematickou indoukciou podla poctu prvkov mnoziny |J;_, Ax. Ak
Up—, Ar mé jeden prvok, tak tento patri do m mnozin m > 1. Mézeme predpokladat, ze si to
mnoziny A1, As,..., Ay, Potom |A; N Aj| =1, pre i,j < m a je to nula pre ostatné i, j. Podobne

3

pre viac indexov. Teda prava strana rovnice (4) sa rovnd

(D)) e (e ()-
—1—(1—m+<’;>—<Z>+---+(—1)m<z>> —1—(1-1)"=1

t.j. v tomto pripade plati (4). Predpokladajme, Ze (4) plati pre fubovolné mnoziny Ag,..., A,
také, ze J;_, Ar mé a prvkov. Nech My, ..., M, st také, ze | J,_, My mé a+ 1 prvkov. Vezmime
jeden pevny prvok z € |J,_, My a polozme A, = My \ {z}. Prvok z patri do I mnozin z n-tice

My, ..., M,. Bez ujmy na vSeobecnosti moézeme predpokladat, ze © € M,,...,z € M;. Potom
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M; = A; pre i > . Tahko vidno, Ze plati:

S OJAR +1=) | My
k=1 k=1
Z ‘Mﬁ N Mi2| = Z ‘All N Azz‘ + (é)

1<i1 <2<l 1<i1 <2<l
l
E |M;, " M;, N M;,| = E |A;;, NA, NA; ]+ (3
1<i1 <ia<iz<l 1<i1 <ia<izg<l

l
Yoo My N NMy = Y |A,;1r1...mA,;l+<l>

1<iy <<y <l 1<ip <<y <I
Pre k > [ uz plati rovnost:
E |M;, N...0M,;, | = g |A;, NN AL
I<iy<--<ix<n I<iy<--<ix<n

Teda podla indukéného predpokladu

Udil=UAd+1=3 14— > [Aundul+-+
k=1 k=1 k=1 1<k <ka<n
+(—1)n+1\A1ﬂ---ﬁAn\+1:Z|Mk|— Z |My, 0 My, |+ -+
k=1 1<k <ka<n
l l
+(—1)"+]|Mm...mMn|+1—l+<2>—---+(—1)l<l>

Podla binomickej vety plati 1 —1+ (é) — (=1 (ﬁ) = (1—-1)! = 0, odkial uz vyplyva dokazované

tvrdenie. O

Uvedieme teraz ekvivalentni formulaciu horeuvedenej tlohy. Nech A je kone¢nd mnozina
a Ay, ..., A, stbor jej neprazdnych podmnozin. Casto treba uré¢it mohutnost komplementu zjedno-
tenia tohoto siiboru vzhladom na mnozinu A. Teda mdme urcit velkost rozdielu |A| —|A4; U- - -UA,|.
Polozme |A| = Sy. Potom

n

(AU U A =D (= 1) S (5)
k=0
Dokaz: Formulu (5) dokdZeme matematickou indukciou vzhladom na n. Zrejme plati |Af| = |A| —

— |4,], teda tvrdenie je spradvne pre n = 1. Predpokladajme, 7e pre fubovolné n > 1 plati

(A U= U AT = S (=1)ES,
k=0
dokazeme, Ze tvrdenie plati aj pre n+1. Skor nez prejdeme k dékazu tohoto faktu, poznamenavame,
ze rovnost |A§| = |A] — |A;] modzeme aplikovat na Iubovolni mnoZzinu uréenti zodpovedajacim
sposobom. Potom v désledku uvedenej poznamky plati

(A3 U U A = (A1 U U A = (A U U A7 0 Ay

Podla indukéného predpokladu plati |(4; U--- U A,,)] = 31 (—1)*Sk. Pre komplement zjedno-
tenia (A4 U---U A,) vzhladom na mnoZinu A, dalej plati:
(AU UAL) N A | = [App | = [A N Apga | = [As N Appa | = = [An N Apga | +
+]ANANA |+ -+ (-D)"MA N N A
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Ak odpo(‘i‘rame poslednt rovnost od predchddzajicej, dostavame rovnost (5) pre Ay, ..., Apt1, t..
+1
[(AjU - U A = S0 (- 158, O

Priklad 2.2. Zistite pocet tych prirodzenych ¢isel, ktoré st mengie ako 210 a st nestudelitené
s ¢islom 210.

Riesenie: Kanonicky rozklad ¢isla 210 je 2-3 -5 - 7. Teda kazdé ¢islo stdelitelné s ¢islom 210 musi
byt delitelné aspon jednym z prvocisel 2,3,5,7. Objektami tu buda prirodzené ¢isla n < 210.
Budeme hovorit, Zze ¢islo n patri do mnoziny A; (resp. Aa, A3, A4), ak je delitelné dvoma (resp. 3,
5, 7).

Dvoma je delitelné kazdé druhé ¢islo, preto existuje % = 105 ¢isel delitelnych dvoma a ne-
presahujucich ¢islo 210, ¢ize |A;| = 105, analogicky |As| = 70, |A3| = 42, |A4] = 30.

Je zndmym faktom z teérie Cisel, Ze nejaké ¢islo je delitelné sticasne viacerymi prvoéislami
prave vtedy, ak je delitelné ich sti¢inom. Pomocou neho uZz lahko odvodime, ze |41 N Az| = 35,
|[A1 N Ag| =21, |A1 N Ay =15, [Ao N Ag| = 14, |Ay N Ag] =10, [A3 N Ayl =6, |41 N AN Azl =
:77 |A] ﬂAQﬂAﬂ = 57 |A] ﬂAgﬂA4| :37 |A20A30A4| :2, |A] ﬂAQﬂAgﬂA4| =1. Teda
|A|—|A1U---UAs| =48 = 210— (105+70+42+30)+(35+21+15+144+104+6) — (7T+5+3+2) + 1.

Priklad 2.3. Kolko existuje bijekcii f n-prvkovej mnoZiny na seba (t.j. permutacii n-prvkovej
mnoziny) takych, 7e neexistuju identické prvky, t.j. f(i) #iprei=1,...,n 7

Riedenie: Polozme So =n!, Sk =30 i o cip<p [Ain N Ai, NN Ay | Plati, ze

|Ai1 ﬂAiQH---ﬂAik|:(n—k)!

t.j. ide o pocet permutécii, pri ktorych sa 4; zobrazi na i; pre j = 1,...,k; teda
n n! - -
— — k) == kS, = n! —
S0 = (k)(n =" > (=Dt =nt 3

Priklad 2.4. Eulerova funkcia ¢ je v tedrii ¢isel definovand takto: ¢(n) je pocet prirodzenych
¢isel mengich ako n a nestdelitelnych s ¢islom n. Ukadzeme, 7e ak n = pi"* ---pp*, kde p1, ..., pg st

prvodisla, tak
1 1
gﬁ(n)—n(l——)---(l——)
n Pk

A;={leN|1<l<n, pil}
Potom ¢(n) je poéet prvkov mnoziny {1,2,...,n}\ (A1 U Ay U...U Ag). Zrejme plati

Ai: {quPr---: l}: t] ‘Al|:_
p bi

7 i

Riesenie: Ozna¢me

Obdobne [4; N 4;| = , 1 # 7, atd., mnozina Ay N...N Ar ma
zapojenia a vypojenia platl

prvkov PodTla principu

|A]U...UAk —_ = ++(_])k7
Z Z DiPj 17;7" DiP;iPr pip2 ... Dk
#] i#£T
n
n ; ; Z Dipj ; pzpjpr pip2 - - - Dk
Z#J Jj#r
i#r

()0 6-3)
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Veta 2.5. Nech S7 je mnoZina vietkych surjektivnych zobrazeniz A do B. Ak |A| = m a |B| = n,
B ={b,...,b,}, tak

58 = S04 (1) -

k=0

Dékaz: Oznafme M; mnozinu vietkych zobrazeni f: A — B, pre ktoré b; (j = 1,2,...,n) nie je
obrazom Zziadneho prvku mnoziny A. Teda b; € B\ f(A) # 0. Potom |M;, N M;, N...N M;
=(n—k)™, pricom 1 <i; < -+ < ip <n. Teda

|UM S () om

k=1

Wl =

Ak berieme do tvahy, 7ze pocet vSetkych zobrazeni z mnoZiny A do mnoziny B je rovny n', tak
1551 = Yo (=D (D (n—k)™. O
Priklad 2.6. Zistite pocet rozkladov kone¢nej mnoziny M s m prvkami na n éasti (t.j. kazda

7 Casti je neprazdna a zjednotenie vSetkych n casti ndm déva mnozinu M, pricom jednotlivé Casti
rozkladu st po dvoch disjunktné; poznamendvame, Ze poradie ¢asti neberieme do tvahy).

Riesenie: Vsimnime si, 7e kazdé surjektivne zobrazenie z m-prvkovej mnoziny na n-prvkovit mno-
7inu urcuje jednoznacne neusporiadany rozklad m-prvkovej mnoziny na n Casti. Obratene, ak
vezmeme neusporiadany rozklad m-prvkovej mnoZiny na n ¢asti, uréuje n! surjektivnych zobrazeni
z m-prvkovej mnoziny na n-prvkovii. Teda pocet neusporiadnych rozkladov m-prvkovej mnoziny
na n Casti je rovny

%ﬁ(—l)’“(’;) (n - K"

=0

Teraz dokadzeme niektoré zovSeobecnenia formil (4) a (5). Nech Ay, As, ..., A, st konetné
mnoziny, nech A(r) oznatuje pocet prvkov, ktoré sa nachddzaji v prave r mnoZinidch a A'(r)
oznacuje pocet prvkov, ktoré sa vyskytuji v aspon r mnozinach. Hodnoty uvedenych poc¢tov ndm
urc¢uju nasledujtce dve vety.

