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1 Uvod

Stadium informatiky si vyzaduje istd zbehlost pri rieSeni enumeraénych a kombinato-
rickych dloh, schopnost’ riesit’ rekurentné vzt'ahy a konstruovat asymptotické odhady.
Kombinatorika sa na FMFI UK prednasa v rozlicnych kurzoch; na informatike to je mi-
nimélne diskrétna matematika I (v suéasnosti Uvod do kombinatoriky a teérie grafov),
kombinatoricka analyza I a II. Skiisenosti zo skuSok z kombinatorickej analyzy ukazali,
Ze Studenti pomerne dobre chapu tedriu, ale chybaju im praktické skusenosti pri rie-
Seni kombinatorickych tloh. ZloZitost tychto tloh, velky pocet Studentov a slaba ¢asova
dotacia cviceni neumoznuje ziskat’ potrebné skusenosti na cviceniach, ale vyzaduje si sa-
mostatnu pracu. To vSak naraza na nedostatok primerane naro¢nych kombinatorickych
uloh. Tento dokument predstavuje zberku riesenych prikladov z kombinatorickej ana-
lyzy. Vznikla ¢iastocne na zaklade rozlicnych literalnych zdrojov a ¢iastocne z prikladov,
ktoré sme vymyslali na skisky. Tématicky je ¢lenena podobne ako Knuthova Concrete
mathematics [1]; na rieSenie rekurentnych vztahov, sim, sim s celymi ¢astami, kom-
binatorickych vztahov, vypocty sim obsahujicich harmonické ¢isla, Fibonacciho ¢isla,
na ulohy na generujice funkcie a na vypocty asymptotickych odhadov. Tento dokument
predstavuje pracovnu verziu, ktora je neustale dopiﬁané novymi prikladmi. Preto nie je
organizovana ako tradi¢né zbierky (teéria, vzorové riesenie, priklady, rieSenia). Casom
ju mozno do tejto podoby upravime. Citatelovi odporucame, aby sa najprv pokusil riesit
zadané dlohy a az potom sa pozrel na riesenia.

V Bratislave, 13. maja 2012

Autori

(C) Olejar D., Stanek M. 2012



2 Elementarne kone¢né sumy
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4 Sumy s celymi ¢ast’ami
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5 Fibonacciho c¢isla
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6 Kombinatorické sumy
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7 Generujuce funkcie

Tata kapitola obsahuje priklady na vytvarajice funkcie. Je rozdelena na casti venované
odvodzovaniu vytvarajucich funkecii, vypo¢tu kombinatorickych sim a dokazovaniu kom-
binatorickych identit pomocou vytvarajicich funkeii. (Tematicky do tejto oblasti patri aj
rieSenie rekurentnych vzt'ahov, ale vzhfadom na délezitost’ tejto problematiky sme jej
venovali samostatnd kapitolu.) Obsahuje niektoré dlohy, ktoré boli riesené v predcha-
dzajucich ¢astiach pomocou inych metéd; pretoze jej cielom nie je rieSenie konkrétnych
uloh, ale demonstracia metod.

7.1 Konstrukcia generujucich funkcii pre postupnosti ¢isel
Zapis (zD)f(z) oznacuje funkciu, ktord dostaneme vynasobenim derivace funkcie f(z)
premennou z; zapis (zD*)f(z) oznaéuje k nasobné pouzitie operatora zD (zderivuj, vysle-

dok vynasob z, zderivuj, vysledok vynasob z,... ).

N4jdite vytvarajice funkcie pre nasledujice postupnosti
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1

E((D?Hl — DY) =Fg (@1D2)% = (—1)% Of — @§ = V5 - Fa.
Fa + (_1 )amea -z

F =
mya(2) 1— (Fm+2Fn_1)z + (—=1)mz2

7.2 Vypocty sim pomocou generujucich funkcii

Budeme vyuzivat dve zdkladné a jednu pokrocilejsiu techniku.

1. Nech je danad suma S, = ) |, ax. Ak pozndme generujicu funkciu A(x) pre po-
stupnost {an}n, tak S, = [x"]A(x)/(1 —x).

2. Nech je dand suma S, = Y | ;axb,_«.Ak pozname generujuce funkcie A(x) pre
postupnost’ {a,}n a B(x) pre postupnost’ {b,},tak S, = [x"]A(x)B(x). (VSimnite si, Ze
prva metéda je len $pecidlnym pripadom druhej, b, =1,ne NaB(x) =1/(1 =x).

