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Kapitola 1
Uvod

The fundamental problem of communication is that of reproducing at one
point either exactly or approximately a message selected at another point.

(Claude Shannon, 1948)

Komunikacia (viymena informacie medzi dvoma alebo viacerymi ziucastnenymi stra-
nami) je nutnym predpokladom existencie a vyvoja akéhokol'vek systému, ktorého casti
musia navzajom spolupracovat pri plneni spolocnych tdloh. Aby bola moZna koordinacia
spolupracujucich ¢asti, komunikécia, ktorda medzi nimi prebieha, musi byt efektivna a
spolahliva. Efektivnost komunikacie znamenad, Ze vymena informacie musi prebehnut
vo vymedzenom c¢ase (nesmie trvat’ prili§ dlho) a s vynaloZenim ohrani¢eného usilia
(napriklad finan¢nych zdrojov, energie). Aby sme mohli komunikaciu povazovat za spo-
lahlivd, sprava sa pocas prenosu nesmie modifikovat’ tak, aby ju prijemca nedokazal
spravne interpretovat’; t.j. prijemca musi dokazat na zaklade prijatej spravy dostatocne
presne zrekonstruovat’ odvysielanu spravu. Okrem toho sa na komunikaciu ¢asto kla-
die aj tretia poziadavka—bezpeénost.! Bezpeénost komunikacie je predmetom zaujmu
discipliny nazyvanej informacna bezpecnost’ a v tejto praci sa nou nebudeme zaoberat’.

Poziadavky na efektivnost’ a spolahlivost’ komunikéacie sd uz na prvy pohlad v pria-
mom protiklade (ndklady na prenos informaécie a vykon vysielaca) a tak byva Casto
problém n4ajst’ pre komunika¢ny systém nejaké uspokojivé rieSenie. Este v nedavnej mi-
nulosti sa kompromis medzi efektivnostou a spolahlivostou komunikacie riesil (a cel-
kom dspesne) empiricky. V roku 1948 vysiel ¢lanok Claude Shannona A Mathematical
Theory of Communication, ktory polozil zaklady dvoch matematickych teérii—tedrie in-
formacie a tedrie kédovania. Tieto teorie pomohli exaktne sformulovat zname problémy
efektivnosti a spolahlivosti komunikacie a vytvorit ramec pre ich riesenie. Teéria in-
formacie skima ohranic¢enia na prenos informadcie a teéria kédovania sa usiluje najst’

'Bezpeénost komunikdcie ma viacero aspektov, z ktorych najdélezitejsie st dévernost, integrita a
autentickost’ prenasanej informacie. Bezpe¢nost’ komunikécie sa zaist'uje pomocou rozli¢nych prostriedkov
(kryptologickych, technickych, organiza¢nych, pravnych a pod.).
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taky sposob zapisu (kédovanie) informacie, ktory by umoznil dosiahnut’ hranice stano-
vené tedériou informacie. Vznik a rozvoj teérie informacie a teérie kédovania bol motivo-
vany potrebou rieSenia praktickych problémov komunikécie?. Napriek tomu, Ze sa obe
tedrie vyvijali ako matematické tedrie (tedéria informacie vyuziva najmé analytické a
pravdepodobnostné metody, kym tedria kédovania pouziva algebraické metody), neod-
trhli sa od problémov realnej komunikacie. Najmé komunikacia s kozmickymi sondami
prinasala trvalé podnety pre hI'adanie efektivnych samoopravnych kédov. V sicasnosti
zaziva aplikacny boom najmé tedria kédovania. Postupujica informatizacia spolo¢nosti
prinasa digitalizaciu informacie; elektronické dokumenty nahradzaju papierové, digi-
talizuje sa telefonicka komunikacia, rozhlasové a televizne vysielanie, analégovy zapis
zvuku, obrazu a videa je rychle nahradzovany digitalnym. R6ézne aplikacie vyuzivajice
digitalne zapisanu informaciu kladu Coraz narocnejSie poziadavky na spolahlivost a
efektivnost’ komunikacie. (Napriklad digitalny zapis filmov na DVD si vyzaduje zapis
velkého mnozstva informéacie vo forme, ktora umozni on-line dekédovanie a je zaroven
dostatocne odolna voci chybam.) Pouzivatelia videa, MP3 prehravacov, mobilnych telef6-
nov, ani laicki pouzivatelia informac¢nych a komunikac¢nych systémov nepotrebuju $tu-
dovat tedriu kédovania, ani tedériu informacie na to, aby dokazali rozlicné informacné
a komunikaéné zariadenia uspesSne pouzivat. V inej situdcii su informatici, ktori budu
pracovat’ s rozsiahlymi tidajmi a budud potrebovat zvolit’ na ich spracovanie ¢o najefek-
tivnejsie metédy. Dokonca aj v pripade, ked budu mat k dispozicii hotové programy,
budu potrebovat aspon zdkladné znalosti teérie informadcie a teérie kédovania na to, aby
dokazali posudit’, ¢i si dané programy vhodné na spracovanie ich ddajov a ak nie, ¢i
vobec existuju efektivne metddy riesenia.

Od uverejnenia Shannonovho ¢lanku vyslo mnozstvo dobrych knih z teérie kédovania
(a samozrejme aj tedrie informécie). Viacero z nich je dostupnych na Internete. Na In-
ternete mozno n4jst’ aj univerzitné prednasky, informacie o Standardoch, sposoboch ké-
dovania rozliénych druhov informacie aj najnovsie vedecké vysledky tedrie kédovania
a teorie informacie. S vynimkou elementarnych ucebnych textov si vSak uvedené in-
formacie od citatel'a vyZzaduju aspon zakladné poznatky, ktorych ziskanie samostatnym
studiom nemusi byt ani jednoduché, ani efektivne. V slovenskej odbornej literatare bola
teérii kédovania venovand jedna kapitola v Jablonského knihe Uvod do diskrétnej ma-
tematiky z roku 1982 a Adamkova Teorie kédovani, ktora vysla v roku 1988, ale ucelena
ucebnica alebo monografia z tedrie kédovania chyba. Touto knihou chceme spominanu
medzeru v slovenskej odbornej literatire zaplnit. Kniha je uréena predovSetkym uni-
verzitnym Studentom informatiky, informatikom, matematikom a vSetkym, ktori majua
zaujem o tedriu kédovania. U citatela predpokladame aspon zakladné znalosti z mate-
matickej analyzy, algebry, linearnej a teérie pravdepodobnosti v rozsahu dvodnych kur-
zov magisterského, resp. inzinierskeho stidia. Cielom knihy je oboznamit Citatela so
zakladnymi problémami, ktoré teéria kodovania riesi, metédami navrhu dobrych kédov,
efektivnnymi metédami kédovania a dekédovania informacie, ako aj hranicami, ktoré
pre konstrukciu kédov vyplyvaju z teérie informacie. Prestudovanie tejto knihy by mu
mohlo pomoéct vyuzivat vysledky teérie kédovania na riesenie vlastnych problémov su-
visiacich s kédovanim informacie. Ak sme u ¢itatel'a vzbudili zaujem o samotnu tedriu
kédovania, v zavere knihy mu odporiuc¢ame literatiru pre dalsie Stidium. Rozsah sucas-

%Claude Shannon a Richard Hamming, ktory rozpracoval zdklady teérie kédovania, pracovali v tom éase
v American Telephone and Telegraph’s Bell Laboratories



ného poznania v teérii kédovania vyzaduje prijat rozhodnutie, ktorymi ¢astami teérie
kédovania sa v knihe zaoberat nebudeme. Rozhodli sme sa obetovat’ teoretickejsie casti,
ktoré sa bezprostredne nedaju pouzit’ na konstrukciu kédov, resp. na posudzovanie ich
vlastnosti. Citatela, ktorému by tieto casti chybali, odkazujeme na literatiru uvedenu v
zozname, resp. odporucania pre dalsie stidium uvedené v zaverecnej kapitole.

Tato kniha vznikla na zaklade prednasok z tedrie kodovania, ktoré sme na Fakulte
matematiky, fyziky a informatiky Univerzity Komenského prednéasali pre Studentov in-
formatiky od polovice 80-tych rokov. P6vodne sme vychadzali z klasickych prac [12], [3],
resp. [6] a prednaska bola koncipovana viac teoreticky ako aplika¢ne. Vzhladom na za-
meranie posluchdcéstva, medzi ktorym prevladali informatici (a ¢asovym obmedzeniam)
sa postupne tazisko prednasky presunulo od matematickej tedrie k algoritmom. Inspi-
raciu sme nasli v Blahutovej knihe [2], ktory nielen nasiel rozumny kompromis medzi
nevyhnutnou, pomerne abstraktnou tedriou a efektivnymi algoritmami, ale dokazal tiato
naroc¢nu problematiku podat’ vel'mi pristupnym spésobom. Z tejto knihy sme intenzivne
cerpali podnety pre prednasku aj pre tato knihu. Lintova kniha [15] nam poskytla in-
formacie o aktualnych teoretickych vysledkoch, prehfadny dokaz Shannonovej vety a
zaujimavy pohlad na vzt'ah medzi technickymi prostriedkami a samoopravnymi kédmi
pri zaisteni spolahlivosti komunikacie. Pozreli sme si mnozstvo prednasok z tedrie ko-
dovania na Spi¢kovych svetovych univerzitach; za vSetkych spomenieme najmi meto-
dicky pekne spracované ucebné texty J.I.Halla, [7] z Michigen State University a vel'mi
obsazné prednasky Mahdu Sudana z MIT. Vel'mi in§pirativne boli Shannonovské pred-
nasky Roberta J. McEliecea z Caltechu o dlohe samoopravnych kédov pri kozmickom
vyskume. Teéria kédovania a tedria informacie sa od svojho vzniku uberali vlastnymi
cestami. Hamming [3] ukazal na suvislosti vysledkov oboch teérii; v podobnom duchu, s
aktualnym obsahom a Sir§im zaberom je napisana kniha [11]. Tito a d’alsi kolegovia, ma-
tematici a inzinieri pracujuci v tedrii kédovania prispeli k rozvoju nasho poznania hibky
a krasy tejto teérie a vyznamu jej aplikacii, za ¢o im patri nasa uprimna vdaka. Daku-
jeme aj tvorcom programu Maple, vd’aka ktorému sme mohli do knihy zaradit’ viacero
prikladov, ktorych vypracovanie presiahlo mozZnosti ruénych vypoctov; tvorcom progra-
mov TEXa IXTEX, pomocou ktorych sme mali moznost’ upravit’ podla vlastnych predstav
grafickd podobu tejto knihy.

Pocas praci na knihe sa jej povodné zameranie menilo a postupne presiahlo aj rozsah
zakladnej prednasky z tedrie kédovania. Snazili sme sa preto o taky vyklad problema-
tiky, ktory by umoznil pouzit’ ¢asti knihy ako ucebné texty pre rozlicné kurzy. Niektoré
z nich uvadzame na nasledujicich schémach

TO DO

Pracovné verzie knihy sluzili ako studijné texty pre tuto prednasku. Vdaka tomu
sme dostali mnozZstvo pripomienok, upozorneni na existujice chyby i navrhov na dopl-
nenie a prepracovanie niektorych casti. Za vSetky pripomienky a namety, ktoré prispeli
k zlepSeniu obsahu i formy prezentacie uprimne dakujeme. Osobitne by sme chceli po-
d’akovat’ Broni Brejovej a Tomasovi Vinarovi za prispevok k Reed Mullerovym kédom,
Janovi Mazakovi a Edite Rollovej za podrobné errata a Monike Steinovej za spracovanie
prikladu o nebinarnych BCH kédoch.

V aktualnej verzii 2.0. si opravené tlacové a obsahové chyby, ktoré nasla Edita Rol-
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lova, v porovnani s predchdadzajicou verziou je doplnena c¢ast’ Linearna algebra. Nie su
zatial opravené chyby v priklade o ternarnom BCH kéde, ani pripomienky Studentov k
vykladu Berlekampovho-Masseyovho algoritmu.

Daniel Olejar a Martin Stanek



Poznamka. Poznamka. Tento text je pracovnou verziou knihy z teérie kédovania. Je
urceny ako studijny text pre posluchacov informatiky na Univerzite Komenského v Bra-
tislave. Akékol'vek iné pouzitie si vyzaduje pisomny suhlas autorov.

(C) D.Olejar a M. Stanek, 2006.
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Kapitola 2
Zakladné pojmy a oznacenia

Mnohé pojmy teérie kédovania sa stali sicastou bezného jazyka a 'udia ich ¢asto pouzi-
vajua bez toho, aby si uvedomovali ich presny vyznam. V beznej komunikacii to natolko
neprekaza, ale pri odbornom vyklade by rozliéna interpretacia zakladnych pojmov mohla
viest’ k nedorozumeniam. Aby sme sa v dalSom vyklade vyhli zbytocnym nedorozume-
niam, vybudujeme exaktne potrebny pojmovy aparat.

2.1 Abecedy, slova a jazyky

Abeceda je T'ubovolna koneéna neprazdna mnozZina. Prvky abecedy budeme nazyvat
znakmi alebo symbolmi. Abecedu budeme oznacovat’ symbolom X; ak bude potrebné roz-
lisovat’ rozlicné abecedy, budeme symbol X~ indexovat (X;,X,,...). Lubovolna kone¢na
postupnost’ znakov z abecedy L sa nazyva slovom nad abecedou . Ak nebude podstatné
o aku abecedu ide alebo z kontextu bude zname, o ktoru abecedu sa jedna, budeme kvoli
struénosti slova nad abecedou X vynechavat. Zjednodusime aj zapisovanie slov; symboly
v postupnosti nebudeme oddelovat’ ¢iarkami a slovo (napr.) a, b, e, ¢, e, d, a budeme zapi-
sovat’ v tvare, ako sa slova v textoch Standardne zapisuju; t.j. abeceda. Nech je w slovo
nad abecedou £, potom podet znakov slova w nazveme dizkou slova w. Dizku slova w
budeme oznacovat’ symbolom 1(w). Tak napriklad 1(slovo) = 5, l(abeceda) =7, 1(a) = 1.
Postupnost’ znakov nad abecedou X moze byt aj prazdna. Takato postupnost sa nazyva
prdzdnym slovom a oznacuje sa symbolom ¢. Pre dizku prazdneho slova plati 1(¢) = 0.
Teraz definujeme operacie nad slovami, pomocou ktorych bude mozné zo znamych slov
vytvarat nové slova. Nech sa u,v dve slova nad abecedou X; u=a;...a,; v=by...bp.
Zretazenim slov u,v je slovo w = uwv = aj...anb;...b;, nad abecedou X. (Je zrejmé,
Ze operacia zret'azovania slov je asociativna, ale vo vSeobecnosti nie je komutativna;
prazdne slovo ¢ je obojstrannym neutralnym prvkom vzhladom na operaciu zret'azenia
slov: pre 'ubovol'né slovo w plati we = ew = w). Slovo mozno zret’azit’ aj so sebou samym,
napr. Ul = aj...dndj ... a,. Pre Fubovolné slovo w a F'ubovolné ¢islo k € A/ definujeme:

7
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1. wl =g,

2. Wkt = Wk,

Nech u = qa;...ay je 'ubovolné slovo, potom stvisli podpostupnost z = a;ai 1...aix_1;
1 < 1i,i+k < nnazveme podslovom slova u. Ak 0 < k < n, slovo z nazveme vlastnym pods-
lovom slova u. Slova u a ¢ su trividlnymi podslovami slova u a v kédovani sa nimi zvlast
zaoberat’ nebudeme. Zato vsak v teérii kédovania zohravaju dolezitu tlohu podslova,
ktoré su zaciatkom alebo koncom nejakého slova. Zavedieme pre ne $pecidlne pomeno-
vania. Nech u = q;...a, je I'ubovolné slovo, slovo z = a;...qax, 0 < k < n nazveme
pociatoénym podslovom (prefixom) slova u a slovo x = a;ai11...a,; 1 <1i=mn nazveme
koncovym podslovom (sufixom) slova u. Znaky v slove mozno aj preusporiadat’. Dole-
Zitym pripadom preusporiadania znakov je otocCenie slova: zrkadlovym obrazom slova

U =aj...a, nazveme slovou® = a,...aqa.

Slova mozeme zoskupovat do mnozin. Takéto mnoziny slov budeme nazyvat jazykmi.
Presnejsie, 'ubovolni mnozinu slov nad abecedou X nazveme jazykom nad abecedou
Y. KedZe jazyky st mnoziny slov, mozno z existujdcich jazykov vytvarat nové jazyky
pomocou mnoZinovych operacii, ako su zjednotenie, doplnok, rozdiel, prienik, symetricka
diferencia mnozin a pripadne iné. Pre slova sme zaviedli operaciu zretazovania (slov).
Zavedieme teraz uzitocné operacie s jazykmi, ktoré su zalozené na zret'azovani slov. Nech
su L1, £; jazyky nad abecedou X, potom £ = £1£, je jazyk nad abecedou L definovany
nasledovne: £ = {uv; u € L;,v € L;}. Jazyk mozno zretazovat so sebou samym; pre
Tubovolny jazyk £ a I'ubovolné ¢islo k € A definujeme:

1. £0={e},
2. [ = [k,

Na zaver uvedieme eSte dve operacie nad jazykmi, ktoré ndm umoznia popisat mnozinu
vSetkych moznych slov, ktoré sa daja vytvorit pomocou operacie zret'azovania jazyka.
Nech £ je Tubovolny jazyk, potom jazyky £ = (U2, L' a £* = JX, L' sa nazyvaju
kladnd, resp. nezdpornd iterdcia jazyka L'. VSimnite si, Ze abecedu £ mozno chapat
aj ako jazyk pozostavajuci zo vietkych slov dizky 1 nad abecedou £ a I* predstavuje

mnozinu vSetkych slov nad abecedou .
Tlustrujeme zavedené pojmy na prikladoch.

Priklad.

1. Binarna abeceda X; je I'ubovolna dvojprvkova mnoZina. Znaky binarnej abecedy
najcastejSie oznacujeme cislicami 0, 1; bindrnu abecedu budeme v tomto pripade
chapat ako mnozinu X; = {0, 1}.

2. Na zapis prirodzenych ¢isel vystacime s abecedou 0,1; £, ={0,1,2,3,4,5,6,7,8,9}.

3. Racionalne ¢isla mozno zapisat’ v podobe slov nad abecedou 3 =, U{"+",","."}.

4. ¥4 ={a,b,c,d,e,f,g,1,j,k,l,myn,0,p,q,1,s,t,v,w,x,y,z} je abeceda pozostavajica
z malych pismen anglickej abecedy.
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5. Abecedu L5 ={A,B,C,D,E,F,G,,],K,L, M, N, O,P,Q,R,S, T, VW, X, Y, Z} tvoria vel'ké
pismena anglickej abecedy.

6. S6="54J%s.

7' Abecedu Z7 = {0(, B)Y’ 6’ €) €) C’n) 6’8) L) K) )\’ }‘l’) V) E” O) 7-[) ('D) p) p’ O_) G) T’U) q)’ (p’X)ll)) w}
tvoria malé pismena gréckej abecedy.

8. Dalsimi uZitoénymi abecedami by mohli byt rozliéné znakové sady, napr. vietky
znaky kédov ASCII. V tedrii kédovania budeme casto pracovat’ s abecedami, kto-
rych symboly st prvkami konec¢nych poli. Tieto symboly budeme zapisovat’ pomo-
cou prirodzenych cisel; g = Z,, ={0,1,...m — 1}.

9. Slovo 2.78128 je slovom nad X3, ale nie je slovom nad abecedou X, (pretoze obsahuje
symbol ".", ktory sa v abecede L, nenachadza).

10. Zretazenim slov w; = pismeno a w; = male dostavame slova (napr. nad abecedou
Y4) wiw, = pismenomale a wyw; = malepismeno .

11. Nech je dané slovo w; = pismeno nad abecedou X, poc¢iatocné a koncové podslova
tohto slova sud uvedené v nasledujucej tabulke:

prefix sufix
€ pismeno
) ismeno
pi smeno
pis meno
pism eno
pisme no
pismen 0
pismeno 13
12. Nech je dané slovo w; = pismeno nad abecedou %4, zrkadlovy obraz slova w; je

slovo w!® = onemsip nad abecedou L.

13. Nech su £ = {ne,pre,po,vy}, £, = {mysli, hovor, pis, padni} jazyky nad abecedou
¥,. Jazyk L£1L; je uvedeny v nasledujucej tabulke:

L1/, | ne pre po vy
mysli | nemysli premysli pomysli vymysli
hovor | nehovor prehovor pohovor vyhovor
pis nepis prepis popis vypis
padni | napadni prepadni popadni vypadni

14. Uvazujme bindrnu abecedu £; = {0, 1}. Uvedieme mnoziny slov I¥ pre niekolko
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pociatotnych hodnot k:

k| zk

0| {e}

11{0,1}

21{00,01,10,11}

3 | {000,001,010,011,100,101,110,111}

4 | {0000,0001,0010,0011,0100,0101,0110,0111, 1000, 1001, 1010, 1011, 1100,

1101,1110,1111}

5 | {00000, 00001, 00010, 00011, 00100,00101,00110,00111,01000, 01001, 01010,
01011,01100,01101,01110,01111, 10000, 10001, 10010, 10011, 10100, 10101,
10110, 10111, 11000, 11001, 11010, 11011, 11100, 11101, 11110, 11111}

2.2 Udaje, informacia a komunikacia

V beznom Zivote sa pojem informacie pouziva volne a v rozliénych vyznamoch; hovori
sa o rozlicnych druhoch informaécie (obrazova, knizna, zvukova, genetickd, novinova) a
informacii sa pripisuju rozlicné atributy (overend, cerstva, aktualna, pochybna, skan-
dalézna a i.) V teérii kédovania nas nebude zaujimat poévod, vyznam ani hodnotenie
informacie; jediné ¢o pre nas bude podstatné je mnozstvo informacie. Budeme praco-
vat s udajmi a spravami, ktoré budu obsahovat nejaka informaciu, tieto idaje budeme
spracovavat a budeme sa snazit’ najst’ pre zapis informacie, ktoru udaje obsahuja formu
ktora je z hl'adiska spracovania uidajov/informacie najvhodnejsia.

V hovorovom jazyku sa pojmy informacia, sprava a uidaje chapu ako synonyma; uka-
Zeme, Ze tieto pojmy maju odliSny vyznam. Ilustrujeme rozdiel medzi pojmami udaje a
informacia na priklade. Predstavme si

. binarny ret’azec 0000000000001010,
. vyraz 0'2(01)?,

. slovné spojenie ,dvanst’ nil, jednotka, nula, jednotka, nula®,

1
2
3
4. 10,
5. A,
6

. 000A.

Vo vsetkych pripadoch ide o jednoznacné urcenie tej istej binarnej postupnosti diiky
16; v prvom pripade je popisom explicitné vymenovanie ¢lenov postupnosti, v druhom
jej zapis pomocou regularneho vyrazu, v tretom slovny popis vo §tvrtom vyjadrenie ci-
selnej hodnoty binarneho ¢isla v desiatkovej sustave (predpokladame, Ze informacia o
dizke slova je znama), v piatom ide o hexadecimalny zapis toho istého ¢isla (s vyne-
chanim pociatoénych nil) a napokon posledny vyraz je hexadecimalny zapis bindrneho
retazca, vratane prvych troch nulovych hexadecimalnych cislic. VSetky popisy maju spo-
loéné to, Ze umoZiiuju v mnozine vietkych binarnych retazcov (v nasom pripade dizky
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16) jednoznaéne identifikovat dany retazec; t.j. obsahuji rovnakd informaciu. Udaje
teda predstavuja zaznam informacie; informdcia je obsahom udajov. Niekedy sa pojem
informacia spaja aj so sémantikou (vyznamom) udajov, ale toto spojenie chapanie infor-
macie komplikuje, pretoZze do pojmu informacia zavadza subjektivny aspekt (toho, kto
udaje interpretuje a kontext). Preto sa budeme pridrziavat’ vyssie uvedeného chapania
informécie ako obsahu tdajov.! Pojem sprdva sa zvykne pouzivat na oznacenie ddajov,
ktoré maju isty format a st prenasané z jedného miesta na druhé. Okrem prenosu tuda-
jov v priestore sa udaje Casto prenasaju aj v Case: zapiSu sa na nejaké médium a po
case sa z neho citaju. Pod komunikdciou budeme rozumiet’ ¢innost’ dvoch alebo viace-
rych entit (i¢astnikov komunikacie), ktora pozostava z prenosu udajov/sprav od jedného
ucastnika (odosielatela) k druhému/inym (prijemca/prijemcovia). Existuje mnoho spo-
sobov komunikacie, ktoré zavisia tak od pouzitych komunikaénych prostriedkov (posta,
telefon, telegraf, televizia, rozhlas, a i.), typu udajov, ktoré sa pri komunikacii prenasaja
aj ucelu komunikacie. Nebudeme ich rozoberat’, namiesto toho zavedieme pomerne vse-
obecny model komunikaéného systému, popiSeme tlohu jeho jednotlivych subsystémov
a ukazeme, aké dlohy sa musia pri komunikacii riesit. Uvedeny model pouzijeme tak na
popis prenosu udajov v priestore, ako aj v case.

Na obrazku 2.1 je uvedeny Shannonov model komunikaéného systému. Hoci je tento
model vel'mi v§eobecny, hodi sa na popis mnohych komunikaénych systémov a pre d’alsie
(napriklad komunika¢ny systém so spitnou viazbou) méze Shannonov model posluzit
ako zaklad, ktory sa da vhodne upravit. Podrobnejsi model komunika¢ného systému,
odvodeny zo Shannonovho modelu je uvedeny na obrazku 2.2

prijaty
sprava signal signal sprava
zdroj L , N .
. . . > vysielaé [~ kanal [~ prijima¢ [~ prijemca
informacie

zdroj
Sumu

Obr. 2.1: Shannonov model komunikaéného systému

Zdroj informacie/adajov. Aby sme sa nemuseli zaoberat’ tym, odkial idaje (informa-
cia) pochadzaju, budeme predpokladat’, Ze existuje nejaky zdroj informdcie (idajov), S
(Source). Zdroju prislicha nejaka abeceda, s, ktorti budeme nazyvat zdrojovou abece-
dou, alebo abecedou zdroja. Dalej s budeme predpokladat, ze zdroj S generuje postup-
nost’ znakov xi, Xi41,...; Xi+j € Ls; napriklad tak Ze v diskrétnych ¢asovych okamihoch
(taktoch) sa na vystupe zdroja budu objavovat’ symboly zo zdrojovej abecedy. Postupnost’
znakov zdrojovej abecedy mozeme spracovavat po znakoch, alebo rozdelit’ na slova ko-
necnej diiky. Bez ujmy na vSeobecnosti méZzeme predpokladat’, Ze tidaje, ktoré budeme

1Zskladné poznatky o merani mnozstva informacie v tidajoch st uvedené v kapitole 16
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spracovavat, majui formu postupnosti slovZ nad abecedou Zs.

Koéder K; - kddovanie zdrojovych udajov. Forma, v ktorej si zapisané zdrojové
udaje, nemusi byt vhodna pre d’asie spracovanie, a preto je postupnost’ slov vytvorena
zdrojom pred d’al§im spracovanim zakédovana. Toto kodovanie sa nazyva kédovanie
zdrojovej informdcie, alebo kédovanie zdroja a realizuje ho kéder K;. Vysledkom kédova-
nia zdrojovej informacie je postupnost’ symbolov kédovej abecedy Zc, ktori budeme na-
zyvat sprdvou. Ked'ze pévodnu informaciu ziskavame priamo zo zdroja, kédovanie zdroja
nemusi rieSit’ ochranu udajov pred pripadnymi chybami, ale plni int tlohu—zaist'uje
dosiahnutie efektivnosti zapisu zdrojovej informacie. Vysledkom kédovania zdrojovych
udajov je (v idedlnom pripade) najkrat$ia sprava nad kédovou abecedou, na zaklade
ktorej mozno v plnom rozsahu zrekonstruovat' zdrojové tidaje v povodnej podobe. PozZia-
davka na efektivnost’ kédovania spravy sa da vyjadrit’ tak, Ze vo vyslednej (kédovanej)
sprave sa l'ubovol'na k-tica znakov kédovej abecedy bude vyskytovat s rovnakou pravde-
podobnostou?®.