Veta 2.7.

n

A(r) —Z(_l)kr<’:>sk, r=0,....n. (6)

k=r

Doékaz: UkéZeme, Ze v pravej Casti rovnosti (6) sa vyskytuji v8etky prvky, ktoré st obsiahnuté
v prave r mnozinach. Prvky, ktoré sa vyskytuji v prave r mnozinach prispievaji raz do sicétu
v S, a nevystupuja v ostatnych sactoch S,41,..., Sy. Prvky, ktoré vystupuja v m > r mnozinach

v sucte Sg, k > r davaju vklad (’,’:) Preto celkovy vklad takychto prvkov do pravej ¢asti rovnosti

je rovny:
o () ()= () B () -

Prvky, ktoré sa vyskytuji v m < r mnozinach do pravej ¢asti rovnosti (6) nedavaja ziadny vklad.
Tym je formula dokdzand pre r =0,...,n. O

Veta 2.8.
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Dokaz: Plati, ze

A(r) = iA(j) S (})s -

J=rl=j

e

1 k
e i A e e (Y G e W
T T i T ) (e e R
r+1 r+1 r+1
k
+

_(r+3 DTV e Y IR e
+Sr+2 <T._|_2>ST+?+ +( ]‘) r 2 Sk+ +( 1) Sn+

1
5r+m—<r+m+ )Sr+m+1+---+(—1)"<r+m)< g >Sk+...+(—])"(r+m)< n >5n+

r+m r+m

k

+8, = isk S (-1 ("’)

k=r j=r J

V poslednej formule zavedenim substitiicie £ — j = ¢ dostavame:

Saxcv(t)=sascu(h)

k=r i=0 k=r i=0

Pocitajme, comu sa rovna

’g(—ni(?) - ,:Z;(—l)"' [(k - 1) N (’:m _ (_Ukr(:i) ppe (,: i)

a teda
n

! k—r k—1
A =3 (7))
Priklad 2.9. Nech E(m,n,r) oznacuje pocet sposobov rozdelenia m réznych predmetov do n
roznych krabidiek, pri ktorych je prave r krabifiek prazdnych a F(m,n,r) pocet tych rozdeleni,
pri ktorych aspon r krabiciek zostdva prazdnych. Uréte E(m,n,r) a F(m,n,r).

RieSenie: Najprv urCime E(m,n,0), v tomto pripade ide vlastne o surjektivne zobrazenia m-
prvkovej mnoZiny na n-prvkovi, teda E(m,n,0) = Y., _,(—1) (Z) (n — k)™ pre m > n.

V pripade, 7e r # 0 mdZeme tulohu previest na predchadzajicu tak, Ze najprv uréime prazdne
krabicky, to mdzeme urobit (:f) sposobmi, dalej riesime tlohu rozmiestnit m réznych predme-
tov do n — r réznych krabi¢iek tak, 7e ziadna krabi¢ka nie je prazdna, t.j. E(m,n — r,0) =
=20 (=D (" ) (n =1 =)™, ateda

n\ s— n—r
B = (1) 0 (" o
r) = Jj

V pripade r # 0 méZeme postupovat pri rieSeni aj tak, ze pouZijeme vetu 2.7: OznaCme A;
(1 =1,2,...,n) mnozinu tych rozdeleni m réznych predmetov do n réznych krabiciek, pri ktorych
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je i-ta krabicka prazdna |Ail=(n—-1)"prei=1,...,n. n. [Ay NAi,N---NA;|=(n—k)™ pre
1<ip<ig < - < <mn,

Sk = > |Ailﬁ"'ﬂAik:<Z>("k)m

1<ip < <ip<n
PodTla vety 2.7

Bonferroniho nerovnosti

Uvazujme zov§eobecnené formuly principu zapojenia a vypojenia. Odvodime nerovnosti, ktoré
v mnohych pripadoch zjednodusuji pouzitie principu zapojenia a vypojenia, pretoze v rdmci pri-
pustnej presnosti umozihujii obmedzit sa v siucte (6) so striedavymi znamienkami na vypocitanie
len niekolkych ¢lenov.

Z formuly (6) pre r + 1 < d < n dostdvame:

d—1

k
A = X0 (F)se= otrun @

k=r "

kde
v =30 (H)s, ®
) 7" 9

k=d
Najprv ndjdeme inverzna formulu k (6) tak, 7e vyjadrime veli¢iny Sy pre k = 0,1,...,n pomocou
veliéiny A(r) pre r = 0,1,...,n. Vyndsobime obidve strany rovnosti (6) ¢islom (;) a spocitame

ziskané vyrazy podla r od k do n, dostavame:
n n J .
T AT\ (7
> (7) a0 =Y s v (3) (7) o
r=k j=k  r=k

Ak vyjadrime binomické koeficienty pomocou faktoridlov, Tahko dostavame:

v () (0)={h 0o

Ak pouzijeme tto rovnost, z rovnosti (9) dostdvame formulu inverznt k formule A(r):

n

Sk:Z<Z>A(r), k=0,1,....n (10)

r=k
Vyraz Sy z formuly (10) dosadime do formuly (8), zmenime poradie suétu a dostavame:

-Sanzen<() ()

k=d
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B (0-0F0r ()

j=

Poznamenavame, ze

Pretoze
I—d

) l— l—r—1
Z(—l)lﬂ’d ) = coefyi—a(l+2) '(14+2)7" = "
‘ J l—d
7=0
tak nakoniec dostavame:
(I (l-r-1
U(d,r) = A(l) >0
@n=3(;)(a_5_1)402
Ak berieme do Gvahy tito nerovnost, zo vztahu (7) dostdvame

r+2v—1
A(r) — }: (1vr<k>sk:(1V"U0~+2ur)>o

r

k=r
r+2v
Auq—-Ej(—1yfT(f)Sk—(_1f"Htmr+2y4-Lr)go
k=r

Z tychto dvoch vztahov vyplyvaja takzvané Bonferroniho nerovnosti:

T (s sans T (s "

k=r k=r

kde 0 < v < %=1 Bonferroniho nerovnosti st ekvivalentné nerovnostiam

2
r4+2v
ok +ow+1
Ay = 3 (=1 ( )sk > —(r v )STWH
T T

k=r

a0 o (Nses () s

k=r

(12)

Poznamka 2.10. Inymi slovami sa to dd povedat takto: Ak vynechdme v sicte (6) vyéislujiicom
A(r) postupne niektoré séitance, tak urobime chybu, znamienko ktorej je toto7né so znamienkom

.....

prvého z vynechanych séitancov.

2.2. Spernerova veta

Uvazujme n-prvkovii mnoZinu A a systém (A1, Ao, ..., Ay) jej roznych podmnozin; A4; C A
pre 1 <i < m. Dokdzeme nasledujiicu vetu:

Veta 2.11. Nech A je koneénd mnoZina o n prvkoch, A,..., Ay, st jej neprizdne kone¢né podm-
noziny, také, ze A; € A; pre i # j, t.j. A; nie je podmnozinou Aj;, pre i,j =1,...,n. Potom plati

nerovnost:
n

<1
Z;Qiﬂ
Doékaz: Retazec podmnozin Cy, Cy,...,C,, C; C A, |C;| =i pre kazdé i = 1,2,...,n takych, ze
0=CoCCy G- CCn= A nazyvame nasgteny retazec. Medzi jeho prvky totiz nemdzeme dat
dopliiujiicu mnozinu. Ak mame n-prvkovii koneénii mnozinu A, tak je zrejmé, Ze pocet nasytenych
retazcov v A je n!

UvaZzujme teraz nasytené retazce, ktoré prechadzaji podmnozinou A; (1 <i < m). Pre |4;| =
= r to buda retazce tvaru Co C C1 C --- C Cro1 C A, C Cryq € -+ C (). Pocet podretazcov

—
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Co C C1 € - C Cr_q jerovny |A;|! = r! a poet podretazcov Criq € -+ C C,, je rovny (n —
—]4;)! = (n—r)! To znamen4, Ze celkovy pocet nasytenych retazcov, ktoré prechddzaji cez A;, je
rovny |4;|! (n—|A;])! Cahko moZno nahliadnut, Zze pre i # j nasytené refazce, ktoré prechddzaji cez
A;, resp. Aj, s rozne. Skutocne, ak A;, A; (i # j) patria do jedného a toho istého retazca, potom
najdeme také elementy Cy a Cj, ze Cy = A;, €y = A;. Ak podla definicie kladieme Cy C C,
dostavame A; C Aj, ¢o je v spore s predpokladom vety. Spocitajme teda, kolko je nasytenych
retazcov, ktoré prechddzaji cez mnoziny A; (i = 1,...,m); ich celkovy pocet neprevySuje n!, t.j.
pocet v8etkych moznych nasytenych retazcov v n-prvkovej mnozine. Dostavame teda

Z [Ail(n — [Ai)! < nl
i=1

a odtial pozadovant nerovnost. [

Veta 2.12 (Spernerova). Nech A je koneénd mnozina o n prvkoch a A4y, ..., A,, si jej neprazdne
kone¢né podmnoziny, ktoré navzajom do seba nezapadajt, t.j. A; € A; prei#j,4,j=1,...,m.
Potom

" <LgJ>

> <

n
i=1 A

i i)+(1)+---+i<1

‘A ‘) (\Aﬂ \:2\ (\ATZ"\)

(Z |> <L J> prei=1,...,m

ay<t m<(i) °

Priklad 2.13. Je zname, 7e kazdé celé kladné ¢islo n > 1 mé jediné vyjadrenie tvaru

Dokaz: Uvazujme nerovnost

Dostavame teda, ze

3

n=py'pytpt 1<pi <o <pr
kde p1,ps, ..., pr st prvocisla. Toto vyjadrenie nazyvame kanonickym rozkladom n. Ak d je delitel
n, tak piSeme d|n a d musi mat vyjadrenie

d:pflpgz- p’fr Bi<ajprel <i<r
Nech kanonicky rozklad ¢isla n ma tvar n = pyps ...p, a m je maximalny pocet delitelov ¢isla n,

ktoré nedelia jeden druhého. Dokizeme, ze m < (L J)

Riesenie: Vezmime X = {1,2,...,r}. Kazdému delitelovi tvaru p;,pi, ---pi, (1 <43 < -+ <
< is < r) priradime podmnozinu {iy,is,...,is} mnoziny X. Dostaneme systém podmnoZin
(A1, Ay, ..., Ap). Pretoze delitelia nedelia jeden druhého, tak A; € A; (i # j), a teda tvrde-
nie vyplyva zo Spernerovej vety.

Priklad 2.14. Nech @ = (aq,...,a,), a; € {0,1} (i = 1,...,n) anech 8 = (B1,...,0,), Bi €
€ {0,1} (¢ =1,...,n). Ozname & < B < ;< (i=1,....,n). Aky je maximalny podet
n-rozmernych vektorov, z ktorych 7iadne dva nie st porovnatené?

