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1 Úvod

Štúdium informatiky si vyžaduje istú zbehlost’ pri riešení enumeračných a kombinato-
rických úloh, schopnost’ riešit’ rekurentné vzt’ahy a konštruovat’ asymptotické odhady.
Kombinatorika sa na FMFI UK prednáša v rozličných kurzoch; na informatike to je mi-
nimálne diskrétna matematika I (v súčasnosti Úvod do kombinatoriky a teórie grafov),
kombinatorická analýza I a II. Skúsenosti zo skúšok z kombinatorickej analýzy ukázali,
že študenti pomerne dobre chápu teóriu, ale chýbajú im praktické skúsenosti pri rie-
šení kombinatorických úloh. Zložitost’ týchto úloh, vel’ký počet študentov a slabá časová
dotácia cvičení neumožňuje získat’ potrebné skúsenosti na cvičeniach, ale vyžaduje si sa-
mostatnú prácu. To však naráža na nedostatok primerane náročných kombinatorických
úloh. Tento dokument predstavuje zberku riešených príkladov z kombinatorickej ana-
lýzy. Vznikla čiastočne na základe rozličných literálnych zdrojov a čiastočne z príkladov,
ktoré sme vymýšl’ali na skúšky. Tématicky je členená podobne ako Knuthova Concrete
mathematics [1]; na riešenie rekurentných vzt’ahov, súm, súm s celými čast’ami, kom-
binatorických vzt’ahov, výpočty súm obsahujúcich harmonické čísla, Fibonacciho čísla,
na úlohy na generujúce funkcie a na výpočty asymptotických odhadov. Tento dokument
predstavuje pracovnú verziu, ktorá je neustále dopĺňaná novými prikladmi. Preto nie je
organizovaná ako tradičné zbierky (teória, vzorové riešenie, priklady, riešenia). Časom
ju možno do tejto podoby upravíme. Čitatel’ovi odporúčame, aby sa najprv pokúsil riešit’
zadané úlohy a až potom sa pozrel na riešenia.

V Bratislave, 13. mája 2012

Autori

(C) Olejár D., Stanek M. 2012
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2 Elementárne konečné sumy

SE1
a∑
0

x · 2xδx = x · 2x|a0 −
a∑
0

2x+1δx = a · 2a − 2a+1 + 2

SE2
n∑
0

xmδx =
xm+1

m+ 1
|n0 =

nm+1

m+ 1
m ̸= −1.

SE3
n∑
0

x−1δx = Hn.

SE4
n−1∑
0

k2 =

n∑
0

x2δx =

n∑
0

x2 + x1δx =
n3

3
+

n2

2
=

n(n− 1)(2n− 1)

6

SE5

2m∑
k=0

(−1)kk3 =

m∑
k=1

(2k)3 − (2k− 1)3 = 12

m∑
k=1

k2 − 6

m∑
k=1

k+

m∑
k=1

1 = m2(4m+ 3).

SE6
n∑

k=0

(−1)kk3 =


m2(4m+ 3) n = 2m

m2(4m+ 3) − (2m+ 1)3 n = 2m+ 1

SE7

Sn =

n∑
k=0

(−1)kk

4k2 − 1
=

n∑
k=1

(−1)kk

(2k+ 1)(2k− 1)
=

1

4

(
n∑

k=1

(−1)k

(2k+ 1)
+

n∑
k=1

(−1)k

(2k− 1)

)
=

=
1

4

(
−

n+1∑
k=2

(−1)k

(2k− 1)
+

n∑
k=1

(−1)k

(2k− 1)

)
=

1

4

(
(−1)n

2n+ 1
− 1

)
.

3 Sumy s harmonickými číslami

SH1
n∑

k=0

(−1)k

(k+ 1)
=

n+1∑
k=1

1

k
− 2

⌊n/2⌋∑
k=1

1

2k
= Hn+1 −H⌊n/2⌋.
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SH2

n∑
k=0

Hk =

n∑
0

Hxδx+Hn = xHx|
n
0 −

n∑
0

(x+1)1
1

x+ 1
δx+Hn = nHn−n+Hn = (n+1)Hn−n.

SH3

S2m =

2m∑
k=0

(−1)k ·Hk = H0 + (H2 −H1) + (H4 −H3) + · · ·+ (H2m −H2m−1) =

= 0+
1

2
+

1

4
+ · · ·+ 1

2m
=

1

2
Hm.

SH4
n∑

k=1

H2k−1 =
1

2

2n∑
k=1

[
Hk − (−1)kHk

]
=

(2n+ 1)H2n − (2n) − 1
2
Hn

2
.

SH5

S2m =

2m∑
k=0

(−1)kkHk =

m∑
k=1

[(2k)H2k − (2k− 1)H2k−1] =

n∑
k=1

H2k+1 +m =

=
1

2

[
(2m+ 1)H2m −

1

2
Hm − 2m

]
+m =

1

2

[
(2m+ 1)H2m −

1

2
Hm

]
.

SH6

n∑
0

x2Hxδx =
x3

3
Hx|

n
0 −

1

3

n∑
0

(x+ 1)3

x+ 1
δx =

n3

3
Hn −

1

3

n∑
0

x2δx =
n3

3
Hn −

n3

9

SH7

Sn =

n∑
0

xmHxδx =
xm+1

m+ 1
Hx|

n
0 −

1

m+ 1

n∑
0

(x+ 1)m+1

x+ 1
δx =

nm+1

m+ 1
Hn −

1

m+ 1

n∑
0

xmδx =

=
nm+1

m+ 1
Hn −

nm+1

(m+ 1)2
.

SH8

Sn =

n∑
k=0

k2Hk =

n∑
0

x2Hxδx+ n2Hn =

n∑
0

x2Hxδx+

n∑
0

x1Hxδx+ n2Hn =

=
3n3Hn − n3

9
+

2n2Hn − n2

4
+ n2Hn.
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4 Sumy s celými čast’ami

SI1

Sn =

n∑
k=1

⌊log2 k⌋) =
∑
k,m

(⌊log2 k⌋ = m) ·m · (1 ≤ k ≤ n) =
∑
k,m

(m ≤ log2 k < m+ 1)(1 ≤ k ≤ n) =

=
∑
m,k

(2m ≤ k < 2m+1) ·m · (1 ≤ m ≤ a) + a · (n− 2a + 1) =

a∑
m

m · 2m + a · (n− 2a + 1) =

= (n+ 1) · a− 2(a+1) + 2; a = ⌊log2 n⌋.

SI2

Sn =

n∑
k=1

⌊log2(2k)⌋ =
n∑

k=1

(1+ ⌊log2 k⌋) = (n+ 1) · a− 2(a+1) + 2+ n; a = ⌊log2 n⌋

SI3

Sn =

n∑
k=1

⌊log2(2k+ 1)⌋ (⌊log2(2k+ 1)⌋ = ⌊log2(2k)⌋; k > 0)

Sn =

n∑
k=1

⌊log2(2k)⌋ = (n+ 1) · a− 2(a+1) + 2+ n; a = ⌊log2 n⌋

SI4

n∑
k=0

⌊log2(2k+ 3)⌋ =

n+1∑
k=1

⌊log2(2k+ 1)⌋ = ⌊log2(2n+ 3)⌋+
n∑

k=1

⌊log2(2k+ 1)⌋ =

= ⌊log2(2n+ 3)⌋+ (n+ 1) · a− 2(a+1) + 2+ n; a = ⌊log2 n⌋

SI5

Sn =

n∑
k=1

⌊log2(k+ 1)⌋− ⌈log2 k⌉ = ⌊log2(n+ 1)⌋+
n∑

k=1

⌊log2 k⌋− ⌈log2 k⌉ =

= ⌊log2(n+ 1)⌋+
∑
k,j

((k = 2j) − 1)(1 ≤ k ≤ n) = ⌊log2(n+ 1)⌋− n+

+
∑
k,j

(k = 2j)(1 ≤ k ≤ n) = ⌊log2(n+ 1)⌋− n+
∑
j

(0 ≤ j ≤ ⌊log2 n⌋) =

= ⌊log2(n+ 1)⌋− n+ ⌊log2 n⌋+ 1

SI6

S2m =

2m∑
k=1

(−1)k⌊log2 k⌋ =
m∑
k=1

⌊log2 2k⌋−
m−1∑
k=1

⌊log2(2k+ 1)⌋ =

=

m∑
k=1

⌊log2 2k⌋−
m−1∑
k=1

⌊log2 2k⌋ = ⌊log2 2m⌋; ⌊log2(2k+ 1)⌋ = ⌊log2 2k⌋; k ≥ 1.