- dekéder dekéder demodu- e p
prijemca D, D, lator prijimac o
e

n

0

s

0

Sum v

y

k

a

n

a

zdroj S kéder K; kéder K; modulétor vysielac¢ 1

Obr. 2.2: ZovSeobecneny model komunikac¢ného systému

Na tomto mieste sa na chvilu zastavime. Shannonov model komunika¢ného systému
predpoklada, Ze v idedalnom pripade sa prijemcovi podari zrekonstruovat spravu v pé-
vodnom tvare. Aj ked sa v realnych systémoch pouziva kédovanie zdroja, ktoré realizuje
tzv. bezstratovi kompresiu (data compaction), idaje generované zdrojom castokrat ob-
sahuju informaciu, ktord prijemca nedokaze vyuzit. Bezstratova kompresia takychto
udajov by viedla ku spravam, ktoré by boli zbyto¢ne rozsiahle. Ak dokdazeme urcit’, ktora
informacia obsiahnuta v zdrojovych ddajoch je podstatna a ktora nie, méZeme na ko-
dovanie zdrojovych udajov pouzit efektivnejsie kédovanie, zalozené na odfiltrovani tak
redundancie, ako aj nepodstatnej informacie obsiahnutej v zdrojovych tdajoch. Takéto
kédovanie zdroja, pri ktorom dochadza k istej strate informéacie sa nazyva (kompresia
so stratou informdcie, data compression). Prikladom moéze byt kédovanie hudby, ktoré
vyuziva skutoénost’, Ze uidaje obsahuju informaciu ktoru prijemca nedokaze vyuzit’ (ne-
pocutelné zvuky); tato informacia sa pri kédovani zdroja jednoducho odfiltruje a tym

2y krajnom pripade slov dizky 1, teda znakov zdrojovej abecedy

3Zmyslom kédovania zdroja je odstranit’ redundanciu (nadbytoénost) pévodného zapisu. Poziadavka na
rovnaku pravdepodobnost’ vyskytu vsetkych k-tic kédovej abecedy znamend, zZe v kédovanej sprave uz ne-
bude mozné objavit’ nejaku zakonitost, ktora by sa dala vyuzit na d'alsie zefektivnenie zapisu.
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zvysi efektivnost’ zapisu (porovnajte nejakt hudobnu skladbu zapisani na audio CD a
zapis tej istej skladby vo formate MP3, prip. inych). Na druhej strane mechanické pouzi-
tie kompresie so stratou informacie nebude asi pouzite'né pri spracovavani exe suborov
(hoci inteligentna revizia zdrojovych textov tych istych programov by nepochybne odha-
lila moznosti optimalizacie textu.)

Sprava Kédovanu spravu rozdelime na bloky vhodne;j diZky k. (O vybere k budeme ho-
vorit neskor.) Pripominame, Ze ak bol kéder K; dostatotne kvalitny a kédovan4 sprava
dostatocne dlha, vSetky slova diiky k by sa v nej mali vyskytovat s rovnakymi pravde-
podobnost’ami.

Koder K; Na rozdiel od kédovania zdroja, kde nebolo treba ratat’ so Sumom a dlohou ké-
dera K; bolo redukovat’ redundanciu zdrojovych ddajov, spravu budeme coskoro posielat
cez komunikaény kanél, na ktory posobi um. Ulohou druhého kédera je transformovat
slova dfiky k nad kédovou abecedou X na slova diiky n (kvoli jednoduchosti predpokla-
dajme, Ze nad tou istou kédovou abecedou X ) tak, aby sa len mierne zvysila redundan-
cia a prijemca bol schopny odhalit/opravit’ chyby, ktoré vznikni pri prenose prenosovym
kanalom. Najprv budeme uvazovat’ kéder bez paméite. Tento kéder realizuje injektivne
zobrazenie

ENC: I — X2,

Koédery bez pamite sa pouzivaju na kédovanie pomocou blokovych kédov a vyznacuju
sa tym, Ze nezohladnuju Ziadne vzt'ahy medzi k-ticami vstupnych tudajov; to isté slovo
(diiky k) sa zakazdym zobrazi na to isté slovo (diiky n). Existuju aj kédery s paméitou,
ktoré pri kédovani znaku (zvacsa kéduju znak po znaku) zohladnuju aj predchadzajice
symboly. Tieto kédery sa pouzivaja pri tzv. konvoluénych kédoch.

Modulator Spravy sa prenasaju z jedného miesta na druhé pomocou fyzikalnych veli-
¢in, ktoré sa dokazu $irit’ cez vhodné prostredie. Fyzikdlna reprezentacia spravy sa na-
zyva signal. (My budeme pomocou jedného signalu reprezentovat mensie casti spravy,
napriklad slova, alebo znaky kédovej abecedy.) Zariadenie, ktoré transformuje fyzikalnu
veli¢inu tak, aby predstavovala prislusny signal, sa nazyva moduldtor. Predstavme si
napriklad radiova vlnu so sinusovym priebehom a amplitidou 1 a binarnu kédovua abe-
cedu £ = {0, 1}. Symbolu 0 priradime hodnotu —1 a symbolu 1 hodnotu +1. Postupnost’
0,0,1,1,0,1,0,1 bude reprezentovana signalom, ktorého priebeh je uvedeny na odrazku
2.3. Pre zaujimavost uvedieme aj hodnoty signalov reprezentujuicich jednotlivé bity:

—0.9479054106 —0.9450567393  0.9450567393  0.9479054110
—0.9180252682  0.9222918778 —0.9222918783 0.9180252668

Vysielac je dalsim prvkom komunika¢ného systému. Jeho tlohou je generovat signaly
dostatocne silné na to, aby prekonali cestu k prijemcovi.

Prenosovy kanal Signaly sa mozu $irit’ v ré6znorodych prostrediach; napriklad kozmic-
kym priestorom, po kovovom kabli, optickom vlakne a pod. Médium umoznujice prenos
signalov budeme nazyvat prenosovym kandlom. Predpokladame, Ze prenosovy kanal je
vystaveny vplyvom okolitého prostredia, ktoré ovplyviniujui spravy prenasané kanalom.
Faktorov, ktoré mo6zu posobit’ na prenosovy kanal je tak vela, Ze sa dost dobre neda
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Obr. 2.3: Signal

skamat’ vplyv jednotlivych faktorov, ale namiesto toho sa skimaju doésledky ich spo-
lo¢ného posobenia. Rozne rusivé faktory vplyvajice na prenosovy kanal, budeme nazy-
vat zdrojmi Sumu a vysledok ich pésobenia—Sumom . Budeme predpokladat, Ze Sum
ma podobu signalov, ktoré ovplyvnuju signaly prenasajice spravu (napriklad sa s nimi
skladajui), v dosledku ¢oho dochadza k zmenam signalov, ktoré sa v prenasanej sprave
prejavuju ako chyby troch zakladnych typov:

1. nahradenie jedného symbolu prenasanej spravy inym symbolom (kédovej abecedy);

2. zmazanim symbolu (¢o mo6Zeme chapat tak, ze symbol prendsanej spravy je nahra-
deny symbolom, ktory nepatri do kédovej abecedy);

3. vypadkom/doplnenim nového symbolu (kédovej abecedy) do prenasanej spravy (po-
rucha synchronizacie).

Sumovy signal je zobrazeny na obrazku 2.4

V tejto knihe sa budeme zaoberat kédmi, ktoré umoznia riesit’ chyby prvého a dru-
hého druhu; t.j. odhalovat’ a opravovat chyby. Poruchami synchronizacie sa nebudeme

zaoberat, Citatelovi odporicame

TO DO

Signaly prenasané prenosovym kanalom zachytava prijimacia strana pomocou priji-
maca (napriklad anténa mobilného telefénu). Abstrahujeme od transformacii signalov,
ktoré realizuje prijimac¢ a predpokladame, Ze prijaté signaly vstupuju do demodula-
tora, ktory transformuje signaly na postupnost’ znakov kédovej abecedy. Demodulator
uz v podstate robi prva korekciu chyb. V désledku pbésobenia Sumu na kandl prijaté
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Obr. 2.4: Sum

signaly nebudi mat zd’aleka idealny priebeh, obr. 2.5. Postupnost’ 0,0,1,1,0,1,0,1 je
reprezentovana postupnostou hodnét*

bit | povodny signal | prijaty signal | interpretacia
tvrda | makka
—0.9479054106 | 0.1824649004 1 ?
—0.9450567393 | —0.2506249324
0.9450567393 | 0.4439007163
0.9479054110 | 0.5558633849
—0.9180252682 | —0.5960788882
0.9222918778 1.195406403
—0.9222918783 | —1.159436952
0.9180252668 | 0.7084777992

—_ O = O = = O O
—_O - O = —-O
—_O = O = e

Ani jedna z prijatych hodnét (signdlov) nepatri do mnoziny {—1, 1}. Aby dekéder mo-
hol transformovat prijaté signaly na znaky kédovej abecedy, musi pouZit’ pruznejSie pra-
vidlo; napriklad, signaly s nezapornymi hodnotami budu reprezentovat 1 a ostatné sig-
naly budu reprezentovat kédovy znak 0. Pri pouziti tohto pravidla sa zna¢ne deformo-
vané signaly transformuji na postupnost’ 1,0,1,1,0,1,0, 1. Demodulator méze byt navr-
hnuty tak, aby zakazdym prijal rozhodnutie o interpretacii signalu (hard quantization).
To by vsak mohlo viest k nespravnej interpretacii signalov blizkych k 0 demodulato-
rom a problém (identifikaciu a opravenie chyby) by musel riesit’ dekéder. Napriek tomu,
ze pri "tvrdej"transformacii spojitého signalu na diskrétne hodnoty sa dosahuje najvys-
Sia pravdepodobnost’ spravneho priradenia, ¢asto sa pouZiva alternativne riesenia, tzv.
soft quantization. V krajnom pripade demodulator neinterpretuje zZiadne signaly ako

“tieto predstavuji hodnoty signalu v strede prislusnych intervalov.
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Obr. 2.5: Prijaty signal

kédové znaky a posunie dekéderu vypocitané ¢iselné hodnoty signalov na jednotlivych
casovych intervaloch. Tym sa prakticky celé spracovanie prijatej spravy presunie na de-
kéder, ¢o vSak zvySuje naroky na jeho vykonnost’ (zloZitost a zrejme aj cenu). Rozumné je
preto kompromisné riesenie, kedy demodulator predspracuje prijaté signaly napriklad
tak, Ze jednoznacne interpretuje tie signaly, ktorych hodnoty dostato¢ne dobre zodpove-
daju hodnotam reprezentujicim jednotlivé znaky kédovej abecedy, problematické hod-
noty signalu bude reprezentovat’ nejakym novym symbolom a tieto vysledky odovzda
dekéderu. Presnejsie, nech sy oznacuje priemernd hodnotu signalu v takte k, a a; je hod-
nota symbolu kédovej abecedy zodpovedajica signalu si. Potom pravidlo pre binarnu
kédova abecedu by mohlo vyzerat napriklad takto

1 Sk = 0.3,
ax =410 s <—-03,
7 —0.3 < s <0.3.

V nasom pripade by demodulator postupnost’ prijatych signalov interpretoval ako po-
stupnost’ 2,2,1,1,0,1,0,1. Ak pocas prenosu doslo ku chybe (nahradenie jedného znaku
kédového slova inym), informacia, ktora dostal dekéder od demodulatora by mu umoz-
nila odhadnuit najpravdepodobnejSie miesta, na ktorych mohlo dgjst’ ku chybe (v nasom
priklade sd podozrivé prvé dva symboly), ¢im by sa (ako uvidime neskor) znacne zjedno-
dusilo dekédovanie.

Dekoédery D, a Dy Hlavnou dlohou dekédera D; je ¢o najlepsie rekonstruovat’ odvysie-
lanua spravu. Predpokladajme, Ze pozname vSetky kédové slova (budeme ich oznacovat
ako uy), vSetky mozné prijaté slova v; a podmienené pravdepodobnosti p;; = p(vjhuy).
Pravdepodobnost’ p;; vyjadruje pravdepodobnost’ toho, Ze po odvysielani kédového slova
u; bolo prijaté (nejaké) slovo v;. Zakladom pre rozhodovanie dekédera D; je nasledujici
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princip dekédovania na zdklade maximdlnej pravdepodobnosti (Maximum Likelihood
Decoding, MLD):

Prijaté slovo v; dekédujeme na také kédové slovo u;, pre ktoré je podmienena
pravdepodobnost’ p(v;jlu;) maximélna.

Dekédovanie na zaklade maximalnej pravdepodobnosti vzdy dava vysledok (kédové
slovo). Takéto dekdédovanie sa nazyva uplné dekddovanie . Ako sa da ocakavat, okrem
uplného dekédovania bude existovat’ aj nejaké alternativne rieSenie, ktoré budeme na-
zyvat netplnym dekédovanim. Pri nedaplnom dekédovani mozu nastat’ dva pripady:

1. dekodder dekéduje prijaté slovo t.j. priradi prijatému slovu kédové slovo,

2. dekdder namiesto kédového slova vypiSe nejaky dohodnuty symbol (napriklad co).

Druhy pripad nastane vtedy, ked dekdder nasiel v prijatom slove chybu, ale nebol
ju schopny opravit. Takudto situdciu nemoézeme vylucit, pretoze dekdder nie je schopny
opravit’ slova, ktoré boli vyrazne modifikované. V takom pripade je lepSie poziadat o
opéatovné zaslanie informacie, ako sa pokusat opravit prijaté slovo a dekédovat ho ne-
spravne. Ani takyto pristup vsak nezarucuje, Ze dekédované slovo sa zhoduje s odvysie-
lanym kédovym slovom. Ked'Ze dekéder rozhoduje na zdklade syntaxe (napr. zoznamu
kédovych slov) a nie sémantiky prijatych sprav, ak pocas prenosu kédového slova nastala
chyba, ktora ho transformovala na iné kédové slovo, dekdder takiito chybu nedokéze
identifikovat. Preto dekéder postaveny na principe MLD bude mat’ sice najvyssiu prav-
depodobnost’ spravneho dekédovania, ale ak sa pomyli, tak je dekédovana sprava zata-
Zena chybou, ktoru je tazko odhalit’. Preto vicsina dekdderov, ktorymi sa budeme za-
oberat’, vychadza z trocha slabsieho principu, nazyvaného IMLD (Incomplete Maximum
Likelihood Decoding); netiplné dekédovanie na zdklade maximdlnej pravdepodobnosti:

Prijaté slovo v; dekédujeme bud na také kédové slovo u;, pre ktoré je podmie-
nené pravdepodobnost p(v;lu;) maximélna, alebo na symbol co; bola odhalena
chyba.

Napriek pouzitiu samoopravnych kédov nedokdzeme garantovat spravne dekédova-
nie prijatej spravy. Budeme rozliSovat dva problematické pripady: chyba dekddera (de-
coder error) nastava vtedy, ked’ dekéder nespravne dekédoval prijaté slovo; t.j. interpre-
toval ho ako iné kédové slovo, ako bolo to, ktoré bolo odvysielané. Zlyhanie dekdédera
zahrna tak chybu dekédera, ako aj ten pripad, ked dekéder odhalil chybu ale nebol ju
schopny opravit'.

Dekéder D, transformuje dekédovanu spravu do podoby, v ktorej ju moze d’alej spra-
covavat prijemca. Dobrym prikladom je dekédovanie bindrne zapisanej zvukovej infor-
macie (hudby) do poc¢dvatelnej podoby, alebo dekédovanie digitalne zapisanych filmov
na DVD.
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Vsimneme si, Ze hoci sme v modeli prenosového kandla hovorili o prenose sprav, tento
model moZzno priamo pouzit’ aj na popis uchovavania a opatovného citania udajov. Za-
znamenavanie udajov a ich opédtovné c¢itanie mozno chapat’ ako prenos informacie v case,
zatial ¢o pri prenose sprav sa jedna o prenos informécie v priestore. Jeden podstatny
rozdiel medzi prenosom udajov v Case a priestore vSak je. Ak pri prenose informacie v
priestore dojde k odhalitelnej ale neopravitel'nej chybe, prijemca ma moznost poziadat
odosielatela o opdtovné zaslatie spravy. Ak vSak dojde k poskodeniu tdajov zapisanych
na nejakom paméatovom médiu, opdtovné ¢itanie neumozni precitat’ spravne udaje. O
to dolezitejsie je pri uchovavani tidajov na paméitovych médiach ochrana ich integrity
napriklad pomocou samoopravnych kédov. Z hladiska tloh, ktoré riesi teéria kédovania
nie je rozdiel informAcie v ¢ase a priestore podstatny, a preto sa v dalSom sa stustredime
na problémy vznikajicimi pri prenose informaécie v priestore.

2.3 Kodovanie

Vratme sa k modelu komunika¢ného systému z predchadzajicej casti. Zostava vyriesSit’
problém, ako zapisovat’ spravy, ktoré generuje zdroj S v podobe postupnosti znakov nad
abecedou X pomocou kédovej abecedy ~c. Existuje viacero rieSeni tohto problému. Za-
¢neme tym najjednoduch§im—kédovanim jednotlivych znakov zdrojovej abecedy. Nech

Ys = {so,...,Sm_1} je zdrojova abeceda a Xc = {by,..., b} je kédova abeceda a nech su
Vo, - - -, Vin_1 Navzajom rozne slova nad kédovou abecedou X. Potom zobrazenie

So0 — Vo

ST — Vi

Sm—1 — Vm—1

budeme nazyvat kédovanim symbolov zdrojovej abecedy slovami nad abecedou . Mno-
zina V = {vp,...,vim_1} sa nazyva kéd a prvky mnoziny V sa nazyvaju kédovymi slo-
vami. V§imneme si, Zze kédovanie po pismenach je totalnym (vSade definovanym) zobra-
zenim a ked'Ze zdroj S generuje len postupnosti znakov nad abecedou Xg, kazda sprava
vytvorena zdrojom S sa da vyjadrit pomocou postupnosti kédovych slov kédu V. Prob-
1ém vSak vznika pri dekédovani kédovanych sprav. Predpokladajme, Ze je dana nejaka
sprava si,,...,si, nad zdrojovou abecedou a jej prislichajica kédovand sprava vyjad-
rena ako postupnost kédovych slov v;,,...,v; . Postupnost vi,,...,v;, sa vSak prenasa
po znakoch a pred dekédovanim je potrebné ju rozdelit na kédové slova. Ak sa to podari,
nie je problém dekédovat’ jednotlivé kédové slova a ziskat poévodnu spravu si,,...,si,.
Nasledujuci priklad ukazuje, ze existuju také kody, pre ktoré sa nie kazda postupnost’
kédovych symbolov da jednoznacne rozdelit’ na kédové slova.

Priklad. Abeceda zdroja Xs = {0, 1,2, 3} pozostava zo Styroch symbolov (prvych styroch
desiatkovych ¢islic) a kédova abeceda je binarna; L = {0, 1}. Kédovanie prirad’uje de-
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siatkovej Cislici jej binarny zapis:
0 —» 0 1T — 1
2 — 10 3 - 1

Uvazujme napr. binarnu postupnost’ 001011. Tato postupnost’ sa d4a interpretovat via-
cerymi sposobmi, a sice ako binarny zapis desiatkovych postupnosti 001011,00103, 00211,
0023.

Jednoznacnost dekédovania je prirodzenou poziadavkou, ktora sa kladie na kédovanie.
Nutnym predpokladom jednoznacnosti dekédovania je tzv. rozdelitelnost’ kédu.

Definicia 2.3.1. Kod V = {vg,...,vimn_1} nad abecedou Lc sa nazyva rozdelitelnym, ak
pre Pubovol’ni rovnost’ postupnosti kédovych slov

Vi« Vi :le "'ij

platil=%, i =j1,...,1 =jx.

Co vlastne vyjadruje rozdelitelnost’ kédu? Ak je kéd V rozdelitelny, znamena to, ze
Tubovolnd postupnost’ nad I bud’ méZeme rozdelit’ na postupnost’ kédovych slov jed-
noznac¢nym spodsobom, alebo ju nemézeme rozdelit’ vobec. Pre rozdelitelny kéd neméze
nastat’ taka situdcia, kedy by sme nejakud postupnost’ kédovych symbolov mohli rozdelit
na postupnost’ kédovych slov dvoma rozlicnymi spésobmi. Jednoduchym riesenim prob-
lému rozdelitelnosti st blokové alebo rovnomerné kédy. Blokovy kéd sa vyznacuje tym,
Ze vSetky jeho kédové slova maju rovnaku dizku.

Priklad. Rozsirime predchadzajuici priklad a uvedieme dva spésoby binarneho kédova-
nia desiatkovych ¢éislic—rovnomerné a nerovnomerné:

desiatkovy bindrny blokovy

Zapis Zapis kod
0 0 0000
1 1 0001
2 10 0010
3 11 0011
4 100 0100
5 101 0101
6 110 0110
7 111 0111
8 1000 1000
9 1001 1001

Dekédovanie postupnosti znakov kédovej abecedy bude v pripade blokového kédu re-
lativne jednoduché: postupnost’ sa najprv rozdeli na slova diiky rovnej dizke bloku a
potom sa (napriklad na zaklade tabulky) jednotlivym kédovym slovam priradia symboly
zdrojovej abecedy.

Priklad. Postupnost’ 100001001100100100110010 rozdelime na kédové slova:

1000 0100 1100 1001 0011 0010 a dekédujeme pomocou tabulky z predchadzjiceho pri-
kladu: 843932. VSimneme si, Ze existuju aj binarne postupnosti, ktoré sa nedaju dekdédo-
vat’, nakol'ko slova 1111,1110,1101,1100,1011, 1010 nie st kédové slova.
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S rozdelitelnost'ou vznikaju problémy pri pouziti niektorych kédov, ktoré obsahuju
slova nerovnake;j dféky; tzv. nerovnomernych koédoch. Postupnost’ kédovych symbolov v
tomto pripade nemoZno mechanicky rozdelit’ na bloky rovnakej diiky, ale je potrebné
urcit’ kédové slova. To sa v pripade nerovnomernych kédov vo vieobecnosti nemusi dat’
spravit’ (alebo neda spravit jednoznacne). Ale aj medzi nerovnomernymi kédmi exis-
tuja rozdelitelné kédy. Nakolko tieto kédy umoznuja zapisovat informaciu éastokrat
uspornejsie ako blokové kédy, pouzivaju sa najméi na (bezstratovil) kompresiu tdajov.
Podrobnejsie sa nimi budeme zaoberat’ v nasledujucich kapitolach. Vratme sa teraz ku
kédovaniu zdrojovej informacie. Zatial sme kédovali jednotlivé znaky kédovej abecedy,
teraz pojem kédovania znakov zdrojovej abecedy zovSeobecnime.

Definicia 2.3.2. Nech je Xs zdrojovd abeceda, nech je mnoZina U = {uy,...,um} neja-
kych slov nad zdrojovou abecedou a nech su vy, ...,vm slovd nad kédovou abecedou X.
Zobrazenie

U — Vo

u — W

um — VM

budeme nazyvat kédovanim mnoziny U kédom V.

Vsimneme si, Ze tato definicia kédovania zahina aj kédovanie znakov zdrojovej abe-
cedy; staci polozit U = Ls.

Priklad. Nech je U rovna mnozine vsetkych podmnozin mnoziny prirodzenych cisel
{0,....99}, V = {0, 11 je mnozina binarnych vektorov dlzky 100. Podmnozine {io, . .., ix}
z U je priradené slovo vj5, ktoré ma jednotkové hodnoty na poziciach iy,...,ix a nuly na
ostatnych poziciach. Je zrejmé, ze V kéduje mnozinu U/ a ze toto kédovanie je bijekciou.
Poznajtic mohutnost kédu V vieme uréit aj mohutnost mnoziny U: [t/] = 2'%°,

Stzv. charakteristicky vektor
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Kapitola 3

Nerovnomerné kody

Vhodny kéd na kédovanie daného zdroja informacie méZzeme spravidla vybrat z viace-
rych kandidatov. To ktory z nich nakoniec pouzijeme, zavisi od tcelu ktory chceme kédo-
vanim zdroja dosiahnut’. Ako sme uz spomenuli v predchadzajicej kapitole, jednou z pri-
rodzenych poziadaviek na kédovanie zdroja je, aby zakédovana sprava bola ¢o najkratsia
(a zaroven jednoznacne dekédovatelna), aby sa pri kédovani nepouzivali zbytocne dlhé
kédové slova; resp. aby kédovanie bolo efektivne!. Ak ma mnozina (znakov alebo slov)
ktoru potrebujeme kédovat mohutnost’ n, tak na rozliSenie prvkov kédovanej mnoziny
budeme potrebovat’ blokovy kéd so slovami diZky aspon [log,, n|, kde m je mohutnost’ ko-
dovej abecedy. V pripade, ked zdroj informacie generuje vSetky znaky priblizne rovnako
¢asto (a nie st zndme iné vyuziteIné vztahy medzi znakmi/slovami zdrojovych sprav)?, je
celkom efektivne kédovanie zdoja pomocou blokovych kédov. Ina situdcia vSak nastane,
ked’ sa niektoré zo symbolov zdrojovej abecedy (slov nad zdrojovou abecedou) vyskytuja
v spravach vyrazne castejSie ako iné; to znamen4, ak sa mnozstvo informacie obsiahnuté
v jednotlivych zdrojovych symboloch (slovach nad zdrojovou abecedou) vyrazne odlisuje.
V takomto pripade by kédovanie sprav pomocou nerovnomernych koédov, v ktorych by
boli castejsie sa vyskytujicim symbolom (slovam) priradené kratsie kédové slova efek-
tivnejsie®, ako pouZitie blokovych (rovnomernych) kédov.

Zakladnym predpokladom praktickej pouzitelnosti nerovnomernych kédov je rozde-
lite'nost. V tejto kapitole sa budeme zaoberat’ rozdelitelnymi nerovnomernymi kédami.
Najprv zavedieme vel'mi uzitocnu triedu efektivne dekédovatelnych nerovnomernych
kédov, tzv. prefixové kédy. Potom dokazeme Kraftovu-McMillanovu nerovnost’, ktora pred-
stavuje kritérium pre existenciu (nerovnomerného) rozdelitelného kédu s danymi diz-
kami kédovych slov. Nakoniec zavedieme pojem ceny kédu, skonstruujeme dolny odhad
ceny kédu a budeme sa zaoberat’ konstrukciami optimalnych a kvazioptimalnych ké-
dov. Kvéli zjednoduseniu vykladu budeme v priebehu tejto kapitoly predpokladat’, Ze ké-
dova abeceda je binarna a ak nebude explicitne povedané inak, budeme kédovat’ znaky
zdrojovej abecedy; to znamena spravy vytvorené zdrojom informacie budeme kédovat

1Zatial vystaéime s intuitivnym chéapanim efektivnosti kédovania, neskér ho upresnime pomocou pojmu
ceny kodu.

%jednotlivé zdrojové symboly obsahuju priblizne rovnaké mnozstvo informacie

3pre m-prvkovi kédovi abecedu a n prvkovi kédovani mnozinu bude priemerny poéet znakov kédovej
abecedy potrebny na zakédovanie jedného prvku kédovanej mnoziny nizsi ako [log, n]

23
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po znakoch.

3.1 RozdeliteIné kody

3.1.1 Prefixové kédy

Stidium nerovnomernych rozdelitelnych kédov zaéneme skimanim zakladnych vlast-
nosti prefixovych kédov. Prefixové kédy totiz predstavuju rozsiahlu triedu nerovnomer-
nych kodov s dobrymi vlastnostami (vyznacuju sa najméi rozdelitelnostou a jednodu-
chost'ou dekédovania), ktoré budeme pouzivat priamo na kédovanie zdrojovych udajov,
ale aj na konstrukciu inych kédov a pri skimani parametrov nerovnomernych kdédov.
Definujeme prefixovy kéd formalne.

Definicia 3.1.1. Kéd V = {vy,...,vim_1} sa nazyva prefixovym kédom, ak pre Pubovolné
Vi, Vj € V; 1 #j; vi nie je prefixom slova v;.

Prefixovy kod sa teda vyznacuje tym, Ze zZiadne jeho slovo nemoéze byt pociatoénym pod-
slovom iného kédového slova. Kéd z prikladu 2.3 nebol prefixovy; kédové slovo 1 bolo
prefixom kédového slova 10. ,Prefixovost“ kédu je taka silné vlastnost, Ze z nej vyplyva
rozdelitelnost’ kédu; ina¢ povedané, prefixovost’ je postacujicou podmienkou pre rozde-
liteInost’ k6du. Sformulujeme a dokdZeme toto tvrdenie formélne.

Veta 3.1.1. Nech je V = {vy,...,vin_1} (bindrny) prefixovy kod, potom je V (bindrny) roz-
delitel'ny kod.