Riesenie: Nech A C X = {1,2,...,n}. Mnozine A priradime jednoznatne vektor & = (a1, ..., ay,)

takto:
1, akie A
x; =
0, inak
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Ak @ nie je porovnatelny s 3, tak pre priradené mnoziny A, B plati A ¢ B A B € A, t.j. podla
Spernerovej vety existuje najviac (LZ J) neporovnatelnych vektorov.
2

2.3. Dirichletov princip

Veta 2.15. Nech X,Y st koneéné mnoziny a f je zobrazenie mnoziny X do mnoZiny Y. Ak |X| >
> |Y|, tak existuje také y € Y, Ze aspon pre dva rozne prvky zq,zo € X plati f(z1) = f(z2) = y.

Dokaz: Tvrdenie vety je len logickd obmena definicie rovnakej mohutnosti. Keby pre kazdé z1, 2z, €
€ X, x1 # xa bolo f(z1) # f(xz2), tak f je prosté zobrazenie mnoziny X do mnoZiny Y, teda
|X| < |Y], ¢o je v spore s predpokladom | X| > |Y|. O

Priklad 2.16. Pouzitim Dirichletovho principu ukdzeme, 7e v Prahe 7ija dvaja Tudia s rovnakym
poc¢tom vlasov na hlave. KaZdému obyvatelovi # mesta Prahy priradime ¢islo f(z)  pocet jeho
vlasov na hlave. KedZe mnozina vSetkych obyvatelov Prahy mé& aspon milén prvkov a hodnota
funkcie f neprevysuje 500000, tak podla Dirichletovho principu existuji dvaja obyvatelia Prahy
x1,x9 taki, 7e f(x1) = f(z2), t.j. maji rovnaky pocet vlasov na hlave.

.....

prirodzené ¢&islo k, 7e m* pri deleni ¢islom n dava zvysok 1.

Riesenie: Uvazujme &sla m!, m2,..., m"*!. Oznaéme r; zvySok pri deleni &sla m’ ¢slom n. Cisla
r1,T9,...,Ty4+1 SU mensie ako n, je ich n 4+ 1, teda aspon dve sa rovnaja, t.j. existuja i,7 < n +1
také, ze r; = r;. Nech i < j. Potom &slo m? —m® je delitelné ¢islom n. KedZe ¢isla n a m' st
nestdelitelné, tak n deli m/~% — 1, lebo m? — m? = m*(m’7~% — 1). Stadi teda polozit k = j — i.

Veta 2.18. Nech f je zobrazenie mnoziny X do mnoziny Y. Nech A oznacuje nejakit mohutnost
(A =n € Nt). Ak A\Y| < |X]|, tak existuje y € Y také, Ze mnozina {z € X | f(z) = y} ma

.....

Dékaz: Oznatme Ay = {z € X | f(z) = y}. Potom X ={J,cy Ay a pre y1 #yo je Ay, N Ay, = 0.
Keby pre kazdé y € Y platilo |4,| < A, tak potom |X| = |{J Ayl < AY| < |X]|, ¢o ale nie je

.....

yeXx

Désledok 2.19. Nech f je zobrazenie mnoziny X do mnoziny Y. Nech | X|=m, |Y|=n (m,n €
€ N). Ak nk < m, tak existuje y € YV také, 7e mnozina {z € X | f(z) = y} mda aspon k + 1
prvkov.

Dokaz: Stadi si uvedomit, ze ak nie je pravda |4,| < k, tak |4,| > k+1 (pre k prirodzené) a pouzit
predchadzajtcu vetu.

x=U4, XI=/UA4l=> 4l<kn<m O
yeyY yeY yeY
Désledok 2.20. Nech f je zobrazenie z mnoziny X do Y. V pripade, 7Ze mnozina X je nekone¢né

amnozina Y kone¢nd, tak existuje také y € Y, 7e A, = {z € X | f(z) = y} je nekonecnd mnozina.

Dokaz: Tak, ako v predchadzajicich pripadoch, dostdvame pre mnozinu X:

x=4, IXI=] 4] <nk
yeYy yey

kde |Y| = n a ko = maxycy |4,]; ko existuje na zdklade principu maxima, ktory hovori, ze
kazda neprazdna kone¢nd podmnozina ¢iasto¢ne usporiadanej mnoziny ma minimalny a maximalny
prvok. Teda | X| < nkg, ¢o je spor s tym, 7e X je nekone¢nd mnozina. 0O

Priklad 2.21. Nech M je mnozina slov dizky n v abecede A = {ay, . .., ar} (k> 2). Kazdé dve

rozne slovd mnoziny M sa li§ia v aspon dvoch pismendch. Aké je mohutnost mnoziny M ?

Riesenie: Matematickou indukciou ukdzeme, 7e pre n > 2 je |[M| < k"~ '. Nech najprv n = 2.
Mnozinu M rozdelime na k podmnozin My, Ms, ..., My tak, ze do mnoziny M; dame tie slova
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z mnoziny M, ktoré za¢inaji pismenom a;. Keby bolo |M| > k, tak v niektorej mnozine M; st
dve slovd mnoziny M  tie sa v8ak liia len v druhom pismene, ¢o nie je mozné. Teda |M| < k.

Predpokladajme, 7e tvrdenie plati pre n — 1 a ukdzeme, 7e plati aj pre n, kde n — 1 > 2.
Rozdelime mnozinu M opéat na k casti My, My, ..., M} podla toho, akym pismenom zadina dané
slovo. Keby bolo |M| > k™!, tak podla dosledku 2.19 existuje také i, ze |M;| > k" 2. Kedze
| M|+ | M|+ - -+ | M| > k"1, nemdzu byt vietky |M;| < k" 2. Nech M je mnozina slov, ktoré
vznikn® zo slov mnoziny M; vynechanim prvého pismena. Mnozina M obsahuje slova diiky n—1
a kazdé dve sa ligia aspon v dvoch pismenéach. Teda podla indukéného predpokladu je |M| < k"2,
¢o je hladany spor.

Cviéenie 2.22. Pokiiste sa najst mnozinu M s uvedenymi vlastnostami mohutnosti k?~!.

Priklad 2.23. Majme komplentny graf o 6 vrcholoch. Ukazte, 7e pri kazdom farbeni hran grafu
dvoma farbami dostaneme vzdy trojuholnik, ktory je zafarbeny jednou farbou.

U1

OBR. 2. Obréazok k prikladu 2.23

Riesenie: Uvazujme kompletny graf o 6 vrcholoch; z lubovolného jeho vrchola vychddza 5 hrén.
Zvolme si lubovolne, ale pevne napriklad vrchol v;. Podla dosledku 2.19 pri Tubovolnom zafarbeni
hran kompletného grafu o 6 vrcholoch dvomi farbami vychadzaji z vrchola v, aspon tri hrany
zafarbené tou istou farbou (farbime dvoma farbami: €ervenou a modrou). Nech ide o Cervend
farbu a nech st to hrany {vi,v2}, {v1,v3} a {v1,v4}. V8imnime si teraz trojicu vrcholov vs, vs, v4:
Ak niektord z hran {vs,v3}, {va,v4}, {v3,v4} je zafarbend Cervenou farbou — nech je to napriklad
hrana {vs, v3}, tak dostaneme jednofarebny trojuholnik {vy, ve,v3}. Ak st v8etky tri hrany modré,
tak dostdvame modry trojuholnik {vs, v3,v4}.

Priklad 2.24. Ukazte, Ze kompletny graf o 5 vrcholoch mozno zafarbif dvoma farbami tak, ze
neexistuje jednofarebny trojuholnik.

Riesenie: je na obrazku 3.

OBR. 3. Zafarbenie k prikladu 2.24

Poznamka 2.25. 7Z uvedenych prikladov m6Zzeme robitf nasledujtci zaver: Pre kazdé n > 6, ak
farbime kompletny graf o n vrcholoch, tak vzdy dostaneme jednofarebny trojuholnik.
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Cvicenie 2.26. Ukazte, ze ak v pripade kompletného grafu o 5 vrcholoch farbenim hran dvoma
farbami nevznikne jednofarebny trojuholnik, tak potom 5 hran grafu je zafarbenych jednou farbou
a pat hran grafu je zafarbenych druhou farbou.

2.4. Konigova lema

Definicia 2.27. Ciastotne usporiadani mnoZina (T, <) sa nazyva strom, ak pre kazdé n € T je
asek T'(n) = {v € T | v < n} dobre usporiadand mnozina a T' ma najmensi prvok (koref).

Poznamka 2.28. Ciasto¢ne usporiadand mnozina je dobre usporiadand mnoZina, ak jej Tubovo-
Ina neprazdna podmnoZina mé najmensi prvok. Lahko moZno nahliadnut, Ze dobre usporiadana
mnozine je aj linedrne usporiadand. Stadéi ukazat, ze Tubovolné prvky a,b st v reldcii, ale to je
pravda, pretoZe {a,b} ma najmensi prvok.

Ku kazdému stromu mo6zeme priradit diagram, ktory taktieZ nazveme strom; je to geometricka
reprezenticia matematického pojmu stromu s korennom: Kazdému prvku v € T priradime vrchol
stromu T' a zndzornime ho krizkom. Dva vrcholy stromu 7' spojime hranou prave vtedy, ak v < u
a neexistuje taky vrchol z, Ze plati v < z < u; hovorime, Ze u je bezprostredny nasledovnik v.

Stupen vetvenia vrchola v je pocet jeho bezprostrednych nasledovnikov. Vyska vrchola v je
pocet prvkov v tseku T'(v). Koreii mé vysku 0. Maximéalny linedrny refazec v strome sa nazyva
vetva stromu (maximélny v mnoZinovom zmysle). Pod dizkou vetvy rozumieme pocet vrcholov
v retazci. Vyska stromu je suprémum vySok vrcholov stromu.

iy LG

OBR. 4. T} a Ty st stromy, T3, T, a T nie st stromy.

T] T5

Priklad 2.29. Nech T je mnoZina v8etkych kone¢nych postupnosti ¢isel {1,2,...,k}. Nech a =
= {a;}7_,, b = {b;}7-, ’sﬁ dve konetné postupnosti a a < b <= (n < maa; =b;jprej =
=1,...,n), t.j. b je predlzenie postupnosti a. Potom T je strom, ktorého koren je (). Stupen vet-
venia kazdého vrchola je k. Vyska vrchola a = {a;}7_, je nlebo T(a) = {0, {a;}}_,, ..., {a;}1}

ako n. Strom S m4 stupen vetvenia k, ma 1+ k + k> + --- 4+ k"~ ! vrcholov a kazd4 vetva ma
dlzku n (pozri obrazok 5).