3. Snake oil method (Wilf, [2])
e Nech je dand suma S,, = ) |, ax. Predpokladame, Ze existuje oby¢ajné vytva-
rajuca funkcia S(x) < {Sn}n; S(x) = ), Snx™

e Vynéasobime obe strany rovnosti vyrazom x™ a sc¢itame cez vSetky n. Na l'avej
strane rovnosti mame vytvarajicu funkciu S(x) a na pravej dvojitd sumu.

e Zmenime poradie sumadcie a sumujeme najprv cez n a potom cez k.

e Urcime (ak sa podari) koeficient pri ¢lene x™ a uré¢ime S,.

(GF8|Sn =T,

GF11]S, = 31" ,(—1)*k.

—x 1 1 1 [ S S B O

R e i vl T e A 1| I R () Rl R R
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GF12]S, = Y1 , k2.
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- in K2V R =2" ) (n—k)27k
k=0

k=0

S L G B S — =z“-[x“](( S 21>=

(T—x)2 1-3x 1-x)2 T—x 1-Ix

2% ) =22 2 =2 (n—1)+2.

GF13]S, = 31" (—1)k2*.

Sno= D) (n=K)(=2"*=(=2)" ) (n—k)(-2)27*
k=0 k=0
T L e S T T R W
R ey s M(su—xv o1 —x) 9(1+;x)>
- (_9”“ ((3n+1)-2“+‘—z.(—1)“).
[GF14]S, = Y 1 Fre
X 1T xA+] 1 -
Sn =[x 1T—x—%x% 1—x [X]1—x—x2 1— =Fn2—1
Sn =Y p_o(—T)F.
Sno= D (1" Fua= (=" ) (—1) FFax
k=0 k=0
S, = (=) —= LI 0 T ek SN NS 1V

n

>

k=0

T—x—x2 1+x T—x—%x¢ 1—x

=k =0 (T ) = (e~ e e

T—x—x% (1—x —x—x 1—-x (1—=x%)2

2Fhii+Fi—m—2=F3—mn—2.

GF17]S, = Y I, kFy.

1. rieSenie (zmena poradia sumacie; k <+ n — k):

Sn

n

= Z(n k =n- ZFk_Zan Kk=T" ZFk—Z Tl—k)Fk:
k=0

k=0
= nFy—n— Fn+3+n+2—nFn+2—Fn+3—|—2.

17



2. rieSenie

1T —x—x2
k>0
x + %3
xDF(x) = O—x—xI Zka X & k- Fiheso;
k>0
1 x 4+ x3 =t
xDF(x) - T = 0 x —x2(0 —x) (:){Zk']:k}”zo
k=0

x 4 x3 2x + 1 2x+3 2

Sno= KX

(1T—x—x%)2(1 —x) = "] [(1 —x—xz)2_1—x—x2+1—x )

3n2—2n+5 3n? 2
s= PR - g

n>0 n>0 ! n>0 n>0
N 3n?.z" 2n.-z" 5-z" 2 .
Siz) = ) — - — +) —— ={3(zD)* — 2(zD) + 5}¢* =
n>0 n>0 n>0

3(z% + z)e* — 2ze + 5¢~.
S = S(1)=9%.

Zk Zn k)-Fa+1- Zsz— "G(z)
k=0 k=0

0

k=l
z z 1
G = . . =
() < 1—22 1—32—|—zz)+n (1—3z+2%) 1—2)

B —2Z—nZ+nz 1 n4l zn+] N n
(1 =3z+22)-(1—2)2 (1—2)2 11—z 1-=3z42z2 1-3z+22
Sn = (n+])_(n+])_(n+])F2n+nF2n+2 :nF2ﬂ+1 _FZTL'

n
Sno= ) Fa
k=0

Sno = [2]

2 N T RS B
(1—4z—22)(1—2) ~ 2 |1—4z—22 1—z| 2

GF21|N4jdite o.g.f. postupnosti {3n? — 2n + 7},>0.