Dokaz. Predpokladajme, Ze V je prefixovy, ale nie rozdelitelny kéd. Potom existuje
aspon jedna bindrna postupnost’, ktora je rozdelitelna na postupnost kédovych slov as-
pon dvoma rozlicnymi sposobmi. Vyberieme zo vsetkych takych binarnych postupnosti
postupnost’ B s minimalnou dizkou. Pre postupnost B teda plati :

Vi; ... Vi = \)j1 <o V-
7 toho, Ze postupnost’ f ma minimalnu dizku vyplyva, Ze vi, # vj,. V opatnom pripade
by bolo totiz mozné slovo v;, z postupnosti 3 vynechat a dostali by sme kratSiu bindrnu

postupnost’, pre ktoru by platilo:

To je vsak v spore s predpokladom o minimalne;j dizke postupnosti 3. Ak vSak v, #vj,,
potom bud’ slovo vi, je prefixom slova v;, alebo slovo vj, je prefixom slova v;,. To je zasa
v spore s predpokladom o tom, Ze kéd V je prefixovy. To znamenad, Ze postupnost’ kédo-
vych symbolov, ktora sa da rozdelit na postupnost’ kédovych slov asponn dvoma roéznymi
sposobmi neméze existovat, a teda kéd V je rozdelitelny. O
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Tvrdenie sme sice dokazali pre bindrny pripad, ale plati v§eobecne pre I'ubovolnu
kédova abecedu, ktora obsahuje aspon dva symboly. Prefixovost’ teda postacuje na to,
aby bol kéd rozdelitel'ny; prirodzenou otdazkou je, ¢i je prefixovost’ zaroven nutnym pred-
pokladom rozdelitelnosti kédu, alebo ina¢ povedané, ¢i existuju aj iné rozdelitelné kédy
okrem prefixovych. Ukazuje sa, Ze nie. Uvedieme priklad rozdelitelného kédu, ktory nie
je prefixovy.

Priklad 3.1. Kéd V = {0,01, 11} sice nie je prefixovy, ale napriek tomu to je rozdelitelny
kod.

Kéd z predchadzajiceho prikladu je tzv. sufixovy kod, ktory sa vyznacuje tym, ze Ziadne
kédové slovo nie je sufixom iného kédového slova. Vytvorili sme ho tak, Zze sme ,,otocili“
slova prefixového kédu {0, 10, 11}. Postupnost’ kédovych symbolov spravy kédovanej po-
mocou sufixového kédu budeme rozdelovat na kédové slova ,odzadu“; t.j. az vtedy, ked
mame k dispozicii celd kédovanu spravu. Prikladom takejto postupnosti, ktora sa neda
rozdelit’ na postupnost’ kédovych slov, kym sa nedocita do konca, je postupnost’

0111...1

Ak tato postupnost’ obsahuje parny pocet jednotiek (napr. 2k), da sa rozdelit’ nasledovne:
0(11)%; ak obsahuje neparny poéet jednotiek (2k + 1), tak sa rozdeli na kédové slova
nasledovne: 01(11)k.

TO DO: silne rozdelitené kédy

3.1.2 Kraftova - McMillanova nerovnost’

Aby sme ziskali ¢o najkratsi zapis spravy, snazime sa na kédovanie pouzivat kédy s krat-
kymi kédovymi slovami. Ak je mohutnost abecedy zdroja mensia alebo rovna mohut-
nosti kédovej abecedy, tak potom mozno znaky zdrojovej zbecedy kédovat’ slovami diiky
1 (znakmi kédovej abecedy). V opacnom pripade (a tych je prevazna vicsina) budeme
potrebovat’ pouzit kéd s vaésimi dizkami kédovych slov. Je zrejmé, Ze si dlzky kédovych
slov nemoézeme volit’ 'ubovolne; ked'Zze existuju len dve binarne slova diiky 1(0al)
a Styri binarne slova dizky 2 (00,01,10,11) binarne kédy s tromi slovami dizky 1 alebo
piatimi slovami diiky 2 zrejme nemodzu existovat. Ale existuje napriklad binarny kéd
so Styrmi kédovymi slovami dizok 1,2,2,2; resp. existuje rozdelitelny kéd nad abecedou
mohutnosti q > 2 s dizkami kédovych slov 1; = 1(vi); 1 = 0,...,m — 1? Na tuto otazku
dava odpoved veta 3.1.2, ktord vyslovime a dokdZeme v tejto casti. Kvoli zjednoduseniu
vykladu budeme v dalSom predpokladat, Ze kédova abeceda je bindrna a Ze zdrojova
abeceda Xs obsahuje aspon dva symboly, t.j. m > 2.

Veta 3.1.2 (Kraftova-McMillanova nerovnost). Nech si lp,... y lm—1 lubovolné nenulové
prirodzené ¢isla. Potom rozdelitelny kéd V = {vy,...,vim_1} s diZkami kédovych slov 1; =
L(vi); 1=0,...,m — 1 existuje prdve vtedy, ak plati nasledujiica nerovnost’

m—1
Z 27k <, (3.1)
i=0
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Dokaz. Najprv dokazeme, Ze podmienka je nutna. Necl/a je V ={vo,...,vin_1} Tubovol-
ny kéd. Priradime mu generujicu funkciu (enumerator dlzok kédovych slov) definovanu
nasledujicim spoésobom:

Zavedieme teraz n-nasobné zretazenie (rozsirenie) kédu V;
mn . _ ;I —
V :{Wi_,Wi—Vi_1...Vin,VijE\/,]—],...,n}

Bude nas zaujimat, aky je vzt'ah medzi vytvarajucimi funkciami kédu V a jeho rozsire-
nia, V". Kvoli lepSiemu pochopeniu si tento problém najprv ilustrujeme na jednoduchom
priklade.

Priklad 3.2. Uvazujme kéd V ={0,10, 11}. Jeho vytvdrajiica funkcia je
hv(x) =x ' +x 2+ x 2 =x""4+2x2
Dvojndsobnym zretazanim kédu V dostdvame kéd
V2 ={00,010,011,100,1010,1011,110,1110,1111}

s enumerdtorom
hyz(x) =x 2 44x 3 +4x = (x 7T+ 2x 722

Pokracovanie dokazu. To, ¢o sme videli na priklade, plati aj vo vSeobecnosti a da sa
dokazat matematickou indukciou; t.j.

m—1 n
hn (x) = (Z x“vﬂ) : (3.2)
i=0

Predpokladajme teraz, ze V = {vy,...,vin_1} je rozdelitelny kéd s dizkami kédovych
slov l; = l(vi), i =0,...,m — 1. Symbolom M; oznac¢ime pocet slov diiky 1 v rozsirenom
kéde V™ a pomocou hodnét M; zapiSeme enumerator kédu V". Oznac¢ime maximalnu
dizku slova v kéde V symbolom 1l,,,x. Potom dizka Pubovolného slova kédu V™ nepre-
siahne n - lyhax (v kéde aspon jedno slovo take;j dfiky existuje, a je to slovo, ktoré sme
dostali n-nasobnym zret’azenim slova maximalne;j diiky kédu V). To znamena, ze M; = 0
pre i > 1 - lpax a generujucu funkciu kédu V" mozeme vyjadrit nasledovne

hyn(x) = ) Mix " (3.3)
i=0

Dosadime v (3.3) namiesto premennej x hodnotu 2 a dostavame:
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N-lmax

he(2)= Y 27'M. (3.4)
i=0

Vsimneme si, ze suma v (3.4) moze obsahovat nulové ¢leny; ak totiz V neobsahuje slovo
nulovej dizky ¢, tak kazdé slovo v kéde V" bude mat dizku minimélne n - Ly, kde Ly
je minimélna dizka kédového slova kédu V. Potom My =My =My = --- = My 1 =0.
Podobne, ak by kéd V obsahoval len slova parnej diiky, tak ani kod V™ nemoéze obsaho-
vat slova neparnej dfiky. Vyuzijeme teraz skutocnost, Ze kéd V je rozdelitelny. Z toho
vyplyva, ze vSetky slova kédu V™ su roézne, a ked'ze V™" je binarny kéd, znamena to, ze
M; < 2!, V opaénom pripade by sa aspon jedna binarna postupnost diiky 1 musela dat’
poskladat’ zo slov kédu V roznymi spésobmi, ¢o je v spore s predpokladom o rozdelitel-
nosti kédu V. Na druhej strane niektoré binarne postupnosti sa nemusia dat’ poskladat’
zo slov kédu V a v tomto pripade M; < 2'. Dosadime horny odhad hodnoty M; do vztahu
(3.4) a po jednoduchych upravach dostavame:

N-lmax N-lmax

hn(2)= > 27"Mi< ) 272" =1 lpax. (3.5)
i=1 i=1

Na druhej strane, zo vztahov (3.2), (3.5) vyplyva

m—1 n
hyn(2) = (Z z—w) <N Lax- (3.6)
i=0

Ale nerovnost’ (3.6) plati pre 'ubovolné n. Ak by teda

—1
2710 — g > 1,

!

Il
o

i
tak by existovalo také ng, Ze pre vsetky n > ng by
a™ >n - lpax,

pretoze exponencialna funkcia so zakladom a > 1 rastie rychlejsie ako polynomicka. To
vSak je v spore so vztahom (3.6), a teda plati

Postacujucost’. Predpokladajme, Ze diiky kédovych slov su usporiadané vzostupne;
o<l < - <1lno <l a ze pre ne plati Kraftova-McMillanova nerovnost’. Ukazeme,
Ze je mozné zostrojit’ rozdelitelny kéd s dizkami kédovych slov 1y, ..., 1 1.

1. konstrukcia [1]. PouZijeme matematicki indukciu.

1. Vyberieme I'ubovolné binarne slovo diiky 1o ako kédové slovo vy.
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2. Predpokladame, ze sme uz vybrali slova vy, ..., v, k < m—1, dizok Loy .o vy lxg
ktoré tvoria rozdelitelny (prefixovy) kéd.

3. V mnozine binarnych vektorov diiky lx najdeme také slovo vy (diiky k), Ze zZiadne
zo slov vy, ..., v_1 nie je jeho prefixom. Ukazeme, Ze také slovo existuje. Vsetkych
binarnych slov diiky lx, ktoré maja prefix vy diiky 1o je 2%, (Prvych 1, bitov sa
zhoduje so slovom vy, ostatnych 1, — 1y bitov mozno vybrat I'ubovolnym spésobom.)

Vsetkych binarnych slov diZky Ly, ktorych prefixom je niektoré zo slov vg,..., vk 1
je
k-1
PIPARE 3.7
i=0

Teraz vyuzijeme predpoklad, Ze pre doteraz zostrojeny kéd plati Kraftova-McMillanova
nerovnost’ a zZe k < m:

3

27k <,

I
o

i

Rozdelime sumu z poslednej nerovnosti na dve casti:

=~
—_

m—1 —1
Y o=y 24y 2, (3.8)

i

3

I
=Y
Il
~

i= i

Ked’Zze Ze vsetky scitance v sume (3.8) su kladné ¢isla, vynechanim niektorych cle-
nov druhej sumy z (3.8) sa nerovnost’ zachova (existuje aj taka moznost, ze druh4
suma bude obsahovat len jediny ¢len, 27%):

k—1
Z 27l ke <, (3.9)
i=0

Vynasobime nerovnost (3.9) hodnotou 2! a upravime
k-1
PIPARETLESE (3.10)
i=0

Zo nerovnosti (3.10) vyplyva, Ze, existuje aspon jeden binarny vektor diiky 1y, kto-
rého prefixom nie je Ziadne zo slov vy, ...,vr_1. Vyberieme tento vektor ako kédové
slovo vi. Takymto sp6sobom napokon zostrojime prefixovy kéd V = {vo,...,vin_1} s
dizkami kédovych slov {ly, ..., L1}, ¢im sme dokazali tvrdenie vety.

Predchadzajuci dékaz mal skor existen¢ény ako konstruktivny charakter. Dokazeme este
raz, Zze ak plati Kraftova-McMillanova nerovnost, tak potom mozZno zostrojit’ prefixovy
kéd pozadovanych vlastnosti. Vyuzijeme na to konstrukciu Shannonovho kédu?.

2. konstrukcia [6]. Rovnako ako v predchadzajicom dokaze budeme predpokladat’, ze
dizky kédovych slov si usporiadané vzostupne; ly < l; < --- < L1 a Ze pre ne plati

4Ku kostrukeii Shannonovho kédu sa este vratime vo vete 3.3.2
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K,raftova-McMillanovva nerovnost. Zavedieme ¢isla qx, k = 0,...,m — 1 odvodené od
dlzok kédovych slov. Cisla gy definujeme nasledovne:

k—1
Q=0 qu=» 2% k=1,...,m—1. (3.11)
i=0
Z Kraftovej-McMillanovej nerovnosti vyplyva, zZe ¢isla qi; k =0,...,m — 1 spfﬁajli pod-

mienky 0 < qyx < 1. ZapiSeme teraz Cisla qy v binarnom tvare. Zo spésobu vytvarania qj
a zo skutocnosti, ze 1y < 1; < --- < 1,1, vyplyva, Ze gy sa da zapisat ako

qx = (0.by1...bry )2,
kde by ; € {0,1}. Kéd V = {vy, ..., vin_1} vytvorime potom z binarnej reprezentacie ¢isel qy

nasledujicim sposobom:

Vi = biy] . .buiqo. . .O;

L

t.j. kédové slovo v; pozostava z prvych 1; binarnych cislic nasledujicich po radovej ¢iarke
v bindrnom rozvoji ¢isla q;. Tvrdime, Ze takto zostrojeny kdd je prefixovy, a teda aj roz-
delitelny. Predpokladajme, Ze kéd V nie je prefixovy. Potom obsahuje kédové slova, z
ktorych jedno je prefixom druhého. Nech h je najmensie také ¢islo, ze pre slovo vy, exis-
tuje kédové slovo (oznacme ho symbolom v;), ktoré je jeho prefixom. Ked'Ze v; je prefixom
vn, Li < 1y, a teda aj i < h. Z toho Ze v; je prefixom vy, a zo spésobu konstrukcie kédovych
slov vyplyva, Ze v; je prefixom slov v 1,...,vn_1,vh. Ked'Ze vy, je prvé kédové slovo, ktoré
ma prefix vi, h = i+ 1. Pozrieme sa teraz na slova v;, vi.; podrobnejsie, preskimame
¢isla diy qi+1-

L
gi = O.bi,l...bi,lHO...O
1
i1
qi+1 = qi—i-z_li: O.bu...bi,11710...10...0

Lit1

Mo6Zu nastat’ dve moznosti:

1. 1l; < liy1; v tomto pripade ma slovo v; na mieste 1; znak 0 a slovo vi,; znak 1;

2. 1; = liy1. Pripo¢itanim hodnoty 2~Y ku q; sa zmeni niektora z prvych 1; éislic éisla
qi, a teda slova v; a vi;1 sa odliSujd aspon v jednom z prvych |; znakov.

To znamena, Ze v; nemoze byt prefixom slova v;, i, a teda kod V je prefixovy. O
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Dosledok 1. Pre Pubovolny rozdelitelny kéd V = {vo,...,vimn_1} existuje prefixovy koéd
W ={wp,...,Wm_1}, taky, Ze l(vi) = 1(vi), i=0,...,m—1.

Z uvedeného dosledku vyplyva, ze ak nam nezalezi na konkrétnej podobe kédovych

slov, m6Zeme rozdelitelny kéd s dizkami kédovych slov ly,...,1l, 1 nahradit prefixo-
vym kédom s tymi istymi dizkami kédovych slov; ly,...,ln 1. Tito moznost budeme
v d'alsich uvahach vyuzivat a budeme ¢asto predpokladat, Ze rozdelitelny kéd je zaro-
ven aj prefixovy kéd. Skor ako budeme pokracovat’ v skimani vlastnosti nerovnomer-
nych kédov, uvedieme priklad Shannonovho kédu, ktory sme pouzili v dokaze Kraftovej-
McMillanovej nerovnosti.
Priklad 3.3. UvaZujme nasledujiice dl%ky kédovych slov: 2,3,3,4,5,5,6,6. Ked’se 27> +
2734234274425 427542704276 = 0.65625 < 1,z vety 3.1.2 vyplyva, Ze existuje prefixovy
kéd s tymito dizkami kédovych slov. Vypoditame hodnoty qi a vyjadrime prislusné kédové
slovd.

Jo = 0.00 10 =2 Vo = 00
q1 = 0.01 =3 v; =010
qZZO.O” 12:3 VZZO”
g3 = 0.1 ].3 =4 V3 = 1000

g4 = 0.1001 ls=5 v4=10010
q5:0.10011 ].5:5 V5:10011
ge¢ = 0.101 lg=6 vg=101000
q7 =0.101001 1y =6 v; =101001

3.1.3 Uplné kédy

Koéd z prikladu 3.3 je sice prefixovy, ale ma jeden vazny nedostatok. Existuja binarne po-
stupnosti, ktoré sa nedaju rozbit’ na kédové slova. Okrem trividlnych postupnosti dizky
1 sud to napriklad postupnosti zacinajice dvojicou symbolov 11. Nema vsak zmysel po-
zadovat, aby platilo V* = B*, pretoZe to je mozné len v pripade, ak B C V. Intuitivnej
poziadavke, aby kazda binarna postupnost’ predstavovala alebo sa dala doplnit’ na po-
stupnost’ kédovych slov, vyhovuju tzv. tplné kédy.

Definicia 3.1.2. Bindrny rozdelitel'ny kéd V sa nazyva tiplnym kédom, ak pre lubovolni

bindrnu postupnost 3 € B* existuje také kédové slovo v; € V, Ze bud’ postupnost’ 3 je
prefixom slova vy, alebo slovo v; je prefixom postupnosti f3.

Priklad 3.4. Uvazujme ,blokovy kéd V = {00,01,10,11}. Ked’2e kéd V obsahuje vsetky
bindrne slovd glléky 2, spliia podmienky definicie 3.1.2 a je uplny. KaZdu bindrnu postup-
nost’ pdrnej dlZky mozno jednoznacéne rozdelit’ na postupnost’ kédovych slov.

Overovat, ¢i nejaky kod s velkym poctom kédovych slov spliia podmienky definicie
3.1.2, by nemuselo byt jednoduché. Nastastie uplnost’ kédu tuzko suvisi s Kraftovou-
McMillanovou nerovnostou a prefixovymi kédmi.

Veta 3.1.3. Bindrny rozdelitelny kod V = {vy,...,vm_1}je iplny prdve vtedy, ak je prefi-
xovy a plati

27k =1, (3.12)



3.1. ROZDELITELNE KODY 31

Dokaz. Predpokladajme, ze V = {vg,...,vn_1}je binarny prefixovy kéd, pre ktory plati
rovnost’ (3.12), pritom vSak V nie je uplny. To znamena, Ze existuje bindrna postupnost’
B € B* taka, ze ziadne kédové slovo v; € V nie je prefixom postupnosti  a postupnost’
B nie je prefixom Ziadneho kédového slova kédu V. Potom vSak moézeme zostrojit’ novy
binarny prefixovy kéd V' = V U {3}, pre ktory plati

m—1
Y 22t = 27 s, (3.13)
i=0

Ale nerovnost’ (3.13) je v spore s Kraftovou-McMillanovou nerovnostou (3.1). To zna-
mena, Ze postupnost’ 3 pozadovanych vlastnosti nemoze existovat), a teda kéd V je uplny.

Dokazeme druhu cast tvrdenia sporom. Nech je V uplny rozdeliteIny kod. Predpo-
kladajme, Ze V nie je prefixovy, alebo pre V neplati rovnost (3.12). Ked'Ze z rozdelitel-
nosti kédu V vyplyva platnost’ Kraftovej-McMillanovej nerovnosti (3.1), znamena to, Ze
pre kod V plati

m—1

Yy 2t (3.14)

i=0
Zhrnieme naSe predpoklady: kod V je uplny a plati Z?;? 27% < 1. Z dplnosti kédu V
vyplyva, Ze kazda binarna postupnost’ dlzky n > lyax, kde

1max = max{l(vi)}
vieV

musi mat’ ako prefix nejaké kédové slovo. Spocitame pocet takychto postupnosti:

m—1
Z 2l o, (8.15)
i=0

Ak by kéd V bol prefixovy, potom je kédové slovo, ktoré je prefixom nejakej binarne;j
postupnosti dlzky n dané jednoznacne. Potom by vSak platilo

m—1
> avh=2m (3.16)
i=0
a
m—1
> 2=, (3.17)
i=0

€o je v spore s predpokladom (3.14). To znamena, Ze plati Z{g] 274 < 1, kéd V je tplny
ale nie je prefixovy. Potom vSak existuji kédové slova v; # v; také, Ze (napr.) v; je pre-
fixom vj. Z tplnosti kédu V vyplyva, Ze kazd4 bindrna postupnost’ diiky n > lpax musi
zacinat nejakym kédovym slovom kédu V. Potom

m—1
DI AREAS (3.18)
i=0
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lebo postupnosti zacinajice slovom v; st uz zaratané v sume (3.18) ako postupnosti za-
¢inajuce slovom v;. Na druhej strane nemoéze platit’ nerovnost’

—_

m—
znflk o anl(vj) < 2“’ (3.19)
k=0

pretoZe to by znamenalo, Ze odstranenim slova v; z kédu V sa strati uplnost’ kédu; t.j.
potom bude existovat bindrna postupnost 3 diiky n > lmax, ktorej prefixom nie je ziad-
ne kédové slovo kédu V. Ale to znamena, Ze jej prefixom nemohlo byt odstranené slovo
vj, pretoZe v tom pripade by prefixom postupnosti 3 bolo slovo v;, a teda kéd V by nebol
uplny. To znamena, ze plati nerovnost (3.18). Platnost’ nerovnosti (3.18) je vSak v rozpore
s tvrdenim vety 3.1.2. Dostavame spor, ktory dokazuje platnost’ nasho tvrdenia. O

3.1.4 Kodové stromy

Na skimanie vlastnosti nie prili§ rozsiahlych nerovnomernych kédov je mozné vyhodne
pouzivat orientovany ohodnoteny graf, nazyvany kédovym stromom. Uvazujme oriento-
vany binarny strom 7 hibky n s hranami a vrcholmi ohodnotenymi nasledujicim spé-
sobom: najprv ohodnotime jeho hrany, pricom budeme postupovat od korena k listom;
ak z vrcholu vychadzaju dve (neohodnotené) hrany tak jednej z nich priradime hodnotu
0 a druhej hodnotu 1. Ak z vrcholu vychadza jedina (neohodnotend) hrana, priradime
jej jednu z hodnoét {0, 1}. Po ohodnoteni hran ohodnotime vrcholy binarneho stromu 7:
korenu priradime prazdne slovo ¢ a vrcholu v priradime postupnost’ bindrnych hodnot,
ktoré boli priradené hranam leziacim na ceste, spajajiicej koren s vrcholom v.> Ked'ze
T je suvisly acyklicky graf, medzi F'ubovolnymi dvoma vrcholmi v nom existuje jedina
cesta, a teda binarna postupnost’ priradena vrcholu je urcena jednoznacne. Binarny
kédovy strom 7 (V) binarneho kédu V dostaneme tak, ze z binarneho stromu 7 hibky
N > lmax, kde lpax = max, cv{l(vi)} a bindrny strom 7 je ohodnoteny spésobom uve-
denym vyssie, odstranime vSetky podstromy, ktoré neobsahuju vrchol s ohodnotenim
zodpovedajiucim niektorému kédovému slovu kédu V. Na obr. 3.1 je zobrazeny binarny
(ohodnoteny) strom hibky 2.

Binarny kédovy strom kédu V z prikladu 3.3 je zobrazeny na obr. 3.2 V§imneme si, Ze
vSetky vrcholy zodpovedajice kédovym slovam, su listy (vrcholy, z ktorych nevychadzaja
Ziadne hrany). To nie je ndhoda. Ak by nejaké slovo v; bolo prefixom iného slova v;, vrchol
vi by musel lezat’ na ceste spéjajicej koren s vrcholom vj, a teda by musel byt’ vnitornym
vrcholom kédového stromu.

Veta 3.1.4. Nech je V prefixovy kéd. Potom v kédovom strome T (V) zodpovedajii kédovym
slovdm listy.

Dokaz. Prenechavame ¢itatelovi.

Pomocou kédového stromu je mozné I'ahsie formulovat aj podmienku uplnosti kédu.
Ako sme uz ukazali, kéd V z prikladu 3.3 nie je uplny; problémy sposobuju postupnosti

5V d’alsom budeme vrchol v oznacovat’ bindrnym slovom, ktoré mu je priradené.
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Obr. 3.1: Ohodnoteny binarny strom

zacinajuce dvojicou 11. Pri skimani kédového stromu kédu V zistime, Ze z vrcholu 1
vychadza len jedna hrana, ktorej je priradena hodnota 0. Ak tito hranu odstranime a
vrchol 1 stotoznime s povodnym vrcholom 10, dostaneme kédovy strom 7 (V') prefixového
kédu V' = {00,010,011,100,1010,1011, 11000, 11001}.

Kédovy strom 7 (V') obsahuje este dva vnitorné vrcholy (11,110) stupna 1. Odstra-
nenim hran vychadzajucich z tychto vrcholov, vrcholu 110 a stotoZnenim vrcholov 11 a
1100 stromu 7 (V') dostdvame kédovy strom (Obr. 3.3) 7(V") prefixového kédu V/ =
{00,010,011, 100,1010,1011,110, 111}. Pre kéd V" plati 3, o 2" = 1. Kéd V" je tdplny.
Kazdy binarny® prefixovy kéd, ktory nie je tplny, mozno tymto spésobom transformovat
na aplny kod.

3.1.5 Automatové dekodovanie.

Vel'kou prednost’ou prefixovych kédov je to, Ze okamzite po do¢itani posledného symbolu
kédového slova dokazeme urcit’, o aké kédové slovo ide. (Pre porovnanie pripominame
sufixovy rozdelitelny kéd z prikladu 3.1, pre ktory existovali spravy, ktoré bolo mozné
dekédovat’ az po prijati posledného symbolu spravy.) Prefixové kédy sa vd’aka mozZnosti
priebezného dekdédovania spravy nazyvaju aj okamzitymi kédmi alebo automatovymi
kédmi. Ten druhy nazov ziskali vdaka tomu, Ze na ich dekédovanie mozno pouzit ko-
nec¢ny automat.

Definicia 3.1.3. Konecny automat je usporiadand Sestica A = (Zi,%,,Q,D,V¥, q), kde
L; je vstupnd, X, vystupnd abeceda, Q je koneénd mnoZina stavov, ® : L; x Q — Q je

6 Ako uvidime neskér, mnohé z vlastnosti nerovnomernych kédov nezavisia od poétu znakov kédovej abe-
cedy. Transformacia prefixového kédu na uplny prefixovy kod, ktord sme popisali vySsie, podstatne vyuziva
to, Ze kdédova abeceda je binarna; a ned4 sa priamo zovSeobecnit’ na pripad kédovej abecedy s vaésim poctom
kédovych symbolov.
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Obr. 3.2: Kédovy strom Shannonovho kédu

Obr. 3.3: Kédovy strom skrateného Shannonovho kédu
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prechodovd funkcia, ¥ : L; x Q — L, je vystupnd funkcia a q je po¢iatocny stav konec¢ného
automatu A.

Konecny automat si moéZeme predstavit’ ako zariadenie so vstupnou a vystupnou pas-
kou, riadiacou jednotkou, Citacou a zapisovacou hlavou, obr. 3.4. Vstupna paska je roz-
delena na policka, v kazdom policku je zapisany symbol vstupnej abecedy. Podobne je
vystupna paska rozdelena na policka a v policku je zapisany jeden zo symbolov vystup-
nej abecedy, alebo je policko prazdne. Citacia hlava sa pohybuje po vstupnej paske zlava
doprava, v kazdom kroku ¢ita jeden symbol z policka vstupnej pasky a po precitani sa
presunie o jedno policko doprava. Zapisovacia hlava v kazdom kroku zapisuje na policko
vystupnej pasky jeden symbol vystupnej abecedy a posunie sa o jedno policko doprava,
alebo nezapisSe nic a zostava na tom istom policku aj v nasledujicom kroku. Automat za-
¢ina pracovat v pociatotnom stave q a skonci, ked precita cely vstup zo vstupnej pasky.

Pri dekédovani binarnych prefixovych kédov pomocou konec¢ného automatu bude
vstupna abeceda X; = {0, 1}, vystupna abeceda sa bude zhodovat so zdrojovou abecedou;
Yo = Xs a prechodovi a vystupnua funkciu definujeme pomocou tabulky. Ilustrujeme
dekddovanie binarnarneho prefixového kédu na priklade.