Priklad 2.30. UvaZzujme strom S vSetkych kone¢nych postupnosti ¢isel {1,2,..., k} dizky mengej

Priklad 2.31. Strom na obrazku 6 ma vysku 1 a vrchol vg ma stupen vetvenia Ry.

Priklad 2.32. Strom na obrizku 7 ma vysku N, a kazda vetva je kone¢né. Vrchol vg ma stupen
vetvenia Ng, strom T mé nekone¢ne vela vrcholov.

Plati vsak takéto jednoduché tvrdenie:

Lema 2.33 (Konigova). Nech kaZdy vrchol stromu s koretiom (7', <) ma koneény stupen vetve-
nia. Ak T je nekone¢na mnozina, tak v T existuje nekonecne dlha vetva.

Dokaz: Pre kazdy vrchol v € T oznacime
Ay ={ueT|v<u}
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OBR. 5. Strom k prikladu 2.30

U1 V2 U3 Un,

OBR. 6. Strom k prikladu 2.31

,UTl’I’l
L]

V44

Vo

OBR. 7. Strom k prikladu 2.32

t.j. A, je mnozina tych vrcholov stromu T', ktoré ,leZia nad vrcholom v“. Ak vy,...,v, st vSetky
bezprostredné nasledovniky vrchola v, tak zrejme plati:
A, =A,U---UA, U{vr,...,un} (13)

Z rovnosti (13) vyplyva, na zdklade désledku 2.20, 7e ak A, je nekone¢nd mnozina, tak existuje
nasledovnik v; vrchola v taky, 7e A,, je tiez nekonecna mnozina.

Teraz lahko dokdZeme tvrdenie lemy: Nech zg je najmensi vrchol stromu T'. Podla predpo-
kladu je mnozina A,, = T \ {zo} nekonetna. Teda existuje nasledovnik z; vrchola zq taky, Ze
A, je nekonetnd mnozina. Ak méame vrchol z, taky, 7Ze mnozina A, je nekonefnd, tak exis-
tuje nasledovnik z,11 > z, vrchola z, taky, 7e mnozina A, ., je nekonetnd. Zrejme mnoZina
{zo,21,...,2p,...} je nekoneéna vetva stromu 7', ¢o bolo treba dokazat. O

Veta 2.34. Nech kazdy vrchol kone¢ného stromu 7' ma stupen vetvenia mensi alebo rovny k. Ak
T mé aspon 1+ Z?;ol k? vrcholov, tak v T existuje vetva dlzky vicésej ako n.
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Doékaz: Pre kazdy vrchol v € T oznacime A, = {u € T | v < u}, t.j. A, je mnoZina tych vrcholov
stromu 7', ktoré ,lezia nad vrcholom v“. Nech vy, vs,..., vt st vSetky bezprostredné nasledovniky
vrchola v. Potom zrejme plati

A, =A, U...UA, U{v,...,o1}

Nech 2y je najmensi vrchol stromu 7. Podla predpokladu mnozina A,, = T \ {zo} ma aspon
Z?;ol k* prvkov.
(Ltktk> 4 k")

s , , . . . —k . .
Existuje teda taky nasledovnik z; vrchola zg, ze A,, mé aspon s , t.j. aspon

k+ k> +--- + k"2 prvkov (pozri obrazok 8). Dalej existuje taky nasledovnik x5 vrchola z, 7e
Ay, mé aspon k + k? + -+ + k"3 prvkov, atd., a7 dostdvame, 7e existuje taky nasledovnik x,
vrchola x, 5 taky, ze A,, . ma aspon k("= prykov, teda obsahuje vrchol z,,. To znamen4,

7e {xo,1,22,...,2,} je vetva diiky vacgej ako n. 0O

NS
~-

o

OBR. 8. Obrazok k dokazu vety 2.34

Poznamka 2.35. Podla prikladu 2.30 tvrdenie poslednej vety nemézeme zosilnit, t.j. existuje
strom T s po¢tom vrcholov 1 + k + --- 4+ k"1 a vetvami maximalnej diiky n, ktorého vetvenie je
pre kazdy vrchol najviac k.

Neplati nasledujica veta: V kazdom strome, ktory ma najviac 14+ k+ k2 +-- -4+ k"1 vrcholov
a kazdy vrchol vetvenie najviac k, existuje vetva diiky vacsej ako n.

2.5. Ramseyove c¢isla

Vyjdeme z hlavolamu: Je pravda, Ze v spoloc¢nosti, kde je aspon 6 ludi, existuje bud trojica
Tudi, ktori sa navzdjom poznaji, alebo trojica Iudi, ktori sa navzidjom nepoznaju? Ako sme uz
povedali predtym, danej situdcii m6zeme priradit diagram kompletného grafu o 6 vrcholoch, teda
K a tlohu hlavolamu formulovat ako farbanie hran dvoma farbami. ZovSeobecnenia tejto tlohy
budeme formulovat v jazyku tedrie grafov. Za tym ti¢elom uvedieme niekolko potrebnych definicii
z tedrie grafov.

Definicia 2.36. Nech V je kone¢énd mnozina a E C Py(V). Usporiadant dvojicu G = (V, E)
nazyvame obycajny (jednoduchy) graf. V je mnoZina vrcholov a E mnoZina hrin grafu G.
Definicia 2.37. Podgrafom grafu G = (V, E) nazyvame graf G' = (V', E') taky, ze plati V! CV
aE' CE, E' CPy(V").

Definicia 2.38. Kompletngm grafom o n vrcholoch nazyvame graf, v ktorom |V| = n a pocet
hrén je rovny (;l), teda |E| = (;l) Kompletny graf o n vrcholoch oznadujeme K.

Definicia 2.39. Nech G = (V, E) je graf. Komplementdrnym grafom ku grafu G nazyvame graf G,
pre ktory plati, Ze m4 t ist mnoZinu vrcholov V' ako graf G a mnozinu hran E' = {{u,v} | u,v €
e V.{u,v} ¢ E}.

Definicia 2.40. Pod stupriom vrchola u v grafe G rozumieme mohutnost mnoziny {v | v €
€ V. {u,v} € E}; toto &islo oznatujeme deg u.

Poznamka 2.41. Tahko mo?no nahliadnut, 7e sti¢et stupfiov vietkych vrcholov grafu G je rovny
dvojnasobnému poc¢tu hran grafu.
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Ulohu s hlavolamom mézeme zovieobecnif nasledujticim spésobom: Majme n € N*. Aké je
najmensie prirodzené ¢islo p, pre ktoré plati: kazdy graf, ktory ma aspon p vrcholov alebo graf k
nemu komplementdrny, obsahuje K,, ako svoj podgraf? Ak ideme v zov8eobechovani este dalej,
dostavame sa k tzv. Ramseyovym ¢islam R(n,m), ktoré st definované ako najmensgie ¢isla, pre
ktoré plati: kazdy graf G, ktory mé aspon R(n,m) vrcholov, bud obsahuje ako svoj podgraf K,
alebo k nemu komplementarny graf G obsahuje ako svoj podgraf K,,.

V jazyku farbenia hran mozeme tlohu sformulovat nasledovne: Aké je najmensie prirodzené
¢islo p, také Ze pre m,n € NT plati, 7e pri kazdom zafarbeni hran dvoma farbami (¢ervenou
a modrou) vzdy existuje bud ¢erveny K,,, alebo modry K, 7

Rekurentny vztah medz Ramseyovymi ¢islami nagli Erdos a Szekeres.

Veta 2.42. Pre m,n > 2 plati
R(m,n) < R(m,n — 1)+ R(m — 1,n) (14)

Dokaz: matematickou indukciou vzhladom na velkost stic¢tu m + n.
1° m+n =4, m=n=2: M4 platit R(2,2) < R(2,1)+ R(1,2),t.j. 2 <1+ 1.
2° Predpokladajme, 7e tvrdenie plati pre prirodzené ¢isla mensie ako m + n, dokdzeme, Ze plati
aj pre m + n. Nech teda na§ graf ma R(m,n — 1) + R(m — 1,n) vrcholov a nech v je pevny
vrchol grafu G. Budeme rozlisovat dva pripady:
(a) pocet hran incidujicich s vrcholom v a zafarbenych ¢ervenou farbou je aspon R(m —1,n).
(b) pocet hran incidujtcich s vrcholom v a zafarbenych éervenou farbou je mensi ako R(m —
—1,n).
V pripade (a) oznaéime vq,vs,...,v; vrcholy patriace koncom hran zafarbenych na éerveno
(pozri obrézok 9). Pritom plati ¥ > R(m — 1,n). Ak uvaZujeme graf na tychto k vrcholoch,

OBR. 9.

tak bud obsahuje ¢erveny K,, 1 alebo modry K,. To vyplyva z definicie Ramseyovych ¢isel
a indukéného predpokladu. Ak graf na k vrcholoch obsahuje ¢erveny K,, 1, tak pridanim
vrchola v, ktory je susedny so vSetkymi vrcholmi v grafe, ktorého vSetky hrany st cCervené,
dostaneme Cerveny K,, v grafe G. Ak graf na vrcholoch {vy,vs,...v;} neobsahuje éerveny
K,,_1, tak podla indukéného predpokladu obsahuje modry K,, a teda aj cely graf obsahuje
modry K,,. Tvrdenie vety teda plati.

V pripade (b) musi byt poéet hran incidujicich s v a zafarbenych na modro aspotr R(m,n —
— 1) (lebo inak by bol stlet hran zafarbenych na modro a na ¢erveno dohromady mensi ako
R(m,n—1)+ R(m —1,n) — 1, ¢o ale nemdze nastat). To mame ale pripad analogicky s pripa-
dom (a), lenze ,, v modrom“. Teda analogickou tivahou ako v pripade (a) sa d4 dokazat, 7e graf
G obsahuje bud modry K, alebo ¢erveny K,,. Tym je dékaz vety ukonéeny. O

Pozndmka 2.43. Treba si uvedomit, 7e veta ndm zarucuje existenciu ¢éisla R(m,n) pre m,n > 2.

Poznamka 2.44. Lahko moZno nahliadnut, Ze pre Iubovolné prirodzené ¢isla m,n > 2 plati
R(m,2) =m, R(2,n) = n. Z toho a rekurentného vztahu (14) dostavame, Ze

R(3,3) <R(2,3)+ R(3,2) =3+3=6
Mozno ukézat, 7ze R(3,3) > 5, teda 5 < R(3,3) < 6, ¢ize R(3,3) = 6.