4



SI7
n∑

k=1

(−1)k⌊log2 k⌋ =
{

⌊log2 n⌋ n je párne
0 n je nepárne

SI8

n∑
k=1

(−1)k⌊log2 2k⌋ =
n∑

k=1

(−1)k⌊log2 k⌋+ (−1)k =

{
⌊log2 n⌋ n je párne

−1 n je nepárne

SI9

∑
k≥1

(
n

⌊logm k⌋

)
=
∑
k,r

(
n

r

)
· (r = ⌊logm k⌋) =

∑
k,r

(
n

r

)
· (r ≤ logm k < r+ 1) =

=
∑
k,r

(
n

r

)
· (mr ≤ k < mr+1) =

∑
k,r

(
n

r

)
·mr(m− 1) =

= (m− 1)
∑
k,r

(
n

r

)
·mr = (m− 1)(m+ 1)n.

SI10

Sn =

n∑
k=1

⌊
√

k2 + 1⌋− ⌈
√

k2 − 1)⌉, n ≥ 1.

k2 < k2 + 1 < (k+ 1)2; k > 0;

k <
√

k2 + 1 < (k+ 1)

k = ⌊
√
k2⌋ ≤ ⌊

√
k2 + 1⌋ ≤

√
k2 + 1 < (k+ 1);

⌊
√
k2 + 1⌋ = k, k > 0

⌈
√
k2 − 1)⌉ = 0, k = 1;

(k− 1)2 < k2 − 1 < k2; k > 1;

(k− 1) <
√

k2 − 1 < k;

(k− 1) < ⌈
√

k2 − 1)⌉ ≤ ⌈
√
k2⌉ = k;

⌈
√
k2 − 1)⌉ = k.

Sn = 1+

n∑
k=2

⌊
√

k2 + 1⌋− ⌈
√

k2 − 1)⌉ = 1+

n∑
k=2

(k− k) = 1.

5 Fibonacciho čísla

Fn = Fn−1 + Fn−2; F0 = 0, F1 = 1; ∆Fk = Fk−1; ∆F2k = F2k−1, ∆F2k+1 = F2k
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F(z) =
z

1− z− z2

k 0 1 2 3 4 5 6 7 8 9 10
Fk 0 1 1 2 3 5 8 13 21 34 55

F1
n∑

k=0

Fk =

n+1∑
0

Fxδx = Fx+1|
n+1
0 = Fn+2 − F1 = Fn+2 − 1

F2
n∑

k=0

F2k =

n∑
k=0

F2x+2δx = F2x+1|
n
0 = F2n+1 − 1.

F3
n∑

k=0

F2k+1 =

n+1∑
k=0

F2x+1δx = F2x|
n+1
0 = F2n+2

F4
2m∑
k=0

(−1)kFk =

m∑
k=0

F2k −

m−1∑
k=0

F2k+1 = F2m−1 + 1

F5

n∑
k=0

kFk =

n+1∑
0

xFxδx = xFx+1|
n+1
0 −

n+1∑
0

Fx+2δx = (n+ 1)Fn+2 − Fn+4 + F3 = nFn+2 − Fn+3 + 2

F6
n∑

k=0

(n− k)Fk = n

n∑
k=0

Fk −

n∑
k=0

kFk = Fn+3 − n− 2

F7

n∑
k=0

(k)Fn−k = [zn]
z

(1− z)2
z

1− z− z2
= [zn]

−1

(1− z)2
+

−1

(1− z)
+

z+ 2

(1− z− z2)

= −(n+ 1) − 1+ Fn + 2Fn+1 = Fn+3 − n− 2

F8

Sm = 2

m−1∑
k=0

kF2k = 2

m∑
0

xF2xδx = 2xF2x−1|
m
0 − 2

m∑
0

F2x+2δx = 2mF2m−1 − 2(F2m − 1)
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F9

S2m =

2m∑
k=0

(−1)kkFk =

m∑
k=1

(2kF2k − (2k− 1)F2k−1) =

m∑
k=1

2k(F2k − F2k−1) +

m−1∑
k=0

F2k+1 =

= 2

m∑
k=1

kF2k−2 + F2m − 1 = F2m − 1+ 2

m−1∑
k=0

(k+ 1)F2k = F2m − 1+ 2

m−1∑
k=0

kF2k +

+ 2

m−1∑
k=0

F2k = (2m+ 2)F2m−1 − F2m + 1

F10

Sn =

n∑
k=0

k2 · Fn−k = [zn](zD)2(
1

1− z
) · F(z) = z+ z2

(1− z)3
· z

1− z− z2
=

= [zn]

(
−2

(1− z)3
−

1

(1− z)2
−

5

1− z
+

8+ 5z

(1− z− z2)

)
=

= 8Fn+1 + 5Fn − (n2 + 4n+ 8).

F11

Sn =

n∑
k=0

k2 · Fk =

n∑
k=0

[(n− k)2 − n2 + 2nk] · Fk =

n∑
k=0

(n− k)2] · Fk − n2 ·
n∑

k=0

Fk +

+ 2n

n∑
k=0

k · Fk

F12

Sn =

n∑
k=0

k2Fk =

n+1∑
0

x2Fxδx = x2Fx+1|
n+1
0 − 2

n+1∑
0

xFx+2δx = (n2 + n)Fn+2

− 2 ·

[
xFx+3|

n+1
0 −

n+1∑
0

Fx+4δx

]
= (n2 + n)Fn+2 − 2 · [(n+ 1)Fn+4 − Fn+6 + F5] =

= (n2 + n)Fn+2 − (2n+ 2)Fn+4 + 2Fn+6 − 10.

F13

Sn =

n∑
k=0

k2Fk+1 =

n+1∑
k=1

(k− 1)2Fk = n2Fn+1 +

n∑
k=1

(k2 − 2k+ 1)Fk = n2Fn+1 +

n∑
k=1

(k2 − k)Fk −

−

n∑
k=1

kFk +

n∑
k=1

Fk = n2Fn+1 + (n2 + n)Fn+2 − (2n+ 2)Fn+4 + 2Fn+6 − 10− nFn+2 +

+ Fn+3 − 2+ Fn+2 − 1 = n2Fn+3 − (2n+ 1)Fn+4 + 2Fn+6 − 13.
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F14 Nájdite vytvárajúcu funkciu pre postupnost’ an =
∑n

k=0 F2k.

{F2k} ↔ z

1− 3z+ z2{
n∑

k=0

F2k

} ↔ z

1− 3z+ z
· 1

1− z
.

F15 Spočítajte sumu

Sn =
∑

0≤j≤k≤n

k · Fj =
∑

0≤k≤n

k ·
∑

0≤j≤k

Fj =
∑

0≤k≤n

k · (Fk+2 − 1) =
∑

0≤k≤n

k · Fk+2 −
∑

0≤k≤n

k =

=
∑

0≤k−2≤n

(k− 2) · Fk −
(
n+ 1

2

)
=

∑
2≤k≤n+2

k · Fk − 2
∑

2≤k≤n+2

Fk −

(
n+ 1

2

)
=

=
∑

0≤k≤n+2

k · Fk − 1 · F1 − 2
∑

0≤k≤n+2

Fk + 2F1 −

(
n+ 1

2

)
= (n+ 2)Fn+4 − Fn+5 + 2−

− 1− 2Fn+4 + 2+ 2−

(
n+ 1

2

)
= nFn+4 − Fn+5 + 5−

(
n+ 1

2

)

F16 Spočítajte sumu

Sn =
∑

0≤i,k≤n

Fi+k =

n∑
k=0

n∑
i=0

Fi+k =

n∑
k=0

n+k∑
i=k

Fi =

n∑
k=0

[
n+k∑
i=0

Fi −

k−1∑
i=0

Fi

]
=

=

n∑
k=0

[Fn+k+2 − 1− Fk+1 + 1] =

n∑
k=0

Fn+k+2 −

n∑
k=0

Fk+1 =

=

2n+2∑
k=n+2

Fk − (Fn+3 − 1) = F2n+4 − 2Fn+3 + 1.