Priklad 3.5. UvaZujme kéd V" z predchddzajiiceho prikladu. Predpokladdme, Ze kédové
slovd sluzia na zdpis prvych pismen anglickej abecedy:

al| 00 || e | 1010
b|010 | f| 1011
c|011 | g | 110
d| 100 | h | 111

Vstupnd abeceda konecéného (dekodovacieho) automatu A je bindrna: ; = {0, 1}, vystupnd
abeceda L, ={a,b,c,d,e,f, g, h,A}, mnoZina stavov Q ={q, qo, q1, 901, 910, 411, 101} @ pPre-
chodovd a vystupnd funkcia su uvedené v tabul’ke. PoCiatoénym stavom je q.

stav vstup

0 1

q qO)}\ qh)\
qo | 9,a | oA
qon | 9,b | q,c
q1 qioA | qin, A
dio | 9,d | qio1,A
qio1 | d,e | q,f
qn 9,9 q»h

Je dand bindrne kédovand sprdva 010011111, UkdzZeme, ako ju automat A dekodugje.
Kuvéli jednoduchosti budeme poziciu Citacej hlavy na vstupnej pdske a stav automatu A
zapisovat tak, Ze stav automatu zapiSeme pred symbol, ktory v danom kroku automat A
éita. Symboly, ktoré by sa zapisovali na vystupnej pdske budeme zapisovat’ pod dekdédo-
vané slovd bindrnej sprduvy.
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Obr. 3.4: Koneény automat

q010011111 — 0qo10011111  — 01¢e0011111  — 010 011111

~~
b
010 0qo11111 == 010011111 — 010011 q111 +— 010011 1q411
010 011 11q;1 +~— 010011 111 g

3.2 Cena kdédu

Nerovnomerné rozdelitelné kody sa daju vyhodne pouzit’ v takych pripadoch, ked sa
slova (alebo znaky), ktoré sa kéduja, vyskytuju nerovnako casto. Vtedy je mozné casto
sa vyskytujicim slovam (znakom) priradit’ kratsie kodové slova a tak dosiahnut), Ze ké-
dovana sprava bude v priemernom pripade kratsia, ako keby sa na kédovanie pouzivali
napriklad blokové kédy. V d’alsom tito intuitivnu predstavu upresnime. Kvéli jednodu-
chosti budeme kédovat’ znaky zdrojovej abecedy s = {ag,...,am_1}. Zavedieme prvy,
znacne zjednodus$eny matematicky model zdroja S. Budeme predpokladat’, ze zdroj S je
nahodny generator, ktory generuje znaky zdrojovej abecedy nahodne a nezavisle na sebe.
Zdroj S je charakterizovany rozdelenim pravdepodobnosti P = {pg,...,pm-1}; pi >0, i =
0,..., m—];Z{S] pi = 1 vyskytu jednotlivych symbolov zdrojovej abecedy. (Z matematic-
kého hladiska je zdroj S ndhodna premennad, nadobudajica hodnotu a; s pravdepodob-
nostou pi, i = 0,...,m — 1.) Je zrejmé, Ze existuje viacero spéosobov kédovania znakov
zdrojovej abecedy. Aby sme mohli porovnat efektivnost jednotlivych kédov, zavedieme
pojem ceny kédu.

Definicia 3.2.1. Nech P = {po,...,pm_1} je rozdelenie pravdepodobnosti znakov zdrojo-
vej abecedy Xs = {ap,...,am_1}; nech V = {vy,...,vin_1} je kéd kédujiici znaky kédovej
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abecedy, a; — vi, i=0,...,m—1a nech l; = (v;) st dizky kédovych slov kédu V. Potom
cenou kodu V pri rozdeleni pravdepodobnosti nazveme

m—1
V)=)> lp.
i=0

Cena kédu V pri rozdeleni pravdepodobnosti P nie je z matematického hladiska nic¢
iné, nez stredna hodnota diiky kédového slova, pocet symbolov kédovej abecedy pripa-
dajucich na zakédovanie jedného znaku zdrojovej abecedy. (V pripade kédovania slov z
nejakej mnoziny M by to bol poéet symbolov kédovej abecedy pripadajicich na zakédo-
vanie jedného slova z mnoziny M.)

Aka je minimalna hodnota £(P, V) pri danom rozdeleni pravdepodobnosti? Existuju
kédy dosahujtce tuto minimalnu hodnotu a ak ano, si zname metédy ich zostrojovania?
Na tieto i dalSie otazky dame odpoved’ v nasledujuicich castiach tejto kapitoly.

3.3 Kvazioptimalne kédy a optimalny kéd

KédV ={vo,...,vin_1}s dizkami kédovych slov 1(vi) =1, i =0,...,m — 1 nazveme opti-
malnym kédom pre rozdelenie pravdepodobnosti P = {py,...,pm_1}, ak pre 'ubovolny
kéd W = {Wo, e ,Wm_1} plati

L(PV) < L(P,W).

Cenu optimalneho kédu pri rozdeleni pravdepodobnosti P oznacime L(P). Prirodzena
otazka je, aka je cena optimalneho kédu.

Veta 3.3.1. Nech je P ={po,...,pm_1} Lubovolné rozdelenie pravdepodobnosti, py > p1 >
- > Pm—1 > 0. Potom plati

m—1 m—

> pi- lg;<£ Z 1g—+1

i=0 t i=

Rovnost

Zpl lg— L(P) (3.20)

plati prdve vtedy, ak p; =27%, e N, i=0,...,m— 1.

Dokaz. Dolny odhad. Predpokladajme, Ze V = {vy, ..., vin—1} je lubovolny prefixovy kéd
s dlzkami kédovych slov 1(v;) =1, i =0,...,m — 1. Porovname cenu kédu V s entropiou
zdroja Hy(P) = Zi“l? pi-lg %:

m—1 m—1 m—1 72—l
valg—i—zlml Zpr[g—lgf] > pi-lg o
i=0 i=0 i=0 t
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Teraz prevedieme binarny logaritmus na prirodzeny, vyuZijeme nerovnost Inx < x—1a
upravime:

m—1 2L 1 m—1 -k 1 m—1 2L
] — | < — - —1| = 21
%pl g pi In2 %pl " pi ~ In2 %pl [ Pi ] (3.21)

|

i=0

Kéd V je prefixovy a teda z Kraftovej-McMillanovej nerovnosti vyplyva, ze ) ™, T-ti<,
KedZe 2 > 1, In2 > 0 plati

1 m—1
— 27 1] <o.
In2 [Z ] =0
i=0
To v8ak znamena, Ze pre 'ubovolny prefixovy kéd V = {vy, ..., vin_1} plati

Hy(P) < L(P, V).

Horny odhad. Dokazeme, Ze existuje (prefixovy) kéd, ktory dosahuje cenu H,(P) + 1.
Polozime ; = [lg 5-]. Potom plati”:

m—1 m—1 o 1 m—1 o 1 m—1
i=0 i=0 i=0 i=0

a teda existuje prefixovy kéd s dizkami kédovych slov 1; = (lg } =0,...,m—1.Cena
tohto kddu je

m—

m—1
1
Zpuf Zpl lg Z [1g+1] =2 g1
=0 i=0 '

Vratme sa eSte k dokazu rovnosti (3.20). Ak P = {p; =274 L e N, i=0,...,m—1}

je rozdelenie pravdepodobnosti, potom podl'a vety 3.1.2 existuje prefixovy kod s dizkami
kédovych slov

g1 = g 3] = Mg2") = [l = &,

ktory ma cenu

m—1 m—1 1
pili= ) pilg—.
i=0 i=0 pi
Na druhej strane, ak
m—1 m—1 1
pili= ) pilg—
i=0 i=0 pi

"Pripominame, %e vyraz lg x oznaéuje bindrny logaritmus é&isla x.
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. . . L oL 2

to znamena, Ze v odvodeni 3.21 nastala rovnost. To vSak znamena, Ze zp—f = 1, resp.
1

pi=2"Y%(Inx=x—1,prex =1). O

Jeden kéd, ktorého cena sa velmi nelisi od ceny optimalneho kédu uz pozname. Je to
Shannonov kéd. Konstrukcia, ktort sme pouzili v dékaze Kraftovej-McMillanovej nerov-
nosti vSak vychadzala zo znalosti dizok kédovych slov a nie z rozdelenia pravdepodob-
nosti zdrojovych symbolov. UkaZzeme, ako mozno zostrojit Shannonov prefixovy kéd pre
dané rozdelenie pravdepodobnosti zdrojovych symbolov.

3.3.1 Shannonov kod

Veta 3.3.2 (Shannonov kéd). Nech je P = {po,...,pm—1} lubovolné rozdelenie pravdepo-
dobnosti, po > p1 > -+ > pm-1 > 0;¢isla qx 0 < qx < 1 st definované nasledovne

qO:O)

k—1
qe = pr k=1,...,m—1;
j=0

a nech pre prirodzené &isla (dizky kédovych slov) plati
L =[lgl/px] prek=0,...,m—1.

Dalej, nech

G =000 bl

Je bindrny zdpis ¢isla qi, (k=0,...,m—1). Prek =0,...,m — 1 definujeme kédové slovo
K k
wi = b1 b,
Potom kéd W = {wy, ..., wn_1}je prefixovy kéd, nazyvany Shannonovym kédom.
Dokaz. Dokazeme, Ze k6d W = {wy,...,wn_1} je prefixovy. Pozrieme sa najprv na

diiky kédovych slov. ZapiSeme pravdepodobnosti zdrojovych symbolov binarne:

pk:agk)...a{t)... prek=0...m—1.

Pripomenieme, ze pre dizky kédovych slov plati |, = lg1/pxl, k = 0,...,m — 1. To
znamena, ze

— < 1 =1
2_pk< lk
1< <;I 1—2
]_Pk 7 k
1< <;I l —3
8_pk 1 k
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t.j. hodnota 1y je jednoznacne urcend poziciou prvej jednotky v bindrnom zapise c¢isla py;
ak

pe=0.0...01...

S

tak potom 2% < py < 2751 2571 < 1/py < 2% a teda 1 = s. Predpokladajme teraz, ze kéd
W nie je prefixovy. To znamenad, ze existuju kédové slova slova w,,wy; r < t také, ze w,
je prefixom slova wy. Kédové slova w;, w; boli vytvorené z ¢isel

g = ob..p...
g = obl.ve
gt = qr+pr+---+pi-1.
Pre pravdepodobnost’ p, vak plati 27 < p, < 27U*+1, To znamena, ze
27 < prt P

Potom sa vSak g odliSuje aspon na jednom z prvych 1. miest po rddovej ¢iarke od g, lebo
uz pre t =r+ 1 plati

a = ob... b
+ pr = 00... 1
= g1 # 0B ... b7
a teda w; nie je prefixom slova wy. O

Skor, ako ukazeme, ako sa konstruuje optimalny kéd, uvedieme este jednu jednodu-
chi metédu konstrukcie kédu, ktorého cena je blizka k cene optimalneho kédu, Fanov
kéd. (Shannonov a Fanov kéd sa nazyvaju kvdzioptimdlne kédy.)

3.3.2 Fanov kod

Fanova konstrukcia kvazioptimalneho kédu. Predpokladame, Ze je dané rozdele-
nie pravdepodobnosti P = {po, ..., pm_1} symbolov zdrojovej abecedy,

1. usporiadame pravdepodobnosti zostupne (napriklad) po > p1 > -+ > pm > 0
a zapiSeme do 1. stlpca tabulky. Jednotliviym pravdepodobnostiam (zastupujicim
symboly zdrojovej abecedy) priradime prazdne slova «.

2. Ak tabulka obsahuje aspon dva riadky, rozdelime ju na 2 casti tak, aby sa stucet
pravdepodobnosti v hornej casti tabulky lisil ¢o najmenej od stuctu pravdepodob-
nosti v dolnej casti tabulky a pokracujeme krokom 3. Ak tabulka obsahuje jediny
riadok, jej spracovanie ukonéime.

3. Slova v; priradené pravdepodobnostiam v hornej polovici tabulky zretazime sprava
so znakom 0, a slova z dolnej polovice tabulky zret'azime sprava so znakom 1. Po-
kraCujeme v spracovani hornej a dolnej ¢asti tabulky podla kroku 2.

Ked'ze tabulka obsahuje m riadkov, krok 2 sa uplatni najviac m — 1-krat. Ilustrujeme
konstrukciu Fanovho a Shannonovho kédu na nasledujicom priklade.
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Priklad 3.6.
Po 0.25
p1 0.20
P2 0.13
P3 0.12
ps 0.10
ps  0.08
Pe 0.07
p; 0.05

00

01

10 100

10 101

11 110 1100
11 110 1101
11 111 1110
11 111 1111

—_ e — o — O O

Fanov kéd

Pi qi i v
0.25 0.0 2 00
0.20 0.010 3 010
0.13 0.0111 4 0111
0.12 0.1001 4 1001
0.10 0.1011 4 1011

4

4

5

0.08 0.1100 1100
0.07 0.1110 1110
0.05 0.11110 11110

Shannonov kdéd

Fanov kéd ma cenu 2.85 a Shannonov 3.35 a entropia je 2.822. Shannonov kéd este
mozno upravit (skratit’). Ked'ze slovo 011 nie je prefixom iného kédového slova okrem
slova 0111, moéZeme slovo 0111 nahradit’ jeho prefixom 011, podobne 100 je prefixom jedi-
ného kédového slova, a preto mozno toto slovo 1001 nahradit’ slovom 100; rovnako mozno
skratit kédové slovo 1011 na 101; kédové slovo 1100 na 110 a napokon kédové slovo 11110
na 1111. Takto upraveny (skrateny) Shannonov kéd ma cenu 2.87.

3.3.3 Huffmanov optimalny kéd

Uvedieme teraz metodu konstrukcie optimalneho kédu. Podstata Huffmanovej metody
spociva v tom, Ze sa zostrojenie optimalneho kédu pre m znakov redukuje na konstrukciu
optiméalneho kédu pre m — 1 znakov. Pri dokaze budeme potrebovat’ nasledujicu vetu.

Veta 3.3.3. Nech je P ={po,...,pm_1} Lubovolné rozdelenie pravdepodobnosti, py > p1 >

- > pm—1 > 0. Potom existuje prefixovy kod V = {vg,...,vin_1} 8 dizkami kédovych
slov l; = l(vi), i =0,...,m — 1, optimdlny pre rozdelenie pravdepodobnosti P, taky, Ze
minimdlnym pravdepodobnostiam pm_2, Pm—1 2odpovedaji slovd vi,_2,vim—1 maximdlnej
dizky Lm_1, ktoré maji spoloény prefix dizky lm_1 — 1.
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Dokaz. Ak by v kéde V neboli priradené slova maximalne;j dIiky minimalnym prav-
depodobnostiam, kéd by nebol optimalny. To znamena, Ze minimalnym pravdepodobnos-
tiam p;,_2, pm—1 musia byt priradené slovd maximalnej diiky. Predpokladajme, Ze slova
V-2, Vm_1 Nemaju spolo¢ny prefix diiky ln—1 — 1. To znamena, Ze existuje slovo v; maxi-
mélnej dizky 1.1, ktoré ma spoloény prefix dizky l,,_; — 1 so slovom vy,_1. V opaénom
pripade by slovo v,,_1 bolo mozné nahradit’ jeho prefixom diiky ln_1 — 1, €0 je v spore s
optimalnost'ou kédu V. (Z podobnych dévodov musi existovat slovo vy maximalnej diiky
Lin_1, ktoré ma spoloény prefix diiky ln—1 — 1 so slovom vy, ;.) ,Zdmenou® slov v, a v
dostavame kéd s rovnakou cenou, ako bola cena poévodného kédu, spiﬁajﬁci podmienky
vety. O

Teraz uz moézeme vyslovit' a dokazat vetu, ktor4 je teoretickym zdoévodnenim Huff-
manovej konstrukcie optimalneho kédu.

Veta 3.3.4. Huffmanov kéd. Nech V = {vy,...,vin_1}, m > 1 je optimdlny prefixovy kéd
pre rozdelenie pravdepodobnosti P = {po,...,pm—1}, priCom p; = qo+qrapo > p1 > - >
Pm—1 = qo = q1 > 0. Potom kéd V' = {vo...,Vj_1,Vjt1,...,Vm-1,V;0,vj1} je optimdlny kéd
pre rozdelenie pravdepodobnosti P’ = {po ..., Pj—1,Pj+1y- -+ Pm—1, 4o, q17-

Dokaz Kod V' je tiez prefixovy a jeho cena je L(P', V') = L(P, V) + p;. Aby sme ukazali,
ze V' je optimalny kéd, musime dokézat’, ze pre Iubovolny kéd W/ = {wy, ..., Wy} pre roz-
delenie pravdepodobnosti P’ plati £(P/,W') > L(P’, V') = L(P, V) +p;. Predpokladajme, ze
W’ je optimalny kéd pre rozdelenie pravdepodobnosti P/, ktory naviac spiﬁa podmienky
vety 3.3.3. To znamenad, Ze miniméalnym pravdepodobnostiam qg, q; zodpovedaju slova
maximalnej diiky w1, w0. Uvazujme teraz kéd W = {wy, ..., Wj_1, W, Wj41,...,Wn_1} pre
rozdelenie pravdepodobnosti P. Ked'Ze pre rozdelenie pravdepodobnosti P je optimalny
kéd V, plati L(P, V) < L(P,W). Ale potom

L(P, V') = L(P,V) +pj < LIP,W) +pj = LP, W),

a teda kéd V' je optimélny pre rozdelenie pravdepodobnosti P’. O

Popiseme metédu konstrukcie Huffmanovho kédu pre rozdelenie pravdepodobnosti
P :{PO,-- -»qu}-

Konstrukcia optimalneho koédu.

1. usporiadaj pravdepodobnosti py, ..., pm—1 do zoznamu zostupne. Ak m > 1 pokracuj
krokom 2, ina¢ chod’ na krok 3.

2. Opakuj m — 2 krat nasledujuicu ¢innost’:

e scitaj posledné dve (minimalne) pravdepodobnosti usporiadaného zoznamu;

e odstran tieto dve pravdepodobnosti zo zoznamu a zarad’ do zoznamu ich sucet
tak, aby bol novy zoznam usporiadany zostupne;

e zapamaitaj si miesto v zozname, na ktoré bola zaradena nova hodnota.
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3. Zoznam obsahuje dve pravdepodobnosti; prirad (napriklad) vécésej z nich slovo 0 a
mensej slovo 1; ak m = 1 skondi, inac¢ pokracuj krokom 4.

4. Opakuj m — 2 krat nasledujicu ¢innost’ a potom skon¢i:

e urci tu pravdepodobnost’ p; v aktudlnom usporiadanom zozname, ktora bola
vytvorena ako posledna suctom nejakych dvoch miniméalnych pravdepodob-
nosti qo, q1;

e odstran pravdepodobnost’ p; zo zoznamu, doplii doni pravdepodobnosti qo, q1 a
usporiadaj ho;

e ak bolo pravdepodobnosti p; priradené slovo v, prirad pravdepodobnostiam
qo, q1 slova vO,v1.

Tustrujeme Huffmanovu konstrukciu na priklade.
Priklad 3.7.

025 025 025 0.25 0.31x 044 056« O0x 1% 00x 01 01 01 01
0.20 020 020 0.24x 0.25 031 044 1 00 01 10« 11 11 11

0.13 0.13  0.18« 0.20 0.24  0.25 01 10 11 000« 001 001
0.12 0.2 013 0.18 0.20 11 000 001 100 100
0.10 0.12« 0.12  0.13 001 100 101« 0000
0.08 0.10 0.12 101 0000 0001
0.07  0.08 0001 1010
0.05 1011

Huffmanov kéd

Pravdepodobnosti, ktoré vznikli s¢itanim minimalnych pravdepodobnosti v predcha-
dzajicom kroku, st oznacené hviezdickou. Kvéli jednoduchosti st hviezdickou oznacené
aj slova prisluchajice tymto pravdepodobnostiam.

Huffmanov kéd ma cenu 2.85. Je zaujimavé, Ze aj ked su Fanov a Huffmanov kéd
rozne, maju rovnaku cenu. Vo vSeobecnosti véak Huffmanova metéda umoznuje ziskat’
lepsie kody ako Fanova metéda vd’aka tomu, Ze ,preusporiadavanim® pravdepodobnosti
lepsie ,vyvazuje“ tabulku pravdepodobnosti. Co vSak v tom pripade, ked je tabulka
pravdepodobnosti nevyvazena uz na samom zaciatku; ak sa jeden symbol vyskutuje
vel'mi ¢asto a ostatné zriedkavo? Uvedieme extrémny pripad a ukazeme, ako sa da riesit.

3.3.4 Rozsirenie kodu

UvaZzujeme nasledujici pripad. Zdrojova abeceda pozostava zo symbolov {a, b} a rozdele-
nie pravdepodobnosti je P = {0.9,0.1}. Optiméalny kéd V = {0, 1} ma cenu £ = 1.0 a entro-
pia zdroja je 0.4689955936. Rozdiel medzi entropiou a cenou optimalneho kédu je prilis
velky. Podstata problému je v tom, Ze zdrojova abeceda je prili§ mala a nemame moznost’
rozlisit’ casto (a) a zriedkavo (b) sa vyskytujice symboly, ale obom sme priradili slova
rovnakej diéky. Pri kédovani zdrojovej abecedy s takym extrémnym rozdelenim prav-
depodobnosti uplatnime nasledujici postup. Namiesto jednotlivych znakov kédovej abe-
cedy budeme kédovat’ n-tice znakov zdrojovej abecedy. Vyuzijeme pritom predpoklady o
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charaktere zdroja: znaky generuje nezavisle na sebe a s nemennymi pravdepodobnos-
tami. ,Abeceda“ ZZ, jej rozdelenie pravdepodobnosti a prislusny Huffmanov kéd V; st
uvedené v nasledujucej tabulke.

aa 0.81 0
ab 0.09 11
ba 0.09 100
bb 0.01 101

Cena kédu V; je 1.29. Treba si v8ak uvedomit’, Ze to je poCet bindrnych symbolov pripa-
dajucich na jedno zdrojové slovo, ktoré ma dizku 2, a preto cena kédu, merana poctom
kédovych symbolov potrebnych na zakédovanie jedného symbolu zdrojovej abecedy je
L(P,V;) = 1.29/2 = 0.645. Tato hodnota je uz podstatne bliz§ia k entropii zdroja, ako
cena povodného kédu. Dalsie rozsirenie zdrojovej abecedy (kédovanie trojznakovych slov
nad zdrojovou abecedou) uz neprinesie taki podstatni redukciu ceny kédu:

aaa 0.729 0
aab 0.081 100
aba 0.081 101
baa 0.081 110
abb 0.009 11100
bab 0.009 11101
bba 0.009 11110
bbb 0.001 11111

L(P",V3) = 1.599/3 = 0.533. Aby sme si spravili predstavu o to, ako rychlo sa priblizuje
cena kédu pre narastajicu hodnotu n k entropii, vypo¢itame cenu neskrateného Shan-
nonovho kédu pre rozliéné hodnoty n.:

\ 3 4 5 10 20 30 50 100 200 1000 2000

n
L ‘ 0.6333 0.5509 0.5163 0.5070 0.5006 0.4863 0.4789 0.4741 0.4713 0.4695 0.4692

Upozornujeme, Ze n-nasobnym rozsirenim (dvojprvkovej) zdrojovej abecedy dostaneme
mnozinu slov mohutnosti 2™, a tak je pouZitie tejto metédy pre konstrukciu kédov s
cenou blizkou k dolnej hranici danej entropiou pre vicsie hodnoty n a/alebo rozsiahlejsie
abecedy zdroja prakticky nepouzitelné.

Metoda konstrukcie Huffmanovho kédu nie je jednozna¢na. Ak v zozname pravde-
podobnosti uz existuje hodnota rovna tej, ktord sme dostali v niektorom kroku suc¢tom
minimalnych pravdepodobnosti, mame moznost zaradit’ vypocitani pravdepodobnost’
za alebo pred pravdepodobnost’ v pévodnom usporiadanom zozname. Uplatnenim rozlic-
nych stratégii zarad'ovania rovnakych pravdepodobnosti do zoznamu, dostaneme kaody,
ktoré maju rovnaku cenu, ale mézu mat rozlicné diiky kédovych slov.
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Priklad 3.8.
0375 0375 0375 0375 0.625« 0 1 1 1 1
0.250  0.250 0.250 0375« 0.375 1 00 01 01 01
0.125 0.125  0.250%« 0.25 01 000 001 00T
0.125  0.125  0.125 001 0000 0000
0.0625 0.125x 0001 00010
0.0625 00011

Huffmanov kéd V

0375 0375 0375 0375« 0.625« O 1 00 00 00
0.250  0.250  0.250« 0.375 0375 1 00 O1 10 10

0.125  0.125%« 0.250 0.25 o1 10 11 010

0.125  0.125 0.125 11 010 011

0.0625 0.125 011 110

0.0625 111
Huffmanov kéd V'.

Pahko sa pritom presvedéime o tom, Ze L(V,P) = L(V',P) = 2.375.

Ktory zo zostrojenych kédov je lepsi? Ak sa v nejakom texte vyskytuju zdrojové sym-
boly s pravdepodobnostami zodpovedajicimi pravdepodobnostiam z rozdelenia pravde-
podobnosti P, oba kédy zakéduju dany text rovnako efektivne. Ak vSak kéd zostrojujeme
na zaklade predpokladaného rozdelenia pravdepodobnosti, ktoré sa od skuto¢ného 1isi,
moze sa cena skonstruovaného kédu viac alebo menej odliSovat’ od ceny optimalneho
kédu a rozdiel medzi skutotnou a minimalnou cenou bude zavisiet’ aj od sposobu kon-
Strukcie kédu.

3.3.5 Chyby v pravdepodobnostiach vyskytu zdrojovych symbolov

Predpokladajme, Ze je dané rozdelenie pravdepodobnosti P = {py,...,pm_1}, na zaklade
ktorého sme zostrojili Huffmanov kéd V = {vy,...,vin_1}s dizkami kédovych slov {1y, ..., lm 1}
Nech je P/ = {p;,...,p),_1}, skutoéné rozdelenie pravdepodobnosti zdrojovych symbolov;
pi=pi+ei, i=0,...,m—1, kde ¢ je chyba v odhade pravdepodobnosti vyskytu i-teho
symbolu. Ked ze P/,P su rozdelenia pravdepodobnosti, plati: Z{S] pi = Z{S] pite =
1T+ 0 ei; a teda ) M 0 e; = 0. Zistime, aky bude rozdiel cien kédu V pri rozdeleni
pravdepodobnosti P’ a P:

m— m—1 m—1 m—1 m—1
Z (pi+elli=) pili+ ) Lee=LV,P)+ D Le
i=0 i=0 i=0 i=0 i=0

Zistime, kedy nadobida 21161 lie; extrémne hodnoty. PouZijeme na to metédu Lagran-
geovych neurcitych koeficientov [13]. Vyjadrime najprv podmienky, za ktorych budeme
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hladat’ extrémy funkcie Z{T;? lie;. Odchylky e; od pravdepodobnosti vyskytu symbolov

budeme chépat ako vysledky ndhodnej premennej e; pricom P(e = ¢;) = -, i=0,..., m—

m)
1. Potom stredna hodnota chyby je
m—1 1 1 m—1
E(e)=) ei—=—) e=0. (3.22)
- m m <
i=0 i=0

1 m—1 2 1 m—1 1 m—1
—(mZei) =—) e-0=—) el=0" (3.23)

Var(e) = et

Vyuzijeme (3.22) a (3.23) a zostrojime Lagrangeovu funkciu pre veli¢cinu Z{‘;g‘ Lie; (A,
su Lagrangeove neurcité koeficienty):

1 m—1 1 m—1 1 m—1
_ o s . 2 2 _
f—m;1161+A<m;el>+u<m;ei crz). (3.24)
1= 1= 1=

Vypocitame parcialne derivacie funkcie F podla e, i = 0,...,m — 1 a poloZime ich rov-
nymi nule:
0 1
izf(u—x—zpei)zo; i=0,....,m—1. (3.25)
aei m

Scitame rovnice (3.25) a vyjadrime koeficient A.

m—1 1 1 m—1 2u m—1
Za(h—?\—ZHel):E Ll_)\_a el:O’
=0 i=0 i=0
a teda
1 m—1
A=—D L (3.26)
mis

Vratime sa k sustave rovnic (3.25). Jednotlivé rovnice vynasobime zodpovedajicimi hod-
notami e; a vysledok spocitame cez vSetky hodnoty i. Dostavame

1 m—1 1 m—1 A m—1 Zu m—1
p— Z (1161—7\61—2}16%) = Zliei_a Z ei—a Z eiz =0.
i=0 i=0 i=0 i=0
Upravime
1 m—1 2}”» m—1
—leei:—Ze%,
mis m s
a urc¢ime koeficient p:
1 m—1
w = 21110’2 liei. (327)
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Napokon vynasobime jednotlivé rovnice sustavy (3.25) prislu$nymi hodnotami 1; a vy-
sledky nasobenia s¢itame cez vSetky i:

1 m—1 5 1 m—1 5 A m—1 ZLL m—1
- % (1 =M~ 2ulier) = — % e % - % ke =0.  (3.28)

Dosadime hodnoty konstant p, A do (3.28) a upravime

|:111E12 ( Zl)]-GZVaT(l)Var ( Zm)Z.