Poznamka 2.45. V pripade, ze R(m —1,n) =2p A R(m,n — 1) = 2q, kde p, ¢ st prirodzené ¢isla,
plati ostra nerovnost

R(m,n) < R(m,n—1)+ R(m — 1,n), m,n > 2
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[m\m ]2 3 4 5 6 7|
2 |2 3 4 5 6 7
3 3 6 9 14 18 23
4 4 9 18

TABULKA 1. Priklady Ramseyovych cisel

Dokaz: Oznacéme r = 2p+2g—1 a nech v je lubovolny vrchol kompletného grafu o r vrcholoch (teda
K,), n1 pocet Cervenych hrén, ktoré inciduja s vrcholom v, a ne poéet modrych hran incidujicich
s vrcholom v. Potom plati rovnost:

r—1l=mny+ny=R(m—-1,n)+R(m,n—1)—2

Mozné st tri pripady:
(a) m1 > R(m—1,n) A na < R(m,n —1)
(b) ne > R(m,n—1) A ny < R(m —1,n)
(c)mi =2p—1Any=2¢—1

A
A

Prvé dva pripady sme uvazovali vo vete 2.42. Keby vSak pripad (c) nastal pre kazdy vrchol v,
musel by kazdy z 2p + 2¢ — 1 vrcholov incidovat s 2p — 1 ¢ervenymi hranami. No potom by ¢&islo
(2p + 2qg — 1)(2p — 1) muselo byt parne (sticet stupnov vrcholov grafu je vzdy parne &islo). To ale
neplati, teda pripad (c) pre vhodne vybraty vrchol v nenastane. O

Rekurentnii nerovnost (14) vo vete 2.42 moZno pouZit pri hladani horného odhadu pre Ram-
seyove Cisla.

Veta 2.46. Pre m,n > 2 plati

R(m,n) < (m:”I_Q)

Dokaz: Dokazovany vztah plati, akonahle aspon jedno z ¢isel m a n sa rovna dvom. Skutocne:
R(m,2) =m < (mri]) R(2,n) =n < (?) Predpokladajme, Ze vztah plati pre vsetky ¢isla my
a n1, ktorych siicet je mensi ako m +n a dokdZeme, Ze potom plati aj pre m a n. Podla indukéného

predpokladu plati:

R(m,n—1) < <m+n—3>7 Rim - 1,m) < <m+n—3>

m— 1 m — 2

m+n—3 m+n—3 m+n —2
1, M) < ) — ) ,n —1) < =
R(m,n) < R(m —1,n) + R(m,n 1)( m— 9 >+< m— 1 > ( m— 1 >

Pouzili sme tu zndmu identitu pre kombinac¢né ¢isla. Tym je dékaz vety skonceny. [

Uvedeny odhad je dost nepresny, ale ma dolezity teoreticky vyznam: vieme, ze R(m,n) je vzdy
konec¢né ¢islo. Roznymi kombinatorickymi metédami mozno néjst lepsie odhady, ale od uvedeného
sa ligia len nepodstatne. Néjst presné hodnoty Ramseyovych ¢isel je velmi tazka tiloha a pozname
doteraz len niekolko méalo hodnét. Niekolko ich uvddzame v tabulke 1.

Na zaver sformulujeme uvedené vysledky vo vete.

Veta 2.47 (Ramseyova). Pre Iubovolné prirodzené m,n > 2 existuje prirodzené ¢islo R(m,n)
také, 7e pre kazdé ¢islo r > R(m,n) plati, Ze pri lubovolnom zafarbeni hréan grafu K, dvoma farbami
v hom existuje jednofarebny podgraf K, ofarbeny prvou farbou alebo jednofarebny podgraf K,
ofarbeny druhou farbou.

Pozndmka 2.48. Napriek tomu, 7e Ramseyove ¢isla sa ziskavaja tazko (aj ich odhady), problema-
tika je 7iva, pretoze pripasta vela rozmanitych interpretacii a aplikicii. Studuja sa velmi intenzivne
rézne zovSeobecnenia na roznych Struktarach.
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2.6. *Ramseyova veta pre hypergrafy

Zovseobecnime najprv pojem grafu na hypergraf a potom vyslovime pre hypergrafy Ramseyovu
vetu. V definicii 2.36 sme chapali hranu obyc¢ajného grafu ako dvojprvkovi mnozinu jeho vrcholov.
V hypergrafe pojem hrany zovieobecnime na pojem hyperhrany, ktord bude lubovolnou mnozinou
vrcholov.

Definicia 2.49. Hypergrafom nazveme usporiadant dvojicu H = (V, E), kde V' je kone¢nd mno-
7zina a E C P(V). Mnozinu V nazyvame mnoZinou vrcholov a mnozinu E mnoZinou hyperhrin
hypergrafu H.

Tak4 hypehrana e € E, pre ktort |e| = 2, je oby¢ajnou hranou. Hyperhranu e € E, pre ktort
le] = 1, mozno chapaft ako slucku, t.j. hranu ktorej oba koncové vrcholy st stotoznené. Hyperhrany
e € E, pre ktoré e > 3, je vSak uZ problematické zakreslit nazorne do obrazku. Ak to predsa
potrebujeme urobit, zvycajne hyperhranu zakreslujeme tak, ako je zvykom ,zakreslovat mnozinu
vrcholov®.

Vg

OBRr. 10. Hypergraf ({vy,vo,...,v6}, {{v1,v2,v3}, {v2, 04,06}, {v2,v5}, {v5}})

Definicia 2.50. Hypergraf H, = (V4, Ey) nazveme podgrafom hypergrafu Hy = (Vy, Ey), ak V; C
g V2 a E] g EQ.

Definicia 2.51. Nech H = (V, E) je hypergraf a V' C V. Hypergraf H' taky, 7ze V(H') = V' a
E(H'") = E(H) N P(V') nazveme hypergrafom indukovanym mnoZinou V'. Indukovany hypergraf
budeme oznafovat H' = H | V'.

Indukovany hypergraf na mnozine vrcholov V'’ teda obsahuje vSetky hyperhrany pévodného
hypergrafu, ktoré len moze.

Hypergraf H = (V, E), v ktorom pre vSetky hyperhrany e € E plati, 7e |e| = k, sa nazyva
k-uniformny. Bolo by teda napriklad mo7zné definovat obycajny graf ako 2-uniformny hypergraf.
k-Uniformny hypergraf, ktory obsahuje vS8etky u-vrcholové hrany, sa nazyva uplny k-uniformngy
hypergraf . Upln}’/ n-vrcholovy k-uniformny hypergraf budeme oznacovat K*. Plati teda napriklad,
7e K2 = K,.

Podobne ako hrany obycajného grafu, aj hrany hypergrafov mozno farbit. Vyslovime teraz o
tychto farbeniach pomerne silni verziu Ramseyovej vety.

Veta 2.52 (Ramseyova). Pre vietky s,m,u € N existuje ng(k,m,s) € NT také, Ze pre vietky

n > ng obsahuje hypergraf K* pri Tubovolnom zafarbeni svojich hyperhrén s farbami jednofarebny

podgraf K¥,.

Dokaz: Vetu dokdzeme matematickou indukciou cez k. Aby sme zjednodusili vyjadrovanie, budeme

uplny k-uniformny n-vrcholovy hypergraf, ktorého hrany st zafarbené s farbami oznacovat ako

(k,n, s)-hypergraf.

1° Pre k = 1 obsahuje hypergraf K* len slucky, a to na kazdom vrchole jednu (teda n sludiek).
Maéame teraz dokézat, 7e pre vietky prirodzené ¢isla s, m existuje také ng(1,m, s), Ze ak je pocet
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slu¢iek n aspon ng, tak pri kazdom ich ofarbeni s farbami z nich mozno vybrat m, ktoré st
zafarbené tou istou farbou (t.j. jednofarebny hypergraf K ). Na to staci zvolif

ng=(m—1)s+1

Podla Dirichletovho principu sa totiz medzi takymto po¢tom s farbami zafarbenych sluéiek uz
musi vyskytnat m, zafarbenych tou istou farbou.

Skor nez urobime ddkaz pre k > 2, ukdzeme si najprv jednu konstrukciu vychadzajicu z hy-
pergrafu H = KF, ktorého kazd4 hyperhrana je zafarbena niektorou z s zvolenych farieb.

Pre kazdy vrchol w € V(H), kde V(H) je mnozina vrcholov hypergrafu H, oznalme
ako H(w) tplny (k — 1)-uniformny hypergraf na vrcholoch V' \ {w}, ktorého hyperhrany st
zafarbené s farbami, a to tak, ze kazda hyperhrana {vi,vs,...,vx_1} je pre v; € V \ {w}
(it = 1,...,k — 1) v hypergrafe H(w) zafarbena rovnako ako hyperhrana {w,vi,...,vx_1}
v pévodnom hypergrafe H. Skonstruujeme teraz postupnost mnozin {V;} nasledovne:

Nech Vy = V(H) a ak uZz mame zostrojentt mnozinu V;_y (i > 1), zostrojime mnozinu V;
takto: Zvolime si Tubovolny vrchol z; 1 € V; 1 a za V; zvolime ¢o do poctu prvkov najvacsiu
mnozinu s vlastnostami:

e ViCVioi \{zi}

e Vsetky hyperhrany hypergrafu H(z;—;) | V; s zafarbené tou istou farbou (ttito farbu

oznaéme f;).
Volba vrchola z;_1 je teda v kazdom kroku Iubovolna. PretoZze mnozina V = Vj je konecnd a
Vi € Vi_1, tak po kone¢nom pocte krokov dospejeme k prazdnej mnozine vrcholov. Postupnost
mnozin V=V 2 Vi 2--- D2 V,o1 2V, 2 Vppu = (¢ nazveme mazimdlnym retazcom dl/zvky p
v hypergrafe H.

Lema 2.53. Ak plati Ramseyova veta pre uniformitu k — 1, tak pre vietky s € Nt a k €
€ Ny existuje také n; € NT, Ze pre vietky n > n; maji vietky maximalne retazce kazdého
(k,n, s)-hypergrafu dlzku aspon d (bez ohladu na volbu vrcholov z;).!