B 2 T 2tz z 7
F(z) = [3(7,13) )—z(zD)+7} =3 ol A Ty

18



|GF22]

1—2z

Su = Y K=l (@D = A
k=0

nn+1)2n+1)

|GF23]

k=0 k=0
1 (1 _|_Z)n+1 : 2n+1 —1
1 n = — .
Jo( +z)tde n+1 o n+1"’
Tn n 1 n k+1 n
ny x n k n\ z 1 1
dz = dz = — -
LZ<‘<>Z “ Z(k>LZ ‘ Z<k>k+1|° Zk+1<k
k=0 k=0 k=0 k=0
8 Rekurentné vzt'ahy
Ri]
21171 omn
a =7, 2ap,=map_1+2n! n>0; sn:?, Tn:—'
Tw = Tha+ Zn, n> O, To=ay=7

Tn —_ T0+sz:7+2n+1_2:2n+1+5

k=1
5n!
an = Zn!—l—zin
R2|
an=2an_1—aroo+ (=" n>1, aq=a =1
Uni2 —2an41 +ap = (=1)"  Afz) = Z axz"
X
Alz)—1— Alz)—1 1
(Z)2 z_, (z) CAZ) = 122
z z 14z
1 12 14 1/4
A = =
S s T el s A s B
. R
T2 4
R3]
an =20 1 —an2+ (=% n>1 a =0 a =1

19



B =02t 2= a0-2 tan+o
3 -1nn
Rieste rekurentny vzt'ah
an=2an1—an2+(=N"+n n>1 a=1,a, =0
1 z 2z
A = — =
e s T s A G gl e
1/4 1/2 1/4 2
- . / 2 T . + i - 2
14z (1—2) 1—z (1—2) (1—2)
w (_”n+ 1 +1+ n+2 _zn_2n3+6n2—14n+3~(—1)“+9
" T T4 T 2mtn) T4 3 - 12 '
a = a=1
an = ano1—2ap 2+ 14+ (=1)"+n n>1
1 11 1 4 11
Alz) = — _ _
(2) 2(1+2z) 27(1+22z2) 3(1_Z)3+9(1_Z)2 54 (1 —2z2)
=™ 11 N 1/m+2 4 11
= S G B 1% L1 S i _ L
="~ 1 302 )t -5
a = a=1
an = 2ap1+3apn2+n n>1
—1 1 11 13
A2l =30 =27 "ai—2 T Tei+2) T Te(1 =32
T T, 13,
ay = ],CI]:Z
Any2 = 3an+]—2an+3 n>0
4 3
AZ) =13, =
an=4-2"—-3n—3.
aQp = 1,(1123
ant2 = 3any1—2a,+m n>0

20



1—-2z42242° 3 1 22 +z—1
Az) = 3 = — + 3
(1—2)(1-22) 1-2z (1—2) (1—2)

2 g (M n+1 _n—i—Z_'n_nz—i—n_
N ) Y ) ) EE

Urcte zlozitost’ obvodu pocitajiceho prenos pre n-ty rad v séitacke so zrychlenym
prenosom, ked zloZitost’ je

1. pocet literalov vo formule

2. pocet operatorov vo formule vyjadrujicej logickd funkciu daného obvodu.

Formula pre prenos:

To = aobo
Th = Qnbn+anth g+ bprag,
t.j. zlozitost’ bude
SO 2

Sn = 2sp1+4,

resp.
ty = 1
th = 2tn1+5.
Snil = 2sp+4
S(z)—2 _ 2800+ 4
z 1—z
—4 6
S = Tt
sn = [Z"S(z)=—4+6-2".
Analogicky

th=-5+6-2M
Rieste rekurentny vzt'ah

an=2an1—an2+2(-1" n>1, a=1,a;=3
1 3 5
Alz) = -
@ = g a2 20-2
1 1
an = E(—1)“—|—3n+§

21



Rieste rekurentny vzt'ah

6an =5an_1—an2+2" n>1, aq=1a =1

822 —11z+6 43 N -3/5 +4/15
(z—2)(z—3)1—-22) 1—2z/2 1—-2z/3 1-22

4 (1\™ 3 (1\" 4 _,
a“_3'(z) ‘5‘<3) 5

Rieste rekurentny vzt'ah

Alz) =

an = —2Ndan_1 :Z (LL)akank n>1, a=1a =1
k

n
an = —2nap_1+ n akan x+(Mm=1) |x z
- k n!
z" z" n z" z"
an7 = —2nan_q Y % <k> Aln-k - + (m= ])H I;
Zn Zn= —k Zn
%anm = —22%%1 ZZakk,an K o —i—%(n:])n!
Alz) = —2zZA(2)+A(z)? +
0 = Azl —(2z+1MAz)+z
A (2z+1) £ V422 +1
Alz) = >
A 22+ 1)+ V422 + 1
@ = AO)=1=A[z) = ZFIL
A 1 1
Alz) = z+5+5x(1 +42%)1/2
a [ } Alz)
1 n=0,1,
a,=+<0 n=2m+1, m>0;
(2m )2’421“ (]T{Iz) n=2m, m>1I.