To znamend, Ze pre fixovani hodnotu disperzie chyb, o2, sa extrémne odchylky ceny
kédu (v kladnom alebo zapornom smere) dosahuju pre kédy, ktoré maju velka disper-
ziu dizok kédovych slov. Inaé povedané, ¢im véidsie su rozdiely v dizkach kédovych slov,
tym vacsiu ochylku (zlepsenie alebo zhorsenie) ceny kédu mézu sposobit’ chyby v prav-
depodobnostiach jednotlivych zdrojovych symbolov. Prikladom kédu so stabilnou cenou
je blokovy kod, pre ktory sa ziadne odchylky v pravdepodobnostiach neprejavia zmenou
ceny kédu. (Otazne vsak je, ¢i pre skutoéné rozdelenie pravdepodobnosti bude pévodny
kéd optimalny. Tento problém nase odvodenie neriesi.)

Priklad 3.9. Ilustrujeme predchddzajiice tvahy na Huffmanovych kédoch z prikladu
3.8. Pripominame, Ze sme zostrojili dva optimdlne Huffmanove kédy pre rozdelenie prav-
depodobnostz P, pricom kéd V mal kédové slovd dizok {1,2,3,4,5,5} a kéd V' mal kédové
slova dl3ok {2,2,3,3,3,3}). V prvom pripade bola disperzia dlzok kédovych slov Var(l) =

%, vdruhom Var(l’ ) = 2. V nasledujiicej tabul’ke uvddzame priklad chyb v pravdepodob-
nostiach zdrojovych symbolov, ktoré viedli k rozlicnym odchylkam cien kédov.

Pi li 1{ € Ai Ai
0375 | 1 2| —=0.1250 —0.1250 —0.250
0.250 | 2 2 0 0 0
0125 |3 3 0 0 0
0125 | 4 3 0 0 0

0.0625 | 5 3 | +0.0625 +40.3125 +0.1875
0.0625 | 5 3 | 40.0625 +0.3125 +0.1875
0 40500 +40.125

Vplyv chyb v pravdepodobnostiach symbolov na cenu Huffmanovho kédu.

Huffmanov kéd je pomerne odolny voc¢i malym odchylkam v pravdepodobnostiach
zdrojovych symbolov. Ak chceme minimalizovat’ vplyv tychto odchylok na cenu kédu,
pri konstrukcii Huffmanovho kédu budeme zarad’'ovat’ vypocitand pravdepodobnost’ do
zoznamu tak vysoko, ako sa len bude dat.



48 KAPITOLA 3. NEROVNOMERNE KODY

3.4 Koédovanie Markovovského zdroja

Matematicky model, ktory sma pouzivali az doteraz na popis zdroja informécie, bol
znacne zjednoduseny. V textoch zapisanych v prirodzenom jazyku st medzi jednotlivymi
znakmi zavislosti, ktoré sme doteraz zanedbavali. Napriklad v slovencine sa po mak-
kych spoluhldaskach takmer nikdy nepisSe ypsilon, po tvrdych spoluhlaskach zasa méakké
i, v textoch sa nevyskytuju viac ako tri za sebou idice samohlasky ani dlhé postupnosti
zloZené zo samotnych spoluhldasok a pod. Popisat’ vSak dostato¢ne presne takéto zako-
nitosti prirodzeného jazyka by bolo dost naro¢né. Pre nase potreby vystacime s omnoho
jednoduchsim matematickym modelom a zdroj budeme popisovat pomocou Markovov-
skych retazcov. Budeme predpokladat, Ze zdroj S v diskrétnych ¢asovycho okamihoch
(taktoch, krokoch) generuje symboly zo zdrojovej abecedy Zs = {so,...,Sq-1}; Cinnost’
zdroja budeme popisovat’ pomocou postupnosti nahodnych premennych S, t = 0,...,8
ktora spifla nasledujicu podmienku: pre 'ubovolné prirodzené ¢islo n a F'ubovolné ¢isla

i0,+ . inet €{0,...,q— 1} plati

P(Sni1 = 581,150 = Sigy -+ -y Sn = 8i,) = P(Sns1 = 84,115 = s1,). (3.29)

Podmienka (3.29) vyjadruje skuto¢nost’, Ze pravdepodobnost’ vyskytu symbolu v (n + 1)-
vom kroku zavisi len od toho, aky symbol bol na vystupe zdroja v predchadzajicom kroku
1. Postupnost nadhodnych premennych ktora spifla podmienku (3.29) sa nazyva Marko-
vousky retazec. Analogicky, zdroj S ktory spiﬁa podmienku (3.29), budeme nazyvat Mar-
kovovskym zdrojom. Podmienené pravdepodobnosti P(S, 1 = si,,|Sn = si,) sa nazyvaju
pravdepodobnostami prechodu. Pravdepodobnosti prechodu vo vSeobecnosti zavisia od
parametra n (znaky sa vyskytuja s inymi pravdepodobnostami napriklad v hlavickach
ako v textoch programov). Budeme vsak predpokladat, Ze pravdepodobnosti prechodu
nezavisia od ¢asového parametra n. Takyto Markovovsky zdroj sa nazyva homogénny.
Zdroj S popiseme pomocou matice pravdepodobnosti prechodu. Kvdli zjednoduseniu za-
pisu budeme pravdepodobnost’ P(S,;; = sj|Sn = si) oznacovat’ symbolom pj ;. Matica
pravdepodobnosti prechodu zdroja S bude mat nasledujuci tvar:

Po,0 P10 c++ Pq-1)0
M — Po,1 P11 «ee Pg-141
Po,g-1 Plg-1 --- Pg-1,g-1

Matica M ma vsetky prvky nezaporné a sucet prvkov v l'ubovolnom riadku je rovny 1.
(Takato matica sa nazyva stochasticka.) Ak pozname symbol, ktory sa objavil na vystupe
zdroja, pomocou matice pravdepodobnosti prechodu M vieme uréit pravdepodobnosti vy-
skytu symbolov na vystupe zdroja v nasledujicom i v dalsich ¢asovych okamihoch. Nech
sa v 0-tom kroku objavil na vystupe zdroja symbol sy. Potom sa v nasledujiucom kroku
budu na vystupe zdroja objavovat symboly zo zdrojovej abecedy s pravdepodobnostami

(130,'--)0) XM = (P0,0aPLO»---»Pq—I,O)-

8rozdelenie pravdepodobnosti symbolov S0y...ySq—1 V t-tom kroku budeme oznacovat nasledovne:
(t) (t)
{Po »---»qu}-
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Rozdelenie pravdepodobnosti symbolov na vystupe zdroja v dalSom kroku by sme vypo-
c¢itali ako sucin rozdelenia pravdepodobnosti v 1. kroku a matice M:

(P0,0y P1,0y - - -y Pg—1,0) X M = (1,0,...,0) x MZ.

(Namiesto toho, aby sme v kazdom kroku pracne pocitali stucin vektora a matice M,
vyuzijeme poznatok, Ze matica pravdepodobnosti prechodu po m krokoch sa rovna m-tej
mocnine matice pravdepodobnosti prechodu po jednom kroku [14].) Ilustrujeme uvedené
pojmy na priklade.

Priklad 3.10. UvaZujeme Markovouvsky zdroj S so $tvorprvkovou abecedou £s = {a, b, c, d}.
Vztahy medzi symbolmi su popisané pomocou nasledujticej matice pravdepodobnosti pre-
chodov:

0.1 04 0.2 03

05 0.1 0.2 0.2

05 0.2 0.2 0.1

0.6 0.1 0.2 0.1

M =

Nech p = (1,0,0,0) je rozdelenie pravdepodobnosti symbolov v kroku 0. Potom rozdelenie
pravdepodobnosti symbolov v kroku 1 bude (0.1,0.4,0.2,0.3). Vypocitame niekol’ko mocnin
matice M :

0.49 0.15 0.20 0.16

0.32 0.27 0.20 0.21

0.31 0.27 0.20 0.22

0.27 0.30 0.20 0.23

M? =

0.3933 0.2160 0.2000 0.1907
0.3619 0.2379 0.2000 0.2002
0.3597 0.2394 0.2000 0.2009
0.3524 0.2445 0.2000 0.2031

0.37199797 0.23084535 0.20000000 0.19715668
0.37092176 0.23159571 0.20000000 0.19748253
0.37084603 0.23164851 0.20000000 0.19750546
0.37059591 0.23182290 0.20000000 0.19758119

0.3712427184 0.2313719296 0.2000000000 0.1973853520
0.3712414540 0.2313728112  0.2000000000 0.1973857348
0.3712413650 0.2313728732 0.2000000000 0.1973857617
0.3712410712 0.2313730782  0.2000000000 0.1973858506

V postupnosti matic je vidiet istu zdkonitost—ako keby matice konvergovali k nejakej
limitnej matici. Pozrieme sa na tiuto skutocénost z iného hladiska. Ako ovplyvni vyskyt
konkrétneho symbolu v 0-tom kroku rozdelenie pravdepodobnosti vyskytu symbolu v n-
tom kroku? V nasledujiicej tabulke je uvedené rozdelenie pravdepodobnosti (ndhodnej
premennej) Sig za predpokladu, Ze Sy = a (b, ¢, d).
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| Pa Po Pe Pa
So=a | 0.3712427184 0.2313719296 0.2000000000 0.1973853520

So =b | 0.3712414540 0.2313728112 0.2000000000 0.1973857348
So=1c | 0.3712413650 0.2313728732 0.2000000000 0.1973857617
So=d | 03712410712 0.2313730782 0.2000000000 0.1973858506

Vidime, Ze rozdelenie pravdepodobnosti symbolov v 16-tom kroku (a zrejme ani d’al-
Sich krokoch) nezdvisi od toho, aky symbol bol na vystupe zdroja v nultom kroku.

Markovovsky zdroj popisany v priklade 3.10 je zvlastnym pripadom tzv. ergodického
Markovovského zdroja. Definujeme ergodicky Markovovsky zdroj formalne.

Definicia 3.4.1. Nech rozdelenie pravdepodobnosti ndhodnej premennej S,, konverguje k
limitnému rozdeleniu pravdepodobnosti; t.j.

lim p]((n)zpk; k=0,...,q9—1

n—oo

a limitné rozdelenie pravdepodobnosti {py, ..., pq—1} nezdvisi od pociatocného rozdelenia
pravdepodobnosti symbolov, potom sa Markovouvsky zdroj nazyva ergodickym Markovov-
skym zdrojom.

Z hladiska kédovania nas zaujima predov§etkym spominané limitné rozdelenie prav-
depodobnosti. Ak je zdroj S ergodicky, tak takéto limitné rozdelenie pravdepodobnosti
existuje a musi splnat’ nasledujuci vzt'ah:

(PO»---»Pq—l) X M = (POa---»pq—l)- (3.30)

Podmienku, ktord musi spiﬁat’ zdroj na to, aby bol ergodicky, stanovuje nasledujica
veta.

Veta 3.4.1. (Markovova, [14]) Nech je S Markovouvsky zdroj s abecedou Ls = {so,...,sq—1}
a pj(’n]:) Je pravdepodobnost’ prechodu s, — s; po m krokoch. Ak existuji také prirodzené

¢islat >0, ko >0,2eVj, j=0,...,q9—1plati pj()tﬁo > 0; t.j. v matici M" existuje asporn

Jjeden stlpec, ktory md vsetky proky kladné, tak potom je Markovouvsky zdroj S ergodicky,
a teda existuju limitné pravdepodobnosti

lim p;l):pk, k=0,...,9—1,

n—oo

nezdvislé na indexe j. Postupnost’ py, ...,Pq-1je jediné nezdporné rieSenie siistavy rovnic

q—1
pk:ijpj>k’ k:O,...,q—],
j=0
ktoré vyhovuje podmienke
q—1
D pi=1.
=0

To znamend, Ze limitné rozdelenie py, . ..,pq-1je staciondrnym rozdelenim pravdepodob-
nosti Markovovského zdroja.
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Poznamka. Stacionarne rozdelenie pravdepodobnosti je pociato¢né rozdelenie pravde-
podobnosti, pri ktorom maja vSetky (ndhodné premenné) S,,, n = 0,... rovnaké rozdele-
nie pravdepodobnosti.

Ak teda v matici M alebo jej niektorej nenulovej mocnine existuje stipec, v ktorom
su vSetky prvky nenulové, potom je zdroj S ergodicky a riesenim sustavy (3.30) najjdeme
stacionarne limitné rozdelenie pravdepodobnosti. Pripominame, Ze matica M nie je re-
gularna, a preto sustavu (3.30) treba riesit’ za predpokladu

pPo+ -+ pg-1=1.

Priklad 3.11. Ndjdeme staciondrne limitné rozdelenie pravdepodobnosti ergodického
Markovovského zdroja S z prikladu 3.10. (Ergodickost’ Markovovského zdroja S vyplyva
z toho, Ze uz v samotnej matici M st vsetky prvky kladné.) Riesime stistavu rovnic

Pa = O0T%xpq+05%p,+05*p.+0.6xpg

Po = 04%xpa+0.T%xpp+0.2%xpe.+0.1%pg
Pe = 02%xpg+02%py,+0.2xp.+0.2%pg
Pa = 03%xpa+02%pp+0.Txpe.+0.1%pg
T = PatpPo+pectpa

Riesenim tejto stistavy je vektor

P = (pq = 0.3712418301, pp, = 0.2313725490, p. = 0.2000000000, pg = 0.1973856209).

Poznanie limitného rozdelenia pravdepodobnosti mozno vyuzit na zostrojenie Huff-
manovho kédu Markovovského zdroja S. V nasom pripade by Huffmanov kéd bol blo-
kovy kéd dlzky 2 s cenou £(V,P) = 2. Huffmanov kéd Markovovského zdroja S viak
nevyuzival vztahy medzi jednotlivymi symbolmi. Navrhneme efektivnejSie kédovanie
Markovovského zdroja S . Najprv zostrojime Huffmanove kédy V,, Vy, V¢, V4 pre rozdele-
nia pravdepodobnosti P( |a), P( [b), P( |c), P(|d). Jednotlivé kédy a ich ceny st uvedené
v tabulke.

la b ¢ d |L(VP)]
Vo [00T T 000 O1 1.9

W | 1 001 01 000 1.8
Ve | 1 01T 000 001 1.8
Vq |0 100 11 101 1.6
Postupnost’ symbolov s;,s;, ... vytvoreni Markovovskym zdrojom S budeme kédovat’

nasledovne:

1. prvy symbol, s;, zakédujeme pomocou pevne stanoveného kédu, napriklad V;;

2. j-ty symbol postupnosti zakédujeme pomocou kédu V;; 5 j=1,...m.
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Pri dekédovani najprv dekédujeme prvy symbol, s;,, zakédovany pomocou kédu Vi, ; na
zéklade poznania prvého symbolu (s;,) uréime kéd V, , ktorym je kédovany druhy sym-
bol, si,, atd. Kéd Markovovského zdroja budeme kvoéli jednoduchosti nazyvat’ Markovov-
skym kédom.

Priklad 3.12. Nech postupnost ababcadadca vytvoril Markovovsky zdroj z prikladu
3.10. Jeho kédovanie je popisané v nasledujiicej tabulke.

znak ‘ a b a b ¢ a d a d ¢ a
pouzitykéd | Vo Vo Vo Va Vo Ve Vo Va Vo Va Ve
kédové slovo | 001 1 1 1 01 1 01 0O 01 11 1

Na zakédovanie postupnosti dizky 11 (nad §tvorprvkovou abecedou) sme potrebovali 17-
bitovy retazec.

Cena kédu Markovovského zdroja z4visi od cien ¢iastkovych kédov Vi, i1 =0,...,m—
1 a limitného rozdelenia pravdepodobnosti. Da sa vypocitat na zaklade nasledujiceho
vztahu:

q—1
LIM,V) =) pi- L(P(lsi), Vs,).
i=0

Porovname na zaver cenu Hufmannovho kédu (pre limitné rozdelenie pravdepodob-
nosti), entropiu limitného rozdelenia pravdepodobnosti a cenu kédu Markovovského zdroja
z predchadzajiaceho prikladu.

entropia limitného rozdelenia | 1.945755388
cena Huffmanovho kédu 2.000000000
cena Markovovského kédu 1.797647058

Vyuzitim zavislosti medzi jednotlivymi symbolmi sme dostali kéd ktorého cena je vyraz-
ne nizsia ako entropia limitného rozdelenia pravdepodobnosti.?

3.5 Koédovanie pomocou orakula

Huffmanov kéd vyuzival to, Ze sme poznali rozdelenie pravdepodobnosti symbolov v
zdrojovom texte; Markovovsky kéd zasa vychadzal z poznania Statistickych zakonitosti
medzi symbolmi, ktoré nasledovali bezprostredne za sebou. Bolo by mozné zostrojit’ aj
iné kody, ktoré by vyuzivali iné zakonitosti v zdrojovych textoch. Uvedieme jednu vse-
obecnu teoreticku konstrukciu, ktord nam umozni urcit, ako dokazeme zdrojovy text
stlacit’, ak pozname akukol'vek vyuziteInu zakonitost medzi znakmi v zdrojovom texte.
Nebudeme sa snazit’ tuto zakonitost’ blizsie Specifikovat, budeme ju charakterizovat
tym, ako dobre nam umozni odhadovat, aky symbol sa objavi v nasledujicom takte na
vystupe zdoja. Podstata tejto metédy (budeme ju nazyvat kdédovanie s predpovedoun),

ktora zavislosti medzi jednotlivymi symbolmi nezohFadiuje.
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9 e koder dekaéder °
(o) (0

Obr. 3.5: Kédovanie s predpovedou

spoéiva vo vyuziti dvojice orakul'?, ktoré budd hadat, aky symbol zdroj v danom takte
vytvoril. Schéma kédovania s predpoved’ou je uvedena na obr. 3.5: Zdroj S generuje bi-
narnu postupnost’ « = apay..., orakulum O; sa pokuisa ,uhadnut“ vystup zdroja S a
generuje bindrnu postupnost’ = bpb;.... Obe postupnosti sa nasledne séitavajua bit
po bite modulo 2 a vysledna postupnost’ {a; ® bi}i>o vstupuje do kédera. Ak sa ordkulu
podari ,uhadnut“ spravne hodnotu symbolu a; generovaného zdrojom, a; ® b; = 0. Po-
stupnost a® 3 vstupujica do kédera pozostava zo suvislych postupnosti pozostavajicich
zo samych nul, ktoré su oddelené jednotkami. Kéder zakéduje pozicie jednotiek a posle
ich po prenosovom kandli prijemcovi. Dekéder prijemcu transformuje kédovanu spravu
opét do tvaru postupnosti nil oddelenych jednotkami; {a; & bi}i>o. Tato postupnost’ vstu-
puje do ¢lena realizujiceho scéitanie modulo 2, v ktorom sa s¢itava s vystupom orakula
O, generujiceho tu istd binarnu postupnost’ f = byb; ... ako ordkulum O;. Vysledkom
je postupnost {(a; ®bi) ® bi}i>o ={ai}i>o; t.j postupnost generovand zdrojom S. Doplnime
niektoré predpoklady a ukdzeme, aké vysledky sa daju dosiahnut’ pomocou kédovania s
predpoved’ou. Predpokladame, Ze orakulump O; ,uhadne“ spravny vysledok (jeden bit
generovany zdrojom S ) s pravdepodobnostou p a generuje opa¢nd hodnotu s pravdepo-
dobnostou g =1 —p. Dalej predpokladame, ze vysledok hadania symbolu v i-tom kroku
neovplyvni vysledok hadania v d’alsich krokoch.

Pozrime sa teraz na kédovanie postupnosti {a; & bi}i>o. V zavislosti od kvality ordkula
(vyjadrenej pravdepodobnostou p) budd sa v binarnej postupnosti vyskytovat kratsie
alebo dlhsie postupnosti nil ukoncené jednotkami:

« @ 3 =000001001100000000000010000100000010010010100011...

Takito postupngst’ mozno jednoznacne urcit postupnost’ou prirodzenych cisel, ng, ny, ...
vyjadrujucich dlzky nulovych podpostupnosti. Pre vyssie uvedend binarnu postupnost’
« @ B bude postupnost’ prirodzenych ¢isel vyzerat nasledovne:

5,2,0,12,4,6,2,2,1,3,0,....

Existuje viacero moznosti kédovania postupnosti ng, nq,.... Kvoli jednoduchosti pouzi-
jeme na zaciatok blokovy kéd dfiky k. Ked'Ze binarne slovo diiky k dokaze rozlisit 2¢
hodnét, postupnosti 01 kde n > 2* sa uz pomocou jedného kédového slova nedaji za-
kédovat. Oznacime symbolom C kédovi transformaéciu realizovanu kéderom, potom C

Je zrejmé, ze tato konstrukcia je ¢isto teoretick4, pretoze orakulum nie je prakticky realizovatelné.



54 KAPITOLA 3. NEROVNOMERNE KODY

mozno definovat nasledovne:

n akn <2k -1,

qm”:{ﬂ—uqm4ﬁm akn >2k—1.

Binarna postupnost’

0...00...00...01

N~

k-1 2k—1 2k—2

bude kédovana bindrne zapisanou trojicou é&isel 2% — 1,2k — 1,2k —2 diiky 3k. Uz z tohto
jednoduchého prikladu je zrejmé, zZe efektivnost’ kédovania s predpovedou bude zévi/siet’
od vyberu parametra k. UkaZeme, ako na zaklade p vybrat optimalnu hodnotu dlzky
bloku k. Postupnosti 0'1 sa vyskytuji s pravdepodobnostami piqj =0, 1,.... KedZe

Z:ﬁqqu]ﬂ=T§5=L

j=0 j=0

mnozZina postupnosti {0'1}>o s pravdepodobnostami P(0'1) = plq tvori pravdepodob-
nostny priestor. Vypotitame dizky kédov jednotlivych postupnosti a potom uréime strednd
hodnotu dféky kédovej postupnosti potrebnej na zakédovanie jednej postupnosti 0'1. V
nasledujucej tabulke st uvedené dfiky kédov postupnosti 0'1 pre jednotlivé hodnoty j
(oznaéme kvoéli zjednoduseniu zapisu symbolom m hodnotu 2 — 1):

dizka postupnosti dizka kédu

0..m—1 k
m...2m—1 2k
2m...3m—1 3k

Stredna hodnotu diiky kédovej postupnosti potrebnej na zakédovanie jednej postup-
nosti 0'1 je

k[q+pq+...+pm—1q}+2k[pmq+pm+1q+m+pzm—1q}+

]_ m
—%khhw+pMﬂq+~-+ﬁm4ﬂ+~~:kq]j;[1+hﬁ+ﬁﬁm+“l:
K
1T—pm’

Stredna hodnota diiky postupnosti nal je
2 Pak=q-) kpt=p/(1-p).
k>0 k>0
Pripocitame este 1 a dostavame 1/(1 — p). Teraz spocitame kompresny pomer,
K:k41—m
1T—pm

a najdeme optimalnu hodnotu dizky bloku k. Ked’ze analyticky vypoéet kodnoty k, ktora
minimalizuje kompresny pomer by bol zlozity, pre zname p je jednoduchsie vypocitat
hodnoty « pre rézne hodnoty k.
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Pre zaujimavost’ sme skusili pouzit namiesto blokovych kédov nerovnomerny prefi-
xovy kod (neskrateny Shannonov kéd) a odhadli kompresny pomer. Vysledky st uvedené
v predposlednom riadku tabulky 3.1. Vysledky boli zrejme vyrazne ovplyvnené spéso-
bom vypoctu diiky kédového slova (hornou celou ¢astou z prevratenej hodnoty pravde-
podobnosti vyskytu postupnosti danej diiky). Pri konstrukcii Shannonovho kédu pre ko-
necné rozdelenia pravdepodobnosti sme neraz vyrazne redukovali cenu kédu skratenim
niektorych slov. V nekoneé¢nom kéde sa to z pochopitelnych dévodov spravit’ neda. Aby
sme odhadli vysledky tprav nekone¢ného Shannonovho kédu, v poslednom riadku ta-
bulky 3.1 sme uviedli odhady kompresného pomeru, pricom diiky kédovych slov boli vy-
jadrené len ako prevratené hodnoty pravdepodobnosti vyskytu postupnosti danej dfiky.

P 0.5 0.6 0.7 0.8 0.9 0.95 0.99 0.999
k=1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
k=2 1.14 1.02 0.913 0.820 0.738 0.699 0.667 0.667
k=3 1.51 123 0.980 0.7569 0.575 0.497 0.441 0.429
k=4 2.00 160 1.21 0.829 0.504 0.372 0.286 0.267
k=5 250 200 150 1.00 0.520 0.314 0.187 0.161
k=6 3.00 240 1.80 120  0.601 0312 0.128 0.0984
k=7 3.50 280 210 1.40 0.70 0.350  0.0971  0.0588
k=38 4.00 3.20 240 1.60 0.80 0.400 0.0867 0.0356
k=9 450 3.60 270 1.80 0.90 0.45 0.0905  0.0225
k=10 |5.00 4.00 3.00 2.00 1.00 0.5 0.100 0.0156

k=11 0.0126

k=12 0.0122
Shannon 1.1002 0.82858 0.33974 0.070041
Shannon 0.96300 0.74377 0.32288 0.067632

Tabulka 3.1: Kompresny pomer pri kédovani s predpovedou
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Kapitola 4

Metody kompresie udajov

4.1 Slovnikové metody kompresie dat

V tejto kapitole uvedieme niektoré slovnikové metédy kompresie dat. Tieto metédy sa
snazia vyuzit na kompresiu skutoc¢nost’, Ze v datach sa castokrat opakuju rovnaké po-
stupnosti znakov.

4.2 LZ77

Autormi tohto algoritmu st Lempel a Ziv (v roku 1977). Mnohé d’alsie slovnikové algo-
ritmy boli in§pirované prave LZ77. Pri popise algoritmu budeme pouzivat nasledujuice
pojmy:

e Pozicia — aktualna pozicia, na ktorej sa pri kédovani/dekédovani nachadzame. Zaci-
name na prvom znaku a postupne pokracujeme az k poslednému znaku vstupného
textu.

e Okno — poslednych w spracovanych znakov (pri kompresii). Znak na pozicii sa do
okna uz nepocita.

e Buffer — postupnost’ znakov vo vstupnom texte zaéinajica poziciou.

4.2.1 Kompresia (kodovanie)

Oznac¢me vstupny (komprimovany) text T a nech jeho dizka je n. Nech pe{0...,n—1}
oznacuje poziciu. To znamend, Ze okno je postupnost (podretazec) T[p — w,...,p — 1]
a buffer T[p,...,n — 1]. Ak p < w, tak je okno, prirodzene, kratSie. Hlavna myslienka
algoritmu spociva v tom, Ze hfadame najdlhsi retazec v okne, ktory je zaroven prefixom
buffra. Teda hTaddme maximalne k < n — p také, zZe existujei € {p —w,...,p —k}

Th,...,i+k—1=Tp,...,p+k—1. (4.1)

57
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p-w 1 p
I A T AT ]
e
okno buffer

Postup pri kompresii je nasledujuci:

1lL.p=1
2. pokial je p < n opakujeme:

(a) najdeme i a k podl'a (4.1)

(b) vystupom je trojica
i—(p—w)+1,kTp+kl)

© pe—p+k+1

Prvy ¢len vo vystupnej trojici oznacuje index v okne, ¢islovany pre aktualne okno od
1, kde zacina najdeny najdlhsi zhodny retazec. Tento spdsob zarucuje, Ze index je vidy
prvok z {1,...,w}. Uvedeny postup neriesi niektoré situacie, ktoré pri kompresii mozu
nastat. Pripad k = 0 nastane, ak sa v okne nenachadza znak T[p]. Vtedy dame na vystup
trojicu (0,0, T[pl). Ak najdlhsi podretazec ,vycerpa“ vSetky znaky z buffra, tj. k =n—p,
tak zhodu skratime o 1 a na vystup dame trojicu (i — (p —w) + 1, k—1,Tn —1]).