F17 Spočítajte sumu

Sn =
∑

0≤i,k≤n

Fi−k =

n∑
i=0

i∑
k=0

Fk =

n∑
i=0

(Fi+2 − 1) = Fn+4 − n− 3.

F18 Spočítajte sumu

Sn =
∑

0≤i≤k≤n

Fi+k

F19 Spočítajte sumu

Sn =
∑

0≤i<k≤n

Fi+k
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F20 Spočítajte sumu

Sn =
∑

0≤i<k≤n

Fk−i

F21 Spočítajte sumu

Sn =
∑

0≤k≤n

2k · Fk =

n∑
k=0

2n−kFn−k = 2n ·
n∑

k=0

2−kFn−k = 2n · [zn] z

(1− z− z2)(1− z/2)
=

= 2n · [zn]
[

−2/5

1− z/2
+

4z+ 2

1− z− z2

]
= −

2

5
+ 2n+1 Fn+2 + Fn

5
.

F22 Spočítajte sumu

Sn =
∑

0≤k≤n

3kFk =

n∑
k=0

3n−kFn−k = 3n ·
n∑

k=0

(
1

3

)k

Fn−k =

= 3n[zn]

(
z

(1− z/3)(1− z− z2)

)
== −

3

11
+ 3n

9Fn + 3Fn+1

11
.

F22 Spočítajte sumu

Sn =
∑

0≤k≤n

3k · Fk+1 =
1

3
·
∑

0≤k≤n

3k+1Fk+1 =
1

3

∑
1≤k≤n+1

3kFk = 3nFn+1 +
1

3

∑
0≤k≤n

3kFk.

Sn = 3n
Fn+6 + 2Fn+4

11)
−

1

11
.

F23 Spočítajte sumu (m ∈ N, a je konštanta)

Sn =
∑

0≤k≤n

ak · Fk+m

6 Kombinatorické sumy

Ak nie je povedané ináč, n ∈ N.

SC1

Sn =

n∑
k=0

(
n

k

)
=

n∑
k=0

(
n

k

)
· 1k · 1n−k = (1+ 1)n = 2n.

SC2

Sn =

n∑
k=0

(−1)k
(
n

k

)
=

n∑
k=0

(
n

k

)
· (−1)k · 1n−k = (1− 1)n = (n = 0).

9



SC3

Sn =

n∑
k=0

k

(
n

k

)
= n ·

n∑
k=1

(
n− 1

k− 1

)
= n ·

n−1∑
k=0

(
n− 1

k

)
= n · 2n−1.

SC4 Vypočítajte nasledujúcu sumu Sn, kde n ≥ 2

Sn =

n∑
k=0

k(k− 1)

(
n

k

)
=

n∑
k=2

k(k− 1)

(
n

k

)
= n(n− 1) ·

n∑
k=2

(
n− 2

k− 2

)
=

= n(n− 1) ·
n−2∑
k=0

(
n− 2

k

)
= n(n− 1) · 2n−2.

SC5 Vypočítajte nasledujúcu sumu Sm,n, kde n,m n ≥ m sú prirodzené čísla

Sm,n =
∑

m≤k≤n

(−1)k
(
n

k

)(
k

m

)
=
∑

m≤k≤n

(−1)k
(
n

m

)(
n−m

k−m

)
=

=

(
n

m

)
·
∑

m≤k+m≤n

(−1)k+m

(
n−m

k

)
=

(
n

m

)
(−1)m ·

∑
0≤k≤n−m

(−1)k
(
n−m

k

)
=

=

(
n

m

)
(−1)m(n−m = 0) = (−1)m · δn,m.

SC6

S =
∑
k≥1

k− 1

k!
=
∑
k≥1

1

(k− 1)!
−

1

k!
=
∑
k≥0

1

k!
−
∑
k≥1

1

k!
= 1.

SC7

Sn =

n∑
k=1

(−1)k−1

k

(
n

k

)
=

n∑
k=1

(−1)k−1

k

[(
n− 1

k

)
+

(
n− 1

k− 1

)]
=

n∑
k=1

(−1)k−1

k

(
n− 1

k

)
+

+

n∑
k=1

(−1)k−1

k

(
n− 1

k− 1

)
=

n−1∑
k=1

(−1)k−1

k

(
n− 1

k

)
+

1

n

n∑
k=1

(−1)k−1

(
n

k

)
=

=

n−1∑
k=1

(−1)k−1

k

(
n− 1

k

)
+

1

n

[
−

n∑
k=0

(−1)k
(
n

k

)
+ (−1)0

(
n

0

)]
= Sn−1 +

1

n
;

Sn = Hn; n ̸= 0.

SC8

n∑
k=1

k · k! =
n∑

k=1

(k+ 1) · k! −
n∑

k=1

k! =

n∑
k=1

(k+ 1)! −

n∑
k=1

k! =

n+1∑
k=2

k! −

n∑
k=1

k! = (n+ 1)! − 1.
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SC9

Sn =
∑
k

(
n

k

)
k!

(n+ 1+ k)!
=
∑
k≥0

n!k!

k!(n− k)!(n+ 1+ k)!
=

n!

(2n+ 1)!

∑
k≥0

(2n+ 1)!

(n− k)!(n+ 1+ k)!
=

=
n!

(2n+ 1)!

∑
k≥0

(2n+ 1)!

(n− k)!(n+ 1+ k)!
=

n!

(2n+ 1)!

∑
0≤k≤n

(
2n+ 1

n− k

)
=

=
n!

(2n+ 1)!

∑
0≤k≤n

(
2n+ 1

k

)
=

n!

(2n+ 1)!
· 22n.

SC10

Sn =
∑
k

(−1)k
(
r− k

n− k

)(
r

k

)
=
∑
k

(−1)k+n−k

(
n− k− r+ k− 1

n− k

)(
r

k

)
=

= (−1)n
∑
k

(
n− r− 1

n− k

)(
r

k

)
= (−1)n

(
n− 1

n

)
= (n = 0)

SC11

Sn =
∑
k

(
n

3k

)
=

(1+ 1)n + (1+ω1)
n + (1+ω2)

n

3
=

=
1

3

[
2n + 2 cos

2πn

3
· (−1)n

]
ω1 = e2πi/3,ω2 = e4πi/3

(1+ω1)
n =

(
1+ cos

2π

3
+ i sin

2π

3

)n

=

(
1− 1/2+

i
√
2

2

)n

= eπin/3

(1+ω2)
n =

(
1+ cos

4π

3
+ i sin

4π

3

)n

=

(
1− 1/2−

i
√
2

2

)n

= e5πin/3

(1+ω1)
n ·ω1 = exp

πi(n+ 2)

3

(1+ω1)
n ·ω2 = exp

πi(n+ 4)

3

(1+ω2)
n ·ω1 = exp

πi(5n+ 2)

3

(1+ω2)
n ·ω2 = exp

πi(5n+ 4)

3

11



(1−ω1)
n =

(
1− cos

2π

3
− i sin

2π

3

)n

=

(
1+ 1/2−

i
√
2

2

)n

= 3n/2e11πin/6

(1−ω2)
n =

(
1− cos

4π

3
− i sin

4π

3

)n

=

(
1+ 1/2+

i
√
2

2

)n

= 3n/2eπin/6

(1−ω1)
n ·ω1 = 3n/2 exp

πi(11n+ 4)

6

(1−ω1)
n ·ω2 = 3n/2 exp

πi(11n+ 8)

6

(1−ω2)
n ·ω1 = 3n/2 exp

πi(n+ 4)

6

(1+ω2)
n ·ω2 = 3n/2 exp

πi(n+ 8)

6

(1+ω1)
n + (1+ω2)

n = cos
nπ

3
+ cos

5nπ

3
+ i sin

5nπ

3
+ i sin

nπ

3
=

= 2 cos
6nπ

6
· cos

4πn

6
+ 2i sin

6nπ

6
· cos

4πn

6
= 2 cos

2πn

3
· (−1)n

SC12

Sn =
∑
k

(
n

3k+ 1

)
=

(1+ 1)n +ω2
1(1+ω1)

n +ω2
2(1+ω2)

n

3
=

=
1

3

[
2n + (−1)n+1 · 2 · cos

(2n− 1)π

3

]
ω1 = e2πi/3,ω2 = e4πi/3

SC13

Sn =
∑
k

(
n

3k+ 2

)
=

(1+ 1)n +ω1(1+ω1)
n +ω2(1+ω2)

n

3
=

=
1

3

[
2n + (−1)n · 2 · cos

(2n+ 1)π

3

]
ω1 = e2πi/3,ω2 = e4πi/3

SC14

Sn =
∑
k

(
n

3k

)
(−1)k =

(1− 1)n + (1−ω1)
n + (1−ω2)

n

3
=

= 2 · 3n/2−1 cos
πn

6
.