Rieste rekurentny vzt'ah

n
An+1 = Z Fran; ao=1,

22



kde Fy je k-te Fibonacciho ¢islo. Rekurentny vztah transformujeme na vztah medzi vy-

tvarajucimi funkciami A(z), F(z) a vyjadrime a,

A(z) — ag z

= Fz) - Alz) = — - Alz);
z 1—z—2?
Z4+z—1 1 1/3 1/6
A = _— = — .
@ = a3 TRt
L
an = 7 n= 3 c .

Rieste rekurentny vzt'ah

n
An+1 :Z(n_k)ak; a0:]>
k=0

A(z)—1 z
= A
z (1—2)? (2)
2
z
A(z) + 25
1 n =0,
an = O n= ]
22 n>2.

Rieste rekurentny vzt'ah

n
Ant :Zkak, n>0 a=a =1
k=0

an = m—Tapr+Mm—-2)an2+ - +a,
Qn1 = +Mm—2)an2+-+a,
n—an1 = (Mm—1)an g
an = mndan_1; n>3.
1T n=0,1
an:{gl n>2.
Rieste rekurentny vztah
n—1
an = ag, n>0; ay=1.
k=0
an = ani+an2+---+a, n>0,
n1 = +ano+---+a, n>T,
an —Qn_] = Qn_q
an = 2anp_1; n>1

23
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o = 1 n=0
")2v nso
Riesenie pomocou generujucich funkcii
n
An41 Zak
k=0
Az) —1 1 Al2)
z 1—z
1+z z
Alz) 1~z it
o = 1 n=20
" 2v nso.
Rieste rekurentny vzt'ah
an = 2an1—apo+n+ (=" n>1, a=1,a;=-1
3(1—3z) 1 222 — 73
A —
® = it T O e
3 3 1 N n+1 n® n? 13n
G = gty )+2< 3 >—6+z‘6+

Rieste rekurentny vztah

2an, =3an 1 —an2+m—1) n>1, a=1aq =-2
20012 = 3ani1—an+(n+1)
2« Alz) —221 + 2z _ 3A(z)z—1 A+ - _IZ)Z
_ 2
Alz) = 2—237,7;2 (2—37.—1—27.2)(1—z)2;

an, =

Rieste rekurentny vztah

1/2%sn?—3/2xn—3+4%2"

an=2ap 1—an2+Firg n>1, a=1a=3
Qny2 = 2an4 — an + Fagg
Alz)—1-3 Az) —1 1
—(Z) 5 L X 7&) —AlZ)+——
z z 1—z—2z
14z z
A = F
(2) G—z2 "=z <T@
an = Fpz+n—1.

24
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Rieste rekurentny vzt'ah

k=0
z z 1
A - - .
@ = g APt
1—2z
Alz) 1—-3z+22
an = P —2Fn =Fng.

Rieste rekurentny vzt'ah

n

an:Z(n—k)-ak—l—1; ap=0,a;=1.

k=0
z z
Alz) = — % A
G = o A& gz
1—2z
Alz) = 1—3z+4 22
an = F2n+2 — Fon = Fon.

Rieste rekurentny vzt'ah

an:Zanfk'akfﬂ a=In#0,ay,=0
k

n
G = ) Gng- G
k=0
Alz)—1 = zA(z)?
1—v1—4z

w - 2n o 1
T n n+1’
Rieste rekurentny vzt'ah

a1 =2-) i (D% a=1

A(Z)—]_ . 1 14z
z 1+z N




ahn=Mm=0)+2(n>1).

Rieste rekurentny vzt'ah

Qns2 = 3an41 —2an + 14, a=a;=1.
1 z2 23
A —
() 1z 0222 " 0—230-22)
2 1

0—2z) (1—z9
a, = 2n+1_<n—21_2>.