Priklad: Nech T = aababbcbababeb (n = 14). Tabulka ukazuje priebeh ¢innosti algo-
ritmu, pricom zhoda udava najdlhsi ndjdeny retazec v okne. VzhI'adom na maly rozsah
prikladu nie je velkost okna obmedzena.

p | Tlp] | zhoda | vystup
0| a — (0,0, a)
1| a a (1,1,b)
3| a ab | (2,2,b)
6| c — (0,0,¢)
71 b bab | (3,3,a)
1| b | beb |(62,0)

4.2.2 Dekompresia (dekédovanie)

Dekoévanie je jednoduché. Podobne ako pri kédovani si budujeme a udrziavame okno, v
tomto pripade to bude poslednych w znakov danych na vystup. Na zaciatku je, priro-
dzene, prazdne. Postupne ¢itame trojice zo vstupu a na vystup dame prislusny ret'azec z
okna (uréeny indexom a dizkou) doplneny znakom z trojice. Ak ma vstupna trojica tvar
(0,0,x), tak je vystupom samotny znak x.
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4.2.3 Poznamky

LZ77 je relativne rychly algoritmus, pricom dekédovanie je ovel'a rychlejsie ako kédova-
nie, ked’Ze nie je potrebné vyhladavat najdlhsi zhodny podretazec a len sa ,,vypisuje®.
Podstatnou z hladiska rychlosti kédovania a dosiahnutého kompresného pomeru je volba
velkosti okna. DIhé okno umoznuje nachadzat lepsie zhody, ale zaroven podstatne zvy-
Suje casovu zlozitost kédovania. Navyse, dlhsie okno zvysuje pocet bitov potrebnych na
zapis indexu a diZky vo vystupe (prvy a druhy prvok vystupnej trojice). Kratke okno
naopak ,zahadzuje“ potencialne cenné informacie o prechadzajicej podobe textu skoro,
¢im obmedzuje moznost n4ajst’ dlhsie retazce zhody a predlzZuje vystupny text. Na druhej
strane kratke okno zniZuje asovu zlozitost a dovoluje pouZit na zépis indexu a dizky
mensi pocet bitov.

Pouzitie okna v LZ77 zabezpecuje, Ze algoritmus je orientovany na vyuZitie posledne
videnych znakov. Teda charakteristiky zo zaciatku textu neberieme do uvahy. To moze
byt pri niektorych typoch dat podstatnou vyhodou.

LZ77 je mozné rézne modifikovat’ — pouzit’ cyklické okno, variabilne menit’ velkost’
okna a podobne. Medzi vyznamnejSie dpravy patri spracovanie vystupu d’'al§imi algorit-
mami. Da sa ocakavat, Ze Ziadna z troch suradnic vystupnej trojice nie je rovnomerne
distribuovanou ndhodnou premennou. Preto mozZeme pouzit’ Statistické kédovanie (napr.
Huffmanovo, aritmetické) na naslednu transformaciu jednotlivych ,stép“ vystupu.

4.2.4 LZSS

Délezitym algoritmom odvodenym z LZ77 je LZSS. LZSS riesi problém znakov, ktoré sa
nevyskytuju v okne inak ako LZ77. LZSS si stanovi, akii minimalnu dizku musi mat
retazec zhody. Ak je najdeny retazec kratsi, tak na vystup ide samotny znak (T[p]) a
posunieme poziciu d’alej. Ak ma ret'azec dostatocnu dizku, dava na vystup dvojicu (i —
(p —w), k) (bez dalsieho znaku, preto aj posun p je iny: p + p + k). Teda LZSS dava na
vystup dva typy informacii. Aby ich bolo mozné rozlisit' pri dekédovani, priddme pred
oba typy identifika¢ny bit.

Uved'me priklad ¢innosti LZSS pre vstupny text T = aababbcbababceb (rovnaky ako
v priklade pre LZ77). Miniméalna poZadovana vel'kost’ zhody je 2.

p | Tlp] | zhoda | vystup
0] a — 0,a

1 a a 0,a

2| b — 0,

3| a ab 1,(1,2)
5/ b b |0b

6| c — 0,c

71 b bab | 1,(2,3)
10| a ab 1,(1,2)
12| ¢ cb 1,(6,2)

LZSS vo vseobecnosti dosahuje lepSie kompresné pomery ako LZ77, s porovnatel-
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nymi pamatovymi a casovymi narokmi. Dekédovanie je vel'mi jednoduché a rychle. Preto
sluzi ako zaklad pre d’alsie zname algoritmy — ARJ (kombinacia LZSS s Huffmanovym
kédovanim), PKZip a pod. Odlisnosti inych algoritmov mézu spocivat’ vo velkosti okna,
v spracovani vystupov (pozicii) a znakov statistickym kédovanim (napr. Huffmanovym),
v sposobe posunu okna a jeho premenlivej velkosti, v spdsobe urcenia minimalne;j diiky
retazca zhody a pod.

4.3 LZW

Autorom algoritmu je Welch (1984). LZW je v podstate vylepSenim algoritmu LZ78. Spe-
cialna implementacia LZW sa pouziva na kompresiu v grafickom formate GIF. Iny va-
riant pouziva utilita compress v UNIXovych systémoch. Algorimus si pocas spracova-
vania vstupu buduje slovnik, ktory vyuziva na kédovanie. Pri popise algoritmu budeme
pouzivat nasledujice pojmy:

e Slovnik — postupnost retazcov

e Koédové slovo — index (pozicia) konkrétneho retazca v slovniku

4.3.1 Kompresia (kédovanie)

Symbolom + oznac¢ime zretazenie dvoch retazcov, teda x + y oznacuje zret'azenie retaz-
cov x a y. Nech D je slovnik kédovych slov a nech D(x) oznacuje kédové slovo retazca x
v slovniku D. Postup pri kédovani je nasledujuci:

1. zaradime vSetky znaky abecedy do D
2. p « (inicializujeme p ako prazdny ret'azec)
3. pokial nie sme na konci vstupu:

(a) ¢ « dalsi znak zo vstupu

(b) akjep +cvD:
pe—p+c

(c) inak:
dédme na vystup D(p)
priddme p + c do D
pec

4. dame na vystup D(p)

Poznamenajme, Zze uvedeny postup nepocita s prazdnym vstupom. Demonstrujme si
postup kédovania LZW na priklade.
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Priklad: Nech T = aababbcbababceb je vstupny text. Tabulka ukazuje priebeh ¢innosti
algoritmu, pricom stipec »slovnik“ uvadza kédové slovo a prislichajuici retazec pridany
do slovnika v danom kroku vypoétu. Na zaéiatku obsahuje slovnik tri znaky. Stipec pre
hodnotu p udava tito hodnotu na konci spracovania vstupného znaku v premennej c.

c | slovnik | p vystup
0, a
1,b
2, c
a| — a
a3, aa a 0
b |4, ab b 0
a| b, ba a 1
b|— ab
b | 6, abb b 4
c |7 bc c 1
b |8 cb b 2
a|— ba
b | 9, bab b 5
a|— ba
b|— bab
c | 10, babc | ¢ 9
b|— cb
— 8

4.3.2 Dekompresia (dekédovanie)

Dekédovanie prebieha analogicky ako kédovanie. Konstruujeme slovnik, ktory nasledne
pouzivame na dekédovanie a retazce zodpovedajice kédovym slovam davame na vystup.
Na zaciatku je opat’ slovnik naplneny vSetkymi znakmi abecedy.

Pri dekédovani moézu nastat’ dva pripady: kédové slovo sa v slovniku nachadza alebo
nie. Ak je vstupné kédové slovo uz v slovniku, vieme dat’ na vystup prislusny retazec. Za-
roven vieme, Ze pred kédovanim tohto ret'azca sme do slovnika zaradili retazec, ktory aj
teraz potrebujeme do D dostat’. Tento ret'azec pozostava z ret’azca urceného prechadza-
jucim kédovym slovom a prvym znakom ret'azca urceného aktualnym kédovym slovom.

Druhy pripad (vstupné kédové slovo nie je v slovniku) méze nastat’, lebo budovanie
slovnika je pri dekédovani oneskorené. Nastane vSak len v tom pripade, ked’ pri koé-
dovani dame na vystup kédové slovo, ktoré bolo do slovnika pridané ako posledné. To
v8ak znamena, Ze v texte sa vyskytoval za sebou dvakrat rovnaky ret'azec. Preto je prvy
znak ret’azca prisluchajiceho vstupnému kédovému slovu zhodny s prvym znakom re-
tazca uréeného predchadzajicim kédovym slovom. Teda vieme, aky ret’azec potrebujeme
pridat’ do slovnika a nasledne aj vypisat na vystup. Nasledujice obrazky ilustruja oba
uvedené pripady (oznacenia su prebrané z nizsie uvedeného popisu algoritmu).
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: c :
M , v, c
do slovnika do slovnika

Pre zjednodusSenie zapisu oznaéme D(x') retazec prislichajici kédovému slovu x/,
teda opacné zobrazenie ako pri kédovani. Postup pri dekédovani je nasledujuici (pre-
menné s ¢iarkou oznacujua kodové slova, bez ciarky su to retazce):

1. zaradime vSetky znaky abecedy do D
2. ¢’ « prvé kédové slovo zo vstupu

3. dame na vystup D(c’)

4. pokial nie sme na konci vstupu:

(@) p/ ¢
(b) ¢’ + dalsie kédové slovo zo vstupu

(c) akje D(c¢’) v D:
ddme na vystup D(c’)
p < D(p')
¢ « prvy znak z D(c/)
priddme p + ¢ do D

(d) inak:
p < D(p')
¢ «+ prvy znak z D(p’)
dame na vystup p + ¢ (zhodné s D(c’))
priddme p + c do D

Priklad: Nech abeceda je {a, b, c} a nech postupnost kédovych slov (0,0,1,4,1,2,8,9,3)
je vstupny text. Poznamenajme, Ze postupnost’ je na zaciatku zhodna s vystupom pred-
chadzajuceho prikladu (pre kontrolu) a na zaver sa odliSuje (pre lepSiu demonstraciu
postupu). Tabulka ukazuje priebeh ¢innosti algoritmu pri dekédovani. Stipce p,p ac
zobrazujd hodnoty premennych na konci spracovania vstupného kédového slova.
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vstup | p' | p ¢ | slovnik | vystup
0, a
1,b
2, c
0 — a
0 0|a al| 3, aa a
1 0|a b |4, ab b
4 11b a| 5, ba ab
1 4 | ab | b | 6, abb
2 11b c|7,bc c
8 2 lc c |8, cc cc
9 8 |cc | c|9ccc cce
3 9 | ccc| al 10, cceca | aa

4.3.3 Poznamky

Vyhoda LZW oproti LZ77 spo¢iva najméi v rychlosti kédovania, pretoze sa porovnava
mensi pocet retazcov. Modifikacie LZW mo6zu zahfnat premenliva dizku zapisu kédo-
vych slov (v zavislosti na aktudlnej velkosti D), odstranovanie starych retazcov zo slov-
nika a podobne.

4.4 Aritmetické kodovanie

Aritmetické kédovanie je alternativou k Huffmanovmu kédovaniu. Odstranuje niektoré
jeho nedostatky — oddel'uje pravdepodobnostny model zdroja od procesu kédovania (preto
sa da Tahsie upravit na adaptivnu verziu) a nevyzaduje cely pocet bitov na kédovanie
kazdého znaku (preto je v situaciach ako p, = 11—0, Py = % vyhodnejsie). Spoloénou ¢rtou
aritmetického a Huffmanovho kédovania je rovnaky model zdroja — pravdepodobnosti
vyskytov znakov zdrojovej abecedy (nezavislé). Ked'Ze pri kédovani nevyuzivaja ziadne
kontextové informacie (pozi¢né zavislosti znakov), zvykni sa oznacovat’ ako ,zero-order
coders®. Do tejto skupiny patri aj Shannonov-Fanov kéd.

4.4.1 Kompresia (kédovanie)

Pri kompresii najskor uréime pravdepodobnosti vyskytu jednotlivych znakov zdrojovej
abecedy. Nech {cy,c2,...cn} je zdrojova abeceda a nech p1,pa,...pn su prislusné pravde-
podobnosti. Proporéne, podla pravdepodobnosti rozdelime interval (0, 1) na n casti:

L = <0>P1)
I, = (p1,p1 +p2)
I3 = (p1 +Pp2,p1 + P2 +P3)

Li=Pi+p2+--+pn1,1).



64 KAPITOLA 4. METODY KOMPRESIE UDAJOV

Oznac¢me p; = Z]f:] Pi, pricom py = 0. Zaroven symbolom [(d, h)| ozna¢ime dizku
intervalu, t.j. hodnotu h — d. Algoritmus na zaciatku vychadza z intervalu I = (0, 1). Po
preéitani prvého znaku sa interval zizi na prislusnu cast’, podla tohto znaku. Teda ak
je znak na vstupe cy, zizime interval na Iy. Citanim d’algich znakov nadalej interval
zuzZujeme:

Cr

= (d,h) —= (d+pi_l1l,d+ prlI]). (4.2)

Vystupom je I'ubovolIné cislo z vysledného intervalu (najlepsie to, ktoré ma najkratsi
zapis). Hlavna myslienka spociva v tom, Ze znaky, ktoré maja vysoku pravdepodobnost’,
zuzuju interval najmene;. Cim je interval mensi, tym viac bitov potrebujeme na zapis
niektorého z ¢isel, ktoré don patria (ocakavany pocet potrebnych bitov je log, I]TI)'

1. I (0,1)

2. pokial nie sme na konci vstupu

(a) nacitame d’alsi znak — ¢y

(b) upravime interval I podl'a (4.2)

3. dame na vystup I'ubovolné ¢islo z intervalu I

Priklad: Nech vstupnym textom je retazec aababbcbababcb. Potom pravdepodobnosti
vyskytu jednotlivych znakov zdrojovej abecedy {a, b, c} st p, = 1 7> Pb = 174 ac= ] 7- Na-
sledujica tabulka ukazuje zmenu intervalu I po¢as spracivania vstupu. Dolné a horné
hranice su pocitané na 14 desatinnych miest.

Cc

lo il ol e i o e Ml o B e M e M e Nl e o o i = B o

I
0,

(0, oooooooooooooo
(0,00000000000000
(0, 04555393586006
(0,04555393586006
(0,05368856726364
(0,05775588296543
(0, 06263666180758
(0,06292718435771
(0,06292718435771
(0,06297906338452
(0,06297906338452
(0,06298832749645
(0,06299944443076
(0,06300010615304

0,35714285714286
, 0,12755102040816
0,10932944606414
0,06833090379009
0,06507705122865
, 0,06345012494794
, 0,06345012494794
, 0,06333391592789
, 0,06307244563277
0,06305169402205
, 0,06300500289792
0,06300129725315
, 0,06300129725315
0,06300103256424

— e e e e e e e e e e e W

Potom napriklad ¢islo 0,063000679016. .. je z vysledného intervalu a jeho binarny rozvoj
je 0,00010000001000001101. Teda vysledkom kédovania je uvedeny dvadstatbitovy reta-
zec (bez 0 pred desatinnou ¢iarkou). Len pre porovnanie, Huffmanov kéd potrebuje 21
bitov (a=10,b=0,c=11).
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Spracovanie vstupu bca ilustruje aj nasledujici obrazok:

b c a
rY N A4 Y4
c|l ~

b
a
d - . “'__ .............. =

4.4.2 Dekompresia (dekédovanie)

Pri dekédovani postupujeme analogicky, ako pri kédovani. Na zaciatku nastavime in-
terval I = (0,1). Na vstupe mame ¢islo x € 1. Pre zistenie prvého znaku je potrebné
urcit, v ktorom z potencialnych n intervalov Ii,..., I, sa x nachadza. Prislusny interval
(povedzme Iy) urcuje znak (cx) a zaroven umozni zazit I (I — Iy).

Podobne postupujeme d’alej. Pre aktualny interval I uréujeme k také, Ze x je prvkom
intervalu, ktory toto k ,,vyrobi“ z intervalu I podl'a (4.2). Na vystup dame c, a zuzime I.

Otazkou je, ako zistit,, Ze sme uz dekédovali posledny znak. MoZné su dve rieSenia:

1. Pridame do abecedy $pecidlny znak ,EOF“ (koniec stboru) a pri dekédovani postu-
pujeme az dovtedy, kym tento znak nedekédujeme.

2. Spolu s vyslednym ¢islom dame pri kédovani na vystup aj dizku kédovaného re-
tazca. Teda dekdder skonci po vypisani daného poctu znakov.

4.4.3 Implementacné poznamky

Aritmetické kédovanie moézeme efektivne realizovat’ pomocou celo¢iselnej aritmetiky. In-
terval (0, 1) nahradime intervalom celych ¢isel, napriklad (0x0000, Oxffff) (vyjadrené he-
xadecimalne, teda (0, 65535). Zakladné pozorovanie, ktoré umozni ostat’ pocas celého vy-
poctu len v tomto intervale: ak sa zaciatocné cisla (napr. bity) dolnej a hornej hranice
aktualneho intervalu zhoduji, uz ostanu rovnaké. Dévod je prosty: interval sa pocas
kédovania zuzZuje, preto zhody na zaciatku sa uz nezmenia. To znamena, Ze ak takuto
zhodu zaznamename, mézme ju z oboch hranic intervalu odstranit’ (a dat’ na vystup).
Napriklad, ak po uprave intervalu dostaneme h = 0x6807 a d = 0x4afl, tieto sa zho-
dujd na prvych dvoch bitoch (01), ktoré dame na vystup a nasledne upravime hranice —
h = 0xa01lf, d = 0x2bc4. Hornu hranicu dopiflame jednotkami a dolnd nulami. Priro-
dzene, dekdder musi pri praci s intervalmi aplikovat’ rovnaky postup.

Problém moze nastat’, ak pri zuZovani intervalu dostavame (binarne) h = 1000zzz a
d = 011Twww. V takomto pripade nielen nevieme ¢o dat’ na vystup (kam sa nakoniec
spreklopi“ najvyssi bit), ale aj stracame presnost’ (dlzku intervalu). Riesenie spociva v
tom, Ze v tychto situdciach odstranime tivodné nulové bity z h a tivodné jednotkové z d:
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h = 1zzz a d = Owww. Popritom si zapamitame pocet takto odstranenych bitov a ked’
sa najblizs§ie zhodnu najvyssie bity hranic, budeme vediet, kol'ko a akych bitov dat na
vystup.

4.4.4 Poznamky

Aritmetické kédovanie, podobne ako Huffmanovo sa zvycajne nepouziva samostatne, ale
vystupuje ako sucast zlozZitejSich kompresnych algoritmov (najcastejsie ako zaverecna
faza). M6zeme ho kombinovat’ so slovnikovymi metédami (napr. LZARI je kombinacia
LZSS a aritmetického kédovania), v Statistickych metédach vyssich radov (napr. PPM)
aj v inych metédach (pozri napr. cast 4.5).

Problémom aritmetického kédovania je rychlost — ktora nie je prili§ velkd. Kom-
presny pomer je zvycajne o cosi lepsi ako pri Huffmanovom kédovani (ale nie o vela).
Jednoduché je modifikovat’ aritmetické kédovanie na adaptivnu verziu. Jednoducho za-
¢neme s rovnomerne distribuovanymi pravdepodobnostami a kazdy nacitany znak zo
vstupu najskor spracujeme (ziizime interval), a potom prislusne upravime pravdepodob-
nosti (teda zvacsime pocCetnost’ tohto znaku). Samozrejme, aj Huffmanovo kédovanie je
mozZné upravit na adaptivne, avSak nie tak priamociaro.

Adaptivne verzie aritmetického alebo Huffmanovho kédovania maji vyhodu v tom,
Ze nie je potrebné prenasat frekvencénu tabulku znakov a pri kédovani nemusime citat
vstup dvakrat (najskor na zistenie frekvencnej tabulky a potom na samotné kédovanie).

4.5 BWT

BWT (Burrows-Wheeler Transformation) v podstate nie je algoritmus na kompresiu dat.
Je to invertovatel'na transformacia, ktora retazec znakov transformuje na iny retazec
znakov. Vystupny retazec je potom vhodnejsi na kompresiu ako povodny retazec. Me-
téda kompresie dat vyuziva BWT ako dvodnu transformaciu, nasledovand napriklad
MTF (pozri ¢ast’ 4.5.3) a Statistickym kéderom nultého radu tak, ako je to zobrazené na
obrazku. Prirodzene, mozné su aj d’alsie modifikacie.

ARI
BWT MTF —
HUF

vstup
|

vystup

4.5.1 Kodovanie

Transformécia pracuje nad blokom dat (refazcom znakov) dizky n. Vytvorime z retazca
n retazcov dlzky n tak, Ze vstupny retazec rotujeme. Ziskané retazce utriedime. Vystu-
pom transformadcie je ret'azec pozostavajuci z poslednych znakov v retazcoch (teda ak
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prejdeme v poradi utriedenia po ret'azcoch a vypiSeme ich posledné znaky) a z pozicie
povodného vstupného ret'azca medzi utriedenymi ret'azcami.

Hlavna myslienka BWT spociva v tom, Ze rovnaké kontexty (podretazce vstupu) su
zvycajne uvadzané rovnakymi znakmi (je to podobna dvaha ako pri znakoch za kontex-
tami). Rovnaké kontexty dame k sebe triedenim. Znaky, ktoré su pred tymito kontextami
su na konci retazcov. Teda na konci retazcov mozeme ocakavat casty vyskyt rovnakych
znakov vedla seba.

Priklad: Nech vstupnym textom je retazec aababbcbababceb. Potom utriedenie jednot-
livych rotacii dopadne takto (i oznacuje poziciu zac¢inajiceho znaku v p6vodnom ret'azci):

ret’azec
aababbcbababcb
ababbcbababcba
ababcbaababbcb
abbcbababcbaab
abcbaababbcbab
baababbcbababc
bababcbaababbc
babbcbababcbaa
babcbaababbcba
bbcbababcbaaba
bcbaababbcbaba
bcbababcbaabab
cbaababbcbabab
cbababcbaababb

—_—
AU —= B O0ODNN WO WO — O -

—_

—_

Vystupom z BWT je v tomto pripade retazec babbbccaaaabbb a pozicia, na ktorej sa
nechadza poévodny retazec, teda 0.

4.5.2 Dekodovanie

Pri dekédovani mame k dispozicii retazec zloZeny z poslednych znakov utriedenych re-
tazcov a index, kde treba hl'adat pévodny retazec. Modelujme dekédovanie na tabulke,
aku sme pouzili v priklade kédovania. Teda pozname posledny stipec znakov. Pozname
aj prvy stfpec, staci znaky len utriedit.

Pozrime sa na posledny znak v prvom riadku (inymi slovami prvy znak v poslednom
stipci). Nech je to x. Vieme, Ze toto x je ten isty znak, ktory sa ako prvé x vyskytne v
prvom stipci. Dévod je ten, Ze za nim v ret’azci nasleduje lexikograficky najmensi ret'azec
(inak by nebol v prvom riadku) a najmensi retazec spomedzi ostatnych zaéinajacich x
musi nasledovat’ aj za znakom, ktory je prvym vyskytom x v prvom stipci (inak by to
nebol prvy vyskyt). Tato poziciu x v prvom stipci si ozna¢me ako obsadent.

Zoberieme druhy znak v poslednom stipci, nech je to y. Opat h'adame v prvom stipci
prvy neobsadeny vyskyt znaku y. Postupujeme takto dalej, az kym neurcime pre vsetky
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znaky z posledného stipca, ktorym znakom z prvého stipca zodpovedaju.

Teraz rekonstruujeme retazec v prvom riadku. KedZe vieme, Ze posledny znak v
riadku je v retazci pred prvym znakom v riadku, dokazeme spitne prejst a odzadu
rekonstruovat’ pozadovany retazec. Potom ho staci len zrotovat, utriedit’ a vybrat vy-
stupny ret’azec zo spravnej pozicie.

Drobny problém v prezentovanej rekonstrukecii by mohol nastat’, ak sd prvy znak
a posledny v prvom riadku zhodné. Potom ale cely retazec obsahuje len tento znak a
mozeme sa podl'a toho zariadit’.

Poznamenajme, Ze v praktickej implementacii BWT sa dekédovanie d4 robit’ na jeden
prechod v linearnom ¢ase O(n).

Priklad: Ilustrujme dekédovanie na vystupe prikladu kédovania, teda mame na vstupe
retazec babbbccaaaabbb a poziciu 0. Rekonstruujeme prvy stipec a potom dekddovanie
prebieha naznacenym spoésobom podla Sipiek (Sipky oznacuju zodpovedajicim si zna-
kom). Cisla pri znakoch hovoria o poradi znakov pri spitnej rekonstrukeii.

4.5.3 MTF

MTF (Move to front) je heuristika, ktorou sa snazime poziénu blizkost’ rovnakych zna-
kov pretransformovat’ do Statistickej vyznamnosti znakov. MTF nekomprimuje text, ale
vytvara predpoklady na tuspesnu aplikaciu Statistickych kéderov nultého radu tym, ze
sa snazi zniZovat entropiu.

MTF ma pole, v ktorom su usporiadané znaky. Po pre¢itani znaku da na vystup index
(poziciu) tohto znaku v poli a zaroven znak presunie v poli na zaciatok. Takto pokracuje,
azZ kym nevycerpa cely vstup.

Priklad: Demonstrujme si MTF na priklade vystupu z BWT, teda na retazci aababbcbababceb.
Stlpec ,,pole“ ukazuje poradie prvkov v poli po spracovani prislusného znaku.
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pole | vystup pokr.
abce pole | vystup
b | bac 1 a| acb 2
a | abc 1 a | ach 0
b | bac 1 a| acb 0
b | bac 0 a | acb 0
b | bac 0 b | bac 2
c | cba 2 b | bac 0
c | cba 0 b | bac 0

Hoci nas priklad nie je idealnym na demonstraciu vyhod MTF, porovnajme entropie p6-
vodného a nového retazca:
5 7 2
H ( ) ~ 0,4371

14214’ 14

8 3 3
H (14’14’14) ~0,4318

Teda MTF sa snazi posuvat aktudlne spractivané znaky na zaciatok pola a zabezpe-
¢it’ ¢asty vyskyt nizkych indexov vo vystupe. Ked vo vstupe prejdeme na iny blok rovna-
kych znakov, az na prvy index opit dostavame na vystup nizke hodnoty. Vysledkom je
zniZenie entropie a moéze nasledovat’ dspesna aplikacia Statistického kédovania.

Dekédovanie MTF prebieha podobne ako kédovanie. Zatneme s utriedenym pol'om
znakov. Prec¢itame index zo vstupu. Prislusny znak z pola dame na vystup. Zaroven
presunieme znak na zaciatok pola a nacitame d’'alsi index zo vstupu. Toto opakujeme, az
kym neprecitame cely vstup.

4.5.4 Poznamky

In4 moznost pri spracovani vystupu BWT (namiesto MTF, pripadne navyse k MTF) je
pouZit RLE. RLE (Run Length Encoding) je jednoduchy sposob kédovania, ked namiesto
retazca rovnakych znakov davame na vystup len jeden znak a dlzku ret’azca.

Casovo najnarocnejSou operaciou v BWT je triedenie pri kédovani. D4 sa napriklad
pouzit kombindacia radix-sortu (napr. na prvé dva znaky) s naslednym quicksortom (na
utriedenie vnutri skupin). Prirodzene, pri kédovani nie je ani potrebné vytvarat d’alsie
retazce — staci spravne indexovat do povodného retazca.

Prikladom praktického pouzitia BWT je program Bzip2, ktory je kombinaciou BWT,
MTF a Huffmanovho kédovania.
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Kapitola 5

Kodovanie zvuku a obrazu

V tejto kapitole budeme hovorit’ o efektivnych metédach kédovania obrazovej informaécie
a zvuku (hudby).
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Kapitola 6

Kolmogorovska zlozitost’ a
hranice kompresie udajov

Pozrieme sa, ako to vyzera so stlacitelnost'ou informacie vo vSeobecnosti a ukazeme, Ze
vacsina udajov je nestlacitelna.
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Cast’ II

Samoopravné kody
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Kapitola 7

Zakladné principy
samoopravnych kodov

Pri konstrukcii nerovnomernych kédov v predchadzajicej kapitole sme predpokladali, Ze
prenosovy kanal realizuje identicki transformaciu; t.j. Ze sa sprava pri prenose nement.
Tento optimisticky predpoklad nebyva v redlnom Zivote naplneny. Preto sa budeme za-
oberat’ takym zapisom informacie, ktory umozni kontrolovat zmeny, ku ktorym doslo v
priebehu prenosu informacie.! Najprv zavedieme model prenosového kanala, ktory ndm
umozni matematicky popisat vyskyt chyb pri prenose sprav. Potom ukazeme, ako mozno
pridanim doplnkovej informacie (zvac¢senim redundancie sprav) zvysit jej odolnost’ voéi
chybam. Na geometrickom modeli kédu ukazeme, aké podmienky musi spliiat kéd, ktory
ma odhalovat/opravovat isty pocet chyb a uvedieme zakladny vzt'ah medzi redundan-
ciou a opravnou schopnost'ou kédu. Potom budeme konstruovat jednoduché rovnomerné
(blokové) kédy, ktoré budu schopné odhalovat’ chyby (t.j. prijemca bude schopny zistit,
¢i v prijatom slove vznikli urc¢ité chyby alebo nie) alebo ich dokonca opravovat (prijemca
bude pri dekédovani schopny rekonstruovat povodne odvysielané kédové slovo) a popi-
Seme efektivne metédy kédovania a dekédovanie informacie pomocou takychto kédov.