Dokaz: Predpokladajme, 7Ze Ramseyova veta plati pre uniformitu k —1 a vSimnime si najprv, ¢o
treba poZzadovat od mnoziny V;_1 (i > 1), aby platilo, Ze |V;| > t, kde ¢ je [ubovolne zvolené celé
nezdporné ¢islo. Z Ramseyovej vety pre uniformitu k—1 vyplyva, ze ak je |V;_1| > no(k,t,s)+1,
tak |Vioi \ {zi—1}] > no(k,t,s), a preto v (k — 1,|Vi_1| — 1, s)-hypergrafe H(z;_1) | (Vi—1 \
\ {z;_1}) existuje t-tica vrcholov taki, Ze indukuje hypergraf, ktorého hyperhrany st vsetky
zafarbené tou istou farbou. Preto iste |V;| > ¢t. Ak pdjdeme v naSich Gvahich eSte o 1 krok
hlbsie, tak podla prave dokdzaného obdobne dostavame, Ze ak |Vi_a| > ngo(k — 1,nq(s,t, k —
—1)+1,s)+1, tak |V;_1| > no(k — 1,t,s) + 1, a preto |V;| > ¢. Analogicky moZno postupovat
pre mnoziny V;_3, V;_4, atd. Zavedme preto funkciu g:

g(s,t,k—1;0) =1t
g(s,t,k —L;r+1) =ng(k — 1,9(s,t,k—1;r),8) + 1, r € Ny

kde no(k — 1, ., s) oznacuje nejaké (pre urcitost povedzme najmensie) &isla ng, ktorych exis-
tencia je zaruCena platnostou Ramseyovej vety pre pocet farieb s a uniformitu £ — 1. Uvedené
pozorovanie teraz moZno sformulovat nasledovne:

Pre nezaporné celé ¢isla i, j také, ze j < i, plati, ze ak |V;_;| > g(s,t, k—1;j7), tak |Vi| > t.
Pouzijtc teraz toto tvrdenie pre i = j = d a t = 1 dostavame, Zze ak n = |V| = |V| > g(s, 1,k —
—1;d), tak |V4| > 1, t.j. V4 # 0. Ak teda zvolime n; = g(s,1,k — 1;d), tak pre n > n; bude
mat kazdy maximélny refazec kazdého (k,n, s)-hypergrafu dlzku aspot d. O

Teraz uz mozeme dokdzat Ramseyovu vetu pre k > 2: Indukénym predpokladom je plat-
nost Ramseyovej vety pre uniformitu k& — 1, a tak pouzijic lemu 2.53 pre d = (m — 1)s + 1
dostavame existenciu ¢isla ny takého, Ze pre n > ny budi mat vSetky maximélne retazce
(k,n, s)-hypergrafu H dizku aspon (m — 1)s + 1. Zoberme lubovolny taky refazec a v procese

INeformélne moZno povedat, e maximélne refazce hypergrafu moZno za uvedenych podmienok spravif Iubo-

volne dlhymi.
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jeho konstrukcie zostrojenti postupnost farieb fi, fa, ..., fun—1)s41, ... Kedze roznych farieb je
len s, tak podla Dirichletovho principu sa niektora farba f musi v tejto postupnosti vyskytnat
aspon m-krat, povedzme f;, = fi, == fi, = fpre 1 <ig3 <ia < - <y < (m—1)s+1.
Zodpovedajice vrcholy z; v procese konstrukcie zmieneného maximalneho retazca st pritom
Tiy—1,Tig—1, .-, Ti, —1. Preznacme tieto vrcholy na y1 = =i, —1, Y2 = Tig—1, -+, Ym = Ti, —1-

Uvazujme teraz hypergraf G = H | {y1,y2,--.,ym}- Hypergraf G je zrejme Gplny k-uni-
formny m-vrcholovy. Pritom ak {y;,, yj,,---, ¥ } je pre j1 < ja < --- < ji nejaka jeho hyper-
hrana, tak z konstrukcie retazca plati, ze yj,,¥js,---,Yj, € Vj,. Hyperhrana {y;,,...,y; } je
hyperhranou hypergrafu H(y;, ). Podla konstrukcie maximalneho retazca je tato hyperhrana za-
farbena farbou f;, = f. Podla konstrukcie hypergrafu H (y;, ) s v8ak hyperhrany {y;,,...,y;,}
v hypergrafe H(y;,) a {yj,.Yjs,---,Yj. } vV hypergrafe H, a teda aj G, zafarbené rovako.

Celkovo st teda v8etky hyperhrany hypergrafu G zafarbené tou istou farbou, a to farbou f.
Za ng(k,m,s) teda mozno zvolit napriklad ¢islo g(s,1,k — 1, (m — 1)s + 1), kde g je funkcia z
lemy 2.53. O

Poznamka 2.54. Najmensie ng, ktorého existenciu zarucuje Ramseyova veta 2.52, mozno tiez
nazvat ,Ramseyovym ¢islom*“ R'(s,m,u). Vztah medzi takymto a oby¢ajnym Ramseyovym ¢islom
je potom R'(2,m,2) = R(m,m).

2.7. Systémy reprezentantov mnozin

Budeme rozoberat jeden z kombinatorickych pristupov na charakterizovanie $truktary konec-
nych mnozin. UZ z ndzvu mozno vidiet, Ze zadkladnou ideou je zdmena systému mnoZzin ~ vybranim
ich reprezentantov.

Formulacia tloh tohto typu a metddy ich rieSenia zavisia od toho, akym poziadavkdm musia
tito reprezentanti vyhovovat.

Nech M = (S1,...,S) je lubovolny systém koneénych neprazdnych mnozin (niektoré mno-
- A ; ( A s . . ,

Ziny sa mozu aj opakovat). Ak systému M moZeme priradif (nie nutne jednoznaéne) vyber a =

prvok a; reprezentuje mnozinu S; a cely vyber (ay, ..., a,) sa nazyva systémom roznych reprezen-
tantov pre M. Dalej poznamendvame, 7e ak i # j, potom a; # a; aj v pripade, ak S; = S;. Ak
sa teda mnozina vyskytuje v systéme niekolkokrat, tak kazdy raz musi mat reprezentanta rézneho
od vsetkych ostatnych.

Nie je tazké vidiet, 7e nie kazdy systém mnozin ma systém roznych reprezentantov. Ak vsak
uvazujeme neprazdne mnoziny a po dvoch disjunktné, tak systém roznych reprezentantov vzdy
existuje. Dokonca vieme spocitat, kolko takych réznych systémov je.

Uvazujme zlozitejsi priklad: S = {a,b,c,d,e}, M = (S1,S52,S53,54), S1 = {a,b,c,d}, So =
= {a,b,e}. Potom existuji dva systémy roznych reprezentantov: {c,a,b,e} a {d,a,e,b}. Avsak,
ak zamenime len jednu z mnozin, napriklad namiesto Sy vezmeme S) = {b,e}, nedostaneme
ziaden systém roznych reprezentantov. Na otazku, ¢i existuje systém roznych reprezentantov pre
dany systém mnozin dava odpoved veta Filipa Halla, dokizand v roku 1935 a davajica nutni
a postacujiicu podmienku existencie reprezentantov.

Veta 2.55 (Hallova). Pre systém M = (Sy,...,S,) existuje m-tica navzajom rdznych reprezen-
tantov prave vtedy, ak zjednotenie Tubovolnych & mnozin obsahuje aspon & prvkov. Inymi slovami,
systém roznych reprezentantov pre mnoziny Si,Ss,. .., S, existuje prave vtedy, ak S;, US;, U---U
U S;, obsahuje aspon k prvkov, pricom k =1,2,...,m a {i1,...,ix} C {1,2,...,m}.

Dokaz: (=): Nutnd podmienka je prakticky zrejmé, pretoZe existencia systému roznych repre-

zentantov zabezpecuje pritomnost nevyhnutného po¢tu prvkov ako réznych reprezentantov.
(<=): Dokaz obrateného tvrdenia je zloZitejsi. Budeme postupovat indukciou vzhladom na

¢islo m. Je zrejmé, ze pre m = 1 tvrdenie plati. Predpokladajme, Ze tvrdenie plati pre prirodzené

.....

mozné pripady.
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e Spociatku predpokladéme, Ze pre fubovolné 1 < k < m plati |S;; US;,, U---US; | > k+1,
t.j. nasa podmienka je splnena ,;s jednym nadbytoénym prvkom“. Potom, ak vezmeme
Tubovoln mnozinu a vyberieme k nej lubovolného reprezentanta, pre ostatnych m — 1
mnozin zostava platnou povodnéd podmienka. Podla indukéného predpokladu existuje pre
tychto m — 1 mnozin systém réznych reprezentantov. Tymto je prva ¢ast dokazu ukoncend.

e Predpokladajme teraz, Zze existuje k mnozin k < m, pre ktoré plati |S;; U...U S;, | =
= k. Podla indukéného predpokladu tychto k¥ mnoZzin mé systém roéznych reprezentantov.
Zostava ndm e$te m — k mnozin, no Tubovolné h z nich musia obsahovat aspon h prvkov
70 zostavajucich, pretoze v opacnom pripade tychto h mnozin spolu uz s vybranymi bude
obsahovat menej ako k+ h prvkov, a to je v spore s predpokladom. Teda pre tychto m — k
mnoZin je splnena pociatoéna podmienka a podla indukéného predpokladu maji systém
roznych reprezentantov. Dokaz vety je ukonceny. [

Poznamka 2.56. Podmienka konecnosti je tu dolezitd. Keby sme ju vypustili, tak napriklad pre
nekoneény systém mnozin Sop = {1,2,...,n,...}, S1 = {1}, ..., S, = {n}, ... neexistuje systém
roznych reprezentantov, hoci lubovolné jeho ¢ast ho ma.

3

*Algoritmus na najdenie systému réznych reprezentantov

Majme systém koneénych mnozin (S1,Ss...,S,). Nadou tlohou je ndjst pren systém réznych
reprezentantov.

Budeme najprv postupne volitf reprezentantov a; € Sy, as € S, ... Uplne Tubovolne za
predpokladu, ze a; # a; pre i # j. Keby sa nam tymto spésobom podarilo dospiet az ku a,, € Sy,
mame systém (a1, as, . . ., a,) rdéznych reprezentantov mnozin Sy, Sy, . .., S,. Predpokladajme teda,
7e mame vybraté prvky a; € Sy, aa € So, ..., a1 € Sp_1 a dalej uz vo vybere nemozno
pokracovat, t.j. pre vietky x € S by vyber ay = x narusil podmienku o réznosti jednotlivych a;.
Inymi slovami, pre vSetky = € Sj existuje i € {1,2,...,k — 1} také, Zze a; = =. Nech Sy =
= {w1,v2,...,v,}. Pokiisime sa preorganizovat vyber doterajsich reprezentantov a; tak, aby jeden
z prvkov v; (j = 1,2,...,¢) mohol byt vybraty ako reprezentant pre mnozinu Sy (ak sa to d4).
Konstrukcia bude nasledovné:

Najprv budeme induktivne konstruovat postupnost V. = {v;};>1. Jej prvych ¢ ¢lenov uz
mame s to prvky mnozZiny Si. Postupne budeme jej prvky spracovavat odpredu a predlzovat
ju dopisovanim prvkov na koniec. Zaroven s hou budeme konstruovat postupnosti N = {n;}i>1
a P = {p;};>1. Informécia, ktort nest ¢isla n; a p; sa bude tykat prvku v;: ¢islo n; bude oznacovat
¢islo mnoziny, vdaka ktorej sa prvok v; dostal do postupnosti V' a ¢islo p; bude oznacdovat poradové
¢islo terajSieho reprezentanta tejto mnoziny v postupnosti V. Na pociatku teda n; = ny = --- =
= ng = k, av8ak mnoZina Sy zatial reprezentanta vobec nemd. Polozime preto definitoricky
pr=p2=--=p,=0.