Rieste rekurentny vzt'ah

ant2 = 4an41 — 24an +2n + 1, ap=1, a; =5.

2 n 1 B 22 2 B 1
1—3z 1—z (1—2) (1-=22) (1-—2z)3

_ ,n__n
apb = 2-3 1 <2>

Rieste rekurentny vzt'ah

Alz) =

anty1 = bp+an, n>0;
bt = an1+bp,n>0;, ay=0,by=1.
A(z)/z = B(z) +A(z);
Alz) = ——Blz);
1—2z
B(z) —1 A
() _ (Z)JFB(Z))
z z
B(z) — 1 n A(z);
1—z 1—2z
1—2z z

B(z) = ——— Alz) = —o—;

(2) 1—3z+2% (2) 1—3z+ 2%

an = Fan, by =Fong1.

Rieste rekurentny vzt'ah
Un43 = Qny2 + Angg — an + 1+ (=17, a=0,a=1a =1
22—z 4z -3 1 1423 — 1922 + 8z + 1
Alz) = 7 5 = 5 + + 7}
(1—2)*(1+2z) 16(1 + z) 8(1+z) 16(1 —z)
(=~ 3 n 1 n n—+1 n+42 n+3
an = 3 e (—1M) (n—i—])—i—]6 143 19 3 +38 3 + 3 .

26



Rieste rekurentny vzt'ah

Unt2 = 3an41 —2an + (=)™ - 1, ap=1, ag=-1.
1—2z—722—523 13 19 1 11
A(Z) = 3 = — + 7 —
(T+22(1—2)(1—-22) 4(1—2z) 9(1—2z)  6(1+2z)?2 36(1+2z)
1319 (= 11 N
an = - ?-2+ c (n+1) 3—6-( nm.
Rieste rekurentny vzt'ah
Unt2 = 3Any1 — 2an + (1) -, a=—1,a =1
Alz) — 1+62+922+32 ~ -19 53 R N |
(1 +22(1—2)(1-22) 4(1—2z) 9(1—-22) 6(1+z)?2 36(1+2)
19053 (=1 11 N
an = 4+92+ c (m+1) 36(1).

Rieste rekurentny vzt'ah

n
Ani2 = an + ) @ a=1 a =2

k=0
1-222-2° 3 5 5 1,
AZ) = 45, Tsi 2 3 Ta* ¥
3.5 5 1
an = §2 +§-(n—0)+1'(n—1)+2'(n—2)

9 Asymptotické odhady

Odhadnite (*™) s presnostou O(n2).

(T+ 7= +0m2) 22" (14 5= +0(n2)

<2n> (2n)! VA (&

n

(P2 2 (2)™ (14 g +0(2)" VA (14 e+ O(n2)



n 2 1 _
() = 7 (- g rom?)

Odhadnite (**'") s presnostou O(n2).
m+1\  2n+1) (m\2n+1
n onln+1)! \n /) n+1
4+l 2(0+45) 1 1 5
A _2<1+2n><]_n>(1+0(n)
2n+1) 22! 5
- -
< n > \/T[Tl< 8n+o( >

Odhadnite s presnostou O(n~3) podiel

1 -2
2(1—2n+0(n ))

T‘LK
nk’

ak k je konstanta.

k k=1 . k—1 6
n* j 1 ] .. k%
ne = (‘—n):“n'z)*nz 2 U+O<n3)’
j=0 j=0 0<igj<k
k—1 K
j = <2>; 2 Hi= ) U+ ) i+ ) W
j=0 0<i,j<k 0<i,<j<k 0<j<i<k 0<j=i<k
Y i - Tk kk=D@k—1] 3K —10K> + 9k* — 2k
L 9= 2|\ 6 - 2
0<i,<j<k
nt (K l+3k4—10k3+9k2—2k 1oL
nk 2) n 24 n? nd )’

Zostrojte asymptoticky odhad sumy Y, -, 5

Vyuzijeme (aj v d'alsich dlohéch) obyc¢ajnu generujicu funkciu
| k k
)= T—ax ; ax

ktora ma polomer konvergencie 1/a. Aplikujeme na A(x) operator xD (zderivuj a vysle-
dok vynasob x):
k
1 — ax)? Z o