7.1 Binarny symetricky kanal bez pamiite

Na rozdiel od nerovnomernych kédov nebudeme skimat’ zdroj informacie, ale prenosovy
kanal. Na popis prenosového kanala, na ktory posobi Sum spoésobujtci chyby v prenasa-
nych spravach zavedieme model, ktory budeme nazyvat q-narnym symetrickym preno-
sovym kanalom bez pamite. Specidlnym a najéastejsie pouzivanym g-narnym symetric-
kym prenosovym kanalom bez paméte je binarny (q = 2) symetricky kanal bez pamaite,
ktory je zobrazeny na obrazku 7.1. Upresnime teraz predstavu o tom, aké chyby moézu
vznikat pri prenose sprav g-narnym symetrickym prenosovym kandlom bez pamite.
Budeme predpokladat’, Ze pri prenose sprav

Pripominame, Ze z hfadiska kédovania nie je principidlny rozdiel, & ide o prenos informécie v éase alebo
v priestore. Aj preto sa v tejto kapitole budeme zaoberat kédovanim informaécie pre prenasanie v priestore,
ale rieSenia, ktoré navrhneme budu rovnako dobré aj pre ochranu informacie prenasanu v Case.

77



78 KAPITOLA 7. ZAKLADNE PRINCIPY SAMOOPRAVNYCH KODOV

o0

Obr. 7.1: Binarny symetricky kanal bez paméte

e dochadza k zamene jedného prenasaného symbolu kédovej abecedy na iny symbol
kédovej abecedy,

e ziaden symbol nie je odolnejsi voci chybe ako iny symbol; symbol sa prenasa sprav-
ne s pravdepodobnostou p a transformuje sa pri prenose na ktorykol'vek iny symbol
s pravdepodobnostou ;%ﬁ’;

e vysledok prenosu jedného symbolu neovplyvnuje to, ¢i bude nasledujici symbol
preneseny spravne alebo nie.

Kody opravujice chyby predstavuju rozliéné algebraické struktury ako vektorové
priestory, okruhy polynémov, idealy a podobne. Aby mohli kédové slova bez problémov
tvorit’ takéto algebraické Struktury, budeme predpokladat, ze kédova abeceda je pod-
mnozinou prirodzenych cisel; & = {0,...,q — 1}. Aj ked’ teoretické konstrukcie budeme
robit’ pre vSeobecny pripad, v dalSom vyklade sa budeme najcastejSie zaoberat’ binar-
nymi kédmi, ktoré sa v sicasnosti najéastejsie pouzivaju.

V ¢om je podstata kédov odhalujucich, resp. opravujucich chyby? Ak by sme na ké-
dovanie sprav pouzivali tiplné kédy, pri prenose sprav by sa jedno kédové slovo mohlo
v dosledku Sumu nahradit’ inym kédovym slovom a prijemca by mal problém urcit, ¢i
prijal odvysielané kédové slovo, alebo doslo k chybe pri prenose. Preto nie je mozné pri
komunikacii prostrednictvom kanala so Sumom pouzivat tplné kédy. Podstata kédov
odhal'ujucich a opravujucich chyby je v tom, Ze mnozina kédovych slov tvori len pod-
mnozinu vSetkych moznych slov a tak, ked’ d6jde pocas prenosu spravy ku chybe, prijaté
slovo s velkou pravdepodobnostou nie je kédovym slovom. Zdoéraznujeme slova s vel-
kou pravdepodobnost'ou, pretoze nie je vylucené, Ze pocas prenosu vznikne chyba, ktora
prenasané kédové slovo transformuje na iné kédové slovo. Pri konstrukcii samooprav-
nych kédov sa snazime minimalizovat’ pravdepodobnost’ takejto mozZnosti. Vychadzame
z toho, Ze pre (bindrny) prenosovy kanal plati p >> 1 —p 2; t.j. je pravdepodobnejsie, ze
pri prenose kédového slova vznikne menej chyb. Ilustrujeme to na priklade.

Priklad. Uvazujme binarny syn}etricky kandl bez pamite s parametrami p = 0.99, 1 —
p = 0.01, binarny blokovy kéd dlzky 15 opravujuci tri chyby. V nasledujicej tabulke su
uvedené pravdepodobnosti chyb

2V podstate vsak staéi, aby p # 1 —p.
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pocet chyb pravdepodobnost’
0 (0.99) 0.860058354641289
1 15-(0.99)' - (0.01 0.130311871915347
2 (15 (0.99)13 . (0.01)2 0.009213970741489

)
) - ( )
3 (5) - (0.99)'2-(0.01)3 0.000403305116631
>3 2 >3 (‘]5) (0.99)177 - (0.01)  0.000012497585244

Pravdepodobnost’ toho, Ze v prendsanom slove vzniknu 4 a viac chyb je sice nenulova
0.000012497585244 ale podstatne mensia ako to, Ze v slove budu najviac 3 chyby, ktoré sa
pri dekédovani daju opravit'.

7.2 Geometricka interpretacia samoopravného kédu

Skor ako pristipime k popisu a konstrukcii samoopravnych kédov, vyuzijeme geome-
tricki interpretaciu kédu a vysvetlime princip kédov opravujicich a odhal'ujicich chyby.
Predpokladame, Ze mame zostrojit’ kod diiky n opravujuci t chyb. (Na zaciatku kvoli
zjednoduseniu popiSeme konstrukciu binarneho kédu opravujiceho 1 chybu a potom
konstrukciu zovseobecnime.) Zavedieme najprv dva délezité pojmy, ktoré budeme pri
kostrukcii samoopravného kédu potrebovat.

Definicia 7.2.1. Nech st u,v dva vektory vektorového priestoru V; nech u = (uq,...u,);
v = (vi,...vn). Hammingovou vdhou vektora u nazveme prirodzené ¢islo wt(u), defino-

vané nasledovne:
n

wt(u) = > (1 #0)

i

Hammingovou vzdialenostou vektorov u, v nazveme prirodzené ¢islo d(u,v);
n
d(u,v) =wt(u—v) Z a; # bj).
j=1

Hammingova vaha vektora je pocet jeho nenulovych zloziek a Hammingova vzdia-
lenost’ dvoch vektorov udava, v kol’kych zlozkach sa tieto dva vektory odliSuji. Vratme
sa teraz ku konstrukcii binarneho samoopravného kédu opravujiceho 1 chybu®. Zostro-
jime ho tak, ze budeme postupne vyberat kédové slova. Ako prvé kédové slovo vy mo-
Zeme vybrat’ T'ubovolny binarny vektor z mnoziny {0, 1}". Bez ujmy na vSeobecnosti moé-
zeme vybrat vo = (0,...,0); t.j. nulovy vektor. Vyberieme teraz druhé kédové slovo vj.
Predpokladajme, Ze d(vg,vy) = 1 a polozme vy = (1,0,...,0). Potom v§ak existuje chyba
(ktort budeme reprezentovat bindrnym vektorom) vahy 1 ktora transformuje kédové
slovo vi na kédové slovo vy:

3VzhPadom na typ chyb, ktorymi sa budeme zaoberat, budeme pojmy ,,t chyb“ a ,chyba vahy t“ pouzivat
ako synonyma.
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Vo 000...0
Vi 100...0
e 100...0
vider 000...0 =vy

To znamena, Ze ak kéd opravuje jednu chybu, tak potom d(vy,v;) > 1. Nech d(vg,vy) =2
a vyberme ako druhé kédové slovo napriklad v; = (1,1,0,...,0). Ziadna chyba vahy
1 neméze transformovat slovo v; na slovo vg. Co sa vSak stane, ak sme prijali slovo
0100...0? Existuju dve rovnako pravdepodobné moznosti (a mnozstvo menej pravdepo-
dobnych inych):

Vo 000...0
Vi 110...0
e 100...0
eg 010...0
vober = 100...0 =v; D es.

Ak sme teda prijali slovo 0100...0, je zrejmé, Ze to nie je kédové slovo a odhalili sme
chybu, ale nevieme ju opravit’ a urcit’ odvysielané kédové slovo. Ak staci, aby kéd odha-
Toval chyby vahy 1, vektor v; = (110...0) mo6ze byt kédovym slovom. Ak pozadujeme,
aby kéd opravoval chyby vahy t > 1, vektor vi = (110...0) a Ziaden vektor vahy 2 ne-
moze byt kédovym slovom. Nech teda d(vg,vy) =3 avy =(1,1,1,0,...,0). Chybou vahy
1 sa slovo v; transformuje v najhorSom pripade na slovo vahy 2, ale chybou vahy 1 sa zo
slova vq stane vektor vahy 1:

Vo 0000...0
Vi 1110...0
e 1000...0
eg 0100...0
es 0010...0
vo®er = 1000...0 wt(voder)=1
VvoPes= 0100...0 wt(voder)=1
vo® ez = 0010...0 wt(voder)=1
vide = 0110...0 wt(vider)=2
vi®eg= 1010...0 wt(videy) =2
vi®eg= 1100...0 wt(vides)=2

Ak sme prijali slovo 1000...0, dekédujeme ho na zaklade toho, zZe
P(1000...0lvg) > P(1000...0lvy),
ako vq. (Ak pouzijeme hodnoty n = 15,p = 0.99 z predchadzajiceho prikladu, tak
P(1000...0lwvg) = 0.00868745812768978 > 0.0000877521022998968 = P(1000...0|vy),

a teda pravdepodobnost’ toho, Ze bolo odvysielané slovo vg je podstatne vicsia.) Zovseo-
becnime teraz nasu konstrukciu na pripad, ked ma koéd opravovat chyby vahy t > 1.
Ukazalo sa, ze rozhodujicim parametrom, od ktorého zavisi opravna schopnost’ kédu je
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minimalna vzdialenost’ kédovych slov. Zavedieme pre tento pojem $pecidlne oznacenie:
minimalnou vzdialenostou kédu C nazveme prirodzené ¢islo

d* = min d(u,v).
u,veC

Ak by bola minimalna vzdialenost’ kédu C d* < t tak potom chybou vahy mensej
alebo rovnej t by sa mohlo transformovat jedno kédové slovo na iné kédové slovo. Ak
d* =t+ 1, kéd C dokaze odhalovat chyby vahy t. Na to, aby kéd C opravoval chyby vahy
t musi byt d* > 2t + 1.

Popri samoopravnej schopnosti (danej minimalnou vzdialenostou kédu) je zaujima-
vou kvantitativnou charakteristikou kédu, ktora vyjadruje jeho efektivnost, pocet kédo-
vych slov. Extrémnym pripadom je kéd diiky 2n + 1 ktory ma dve kédové slova (napr.
0...0a1T...1). Tento kéd ma sice maximalnu opravnua schopnost’ (je schopny opravovat’
n chyb), ale na prenos jedného bitu spravy potrebuje 2n + 1 kédovych symbolov. Pri kon-
strukcii samoopravnych kédov sa snazime o kompromis medzi opravnou schopnostou
a mohutnost'ou kédu. Kolko kédovych slov moze vlastne obsahovat samoopravny kéd
diiky n opravujuci t chyb? Pozrieme sa najprv na binarny pripad. Mnozina binarnych
vektorov (neskor ukazeme, Ze sa jedna o vektorovy priestor), z ktorej vyberame kédové
slova, ma 2™ prvkov. Oznacime symbolom B;(v) mnozinu vektorov;

B:(v) = {ulu € {0, 1}"& d(u,v) < 1},

ktord budeme nazyvat gulou s polomerom r a stredom v. Je zrejmé, ze pre 0 < r < t
plati

Yu,v € C; (u#v) = B.(u) ﬂBr(v) =
a mohutnost’ B;(v) je
Bwi=Y (“)
=0 \J

Ak by kéd C mal maximalny pocet kédovych slov (pre dizku kédun a opravnu schopnost’
t), potom by mnozina vektorov {0, 1}™ musela byt pokryta disjunktnymi gul'ami polomeru
t so stredami v kédovych slovach. Mohutnost’ kédu C by v takomto pripade bola

2T1.
ICl = = -
Yio(})
Je zrejmé, Ze je len malo takych hodnét n,t pre ktoré by bol podiel ﬁ celociselny.

Ak by sme sa vsak aj uspokojili s kédom mensej mohutnosti, zostava otdazkou, ako ho
zostrojit. Uplné preberanie neprichadza do ivahy, nakol'ko jeho zloZitost’ je odvodena od

¢isla
(1)
m )
Lti(n)J

j=o

ktoré je uz pre relativne malé hodnoty n, t vel'ké (pozri nasledujicu tabulku). V tejto ka-
pitole sa budeme zaoberat’ metédami systematického vytvarania samoopravnych kédov.
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n t mohutnost pocet
kédu moznych kédov
7 1 16 93343021201262177400
7 2 4 10668000
7 3 2 8128
15 5 6 1718574240691455027134464
15 4 16 84137321239748052363790529051765801371652428817494731388928
15 3 56 0.9837970552 x 1078
15 2 270 0.7332302377 x 1078
15 1 2048 0.1094851418 x 103326

Poznamka. Aka bude mohutnost samoopravnych kédov nad inou ako binarnou abe-
cedou? Mohutnost gule s polomerom t vo vektorovom priestore {0,...,q — 1} je

5 (ja-

=0

Ak q > 2 nestacdi len vybrat’ j zloziek vektora ((?) ), ktoré treba zmenit), ale je potrebné aj
urcit ktorym z ostatnych q—1 symbolov sa mé povodny symbol nahradit. Pre mohutnost
g-kédu V dlzky n, opravujiceho t chyb plati

qTL
VI < -,
>0 (})a—=1)

Vratme sa esSte ku geometrickému modelu samoopravnych kédov, aby sme zaviedli
niekol'ko dolezitych pojmov, ktoré maju nazorna geometrickud interpretaciu. Predstavme
si, Ze je dany g-narny samoopravny kéd V diiky n opravujdci t chyb. Kédu V zodpo-
vedd mnozina bodov-vektorov vektorového priestoru GF(q)". Vytvorime gule polomeru
1 so stredmi v kédovych slovach (,kédové“ gule). Postupne budeme zvicsovat polomery
Kodovych® guli: r = 2,3,...,t— 1. Prva dolezita hodnota polomeru je t. To je maximéalna
hodnota, pri ktorej st sféry so stredmi v kédovych slovach este disjunktné. Hodnota t
sa nazyva aj hranicou sférického uloZenia kédu (sphere packing bound). Pri dekédovani
sa vSetky vektory z gule Bi(u) zobrazia na vektor u. Vo vicSine kédov gule polomeru t
so stredmi v kédovych slovach nepokryju vSetky vektory vektorového priestoru GF(q)™.
To znamena, ze budu existovat slova-vektory, ktoré nepatria do Ziadnej gule a pri deké-
dovani sa nezobrazia na Ziadne kédové slovo. Ak by sme d’alej zvicsovali polomer guli
(r=t+1,...,T), po konecnom pocte krokov dospejeme do stadia, ked’ kazdy vektor vekto-
rového priestoru GF(q)™ patri aspon do jednej gule By(u). Minimélna hodnota polomeru,
pri ktorej sa dosahuje, zZe

GF(q)" = [ J Br(w)

uevVv

sa nazyva hranicou pokrytia kédu V. Teraz mézeme formalizovat’ aj intuitivne predstavy
o efektivnosti kédovania.
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Definicia 7.2.2. Kéd V sa nazyva dokonaly, ak sa hranica sférického uloZenia rovnd
hranici pokrytia kodu V.

Inac povedané, kod V je dokonaly, ak kazdy vektor vektorového priestoru GF(q)™ sa
nachadza vo vzdialenosti nanajvys t od prave jedného kédového slova. Ako sa ukaze
neskor, dokonalych kédov je malo.

Skor ako sa budeme zaoberat’ systematicky metédami konstrukcie rozlicnych samo-
opravnych kédov, uvedieme niekolko jednoduchsich prikladov kédov opravujicich alebo
odhal'ujucich chyby a ilustrujeme na nich uz zavedené, resp. zavedieme niektoré nové
pojmy. Odteraz sa az do odvolania budeme opéat’ zaoberat binarnymi kédmi.

7.3 Jednoduché kédy odhalujice/opravujice chyby

7.3.1 Testovanie parity

Nech je dan4d mnozina binarnych vektorov diiky n. Priddme ku kazdému vektoru (n+1)-
vy bit tak aby pocet jednotkovych bitov vo vektore (dlzky n + 1) bol parny. Kédové slova
budu potom vyzerat nasledovne (doplneny bit je oddeleny medzerou):

01000011100001010 0O
01011010010101011 1

Doplneny bit sa nazyva paritnym bitom. Ak v kédovom slove vznikne pri prenose chyba
neparnej vahy (1,3,5,...) pocet jednotkovych bitov v prijatom slove bude neparny a pri-
jemca bude vediet’, Ze nastala chyba (aj ked nedokaze urcit, kde.) Ak by v§ak pri prenose
nastala chyba parnej vahy (2,4,...), v prijatom slove bude parny pocet jednotkovych
bitov a prijemca bude prijaté slovo povazovat za kédové slovo. Ak sa vratime k pred-
chadzajicemu prikladu (p = 0.99, n = 15), tak pravdepodobnost neodhalenej chyby je
0.009226196681.

7.3.2 Obdiznikové kédy.

Uvazujme opét binarne zapisanu informaciu, ktord chceme upravit’ do formy umozriu-
Jucej opravit' aspon jednu chybu (chybu vahy 1). ZapiSeme informéciu do obdlznikovej
matice typu m x n a pridame k nej jeden kontrolny riadok a jeden kontrolny stlpec.

0110101010 | 1
1110000111 | O
1010101010 | 1
0010000111 ‘0

Na i-tom mieste kontrolného stipca sa bude nachadzat' paritny bit i-teho riadku (a; 0 =
a0 @---®ajy), na j-tom mieste kontrolného riadku sa bude nachadzat’ paritny bit j-teho
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stipca (a3; = apj @ --- ® ay;). Predpokladajme, Ze nastala chyba vahy 1 napriklad na
mieste (0,4). Prijemca vy¢€isli kontrolné sumy pre riadky aj stfpce prijatej matice a zisti
poziciu chyby:
0110001010
1110000111
1010101010
0010000111 | 0

0000100000 | O |

Vsimneme si, Ze ak vznikne chyba vahy 1 v kontrolnom riadku alebo v kontrolnom stipci,
pozicia chyby sa urci uplne rovnako, ako v pripade chyby v ,informaé¢nom®“ symbole:

_O —

oo o =

0110101010 | 1 || O
1110000111 [0 || O
1010101010 | 1| 0
0010000110 | 0 || 1

0000000001 | 0 |

Obdiinikovy kéd je schopny opravovat chyby vahy 1. Co sa stane, ak v kédovom slove
vznikne chyba vicsj vahy? Predpokladajme, Ze vznikla chyba vahy 2:

0110101010 | 1 || 1
1110000111 [0 || O
1010101010 | 1 || 0
0010000110 | 0 || 1

7000000001 | 0 |

Vy¢islenim kontrolnych sum prijemca zisti, Ze vznikla chyba vacsej vahy. Ak by aj uha-
dol, Ze ide o chybu vahy 2, nevie ¢i chyby vznikli v symboloch agp, a3¢ alebo az, agg.
Ak by chyba vahy 2 vznikla v tom istom riadku (stipci), na kontrolnej sume prislusného
riadku (stipca) by sa to neprejavilo, a prijemca by vedel akurat povedat, Ze v niektorych
sticoch (riadkoch) vznikla chyba vicsej vahy.

1110101011 | 1 0
1110000111 | 0 || 0
1010101010 | 1 0
0010000111 | 0 [ 0
1000000001 [ O |

Samoopravné kody sa zakladaji na tom, ze

e nie kazdé mozné slovo je kédovym slovom;

e kédové slova su ,,dost daleko od seba“.

Minimaélna vzdialenost’ kédu vyjadrena pomocou Hammingovej vzdialenosti kédovych
slov nam umoznila precizovat vyznam slov ,dost’ daleko od seba“. Pomocou obdlzniko-
vych kodov ilustrujeme pojem ,redundancie (nadbytoc¢nosti)“, ktory upresnuje prvi po-
ziadavku kladenu na samoopravné koédy. V kédovom slove obdliznikového kédu rozli-
Sujeme dva druhy symbolov: informacéné (pomocou nich sa zapisuje informacia, ktoru
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ma kédové slovo preniest’) a kontrolné symboly (zaznamenavajice Strukturu kédového
slova.) Dizka kédového slova sa zvykne oznatovat symbolom n, pocet informaénych sym-
bolov k a pocet kontrolnych symbolov je potom n — k. Samoopravny kéd, ktory ma dizku
n a pocet informacnych symbolov k sa oznacuje aj ako (n, k)-kéd. Pocet kontrolnych sym-
bolov sa nazyva absolitnou redundanciou kédu. Kody s rozlicnymi dizkami mézu mat
rozli¢né pocty kontrolnych symbolov. Aby ich bolo mozné porovnavat z hladiska redun-
dancie, zavadzame pojem relativnej redundancie kédu, definovanej ako podiel poctu
kontrolnych symbolov k celkovej dizke kédového slova; “T:k =1- % Uréime absolutnu
a relativnu nadbyto¢nost’ obdiinikovych kédov. Predpokladajme kvoli jednoduchosti, Ze
kédové slovo obdlznikového kédu mé tvar Stvorcovej matice* typu m x m. T4to matica
obsahuje stvorcova podmaticu (m—1) x (m—1) informaénych symbolov a 2m—1 kontrol-
nych symbolov. Relativna nadbytoénost’ §tvorcového kédu je 205! = 2 — # Pre velké

m2 m
m je relativna nadbytoénost’ tvorcového kédu zanedbatelna.

V pripade obdiznikového kédu bolo mozné rozlisit informaéné a kontrolné symboly.
Existuju samoopravné kédy, pre ktoré takéto rozdelenie symbolov kédového slova ne-
existuje. Aby bolo mozné vyjadrit’ redundanciu aj pre tieto kédy, zovSseobecnime pojem
redundancie nasledujicim spdsobom.

Definicia 7.3.1. Nech V je kéd dizky n nad abecedou {0, .. ., q — 1}. (Relativnou) redun-

danciou kédu 'V je

log, V]
R(V) = +

Redundancia kédu tuzko suvisi s d’al§im délezitym pojmom, pomocou ktorého sa vy-
jadruje efektivnost’ kédu; s prenosovou rychlostou. Prenosova rychlost’ kédu je ¢islo z
intervalu < 0,1 >, ktoré je definované ako

pocet prenesenych informacénych symbolov
celkovy pocet prenesenych symbolov

=1—R.

V d’alsom sa budeme zaoberat’ kédmi, ktoré maju vysoké prenosové rychlosti a zaro-
ven dobré opravné schopnosti. Zatneme zaujimavym kédom opravujicim jednu chybu.

7.4 Hammingov kéd

Hammingove kody sa binarne (n,k)-kédy, s parametramin = 2™ —1, m > 3, m €
N, k = 2™ — 1 — m opravujuce chyby vahy 1. Princip vytvarania Hammingovych kédov,
kédovanie a dekédovanie ilustrujeme na Hammingovom (15, 11)-kéde.

Predpokladajme, Ze sme uz vytvorili kédové slovo v = (vq,...,vi5). Z jednotlivych
komponentov kédového slova vytvorime 4 kontrolné sumy sy, s, s2, $3, pomocou ktorych
budeme schopni rozliSovat’ 16 rozlicnych udalosti: pri prenose nenastala Ziadna chyba,
nastala chyba vahy 1 v 1.,...,15. komponente kédového slova. Zavedieme dva potrebné
pojmy a potom vytvorime kontrolné sumy. Symbolom o(i,n) budeme oznacovat n-bitovy

%y takomto pripade hovorime o §tvorcovom kéde
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vektor, ktory je binarnou reprezentaciou ¢isla i. Nech st u = (uq,...,u),v=(v1,...,vn)
dva binarne vektory, symbolom u&v budeme oznacovat vektor u&v = (wjvy,...,unvy).
Prej =0,1,2,3 plati:

S5 = @ Vi,

o(i,4) &0 (2 ,4)=0(2) 4)

t.j.
S0 = VibviDBvsDBvrDBve DV BVvizDBvis
S1 = Vv2DV3B Vs DV DVvig D Vit DVvig Dvis
$2 = viDVs DVvgD Vs DV BVviz DVvig D Vvis
$3 = VgD Vo DVip DV B Vi2 B Vi3 D Vvig O Vvis.

Vsimnime si, Ze komponent v; sa vyskytuje prave vo wt(o(i,4)) kontrolnych sumaéch.
KedZe existuju prave styri binarne vektory diiky 4 s Hammingovou vahou 1 reprezentu-
juce ¢isla 1,2, 4, 8, kazdy z komponentov vi, vy, v4, vg vystupuje v jednej kontrolnej sume.
To znamena, ze ak zvolime hodnoty komponentov vz, vs,vg, V7, Vo, V10, V11, V12, V13, V14, V15
kédového slova Iubovolne, vhodnou volbou komponentov vi,v,,v4,vg dosiahneme, Ze
kontrolné sumy budu pre kédové slovo nulové: sy = s; = s, = s3 = 0. Staci polozit:

Vi = V3B V5DV D ve DV DVviz D Vs
V) = Vv3i®vgDBvrPBvipoD vyt Dvig DVis
V4 = V5DVvgDB VDBV BVi3DVigDVis
Vg = Vo@D Vvip DV DVvi2 DVvizBvig D vis.

Kodovanie sprav pomocou Hammingovho (15,11)-kédu prebieha tak, Ze sa sprava
najprv rozdeli na bloky dlzky 11 a tie sa doplnia 4 kontrolnymi symbolmi na kédové slovo:

11110000111 informacény vektor
1 1T 11 0 00 0 1 1 1 informacny vektor

0 1 kontrolny vektor
11T 1T 0111 1T 00001 1 1 kédovéslovo

Dekédovanie Hammingovho (15,11)-kédu. Predpokladajme, Ze pri prenose kédo-
vého slova vznikla chyba vdhy 1 v i-tom komponente kédového slova; t.j. bolo prijaté
slovo

VOy ++ -y Vi—1, Vi D ],Vi+],...,V]5.

Chyba spo6sobi, Ze vSetky kontrolné sumy, ktoré obsahuji komponent v; nadobudnu hod-
notu 1. To sui vS8ak prave tie sumy s;, pre ktoré 0(i,4)&0(2),4) = o(2,4); t.j. binarny
vektor s = (s3, s, 81, 0) predstavuje ¢islo o(1,4). Vektor hodnét jednotlivych kontrolnych
sum sa nazyva syndrém chyby. V nasom pripade syndrém chyby predstavuje poziciu,
na ktorej chyba vahy 1 v kédovom slove vznikla, resp. nulova hodnota syndrému chyby
znamena, Ze bolo prijaté kédové slovo.

Priklad. Predpokladajme, Ze chyba vznikla v 13. komponente kédového slova. Potom
bolo prijaté slovo:
Vi, ..y V12, V13 @ 1, V14, Vis.
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Kontrolné sumy nadobidaja hodnoty:

So= VIOVIOVsDVI DV DV D (viz B 1) Dvis =

2= ViDVsDVgDV, DV D (Vi3 D 1) DVia D vis =

1
s = V2 BV3 B Ve DV BVvig DV DV D Vs = 0
1
1

3= VBV DV DBV BV B (vizD 1) B VvigBVis =

87

Hammingov kéd nie je schopny opravovat chyby vahy > 2. Pri dekédovani sa takéto
chyby bud’ vébec neodhalia alebo sa interpretuja ako chyby vahy 1:

Porovname este redundanciu Hammingovych Ry a obdlznikovych kédov Rp.