SC15

Sn =
∑
k

(
n

3k+ 1

)
(−1)k =

(1− 1)n − (1−ω1)
nω2 + (1−ω2)

nω1

3
=

= 2 · 3n/2−1 · (−1)n cos
π(5n+ 2)

6
.
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SC16

Sn =
∑
k

(
n

3k+ 2

)
(−1)k =

(1− 1)n − (1−ω1)
nω1 + (1−ω2)

nω2

3
=

= 2 · 3n/2−1 · (−1)n+1 cos
π(5n− 2)

6
.

SC17

Sn =
∑
k

(
n

5k+ 1

)
=

(1+ 1)n +ω4(1+ω1)
n +ω3(1+ω2)

n +ω2(1+ω3)
n +ω1(1+ω4)

n

5
=

=
1

5
[2n + . . . )] ω1 = e2πi/5,ω2 = e4πi/5,ω3 = e6πi/5,ω4 = e8πi/5

SC18

Sn =

n∑
k=1

(−1)k+1

k+ 1

(
n

k

)
=

1

n+ 1

n∑
k=1

(−1)k+1

(
n+ 1

k+ 1

)
=

1

n+ 1

n+1∑
k=2

(−1)k
(
n+ 1

k

)
=

=
1

n+ 1

[
n+1∑
k=0

(−1)k
(
n+ 1

k

)
− n

]
=

n

n+ 1

SC19

Sn =

n∑
k=1

(−1)k+1

k(k+ 1)

(
n

k

)
=

n∑
k=1

[
(−1)k+1

k
−

(−1)k+1

(k+ 1)

](
n

k

)
=

n∑
k=1

(−1)k+1

k

(
n

k

)

−

n∑
k=1

(−1)k+1

k+ 1

(
n

k

)
= Hn −

n

n+ 1

SC20

Sn =

n∑
k=0

1

k+ 1

(
n

k

)
=

n∑
k=0

n!

(k+ 1)!(n− k)!
=

1

n+ 1

[
n∑

k=0

(
n+ 1

k

)
−

(
n+ 1

n+ 1

)]
=

2n+1 − 1

n+ 1
.

SC21 Upravte(
−1/2

n

)
=

(−1/2)n

n!
= (−1)n

1
2
· 3
2
. . . 2n−1

2

n!
= (−1)n

1
2
· 2
2
· 3
2
· 4
2
. . . 2n−1

2
· 2n

2

n!n!
=

=
(−1)n

22n
(2n)!

(n!)2
=

(−1)n

22n
·
(
2n

n

)
.

SC22 Upravte (
1/2

n

)
=

(−1/2

n
·
(
−1/2

n− 1

)
=

(−1)n−1

22n−1 · n
·
(
2n− 2

n− 1

)
.

SC23 Upravte (
1/2

n+ 1

)
=

(−1)n

22n+1 · (n+ 1)
·
(
2n

n

)
.
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7 Generujúce funkcie

Táta kapitola obsahuje príklady na vytvárajúce funkcie. Je rozdelená na časti venované
odvodzovaniu vytvárajúcich funkcií, výpočtu kombinatorických súm a dokazovaniu kom-
binatorických identít pomocou vytvárajúcich funkcií. (Tematicky do tejto oblasti patrí aj
riešenie rekurentných vzt’ahov, ale vzhl’adom na dôležitost’ tejto problematiky sme jej
venovali samostatnú kapitolu.) Obsahuje niektoré úlohy, ktoré boli riešené v predchá-
dzajúcich častiach pomocou iných metód; pretože jej ciel’om nie je riešenie konkrétnych
úloh, ale demonštrácia metód.

7.1 Konštrukcia generujúcich funkcií pre postupnosti čísel

Zápis (zD)f(z) označuje funkciu, ktorú dostaneme vynásobením deriváce funkcie f(z)
premennou z; zápis (zDk)f(z) označuje k násobné použitie operátora zD (zderivuj, výsle-
dok vynásob z, zderivuj, výsledok vynásob z,... ).

GF1 Nájdite vytvárajúce funkcie pre nasledujúce postupnosti

{1}k ↔∑
k

zk =
1

1− z

GF2

{k}k ↔∑
k

kzk = (zD)
1

1− z
=

z

1− z)2

GF3 Fibonacciho čísla {Fk}k

Fn+2 = Fn+1 + Fn, n ≥ 0; F0 = 0, F1 = 1.

F(z) − z

z2
=

F(z)

z
+ F(z);

F(z) =
z

1− z− z2
=

1√
5

(
1

1−Φ1z
−

1

1−Φ2z

)
;

Φ1 =
1+

√
5

2
, Φ2 =

1−
√
5

2

GF4 Fibonacciho čísla s párnym indexom {F2k}k

G(z) =
∑
k

F2kz
k;

F2n = [z2n]F(z) =
1√
5

(
Φ2n

1 −Φ2n
2

)⇒
G(z) =

1√
5

(
1

1−Φ2
1z

−
1

1−Φ2
2z

)
=

z

1− 3z+ z2
.

14



GF5 Fibonacciho čísla {F3k}k

G(z) =
∑
k

F3kz
k;

F3n = [z3n]F(z) =
1√
5

(
Φ3n

1 −Φ3n
2

)⇒
G(z) =

1√
5

(
1

1−Φ3
1z

−
1

1−Φ3
2z

)
=

2z

1− 4z− z2
.

GF6 Konvolúcia Fibonacciho čísel

Sn =
∑
k

FkFn−k = [zn]F(z)2 = [zn]
z2

(1− z− z2)2
=

[
1√
5

((
1+

√
5

2

)n

−

(
1−

√
5

2

)n)]2
=

=

1
5

(1+
√
5

2

)2n

+

(
1−

√
5

2

)2n
−

[
2√
5

((
1+

√
5

2

)n

−

(
1−

√
5

2

)n)]2

GF7 Nájdite obyčajnú generujúcu funkciu Fm(z) pre postupnost’ {Fmn}n≥0,m ∈ N.

Fm(z) =
1√
5
×
(

1

1−Φm
1 · z

−
1

1−Φm
2 · z

)
=

1√
5
×

(Φm
1 −Φm

2 )z

1− z(Φm
1 +Φm

2 ) + (Φm
1 ·Φm

2 ) · z2
.

(Φm
1 ·Φm

2 ) = (Φ1 ·Φ2)
m = (−1)m;Φ1 +Φ2 = 1.

(Φm
1 +Φm

2 ) = [zm]

(
1

1−Φ1z
+

1

1−Φ2z

)
= [zm]

(
1−Φ2z+ 1−Φ1z

(1−Φ2z)(1−Φ2z)

)
=

= [zm]

(
2− (Φ2 +Φ1)z

1− z− z2

)
= [zm]

(
2− z

1− z− z2

)
= 2Fm+1 − Fm = Fm + 2Fm−1.

(Φm
1 −Φm

2 ) = [zm]

(
1

1−Φ1z
−

1

1−Φ2z

)
= [zm]

(
1−Φ2z− 1+Φ1z

(1−Φ2z)(1−Φ2z)

)
=

= [zm]

(
(Φ1 −Φ2)z

1− z− z2

)
= [zm]

(
z
√
5

1− z− z2

)
=

√
5 · Fm.

Potom
Fm(z) =

Fm · z
1− (Fm + 2Fm−1)z+ (−1)mz2

.

GF8 Nájdite obyčajnú generujúcu funkciu Fm,a(z) pre postupnost’ {Fmn+a}n≥0,m, a ∈
N; 0 ≤ a < n.