Alx

xD(A(x)) =
dosadime a =1/2, x=1< 1/a:

1
D Koy =

k>0

28



Zostrojte asymptoticky odhad sumy } ;- ]2‘—,2( Na A(x) aplikujeme operator (xD)?,
do vysledku dosadime a =1/2, x =1 < 1/a:

ax + a?x? k2

2 _ .
(xD)*(A(x)) = m, x =

Zostrojte asymptoticky odhad sumy

my  my 1S (-8) ‘k?gn_akl—k K
() - ) AIEED ey s o)
20 = ol () = (R) o) = (7)o )

1 -3

L(0) - 2(0)- 2, (0 5 ()

0<k<3lIgn
3 k2 -9 _
0<k<3lIgn
1 k 1 _
+R Z ﬁ - R‘l—O(TL 3).
0<k<3lIgn
2 k! 2
on?). 3 5 = 0m™?
0<k<3lIgn

B(2)-(2) fodoon

k=0

Zostrojte asymptoticky odhad sumy

Zostrojte asymptoticky odhad sumy

An n
Z<k> 0<A<1/2, A-neN.

k=0

29



Zostrojte asymptoticky odhad sumy

:
= exp [—Z—I- —+0Mm | =e? (1 + -+ O(n2)>
n n
2n—1
1
(1+3> =e° <1 —8+O(n2)>
n+1 n
[A7]O(n?)
n
Z 1
712
—mn + k
n
1 1 1 nodx 1 1 B, 2x
[ - A e\ _ B n D2 n
an—i—kz Z ik Tz L s B R ]n2+x2|0+2! (n2+x2)2‘0+
k=0 0<k<n
sy, 3 1 -5
O =t e T g T O
[A8]O(n?)
n
Z 1
2 2
—mn —+ 2k

30



2: 1 — z: 1 +.-l—-Jn(b(4_4_B AA;LAAW 8244;1144f|
n2 42k n2+2k2  3n?2 |, n2+2x2  3n? ]nz—l—szo 2! (n? 4 2x 2)20
k=0 0<k<n
1 1
-5 -5
— . arctgy2
+ O(n™) 3 arctgv2 + 773 Oon™)
[A9]O(n?)
n
Z 1
2
—=mn + 2k
n
1 1 1 modx 1 1 B, -2
L _ B n, 2?2 -4
an—i—Zk Z n2—|—2k+n2—|—2n L n2—|—2x+n2+2n 1n2—|—2x|0 2! (n? + 2x)
k=0 0<k<n
+ O(n )=
A10[O(n?)
eHn+1
eHn+] eHn-‘r%H
H, = Inn+ +L—L+O(n—4)- L—l—l+0(n—3)
o Yo T 12 n4+1 n n?
Mt — elnn+y+2]fnfﬁ+0(n*4)+%fﬁ+0(n*3):n eV . e%-e;z:fz IRCICES)
3 9 13
n-e [1+2n+8n2+0(n} [1 5o+ 0 )] 140
3 1
= ev. T —2
e |:Tl—|—2 24n+0(ﬂ )}

Odhadnite s presnostou O(n~3

1 1 1 2k +1
S = Z n£2k+1 n? Z 1+2k+1 _nz Z [1_ n? O~ )}:
0<k<n 0<k<n 0<k<n
n+l (n+1)? 31
= — ! n4) +0(n7) = —+0(n7).
Odhadnite s presnostou O(n—?)
n! 2 /m\n 1 1
(n=2) 1) n(n—])(e) <+12n+288n2+0(n ))
1 1 1 1
V2 /myn 13 313 3
_) = n —~
(n—2) n2 (e) <1+12n+288n2+o(n )>
Odhadnite s presnostou O(n3)
n+a

n+c
)

31
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n+b
kde a,b,c € Z.
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10 Nezaradené

generujuce funkcie pre Fibonacciho cisla

z
Fn & — (1)
z
R @
2z
Bn © o2 ®
3z
i © 727272 @
5z
o & 792 ®
8z
r 6
on 1—18z+ 22 ©)
13z
L g @
21z
o @ a2 ®
34z
o @ 1762 ®
55z
fon € 7930212 (10)
89z
fim & 790, =2 (b
144z
—_— 12
Fon & T30, 2 8
F.. -
Fon & n (13)

T—an-z+ (—1)m- 22
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