Spracovanie prvku v; teraz spociva v nasledovnom: Zoberieme mnozinu S;, ktorej reprezen-
tantom je spracovavany prvok v;, ak takd mnozina existuje, a dopiseme na koniec postupnosti V' tie
prvky mnoziny S;, ktoré sa v postupnosti V' eSte nenachddzajia. Im zodpovedajtce ¢isla v postup-
nosti N buda rovné j a prislusné ¢isla v postupnosti P buda rovné i. Ako sme u% povedali, prvky
postupnosti V' sa spracovavaji odpredu a novopridané prvky sa pripisuji na jej koniec. Postupnost
V sa teda z algoritmického hladiska sprava ako datova Struktira  front.

Poznamenajme este, Ze volba oznacenia v;, n;, p; nie je ndhodna. Cely postup totiz mozno
formulovat aj v jazyku tedrie grafov. Postupne totiZz konStruujeme $pecidlny typ grafu — les.
Pod lesom pritom rozumieme disjunktné zjednotenie kone¢ného poc¢tu stromov. Vrcholmi tohto
stromu st prvky postupnosti V. Pre kazdy vrchol v; oznacuje p; také ¢islo, ze vrchol v; je priamym
nasledovnikom vrchola vy, resp. p; = 0, ak takyto vrchol neexistuje. To sa stane vtedy, ked je
vrchol v; korefiom niektorého stromu lesa. Lahko teraz vidime, %e korefimi stromov nagho lesa st
prave prvky mnoziny Sj.
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Spracovanie vrchola v; v tejto interpretacii znamend identifikovanie vsetkych jeho priamych na-
sledovnikov a pripojenie ich do lesa. Pretoze postupnost V' je spracovavané ako front, konstruujeme
vlastne uvedeny les metédou ,,do Sirky*“. Cisla n; pritom zuzitkujeme a7 neskor.

Vsimnime si este, 7e plati p; < j. Ak je totiz 1 < j < g, tak p; = 0 a nerovnost plati trividlne
a ak j > g, tak sa prvok v; musel do postupnosti V' dostat pri spracovavani nejakého prvku v;,
ktory v tom Case uz musel v postupnosti V' byf, t.j. i < j. V tomto pripade viak p; =i, a tak
dostavame nasu nerovnost p; < j.

Vratme sa v8ak k postupnosti V: Z jej konStrukcie vyplyva, 7e je prostd. Nie je teda moZné,
aby bola predlzovand do nekone¢na, kedze V' C UP_;S; a mnoziny S; st konetné. Nemoznost
pokracovat teda nastane v jednom z tychto pripadov:

(1) Prvky postupnosti V' sa vycerpali spracovanim posledného prvku postupnosti.
2) Pri spracovavani prvku v; sa zistilo, 7e neexistuje mnozina S;, ktorej by bol reprezentan-
] J ] by
tom.

V grafovej interpretécii znaci pripad (1), Ze les bol uplne skonstruovany a pripad (2), Ze nie
sme schopni identifikovat priamych nasledovnikov nejakého vrchola.

V pripade (1) systém roznych reprezentantov neexistuje. DokdZeme to nasledovne: Nech
mé postupnost V' prave r prvkov, t.j. V = {vi,ve,...,v,}. Kedze vietky prvky postupnosti
V' boli spracované, tak kazdy prvok tejto postupnosti je reprezentanotom nejakej mnoziny S;.
7 konstrukcie ale zaroven vyplyva, ze ak bol v i-tom kroku spracovany prvok v; ako reprezentant,
mnoziny Sj, tak S; C V' (v8etky prvky mnoziny S;, ktoré postupnost V' eSte neobsahovala, sme

totiz dopisali na jej koniec). Ak st teda S;,, Si,, ..., S;. postupne mnoZziny, ktorych reprezentanti
s v1,v2,...,0,, tak S;; C V pre véetky j = 1,2,...,7. Kedze Sy = {vi,v2,...,9,}, ¢ <ra
mnoZina Sy, zatial reprezentanta nem@, tak S;,, Si,, - - ., Si,, Sk je +1 mnoZin (s rdéznymi indexami),

pre ktoré plati:

T
SkU(U Sij) CV ={vi,v9,..., v}
Jj=1
Mame teda r + 1 mnozin, ktoré maja v zjednoteni nanajvys r prvkov. Podla Hallovej vety potom
systém rozliénych reprezentantov pre mnoziny Si,Ss, ..., S, neexistuje.
V pripade (2) urobime reorganizaciu doterajsich reprezentantov ai,as,...,ar_1 tak, aby bolo
moZné vybraf aj reprezenatanta pre mnozinu Sy. Nech teda prvky vy, vs, ..., vy, -1 postupnosti V

uz holi spracované a nech sa pri spracovavani prvku v,, zisti, Ze neexistuje mnozina S;, ktorej by
bol nateraz reprezentantom. Zavedme funkciu

f(0)=m
FG+1)=psi), j=>0

a uvazujme postupnost {f(i)};>o. UZ vieme, ze p; < j pre j > 1. To v konefnom ddsledku
znadi, ze postupnost {f (i)} je klesajtica. Je to vSak postupnost prirodzenych €isel, a tak musi byt
konecna. Ide teda o (t 4 1)-prvkovii postupnost m = f(0) > f(1) > f(2) > --- > f(t) =0 (kym
totiz nedosiahneme ¢islo 0, mozno stale postupnost predlzovat).

V grafovej interpretdcii je vyznam postipnosti {f(i)} nasledovny: postupnost vy(; je cesta C
od vrchola v,, do korena stromu, v ktorom sa vrchol v,, nachadza.

Sme teraz pripraveni reorganizovat vyber reprezentantov a;: zvolime prvok vy ako repre-
zentanta mnoziny Sy, (i = 1,2,...,1) a ostatnych reprezentantov nechdme nepozmenenych. Z

konstrukcie je pritom zrejmé, ze vy € S a ze novourceni reprezentanti si navzajom rozni.

Ny (i)
Povedané v terminoch tedrie grafov: reprezentantov sme posunuli o jedno pozdii cesty C.

Vsimnime si, 7e kedze f(t) = 0, tak t < g a ny4) = k. Podarilo sa ndm teda vhodnou tipravou
vyberu doterajsich reprezentantov ndjst aj reprezentanta a, , = ay mnoziny Sj.

Cely uvedeny postup teraz opakujeme, az kym nakoniec nendjdeme aj reprezentanta a, pre
mnozinu S,, resp. v tomto procese nezistime, Ze systém roznych reprezentantov pre mnoziny
51,89, ...,S, neexistuje.

Uvedeny algoritmus je zapisany na obrazku 11.
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Priklad 2.57. Algoritmus si teraz demonstrujeme na priklade: Nech S; = {1,4,5}, S = {3,4, 5},
Sz = {1/4}7 Sy = {1/2} a Ss = {175}

Riesenie: Zvolme najprv ndhodne a1 = 5, ay = 4, a3 = 1 a ay = 2. V tejto situdcii uz nemozno
zvolit as € Sy tak, aby boli prvky a; od seba rbézne. Postupnosti V', N a P skon§truované
algoritmom st v tabulke 2. V nasom pripade je ¢ = 2. Prvok vy = 3 zatial nie je reprezentantom

" , . Spracovanie prvku v, .
Popis Pm;ov(ilne grvky Sprl?icovame (nepribudol #aden (Srﬁ)argtc;vailea%r\(/;()l; V3
mnoziny Ss prvku vy novy prvok) prip
v; 1,5 4 3
n; 9,9 3 2
Di 0,0 1 3

TABULKA 2. Postupnosti V = {v;}, N = {n;} a P = {p;}.

ziadnej mnoZiny, nastal teda pripad (2) pre m = 4. V8imnime si teraz ako sa budi reorganizovat
reprezentanti:
e Prvok vy = 3 sa stane reprezentantom mnoziny S,, = Sa.
e Pretoze py = 3, dal8im reorganizovanym prvkom bude prvok vs = 4. Stane reprezentantom
mnoziny Sp, = Ss.
e Pretoze p3 = 1, dal§im reorganizovanym prvkom bude prvok v; = 1. Stane sa reprezen-
tantom mnoziny S,,, = Ss.
Cislo py = 0, tak’e reorganizicia je ukoncend. Ostatni reprezentanti (t.j. prvok 5 pre mnozinu S,
a 2 pre Sy) zostan zachovani. Dostidvame teda reprezentantov: a1 = 5, as = 3, a3 = 4, ag = 2,
a5 = 1.

Konigova veta

Teraz uvedieme jednu z aplikacii Hallovej vety: Maticu budeme nazyvat bindrnou, ak jej prvky
mdzu nadobtidat len dve hodnoty: 0 alebo 1. Linkou matice nazveme jej lubovolny riadok alebo
stipec. Hovorime, Ze v bindrnej matici stibor liniek pokryva vsetky jednotkové prvky, ak kazda
jednotka patri aspon do jednej linky stiboru. Dve jednotky matice A nazyvame nezdvislé, ak
patria roznym riadkom a réznym stipcom.

Veta 2.58 (Konigova). V Tubovolnej bindrnej matici je najvacsi pocet po dvoch nezavislych
jednotkovych prvkov rovny najmensiemu poctu liniek, pokryvajtcich vsetky jednotky.

Skor ako dokdzeme vetu 2.58, budeme ju ilustrovat na bindrnej matici A. VSetky jednotkové
prvky matice A st pokryté druhym a $tvrtym riadkom a tretim a Siestym stipcom, no subory
7 troch liniek, pokryvajtce vetky jednotky v matici A nie st. Dalej st v matici A viditelné styri
nezdvislé jednotkové prvky, pricom v A nie je pat nezdvislych jednotiek.