Fm,a(z) =
1√
5

(
Φmn+a

1 zn −Φmn+a
2 zn

)
=

1√
5

(
Φa

1

1−Φm
1 · z

−
Φa

2

1−Φm
2 · z

)
=

=
1√
5

(
Φa

1 (1−Φm
2 z) −Φa

2 (1−Φm
1 z)

(1−Φm
1 z)(1−Φm

2 z)

)
=

1√
5

(
Φa

1 −Φa
2 +Φm

1 Φ
a
2 · z−Φm

2 Φ
a
1 · z

1− z(Φm
1 +Φm

2 ) + (Φm
1 ·Φm

2 ) · z2

)
=

=
1√
5

(
Φa

1 −Φa
2 + (Φ1Φ2)

a · (Φm−a
1 −Φm−a

2 ) · z
1− (Fm + 2Fm−1)z+ (−1)mz2

)
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1√
5
(Φm−a

1 −Φm−a
2 ) = Fm−a; (Φ1Φ2)

a = (−1)a; Φa
1 −Φa

2 =
√
5 · Fa.

Fm,a(z) =
Fa + (−1)aFm−a · z

1− (Fm + 2Fm−1)z+ (−1)mz2

7.2 Výpočty súm pomocou generujúcich funkcií

Budeme využívat’ dve základné a jednu pokročilejšiu techniku.

1. Nech je daná suma Sn =
∑n

k=0 ak. Ak poznáme generujúcu funkciu A(x) pre po-
stupnost’ {an}n, tak Sn = [xn]A(x)/(1− x).

2. Nech je daná suma Sn =
∑n

k=0 akbn−k.Ak poznáme generujúce funkcie A(x) pre
postupnost’ {an}n a B(x) pre postupnost’ {bn}n,tak Sn = [xn]A(x)B(x). (Všimnite si, že
prvá metóda je len špeciálnym prípadom druhej, bn = 1, n ∈ N a B(x) = 1/(1 = x).

3. Snake oil method (Wilf, [2])

• Nech je daná suma Sn =
∑n

k=0 ak. Predpokladáme, že existuje obyčajná vytvá-
rajúca funkcia S(x)↔ {Sn}n; S(x) =

∑
n Snx

n.

• Vynásobíme obe strany rovnosti výrazom xn a sčítame cez všetky n. Na l’avej
strane rovnosti máme vytvárajúcu funkciu S(x) a na pravej dvojitú sumu.

• Zmeníme poradie sumácie a sumujeme najprv cez n a potom cez k.

• Určíme (ak sa podarí) koeficient pri člene xn a určíme Sn.

GF8 Sn =
∑n

k=0 1.

Sn = [xn]
x

(1− x)
· 1

1− x
= [xn]

x

(1− x)2
=

(
n+ 1

1

)
= n+ 1.

GF9 Sn =
∑n

k=0(−1)k.

Sn = [xn]
x

(1− x)
· 1

1+ x
=

1

2
[xn]

x

(1− x)
+

1

1+ x
=

1

2
(1+ (−1)n).

GF10 Sn =
∑n

k=0 k.

Sn = [xn]
x

(1− x)2
· 1

1− x
= [xn]

x

(1− x)3
=

(
n+ 1

2

)
.

GF11 Sn =
∑n

k=0(−1)kk.

Sn = [xn]
−x

(1+ x)2
· 1

1− x
= [xn]

1

2(1+ x)2
−

1

4(1− x)
−

1

4(1+ x)
=

n+ 1

2
−

1

4
−

(−1)n

4
.
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GF12 Sn =
∑n

k=0 k2
k.

Sn =

n∑
k=0

(n− k)2n−k = 2n ·
n∑

k=0

(n− k)2−k

Sn = 2n · [xn] x

(1− x)2
· 1

1− 1
2
x
= 2n · [xn]

(
2

(1− x)2
−

4

1− x
+

2

1− 1
2
x

)
=

= 2n+1(n+ 1) − 2n+2 + 2 = 2n+1(n− 1) + 2.

GF13 Sn =
∑n

k=0(−1)kk2k.

Sn =

n∑
k=0

(n− k)(−2)n−k = (−2)n ·
n∑

k=0

(n− k)(−2)2−k

Sn = (−2)n · [xn] x

(1− x)2
· 1

1+ 1
2
x
= (−2)n · [xn]

(
2

3(1− x)2
−

4

9(1− x)
−

2

9(1+ 1
2
x)

)
=

=
(−1)n

9

(
(3n+ 1) · 2n+1 − 2 · (−1)n

)
.

GF14 Sn =
∑n

k=0 Fk.

Sn = [xn]
x

1− x− x2
· 1

1− x
= [xn]

x+ 1

1− x− x2
−

1

1− x
= Fn+2 − 1.

GF15 Sn =
∑n

k=0(−1)kFk.

Sn =

n∑
k=0

(−1)n−kFn−k = (−1)n ·
n∑

k=0

(−1)−kFn−k

Sn = (−1)n · x

1− x− x2
· 1

1+ x
= (−1)n · [xn] 1− x

1− x− x2
−

1

1− x
= (−1)nFn−1 − 1.

GF16

Sn =

n∑
k=0

(n− k) · Fk = [xn]

(
x

1− x− x2
· x

(1− x)2

)
= [xn]

(
2+ x

1− x− x2
−

1

1− x
−

1

(1− x)2

)
=

= 2Fn+1 + Fn − n− 2 = Fn+3 − n− 2.

GF17 Sn =
∑n

k=0 kFk.

1. riešenie (zmena poradia sumácie; k← n− k):

Sn =

n∑
k=0

(n− k)Fn−k = n ·
n∑

k=0

Fk −

n∑
k=0

kFn−k = n ·
n∑

k=0

Fk −

n∑
k=0

(n− k)Fk =

= nFn+2 − n− Fn+3 + n+ 2 = nFn+2 − Fn+3 + 2.
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2. riešenie

F(x) =
∑
k≥0

Fkx
k =

x

1− x− x2

xDF(x) =
x+ x3

(1− x− x2)2
=
∑
k≥0

kFk · xk ⇔ {k · Fk}k≥0;

xDF(x) · 1

1− x
=

x+ x3

(1− x− x2)2(1− x)
⇔ {

n∑
k=0

k · Fk}n≥0

Sn = [xn]
x+ x3

(1− x− x2)2(1− x)
= [xn]

[
2x+ 1

(1− x− x2)2
−

2x+ 3

1− x− x2
+

2

1− x

]
.

GF18

S =
∑
n≥0

3n2 − 2n+ 5

n!
=
∑
n≥0

3n2

n!
−
∑
n≥0

2n

n!
+
∑
n≥0

5

n!

Ŝ(z) =
∑
n≥0

3n2 · zn

n!
−
∑
n≥0

2n · zn

n!
+
∑
n≥0

5 · zn

n!
= {3(zD)2 − 2(zD) + 5}ez =

= 3(z2 + z)ez − 2ze+ 5ez.

S = Ŝ(1) = 9e.

GF19

Sn =

n∑
k=0

k · F2k = −

n∑
k=0

(n− k) · F2k + n ·
n∑

k=0

F2k = [zn]G(z)

G(z) =

(
−

z

(1− z)2
· z

(1− 3z+ z2)
+ n · z

(1− 3z+ z2)
· 1

1− z

)
=

=
−z2 − nz2 + nz

(1− 3z+ z2) · (1− z)2
=

1

(1− z)2
−

n+ 1

1− z
−

z(n+ 1

1− 3z+ z2
+

n

1− 3z+ z2

Sn = (n+ 1) − (n+ 1) − (n+ 1)F2n + nF2n+2 = nF2n+1 − F2n.

GF20

Sn =

n∑
k=0

F3k

Sn = [zn]
2z

(1− 4z− z2)(1− z)
= [zn]

1

2

[
z+ 1

1− 4z− z2
−

1

1− z

]
=

F3n+2 − 1

2
.

GF21 Nájdite o.g.f. postupnosti {3n2 − 2n+ 7}n≥0.

F(z) =
[
3
(
zD)2

)
− 2(zD) + 7

] 1

1− z
= 3 · z2 + z

(1− z)3
− 2 · z

(1− z)2
+

7

1− z
.
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GF22

Sn =

n∑
k=0

k2 = [zn]
1

1− z
(zD)2

1

1− z
= [zn]

z+ z2

(1− z)4
=

(
n+ 2

3

)
+

(
n+ 1

3

)
=

=
n(n+ 1)(2n+ 1)

6
.

GF23

Sn =

n∑
k=0

1

k+ 1

(
n

k

)
. (1+ z)n =

n∑
k=0

(
n

k

)
zk.

∫ 1
0

(1+ z)ndz =
(1+ z)n+1

n+ 1
|10 =

2n+1 − 1

n+ 1
;∫ 1

0

n∑
k=0

(
n

k

)
zkdz =

n∑
k=0

(
n

k

) ∫ 1
0

zkdz =

n∑
k=0

(
n

k

)
zk+1

k+ 1
|10 =

n∑
k=0

1

k+ 1

(
n

k

)
.

8 Rekurentné vzt’ahy

R1

a0 = 7, 2an = nan−1 + 2n! n > 0; sn =
2n−1

n!
, Tn =

2n

n!
an

Tn = Tn−1 + 2n, n > 0, T0 = a0 = 7

Tn = T0 +

n∑
k=1

2k = 7+ 2n+1 − 2 = 2n+1 + 5

an = 2n! +
5n!

2n

R2
an = 2an−1 − an−2 + (−1)n; n > 1; a0 = a1 = 1

an+2 − 2an+1 + an = (−1)n A(z) =
∑
k

akz
k

A(z) − 1− z

z2
− 2

A(z) − 1

z
+A(z) =

1

1+ z
|.z2

A(z) =
1

(1− z)2(1+ z)
=

1/2

(1− z)2
+

1/4

1− z
+

1/4

1+ z

an =
n+ 1

2
+

1+ (−1)n

4

R3
an = 2an−1 − an−2 + (−1)n; n > 1; a0 = 0, a1 = 1
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A(z) =
2z2 + z

(1+ z)(1− z)2
=

3

2(1− z)2
−

7

4(1− z)
+

1

4(1+ z)

an =
3

2
(n+ 1) −

7

4
+

(−1)n

4

R4 Riešte rekurentný vzt’ah

an = 2an−1 − an−2 + (−1)n + n n > 1, a0 = 1, a1 = 0

A(z) =
1

(1+ z)(1− z)2
+

z

(1− z)4
−

2z

(1− z)2
=

=
1/4

1+ z
+

1/2

(1− z)2
+

1/4

1− z
+

z

(1− z)4
−

2z

(1− z)2

an =
(−1)n

4
+

1

2(n+ 1)
+

1

4
+

(
n+ 2

3

)
− 2n =

2n3 + 6n2 − 14n+ 3 · (−1)n + 9

12
.

R5

a0 = a1 = 1

an = an−1 − 2an−2 + 1+ (−1)n + n n > 1

A(z) =
1

2 (1+ z)
−

11

27 (1+ 2 z)
−

1

3 (1− z)3
+

4

9 (1− z)2
−

11

54 (1− z)

an =
(−1)n

2
−

11

27
· (−1)n2n −

1

3

(
n+ 2

2

)
+

4

9
(n+ 1) −

11

54

R6

a0 = a1 = 1

an = 2an−1 + 3an−2 + n n > 1

A(z) =
−1

4(1− z)2
−

1

4(1− z)
+

11

16(1+ z)
+

13

16(1− 3z)

an =
−1

4
(n+ 1) −

1

4
+

11

16
(−1)n +

13

16
3n

R7

a0 = 1, a1 = 2

an+2 = 3an+1 − 2an + 3 n > 0

A(z) =
4

1− 2z
−

3

(1− z)2

an = 4 · 2n − 3n− 3.

R8

a0 = 1, a1 = 3

an+2 = 3an+1 − 2an + n n > 0
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A(z) =
1− 2z+ z2 + z3

(1− z)3(1− 2z)
=

3

1− 2z
−

1

(1− z)
+

−z2 + z− 1

(1− z)3

an = 3 · 2n − 1−

(
n

2

)
+

(
n+ 1

2

)
−

(
n+ 2

2

)
= 3 · 2n −

n2 + n

2
− 2.

R9 Určte zložitost’ obvodu počítajúceho prenos pre n-tý rád v sčítačke so zrýchleným
prenosom, ked’ zložitost’ je

1. počet literálov vo formule

2. počet operátorov vo formule vyjadrujúcej logickú funkciu daného obvodu.

Formula pre prenos:

r0 = a0b0

rn = anbn + anrn−1 + bnrn−1,

t.j. zložitost’ bude

s0 = 2

sn = 2sn−1 + 4,

resp.

t0 = 1

tn = 2tn−1 + 5.

sn+1 = 2sn + 4

S(z) − 2

z
= 2S(z) +

4

1− z

S(z) =
−4

1− z
+

6

1− 2z

sn = [zn]S(z) = −4+ 6 · 2n.

Analogicky
tn = −5+ 6 · 2n.

R10 Riešte rekurentný vzt’ah

an = 2an−1 − an−2 + 2(−1)n n > 1, a0 = 1, a1 = 3

A(z) =
1

2(1+ z)
+

3

(1− z)2
−

5

2(1− z)

an =
1

2
(−1)n + 3n+

1

2
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R11 Riešte rekurentný vzt’ah

6an = 5an−1 − an−2 + 2n n > 1, a0 = 1, a1 = 1

A(z) =
8z2 − 11z+ 6

(z− 2)(z− 3)(1− 2z)
=

4/3

1− z/2
+

−3/5

1− z/3
+

4/15

1− 2z

an =
4

3
·
(
1

2

)n

−
3

5
·
(
1

3

)n

+
4

15
· 2n.

R12 Riešte rekurentný vzt’ah

an = −2nan−1 =
∑
k

(
n

k

)
akan−k n > 1, a0 = 1, a1 = 1

an = −2nan−1 +
∑
k

(
n

k

)
akan−k + (n = 1) |× zn

n!

an
zn

n!
= −2nan−1

zn

n!
+
∑
k

(
n

k

)
akan−k

zn

n!
+ (n = 1)

zn

n!
|
∑
n∑

n

an
zn

n!
= −2z

∑
n

an−1
zn−1

(n− 1)!
+
∑
n

∑
k

ak
zk

k!
an−k

zn−k

(n− k)!
+
∑
n

(n = 1)
zn

n!

Â(z) = −2zÂ(z) + Â(z)2 + z

0 = Â(z)2 − (2z+ 1)Â(z) + z

Â(z) =
(2z+ 1)±

√
4z2 + 1

2

a0 = Â(0) = 1 =⇒ Â(z) =
(2z+ 1) +

√
4z2 + 1

2

Â(z) = z+
1

2
+

1

2
× (1+ 4z2)1/2

an =

[
zn

n!

]
Â(z)

an =


1 n = 0, 1,

0 n = 2m+ 1, m > 0;
(2m)!42m

2

(
1/2
m

)
n = 2m, m ≥ 1.

R13 Riešte rekurentný vzt’ah

an+1 =

n∑
k=0

Fkan−k; a0 = 1,
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kde Fk je k-te Fibonacciho číslo. Rekurentný vzt’ah transformujeme na vzt’ah medzi vy-
tvárajúcimi funkciami A(z), F(z) a vyjadríme an

A(z) − a0

z
= F(z) ·A(z) =

z

1− z− z2
·A(z);

A(z) =
z2 + z− 1

2z2 + z− 1
=

1

2
+

1/3

1+ z
+

1/6

1− 2z
.

an =
1

2
· (n = 0) +

−1n

3
+

1

6
· 2n.

R14 Riešte rekurentný vzt’ah

an+1 =

n∑
k=0

(n− k)ak; a0 = 1,

A(z) − 1

z
=

z

(1− z)2
·A(z)

A(z) = 1+
z2

1− 2z
;

an =


1 n = 0,

0 n = 1

2n−2 n ≥ 2.

R15 Riešte rekurentný vzt’ah

an+1 =

n∑
k=0

kak, n > 0; a0 = a1 = 1.

an = (n− 1)an−1 + (n− 2)an−2 + · · ·+ a1, n > 1,

an−1 = + (n− 2)an−2 + · · ·+ a1, n > 2,

an − an−1 = (n− 1)an−1

an = nan−1; n ≥ 3.

an =

{
1 n = 0, 1
n!
2

n ≥ 2.

R16 Riešte rekurentný vzt’ah

an =

n−1∑
k=0

ak, n > 0; a0 = 1.

an = an−1 + an−2 + · · ·+ a0, n > 0,

an−1 = + an−2 + · · ·+ a0, n > 1,

an − an−1 = an−1

an = 2an−1; n > 1
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an =

{
1 n = 0

2n−1 n > 0.

Riešenie pomocou generujúcich funkcií

an+1 =

n∑
k=0

ak

A(z) − 1

z
=

1

1− z
·A(z)

A(z) =
1+ z

1− 2z
= 1+

z

1− 2z
.

an =

{
1 n = 0

2n−1 n > 0.