+ +

0 0 [1] o0 o0
A== 1] 1 0o 10 1
0 0 1 0 0 [1]

- 0 [1] 1 01 o0
0 0 1 00 1

Dokaz Konigovej vety: Najprv uvedieme niektoré oznacenia.
e A= (a;;) bindrna matica rozmeru n X t;
e m — minimdlny pocet liniek, obsahujtcich v8etky jednotkové prvky matice A (minimélne
pokrytie linkami);
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VSTUP: Kone¢né mnoziny Sy, Ss,..., S,
V1 STUP: Systém roznych reprezentantov pre ne alebo informacia, 7e hladany systém neexistuje.

program SystemRoznychReprezentantov;

begin
for k:=1ton do {volba reprezentanta ay € S}
begin
Zvolme reprezentanta a[k] € S Tubovolne tak, aby bol rézny od vSetkych a[i] pre
i < k, ak je to mozné. Ak to nie je mozné, tak
begin
q:= |Skl;
Nech {v[1],v[2],...,v[q]} st prvky mnoZiny Si;
Nech n[1] =n[2] =--- =nlq¢] = k;
Nech p[1] = p[2] = --- = plg] = 0;
ri=gq; {r  pocet prvkov v postupnosti {v;}}
m:=1; {m  index spracovivaného prvku postupnosti {v;}}
while (m < ¢q) and (existuje také j, Ze v[m] = a[j]) do
begin
wim S, \ {ol1),of2], ., ofr ]}
Nech v[r +1],...,v[r + u] st prvky mnoziny S; \ {v[1],v[2],...,v[r]};
Nech njr+ 1] =--- =n[r +u] = j;
Nech plr + 1] =--- = p[r + u] = m;
ri=r 4+ u;
m:=m + 1;
end;
if m > r then {postupnost {v;} sa vyferpala  pripad (1)}
halt with failure  systém réznych reprezentantov neexistuje;
else {prislusné j neexistuje — pripad (2)}
begin
1:=m,;
while ¢ > 0 do
begin
alnli]) = vl
i:=plil;
end;
end;
end;
end;
halt with success — systém roznych reprezentantov je a[l], ..., a[n];
end;

bl

OBR. 11. Algoritmus na ndjdenie systému réznych reperezentantov

e m =1+ s, kde s je pocet stipcov a r pocet riadkov, zicastiujicich sa na minimalnom
pokryti matice A;

e M je maximdlny pocet jednotiek, z ktorych ziadne dve nelezia na jednej a tej istej linke: ak
oznacime nejakym spdsobom tieto jednotky, potom kazda z nich bude jedinym oznacenym
prvkom v tom riadku a stipci, na prieniku ktorych sa nachadza.

Potrebujeme dokazat, ze m = M. Budeme dokazovat dve tvrdenia: m > M a M > m.
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(m > M): Cez kazdy oznaleny vrchol (jednotku) prechidzaji bud pokryvajici riadok, bud
pokryvajuci stipec, alebo dve linky (riadok a stipec) sucasne. Pretoze vSak Ziadna linka nemoze
stcasne pokryt dve oznacené jednotky, tak m > M.

(M > m): Na dokaz druhej nerovnosti pouzijeme Hallovu vetu. Nech sa minimdlne pokrytie
sklada z r riadkov a s q‘rlpcov Mozeme zamenit riadky a q‘rlp(’e takym qpoqobom aby uvedené
linky boli prvymi r riadkami a prvymi s stlpcaml Toto zamenenie riadkov a stlpcov nemd vplyv
na hodnoty M a m.

Prvym r riadkom bijektivne priradime mnoziny Si, S, ..., S, (z Hallovej vety) takym spdso-
bom, ze S;, (i = 1,2,...,r) sa sklad4 z tych hodn6t j, pre ktoré a;; =1 A j > s. Inymi slovami
S; je mnozina Cisel stipcov (vynechdvame prvych s stipcov)7 na ktorych prieniku s i-tym riadkom
stoja jednotky.

Tvrdime, ze mnoziny S1,Ss,...,S; vyhovuji podmienke Hallovej vety, lebo ak by k z tychto
mnoZin obsahovalo menej ako k (napr. v < k) prvkov, tak zodpovedajicich k pokryvajtcich riadkov
by bolo mozné zamenit pokryvajicimi stipcami a ako vysledok by sme dostali nové pokrytie,
obsahujiice menej liniek ako to predtym. No to nie je mozné v dosledku predpokladu minimality
m.

Z toho vyplyva, 7ze mnoziny Sy, Ss, ..., S, musia nutne splfiat podmienku Hallovej vety, a preto
musia mat r roznych reprezentantov, t.j. takych r jednotiek v prvych r riadkoch a v poslednych
t—s stipcoch, 7e ziadne dve z nich nelezia na jednej a tej istej linke.

Ak uvazujeme analogicky, mozeme vybrat s jednotiek v prvych s stipcoch a v poslednych n —r
riadkoch takych, 7e 7iadne dve z nich nelezia na jednej a tej istej linke.

Tym sme nasli m = r + s nezavislych jednotiek. Maximélny pocet M nezdvislych jednotiek
nemodze byt mensi ako ndjdené mnoZstvo m nezavislych jednotiek. Z toho vyplyva, ze M > m
a veta je dokazana. 0O

Ku kazdej bindrnej matici mozeme priradit bipartitng graf, ¢o je taky obycajny graf G =
= (V,E), vktorom V. = VUV, ViNVy =0, Vi,Va £ 0 (V1, V5 teda tvoria rozklad mnoZiny
V), pricom E C {{u,v} | u € Vi A v € V5}. Bindrnej matici priradime bipartitny graf na-
sledovne: Za mnozinu V; zvolime riadky a za mnozinu V5 stipce matice. Mnozina hran bude
E = {{i,j}, pre ktoré plati a;; = 1}. Ak uvazujeme nezavislé jednotky v bindrnej matici, tak
v bipartitnom grafe im zodpovedaja nezdvislé hrany, t.j. také hrany, ktoré nemaju spolo¢ny vr-
chol. Hovorime, Ze vrchol v pokryva hranu e, ak plati, ze v € e.

V jazyku tedrie grafov potom mozno Konigovu vetu sformulovat takto:

Veta 2.59 (Konigova). Minimdlny pocet vrcholov, pokryvajtcich vSetky hrany bipartitného gra-
fu, je rovny maximalnemu poc¢tu nezavislych hran.

Iné systémy reprezentantov mnozin

I'Jlohy o rozklade mnozin ved k pojmu systému spolo¢nych reprezentantov mnozin. Nech st
dané dva rozne rozklady jednej a tej iste] mnoziny S na n neprazdnych Casti:

S=AUAU---UA, S=BUByU---UB,

Ak existuje podmnozina O mnoziny S, ktord ma n prvkov, takd, Ze jej prienik s Tubovolnou
mnozinou, ktord patri k rozkladu, je neprazdny, t.j. ONA4; #0, ONB; # 0 (i = 1,2,...n),
tak mnozinu O nazyvame systémom spoloénijch reprezentantov danych rozkladov. Pritom kazdy
7 prienikov, ako vidno, sa sklad4 z prave jedného prvku. Ak sa ndm podari poparit (ak je to treba)
mnoziny prvého a druhého rozkladu tak, Ze zodpovedajice mnoziny maji prave jeden spolocny
prvok, tak ho m6Zeme pokladat aj za ich spolo¢ného reprezentanta.

Ulohu o spolo¢nych reprezentantoch mozno chéapat aj irSie v tom zmysle, Ze nie je nutné, aby
sa hladali podmienky na existenciu len jedného spolo¢ného prvku. Mozno brat do ivahy rézne pod-
mienky na existenciu daného poctu spolo¢nych prvkov, vopred zadantt mnozinu spolo¢nych prvkov
a podobne. Napriklad, ak je treba, aby kazdy prvok s; € S vystupoval v systéme spolo¢nych
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reprezentantov aspon ki;-krat a najviac ko;-krét (0 < ky; < koj), tak taky systém nazyvame sys-
témom ohraniceného poctu reprezentantov. Je zrejmé, ze tloha o systéme roznych reprezentantov,
je $pecidlnym pripadom takej Glohy pre ki; = 0 a ko; = 1. Iny Specidlny pripad je, ked

b 1, prei=1,2,...,1

i = .

' 0, prei=1l+1,14+2,....m

Nazyva sa tloha o existencii systému réznych reprezentantov, obsahujiceho danii mnozinu margi-
ndlnych prvkov s, sa,...,s;.

Kritérium pre existenciu alebo neexistenciu systému spolo¢nych reprezentantov je blizke kri-
tériu pre systém roznych reprezentantov.

k21',:17 prei:l,?,...,m/

Veta 2.60. Dva rozklady mnoziny
S=A4, U4 U---UA,=BUByU---UB,

maja systém spolo¢nych reprezentantov prave vtedy, ak zjednotenie lubovolnych m z mnozin A;
ma neprazdny prienik s aspoit m mnozinami B;, kde m =1,2,...,n.

Dokaz: Nutnd podmienka, tak, ako aj v pripade systému réznych reprezentantov, je zrejma. Po-
stacujicu podmienku dokdzeme tak, Ze ju jednoducho prevedieme na vetu o systéme réznych
reprezentantov.

Skutocne, pre kazdé B; (i = 1,2,...,n) vyberieme mnozinu S; vSetkych indexov j € K =
={1,2,...,n} takych, ze A; N B; # (). Dostavame n-vyber M = (51, Ss,...,S,) podmnozin mno-
7iny K. Pre M existuje systém réznych reprezentantov (sformulované kritérium existencie systému
spolo¢nych reprezentantov je kritériom existencie systému réznych reprezentantov pre M). Vyber
roznych reprezentantov dava pre kazdé B; svoje A;, priCom ich prienik je neprazdny. V tomto
prieniku mézeme vybrat aspon jeden prvok, spolo¢ny pre A; a B;, t.j. ich spolo¢ného reprezen-
tanta. O

Poznatky o reprezentantoch mnozin a o systémoch reprezentantov nachadzaji v matematike
mnoho rozmanitych aplikicii, napriklad s to reprezentanti tried ekvivalencii. Metdda systémov
reprezentantov sa pouziva aj v teorii sieti pri skiimani pripustnosti tokov ako aj v teérii latinskych
Stvorcov.
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