R17 Riešte rekurentný vzt’ah

an = 2an−1 − an−2 + n+ (−1)n n > 1, a0 = 1, a1 = −1

A(z) =
3(1− 3z)

4(1− z)2
+

1

4(1+ z)
+

2z2 − z3

(1− z)4

an =
3

4
−

3

2
· n+

1

4
· (−1)n −

(
n

3

)
+ 2

(
n+ 1

3

)
=

n3

6
+

n2

2
−

13n

6
+

3

4
+

(−1)n

4
.

R18 Riešte rekurentný vzt’ah

2an = 3an−1 − an−2 + (n− 1) n > 1, a0 = 1, a1 = −2

2an+2 = 3an+1 − an + (n+ 1)

2× A(z) − 1+ 2z

z2
= 3

A(z) − 1

z
−A(z) +

1

(1− z)2

A(z) =
2− 7z

2− 3z+ z2
+

z2

(2− 3z+ z2)(1− z)2
;

an = 1/2 ∗ n2 − 3/2 ∗ n− 3+ 4 ∗ 2−n

R19 Riešte rekurentný vzt’ah

an = 2an−1 − an−2 + Fn−1 n > 1, a0 = 1, a1 = 3

an+2 = 2an+1 − an + Fn+1

A(z) − 1− 3z

z2
= 2× A(z) − 1

z
−A(z) +

1

1− z− z2

A(z) =
1+ z

(1− z)2
+

z

(1− z)2
× F(z)

an = Fn+3 + n− 1.
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R20 Riešte rekurentný vzt’ah

an =

n∑
k=1

(n− k) · ak + 1; a0 = 1.

an =

n∑
k=0

(n− k) · ak + 1− n · a0

A(z) =
z

(1− z)2
·A(z) −

z

(1− z)2
+

1

1− z

A(z) =
1− 2z

1− 3z+ z2

an = F2n+2 − 2F2n = F2n−1.

R21 Riešte rekurentný vzt’ah

an =

n∑
k=0

(n− k) · ak + 1; a0 = 0, a1 = 1.

A(z) =
z

(1− z)2
·A(z) +

z

(1− z)2

A(z) =
1− z

1− 3z+ z2

an = F2n+2 − F2n = F2n.

R22 Riešte rekurentný vzt’ah

an =
∑
k

an−k · ak−1; a0 = 1, n ̸= 0, a−k = 0

an =

n∑
k=0

an−k · ak−1

A(z) − 1 = zA(z)2

A(z) =
1−

√
1− 4z

2z

an =

(
2n

n

)
× 1

n+ 1
.

R23 Riešte rekurentný vzt’ah

an+1 = 2 ·
∑

an−k · (−1)k; a0 = 1

A(z) − 1

z
= 2 ·A(z)

1

1+ z
, A(z) =

1+ z

1− z
= 1+

2z

1− z

25



an = (n = 0) + 2(n > 1).

R24 Riešte rekurentný vzt’ah

an+2 = 3an+1 − 2an + 1+ n, a0 = a1 = 1.

A(z) =
1

1− z
+

z2

(1− z)2(1− 2z)
+

z3

(1− z)3(1− 2z)

=
2

(1− 2z)
−

1

(1− z)3

an = 2n+1 −

(
n+ 2

2

)
.

R25 Riešte rekurentný vzt’ah

an+2 = 4an+1 − 24an + 2n+ 1, a0 = 1, a1 = 5.

A(z) =
2

1− 3z
+

1

1− z
−

z2

(1− z)3
=

2

(1− 2z)
−

1

(1− z)3
.

an = 2 · 3n − 1−

(
n

2

)
.

R26 Riešte rekurentný vzt’ah

an+1 = bn + an, n ≥ 0;

bn+1 = an+1 + bn, n ≥ 0; a0 = 0, b0 = 1.

A(z)/z = B(z) +A(z);

A(z) =
z

1− z
B(z);

B(z) − 1

z
=

A(z)

z
+ B(z),

B(z) =
1

1− z
+

A(z)

1− z
;

B(z) =
1− z

1− 3z+ z2
; A(z) =

z

1− 3z+ z2
;

an = F2n, bn = F2n+1.

R27 Riešte rekurentný vzt’ah

an+3 = an+2 + an+1 − an + n+ (−1)n, a0 = 0, a1 = 1, a2 = 1.

A(z) =
z5 − z2 + z

(1− z)4(1+ z)2
=

−3

16(1+ z)2
+

1

8(1+ z)
+

14z3 − 19z2 + 8z+ 1

16(1− z)4

an =
(−1)n

8
−

3

16
· (−1n) · (n+ 1) +

1

16
·
[
14

(
n

3

)
− 19

(
n+ 1

3

)
+ 8

(
n+ 2

3

)
+

(
n+ 3

3

)]
.
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R28 Riešte rekurentný vzt’ah

an+2 = 3an+1 − 2an + (−1)n · n, a0 = 1, a1 = −1.

A(z) =
1− 2z− 7z2 − 5z3

(1+ z)2(1− z)(1− 2z)
=

13

4(1− z)
−

19

9(1− 2z)
+

1

6(1+ z)2
−

11

36(1+ z)

an =
13

4
−

19

9
· 2n +

(−1)n

6
· (n+ 1) −

11

36
· (−1)n.

R29 Riešte rekurentný vzt’ah

an+2 = 3an+1 − 2an + (−1)n · n, a0 = −1, a1 = 1.

A(z) =
1+ 6z+ 9z2 + 3z3

(1+ z)2(1− z)(1− 2z)
=

−19

4(1− z)
−

53

9(1− 2z)
+

1

6(1+ z)2
−

−11

36(1+ z)

an =
−19

4
+

53

9
· 2n +

(−1)n

6
· (n+ 1) −

11

36
· (−1)n.

R30 Riešte rekurentný vzt’ah

an+2 = an+1 +

n∑
k=0

akFn−k, a0 = 1, a1 = 2.

A(z) =
1− 2z2 − z3

1− 2z
=

3

8(1− 2z)
−

5

8
+

5

4
x+

1

2
x2

an =
3

8
2n +

5

8
· (n− 0) +

5

4
· (n = 1) +

1

2
· (n = 2).

9 Asymptotické odhady

A1 Odhadnite
(
2n
n

)
s presnost’ou O(n−2).(

2n

n

)
=

(2n)!

(n!)2
=

√
4πn

(
2n
e

)2n (
1+ 1

24n
+O(n−2)

)
2πn

(
n
e

)2n (
1+ 1

12n
+O(n−2)

)2 =
22n√
πn

(
1+ 1

24n
+O(n−2)

)(
1+ 1

12n
+O(n−2)

)2
(
1+

1

24n
+O(n−2)

)
=

(
1+

1

24n

)(
1+O(n−2

)
(
1+

1

12n
+O(n−2)

)−2

=

(
1+

1

12n

)−2 (
1+O(n−2)

)−2

(
1+O(n−2)

)−2

=
(
1+O(n−2)

)
(
1+

1

12n

)−2

= 1+

(
−2

1

)
1

12n
+O(n−2) =

(
1−

1

6n

)(
1+O(n−2)

)
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(
2n

n

)
=

22n√
πn

(
1−

1

8n
+O(n−2

)

A2 Odhadnite
(
2n+1
n

)
s presnost’ou O(n−2).(

2n+ 1

n

)
=

(2n+ 1)!

n!(n+ 1)!
=

(
2n

n

)
2n+ 1

n+ 1

2n+ 1

n+ 1
=

2
(
1+ 1

2n

)
1+ 1

n

= 2

(
1+

1

2n

)(
1−

1

n

)(
1+O(n−2

)
= 2

(
1−

1

2n
+O(n−2)

)
(
2n+ 1

n

)
=

22n+1

√
πn

(
1−

5

8n
+O(n−2

)

A3 Odhadnite s presnost’ou O(n−3) podiel

nk

nk
,

ak k je konštanta.

nk

nk
=

k=1∏
j=0

(
1−

j

n

)
= 1−

1

n
·
k−1∑
j=0

j+
1

n2

∑
0≤i<j<k

ij+O

(
k6

n3

)
;

k−1∑
j=0

j =

(
k

2

)
;

∑
0≤i,j<k

ij =
∑

0≤i,<j<k

ij+
∑

0≤j<i<k

ij+
∑

0≤j=i<k

ij;

∑
0≤i,<j<k

ij =
1

2

[(
k

2

)2

−
k(k− 1)(2k− 1)

6

]
=

3k4 − 10k3 + 9k2 − 2k

24

nk

nk
= 1−

(
k

2

)
· 1
n
+

3k4 − 10k3 + 9k2 − 2k

24
· 1

n2
+O

(
1

n3

)
.

A3a Zostrojte asymptotický odhad sumy
∑

k≥0
k
2k

Využijeme (aj v d’alších úlohách) obyčajnú generujúcu funkciu

A(x) =
1

1− ax
=
∑
k

akxk,

ktorá má polomer konvergencie 1/a. Aplikujeme na A(x) operátor xD (zderivuj a výsle-
dok vynásob x):

xD(A(x)) =
ax

(1− ax)2
=
∑
k

kakxk,

dosadíme a = 1/2, x = 1 < 1/a: ∑
k≥0

k
1

2k
= 2.
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A3b Zostrojte asymptotický odhad sumy
∑

k≥0
k2

2k
. Na A(x) aplikujeme operátor (xD)2,

do výsledku dosadíme a = 1/2, x = 1 < 1/a:

(xD)2(A(x)) =
ax+ a2x2

(1− ax)3
;

∑
k≥0

k2

2k
= 6.

A4 Zostrojte asymptotický odhad sumy

n∑
k=0

(
3n

k

)

n∑
k=0

(
3n

k

)
=

n∑
k=0

(
3n

n− k

)
=

∑
0≤k<3 lgn

(
3n

n− k

)
+
∑

k≥3 lgn

(
3n

n− k

)
.

(
3n

n− k

)
=

(
3n

n

)
· 1

2k

∏k−1
j=0

(
1− j

n

)
∏k

j=1

(
1+ j

2n

) =

(
3n

n

)
· 1

2k
·
[
1−

3k2 − k

4n
+O

(
k4

n2

)]
.

∑
k≥3 lgn

(
3n

n− k

)
= O

(
n ·
(

3n

n− 3 lgn

))
=

(
3n

n

)
·O
(
n · 1

23 lgn

)
=

(
3n

n

)
·O
(
n−2

)
.

∑
0≤k<3 lgn

1

2k
= 2−

1

23 lgn
= 2+O(n−3).

−
3

4n

∑
0≤k<3 lgn

k2

2k
=

−9

2n
+O(n−3).

+
1

4n

∑
0≤k<3 lgn

k

2k
=

1

2n
+O(n−3).

O(n−2) ·
∑

0≤k<3 lgn

k4

2k
= O(n−2)

n∑
k=0

(
3n

k

)
=

(
3n

n

)
·
[
2−

4

n
+O(n−2)

]
A4a Zostrojte asymptotický odhad sumy

2n∑
k=0

(
5n

k

)

A4b Zostrojte asymptotický odhad sumy

λ·n∑
k=0

(
n

k

)
0 < λ < 1/2, λ · n ∈ N.
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A4c Zostrojte asymptotický odhad sumy

n∑
k=0

(
5n

2k

)

A5 (
1+

3

n+ 1

)2n−1

O(n−2).

(
1+

3

n+ 1

)2n−1

=

(
n+ 4

n+ 1

)2n−1

=

(
1+ 4

n

1+ 1
n

)2n−1

(
1+

4

n

)2n−1

=

(
1+

4

n

)−1(
1+

4

n

)2n

(
1+

4

n

)−1

=

(
1−

4

n
+O(n−2)

)
=

(
1−

4

n

)(
1+O(n−2)

)
(
1+

4

n

)2n

= exp
[
2n

(
ln(1+

4

n

)]
= exp

[
2n

(
4

n
−

16

2n2
+O(n−3)

)]
=

= exp
[
8−

16

n
+O(n−2)

]
= e8

[
1−

16

n
+O(n−2)

]
(
1+

1

n

)1−2n

=

(
1+

1

n

)(
1+

1

n

)−2n

(
1+

1

n

)−2n

= exp
[
−2n

(
ln(1+

1

n
)

)]
= exp

[
−2n

(
1

n
−

1

2n2
+O(n−3)

)]
=

= exp
[
−2+

1

n
+O(n−2)

]
= e−2

(
1+

1

n
+O(n−2)

)
(
1+

3

n+ 1

)2n−1

= e6
(
1−

18

n
+O(n−2)

)
A7 O(n−5)

n∑
k=0

1

n2 + k2

n∑
k=0

1

n2 + k2
=

∑
0≤k<n

1

n2 + k2
+

1

2n2
=

∫n
0

dx

n2 + x2
+

1

2n2
+ B1

1

n2 + x2
|n0 +

B2

2!

−2x

(n2 + x2)2
|n0 +

+ O(n−5) =
π

4n
+

3

4n2
−

1

24n2
+O(n−5)

A8 O(n−5)
n∑

k=0

1

n2 + 2k2
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n∑
k=0

1

n2 + 2k2
=

∑
0≤k<n

1

n2 + 2k2
+

1

3n2
=

∫n
0

dx

n2 + 2x2
+

1

3n2
+ B1

1

n2 + 2x2
|n0 +

B2

2!

−4x

(n2 + 2x2)2
|n0 +

+ O(n−5) =
1

n
√
2
· arctg

√
2+

2

3n2
−

1

27n3
+O(n−5)

A9 O(n−5)
n∑

k=0

1

n2 + 2k

n∑
k=0

1

n2 + 2k
=

∑
0≤k<n

1

n2 + 2k
+

1

n2 + 2n
=

∫n
0

dx

n2 + 2x
+

1

n2 + 2n
+ B1

1

n2 + 2x
|n0 +

B2

2!

−2

(n2 + 2x)2
|n0 +

+ O(n−6) =

A10 O(n−2)
eHn+1

eHn+1 = eHn+
1

n+1

Hn = lnn+ γ+
1

2n
−

1

12n2
+O(n−4);

1

n+ 1
=

1

n
−

1

n2
+O(n−3)

eHn+1 = e
lnn+γ+ 1

2n
− 1

12n2+O(n−4)+ 1
n
− 1

n2+O(n−3)
= n · eγ · e

3
2n · e

−13

12n2 · eO(n−3)

= n · eγ ·
[
1+

3

2n
+

9

8n2
+O(n−3

]
·
[
1−

13

12n2
+O(n−4)

]
·
[
1+O(n−3)

]
= eγ ·

[
n+

3

2
−

1

24n
+O(n−2)

]
A11 Odhadnite s presnost’ou O(n−3)

Sn =
∑

0≤k≤n

1

n2 + 2k+ 1
=

1

n2
·
∑

0≤k≤n

1

1+ 2k+1
n2

=
1

n2

∑
0≤k≤n

[
1−

2k+ 1

n2
+O(n−2)

]
=

=
n+ 1

n2
−

(n+ 1)2

n4
+O(n−3) =

1

n
+O(n−3).

A12 Odhadnite s presnost’ou O(n−3)

(n− 2)! =
n!

n(n− 1)
=

√
2πn

n(n− 1)

(n
e

)n(
1+

1

12n
+

1

288n2
+O(n−3)

)
1

n(n− 1)
=

1

n2
·
(
1+

1

n
+

1

n2
+O(n−3)

)
.

(n− 2)! =

√
2πn

n2

(n
e

)n(
1+

13

12n
+

313

288n2
+O(n−3)

)

A13 Odhadnite s presnost’ou O(n−3)(
n+ a

n+ b

)n+c

,

kde a, b, c ∈ Z.
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10 Nezaradené

generujuce funkcie pre Fibonacciho cisla

Fn ⇔ z

1− z− z2
(1)

F2n ⇔ z

1− 3z+ z2
(2)

F3n ⇔ 2z

1− 4z− z2
(3)

F4n ⇔ 3z

1− 7z+ z2
(4)

F5n ⇔ 5z

1− 11z− z2
(5)

F6n ⇔ 8z

1− 18z+ z2
(6)

F7n ⇔ 13z

1− 29z− z2
(7)

F8n ⇔ 21z

1− 47z+ z2
(8)

F9n ⇔ 34z

1− 76z− z2
(9)

F10n ⇔ 55z

1− 123 ∗ z+ z2
(10)

F11n ⇔ 89z

1− 199z− z2
(11)

F12n ⇔ 144z

1− 322z+ z2
(12)

Fmn ⇔ Fm · z
1− an · z+ (−1)m · z2

(13)
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