11T 10111100001 1 1 kédovéslovo
11710000000 O0O0O0 0 0 chybovyvektor

0O 0001T 1T 1T 1T 0O0O0O0T1T 1 1 prijatéslovo

00 00 syndrém chyby
000 00O0O0O0O0O0OO0OO0OO0O O0 0 predpokladana chyba
0O 0001T 1T 1T 1T0O0O0O0T1 1 1 dekédované slovo
11101 1T 1T 10000 1 1 1 koédovéslovo

11T 000000O0O0O0O0O0 0 0 chybovyvektor
001011110000 1 1 1 prijatéslovo

00 11 syndrém chyby
001 00 000000 0 0 0 predpokladana chyba
O 0001T 1T 1T 1T0O0O0O0T1 1 1 dekédované slovo

n axb M-kl (n—%X)o Ry Ro
75 2 x4 3 5 0.4285 0.6250
15 3x5 4 7 0.2666 0.4666
310 4% 8 5 10 0.1612 0.3125
63 7x9 6 15 0.0952 0.2380
127 8x 16 7 23 0.0551 0.1796
255 15x 17 8 31 0.0313 0.1215
511 16 x 32 9 72 0.0176 0.1409
1023 31 x 33 10 63 0.0097 0.0615

V pripadoch oznagenych hviezdi¢kou neexistuji obdiznikové kédy potrebnej dizky (n je
prvocislo), a preto sme Hammingove kody diiky n porovnavali s obdiinikovymi kédmi
diiky n+1. Ajpre n = 511 ma obdiinikovy kod diiky 512 rozmerov 16 x 32 mensSiu
redundanciu (0.0917) ako obdiznikovy kéd dizky 511 rozmerov 7 x 73.

Poznamka. Pre Hammingove kédy plati (n =2™ —1, m > 3)

(

0

n
1

)i

a teda Hammingove kédy su dokonalé binarne kédy.
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Kapitola 8

Linearne kody

Predchadzajice konstrukcie samoopravnych kédov (obdiznikové kédy, Hammingove ko-
dy) nam umoznili zostrojit samoopravné kédy opravujice chyby vahy 1. Ak je vSak
pravdepodobnost’ chyby pri prenose znaku dostatotne vysoka, budeme na zaistenie spo-
Iahlivého prenosu sprav takymto prenosovym kanalom potrebovat’ samoopravné kédy s
vysSou opravnou schopnostou. Vychadzajic z geometrickej predstavy o samoopravnych
kédoch by sme teoreticky mohli skonstruovat’ potrebny samoopravny kéd, ale je otdazne
jednak to, ¢i by sa tato konstrukcia dala spravit v rozumnom case a ¢i by pre takto zo-
strojeny kod existovali efektivne metédy kédovania a dekédovania. SchodnejSou cestou
pre konstrukciu samoopravného kédu je najst vhodnu algebraicku struktiru a jej prvky
pouzit ako kédové slova. Asi prvé ¢o nam napadne, je zobrat konec¢nu grupu a ako kéd
pouzit nejaku jej vhodnua podgrupu. Kédy, ktorych slova s nejakou binarnou operaciou
tvoria grupu, skutocne existuju a nazyvaja sa grupové kédy.

Priklad. Nech je (G, +) kone¢na grupa s (napriklad) aditivnou operaciou. Mnozina (G™, ®)
je grupa, ktorej prvkami su usporiadané n-tice prvkov grupy G a operacia & je odvodena
z aditivnej operacie grupy G nasledovne: nech u = (uy,...,u, av = (vy,...,v) st prvky
G™", potomu @ v = (u; +vi...u, +vn). Je zrejmé, Ze operacia @ je asociativna, mnozina
G" je uzavreta vzhladom na operaciu @, neutralnym prvkom v G™ vzhladom na opraciu
@ je vektor (0,...,0), kde 0 je neutralny prvok grupy G a napokon,k 'ubovolnému prvku
(ug,...,un) € G™ existuje opacny prvok (—uq,...,—u,) € G™, kde —u; je opacny prvok k
prvkuu, i=1,...,n!

Aby sme dosiahli pozadovanu efektivnost kédovania a dekédovania, budeme na kon-
strukciu samoopravnych kédov pouzivat o nieco zloZitejsie Struktiry, ako st grupy. Pred-
pokladame, Ze je dané konec¢né pole GF(q), kde q je mocnina nejakého prvocisla p. (Naj-
CastejSie budeme pracovat s ¢ = p = 2.) Mnozina GF(q)™ n-tic (vektorov) nad polom
GF(q) s aditivnou operaciou " + " (s¢itanie po zlozkach) a multiplikativnou operaciou
"." (nasobenie zloZiek vektora prvkom pola GF(q)) tvori vektorovy priestor.? Linearnym
kédom nad abecedou GF(q) je I'ubovolny vektorovy (linearny) podpriestor vektorového

!Tam, kde to nepovedie k nedorozumeniu, budeme v dalsom aditivnu operaciu nad vektormi oznacovat
symbolom "+"

2Podrobnejsie informacie o vektorovych priestoroch, koneénych poliach a d’alsich algebraickych §truktu-
rach n4jde citatel v ??.
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priestoru GF(q)". Ak je dimenzia vektorového podpriestoru C rovna k, linearny kéd C sa
nazyva linearnym (n, k)-kédom.

Priklad. Nech q = 2,n = 8. Pozrieme sa najprv na dva extrémne pripady. Ak k = 8§,
kéd C ma 28 = 256 kédovych slov. Tento kéd pozostava zo vSetkych moznych binarnych
vektorov/slov diiky 8, ma prenosovu rychlost 1 ale jeho opravna schopnost’ je nulova.
Druhym extrémnym pripadom je linearny (8,0) kéd, ktory ma dimenziu 0, jediné ké-
dové slovo (napriklad vy = (00000000)), ale je na prenos informécie prakticky bezcenny,
lebo nedokaze preniest jediny bit informacie®. Prakticky pouziteny kéd s najmensim
poc¢tom kédovych slov je linearny (8, 1)-kéd, s mohutnostou 2. Tento kéd obsahuje dve
kédové slova: nulové slovo vy = (00000000) a nenulové slovo v;. Slovo v; méZeme vybrat’
Iubovol'ne, pretoze vy + v; = (00000000) a tak konstruovat kody s rozlicnymi opravnymi
schopnostami. Polozime v; = (11111111) a dostavame kéd s maximéalnou vzdialenost'ou
d = 8 rozpoznavajuci chyby vahy < 7 a opravujuci chyby vahy < 3. Prenosova rychlost’
tohto kédu je 1/8 a redundancia 7/8.

8.1 Zakladné vlastnosti linearnych kédov

Linearny kéd je teda I'ubovolna neprazdna mnozina vektorov (n-tic) C taka, ze pre 'ubo-
volné vq,...,vim € C, ay,...,an € GF(q) patri aj linedrna kombinacia a;jvy + - - + @ Vm
do mnoziny C. To znamena, Ze pre I'ubovolné kédové slovo u a prvok a € GF(q) patri do
kédu C aj slovo au a pre I'ubovolné dve kédové slova u, v je potom aju + vau — v kédové
slovo kédu C. Ked'ze pre I'ubovolné u € C plati u—u = 0, nulové slovo patri vzdy do
kédu C. Vzhladom na tieto skuto¢nosti sa $tudium viacerych vlastnosti linearnych kédov
redukuje na skiimanie vztahov medzi nulovym kédovym slovom a ostatnymi kédovym
slovami linearneho kodu C.

Veta 8.1.1. Nech je C linedrny kéd. Potom pre minimdlnu vzdialenost’ d* kédu C plati
nasledujici vztah

d* = min d(u,v) = min wt(u).
u,veC u#0eC

Dokaz. Nech st u,v dve slova, ktorych vzdialenost’ sa rovna miniméalnej vzdialenosti
kédu C: d(u,v) = d*. Slovo u — v je tiez kédové slovo a pre jeho vahu plati wt(u —v) =
d(u,v) = d*. Na druhej strane, ak by v kéde C existovalo nenulové kédové slovo x s vahou
wt(x) < d*, potom by aj d(x,0) < d* ¢o je v spore s definiciou minimalnej vzdialenosti.

O

Ak si dame do suvislosti geometrickd interpretaciu samoopravnych kédov s tvrdenim
vety, tak vidime, Ze na zostrojenie samoopravného kédu opravujiceho chyby vahy t staci
zostrojit’ linearny kéd s minimalnou vahou w* > 2t + 1.

Budeme pokracovat v skiimani linearnych kédov. Pripomenieme, Ze skaldrny sidin
dvoch vektorov u = (uy,...,uy) av = (vi,...,vy) je definovany ako

(w, v) = vy + -+ + Upvn.

3Aj takto kéd sa v8ak da pouzit v Specidlnych pripadoch, napriklad pri testovani prenosového kanéla.
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Nech C je linedarny podpriestor vektorového priestoru GF(q)™. Da sa lahko overit, zZe
mnozina C*, definovana nasledovne

Ct={ueGFq™ VveC (uv) =0}

tvori linearny podpriestor vektorového priestoru GF(q)". (Podpriestor C sa nazyva or-
togondlny doplnok podpriestoru C.) Kedze C' je linearny podpriestor vektorového pries-
toru GF(q)", predstavuje podla definicie linearneho kédu taktiez linearny kod, ktory
budeme nazyvat dudlnym kédom kédu C.

Poznamka. To, 7e je C- ortogonalnym doplnkom linedrneho podpriestoru C nezna-
men4, e st tieto podpriestory disjunktné. Zrejme 0 € C* [ C a existuji dokonca line-
arne kédy, pre ktoré plati C+ = C (samoduélne linedrne kédy.)

Vdaka tomu, Ze linedarny kéd C predstavuje linearny podpriestor vektorového prie-
storu GF(q)™, mozno ho popisat efektivnejsie, ako tie blokové kédy, ktoré nemali ziadnu
rozumnu Struktiaru a bolo ich potrebné popisat’ vymenovanim vsetkych kédovych slov.
Linearny podpriestor je jednoznac¢ne zadany pomocou mnoziny vektorov, ktora ho gene-
ruje. Spomedzi vietkych mnozin vektorov, generujicich dany linearny podpriestor (line-
arny kéd) C vyberieme mnozZinu s minimalnym poétom prvkov*, bazu a vektory-prvky
bazy zapiSseme ako riadky matice G. Matica G sa nazyva generujiicou maticou linedrneho
kédu C, pretoze I'ubovolny vektor-kédové slovo kédu C mozno zapisat’ pomocou linear-
nej kombinacie vektorov-riadkov matice G. Ak je C linearnym podpriestorom dimenzie
k vektorového priestoru dimenzie n, tak jeho generujica matica G ma k (linedrne ne-
zavislych) riadkov a n stipcov. Pripominame, %e samotny kéd C ma potom q* kédovych
slov.

Generujuca matica umoznuje efektivne vytvaranie kédovych slov. Lubovolny vektor
i ¢ GF(q)% i = (i1,...,1x) mdZeme chapat ako k-ticu informaénych symbolov (infor-
macny vektor) a transformovat’ ho na kédové slovo nasledujicim spésobom

u =1iG,

kde G je generujiuca matica linearneho (n, k) kédu. Pripominame, Ze existuje viacero spo-
sobov vyberu generujiucej matice G linearneho kédu a tak sa informacnému vektoru i v
zavislosti od vyberu G vo vSeobecnosti priradia rozliéné slova. V ¢asti ?? sa budeme pod-
robnejsie zaoberat’ vplyvom vyberu generujicej matice na vlastnosti linearneho kédu.

Ako vyzera kédovanie spravy® pomocou linedrneho (n,k) kédu? Postupnost znakov
spravy sa rozdeli na bloky dlzky k a tie sa postupne vynasobia generujicou maticou G a
tak sa transformujui na postupnost’ kédovych slov, obr. 8.1

Ilustrujeme kédovanie spravy pomocou linearneho kédu na nasledujicom jednodu-
chom priklade.

Priklad 8.1. Hammingove kédy opravujiice chyby vdhy 1 su linedrne kédy. Kvdli zjed-
noduseniu vypoctov zoberieme kratsi Hammingov kéd, ako sme skonstruovali v éasti 7.4;

“pripominame, Ze takychto mnoZin je viac a tak vyberieme Tubovolni z nich.
Spredpokladame, ze sprava je zapisana ako postupnost znakov - prvkov GF(q)
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oo Depreeciae tkgreeeizk o Brgre.s

1 1 1 1
1 1 1 1
Ui...Un Upypi...U2n Upyt... U7 U3n4] ...

Obr. 8.1: Kédovanie spravy pomocou linearneho kédu s generujicou maticou G

Hammingov (7,4) kéd C. Kéd C je bindrny kéd dizky 7 s minimdlnou vzdialenostou d* =
3; kédové slovo md 4 informacéné a 3 kontrolné symboly. Nech su ii,1y,13,14 informacné
symboly kédového slova u = (uq,...,u7). PoloZime uz = i1, us = iy, ug = i3, u7 = 4. Hod-
noty kontrolnych symbolov u;,uy,uy vypocéitame pomocou troch kontrolnych sum (znak
”1+” oznaduje sticet modulo 2):

ur+uz+us+uy =0 w=i1+i+1i
w+us+ug+uy =0 w =i +i3+1y
U +us+us+uy =0 w=1i+1i3+1y

Nulovy vektor splria vyssie uvedené vztahy a teda nulové slovo je kédovym slovom Ham-
mingovho (7,4) kédu. Nech st u, v dve kédové slovda Hammingovho (7,4) kédu, t.j.

u = (uz + us + uy, u3 + Ug + Uz, U3, Us + ug + Uz, Us, Ug, Uz ),

Vv = (V3 + V5 +V7,V3 + Vg + V7, V3, V5 + Vg + V7, V5, V6, V7).

Potom sucet vektorov

u+v = (uz3+us+uy+v;+vs+vyuz+ ug+uy+ v+ vg+ vz, uz + vs,
Us + Ug + U7 + vs + vg + V7, Us + V5, Ug + Vg, U7 +V7) =
(U3 +v3 +us +vs +uy + vz, u3 + v3 + Ug + vg + Uy + vz, u3 + va,
Us + vs + Wg + vg + Uy + vz, Uus + vs, Ug + Vg, U7 + V7)

tiez splria kontrolné sumy a teda patri do kédu C. Tym sme dokdzali, Ze Pubovolnd li-
nedrna kombindcia vektorov-slov kédu C je kédovym slovom (pripominame, Ze GF(2)” s
operdciami moduldrneho sc¢itania po zloZkdch je vektorovy priestor a koeficienty v linedr-
nej kombindcii su prvky pola GF(2), t.j. prvky mnoZiny {0, 1}, a teda aj to, Ze Hammingov
kéd je linedrny kéd. (Hammingov (7,4) kéd je uvedeny v nasledujticej tabulke).

0000000 1110000 1001100 0101010
1101001 0111100 1011010 0011001
1100110 0100101 1000011 0010110
1010101 0110011 0001111 1111111

Generujiica matica Hammingovho (7,4)-kédu vyzerd nasledovne:
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1110000
1001100
0101010
1101001

Vytvorime kédové slovo pre informacny vektor i = (1111):

1110000
1001100
1) | gio1010 | = (1TTT1T0).

1101001

Pri dekédovani sprav zakédovanych pomocou linearneho kédu C mozno vyhodne pou-
Zit generujicu maticu dudlneho kédu C*, ktori oznaéime symbolom H. Ak je C linearny
(n, k)-kéd, C* je linearny (n,n—k)-kéd a generujica matica kédu C- ma n—k riadkovan
stipcov, pri¢om riadky matice H tvoria vektory bazy linearneho podpriestoru C*. Ked'ze
C je ortogonalny doplnok linearneho podpriestoru C, kazdy vektor (kédové slovo) u € C
je ortogonalny na l'ubovolny vektor v € C a $pecidlne, na 'ubovolny vektor-riadok ma-
tice H. To znamena, Ze u je kédové slovo prave vtedy, ak

uH' =0

kde 0 je v tomto pripade nulovy vektor diiky n — k Ked’Ze matica H umoznuje overit, ¢i
je nejaké slovo kédovym slovom kédu C, nazyva sa kontrolnou maticou kédu C. Pripo-
miname este, Ze generujica matica G kédu C je kontrolnou maticou jeho dualneho kédu
ct.

Priklad 8.2. Kontrolnd matica Hammingovho (7,4) kédu z prikladu 8.1 md tvar

1010101
H = 0110011
0001111

Na zaklade kontrolnej matice je mozné urcit minimalnu vzdialenost’ prislusného li-
nearneho kédu.

Veta 8.1.2. Linedrny kod C nad polom GF(q) obsahuje nenulové kédové slovo vahy men-
Sej alebo rovnej w prduve vtedy, ak jeho kontrolnd matica H obsahuje w linedrne zdvislych
stlpcov.

Dokaz Oznacéme Vektory-stipce kontrolnej matice H symbolmi hy, ..., hy;
H=(h;',...,hy"].

Nech v mnoZine vektorov {hy, ..., hy} existuje w linedrne zavislych vektorov h; ,...,h; ;
t.j. existuju také konstanty a;,,...,ai, € GF(q), Ze

ai1hi1 + ...,aiwhiw =0
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Medzi konstantami ay,, ..., a;,, € GF(q) je aspon jedna nenulov4, a teda vektor a ktorého
komponenty na poziciach ij,...,1, nadobudaji v poradi hodnoty a;,,...,a;, a ostatné
komponenty st nulové, predstavuje nenulové kédové slovo vahy < w, nakolko

W

aH' = a-nhil +. ..,aiwhi =0.

Na druhej strane, nech v kdde C existuje kédové slovo a vahy w s nenulovymi kom-

ponentami aj,, ..., q,. KedZe a je kédové slovo, plati pren
aH' = aj, hil +... aiwhiw =0;
t.j. Vektory-stipce kontrolnej matice h;,, ..., h; st linedrne zavislé. O

Désledok. Linedrny kéd C s kontrolnou maticou H ma minimélnu vzdialenost’ w prave
vtedy, ak je v matici H T'ubovolnych w — 1 stlpcov linedrne nezavislych a v H existuje w
linearne zavislych stlpcov.

To znamena, Ze ak chceme zostrojit’ linearny (n, k)-kéd C opravujici chyby vahy as-
pon t, musime skon§truovat’ maticu H typu (n—Xk) x n, v ktorej je F'ubovolnych 2t stipcov
linearne nezavislych a pouzit ju ako kontrolni maticu kédu C. Ked'Ze medzi vektormi
dizky n — k méZe byt nanajvys n — k linedrne nezavislych vektorov, v matici H mézu
byt nezavislé nanajvys vsetky (n — k)-tice stipcov, ale T'ubovolna (n — k + 1)-tica stipcov
matice H je linearne zavisla. Tym sme dokazali nasledujicu vetu.

Veta 8.1.3 (Singeltonova hranica). Pre minimdlnu vzdialenost’ (minimdlnu vdhu) line-
drneho (n,k)-kédu plati nasledujiica nerovnost

d*<1+n—k.

Lubovolny linearny kéd s minimalnou vzdialenostou, ktora spifla rovnost’
d*=1+n—-k

sa nazyva linedrnym kédom s maximdlnou vzdialenostou. Zo Singeltonovej hranice vy-
plyva, ze na to, aby kéd bol schopny opravovat chyby vahy t musi v kédovom slove byt
aspon 2t kontrolnych symbolov; t.j aspont dva kontrolné symboly na chybu v jednom kom-
ponente kédového slova. Vacsina samoopravnych kédov ma viac kontrolnych symbolov.

Aj ked’ je I'ubovolna n x k matica, ktorej riadky tvoria bazu linearneho podpriestoru
dimenzie k generujicou maticou linearneho (n,k)-kédu, kvoli zjednoduseniu vypoctov

upravime generujicu maticu na nasledujici standardny tvar; G = [Ix:P], kde Iy je jed-
notkova matica radu k a P je matica typu k x (n — k). (Vyhodou standardného tvaru
generujucej matice je o.1. aj to Ze sa z nej da jednoducho odvodit’ kontrolna matica.) Uka-
Zeme, Ze pre I'ubovolny linearny (n,k)-kéd generovany generujicou maticou G existuje
linearny (n, k)-kéd generovany generujucou maticou v Standardnom tvare s rovnakymi
parametrami.

Nech je G generujica matica linearneho (n, k)-kédu C. Riadky matice G tvoria bazu
linearneho podpriestoru C. Z linearnej algebry je zname (pozri napr. [4]), Ze ak vektory
bazy transformujeme pomocou nasledujtucich transformacii
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e vektor nahradime jeho nenulovym nasobkom;

e k vektoru bazy pripo¢itame I'ubovolnu linearnu kombinaciu ostatnych vektorov,

vysledna mnozina vektorov bude tvorit bazu pévodného linedrneho priestoru. To zna-
men4, ze F'ubovolna matica G’, ktord dostaneme z generujicej matice G pomocou vys-
Sie uvedenych elementarnych operacii nad riadkami, je generujicou maticou poévodného
kédu C.

DalSou transforméciou generujucej matice je vymena jej stipcov. Nech je G = [g182
...gnl generujuca matica kédu C. Predpokladajme kvoli jednoduchosti, Ze v generuju-
cej matici G vymenime prvy a druhy stipec, t.j. dostavame maticu G” = [gog; ... gnl.
Je zrejmé, ze riadky matice G” su linedrne nezavislé, a teda matica G” je generujicou
maticou linedrneho (n, k)-kédu, ktory ozna¢ime symbolom C”. Nech je i = (i;...1x) Tu-
bovolny informacny vektor. Pre vektor i zostrojime kédové slova tak v kéde C ako aj v
c”.

iG = (<i> g1>) <iag2>) [RER <i)gn>) =u= (LL],LLz, o aun);

iG// = (<i)g2>a <i)g1>>---)<i’gn>) = u” = (uz’ul""’un)'

Z vyssie uvedeného vyplyva, Ze vymena i-teho a j-teho stipca generujucej matice kédu
C zodpoveda s vymenou i-teho a j-teho komponentu v kédovych slovach kédu C. Nech
je © T'ubovolna permutacia mnoziny 1...n a nech si u, v 'ubovolné kédové slova kédu
C, resp. u”,v” im prislichajice kédové slova kédu C”, ktory dostaneme permutaciou
komponentov kédovych slov permutaciou 7t potom

d(u,v) = Z (Wi #vi) = Z (Un(i) 7 V(i) = d(u”,v")

1<i<n m(i),1<i<n

To znamena, Ze kédy, ktoré dostaneme z kédu C pomocou elementarnych operacii nad
riadkami a permutacii stipcov generujucej matice G maja rovnaké parametre (pocet ko-
dovych slov, minimalnu vzdialenost’) ako kéd C a preto ich budeme nazyvat ekvivalent-
nymi kodmi. Pomocou vyssie popisanych transformacii nad riadkami a stipcami generu-
jucej matice mozno I'ubovolni generujicu maticu transformovat na tvar

G = [I:P],

kde Iy je jednotkova matica radu k a P je matica typu k x (n — k). Generujiica matica

v tvare G = [I}:P] sa nazyva generujticou maticou v systematickom tvare. Ak G = [I;:P],
prislusna kontrolna matica ma tvar

H=[-P L4,

nakolko GH™ = —P + P = 0. Ak m4 kéd generujicu maticu v systematickom tvare, tak v
jeho kédovych slovach nasleduju kontrolné symboly az za informacénymi. Takyto kéd sa
niekedy nazyva systematickym kédom [2, 1].
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Poznamka. dJacobus van Lint [15] definuje systematicky kéd odliSne: kéd C je syste-
maticky v k komponentoch, ak |C| = q* a pre Tubovol'ny vyber hodnét v danych k kompo-
nentoch existuje prave jedno kédové slovo. Ked'Ze linearny systematicky (n, k)-kéd podl'a
nasej definicie je systematickym kédom aj podla van Linta (ale nie naopak), budeme sa
pridrziavat zavedenej definicie systematického kodu.

Veta 8.1.4. Ku kazdému linedrnemu kédu existuje ekvivalentny systematicky linedrny
kod.

Dokaz. Nech je C I'ubovolny linearny (n,k)-kéd s generujicou maticou G. Potom ge-
nerujuicu maticu G mozno transformovat’ na maticu G” v systematickom tvare, ktora je
generujicou maticou kédu ekvivalentnému kédu C. KedZe G” je systematickom tvare,
kod ktory generuje je systematicky. O

Poznamka. Z predchadzajicej vety vyplyva, ze ak to bude potrebné, mézeme bez ujmy
na vSeobecnosti predpokladat, ze linearny kod je systematicky.

8.2 Dekoédovanie linearnych kédov

Nech je dany linearny kéd C a nech u € C je odvysielané kédové slovo. Predpokladajme,
Ze pri prenose slova u vznikla chyba e v jej désledku bolo prijaté slovo w = u + e. Ako
tabulku dekédovania budeme na dekédovanie linearnych kédov budeme pouzivat tzv.
maticu Standardného rozkladu, ktora vytvorime tak, ze faktorizujeme aditivnu grupu
(GF(q)™,+) podla C a za reprezentantov jednotlivych tried rozkladu vyberieme vektory
minimalnej vahy, ktoré sa v danych triedach rozkladu nachadzaja. Rozklad potom zapi-
Seme v podobe matice, kde v prvom stipci su uvedeni reprezentanti tried rozkladu a v
prvom riadku kédové slova kédu C:

Vo Vi Vo PN qu—l

e vy tep Vg + €1 ces Vgk_1 €1

ey V] + e Vg + €2 . Vgk_1 1T €2
eqnfk_l vy + eqnfk_l Vg + eqn—k_l e qu—l + eqnfk_l

Dekédovanie pomocou tabulky dekédovania vyzera nasledovne: najdeme v tabulke
prijaté slovo w. Ak sa w nachadza v stipci j dekédujeme ho ako kédové slovo vj; t.j. ako
kodové slovo, ktoré sa nachadza v prvom riadku a j-tom stipci tabul'ky dekédovania. Je
zrejmé, ze dekédovanie pomocou tabulky dekédovania naraza na niekolko problémov.
Prvym je moznost’ nespravneho dekédovania prijatého slova. Ak pri prenose kédového
slova u vznikne chyba v + e, kde v je kédové slovo, tak sa prijaté slovo w =u + (v + e)
dekéduje nespravne na kédové slovo u + v. Kritéria spravneho dekédovania linearneho®
kédu pomocou tabulky dekédovania uvadza nasledujica veta.

btvrdenie vety plati pre blokovy kéd nad GF(q)
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Veta 8.2.1. Ak sa matica Standardného rozkladu pouZiva ako matica dekédovania linedr-
neho kodu, tak sa prijaty wektor w dekoduje na odvysielany vektor (kédové slovo) u prdve

vtedy, ak chyba w —u, ktord vznikla pri prenose je reprezentantom niektorej triedy roz-
kladu.

Dokaz. Nech je e; = w — u reprezentantom niektorej triedy rozkladu. Potom prijaty
vektor w patri do triedy [e;] a v tabulke dekédovania sa nachadza v stipci urcenom vek-
torom u = w — e;, a teda bude dekédovany spravne.

Nech na druhej strane e; = w — u nie je reprezentantom niektorej triedy rozkladu; t.j.
prijaté slovo w patri do triedy [e;], i # j. Potom sa vSak w nachadza v stlpci zodpoveda-
jucom kédovému slovu w — ej, a teda sa dekéduje nespravne. O

7 vety 8.2.1 vyplyva, Ze nie je mozné vylacit’ moznost’ nespravneho dekédovania li-
nearneho kédu. Predpokladajme, Ze prenosovy kandl je q-narny symetricky kanal” a
potom vhodnou volbou reprezentantov tried rozkladu mézeme minimalizovat pravde-
podobnost’ nespravneho dekédovania. Vyuzijeme nasledujuici doésledok predchadzajicej
vety.

Dosledok vety 8.2.1 (Linearny) kéd opravuje chyby vahy < t prave vtedy, ak su re-
prezentantami tried rozkladu vSetky vektory vahy t a mense;j.

Kod, definujuici rozklad, v ktorom st reprezentantmi tried rozkladu vsetky vektory
vahy t a mensej, sa nazyva dokonalym kédom. Ak sa dekdédovanie prijatého slova robi
na zaklade maximalnej pravdepodobnosti (t.j. prijaté slovo sa dekéduje na kédové slovo,
ktoré bolo s najvyssou pravdepodobnostou odvysielané), tak pravdepodobnost’ nesprav-
neho dekédovania dokonalého kédu je minimalna. Problém je v tom, ze dokonaly line-
arny (n,k)-kéd nad GF(q) opravujici chyby vahy < t, musi spiﬁaﬁ nasledujicu pod-

mienku:
t

> (Ta-m-a

=0 )
a kodov, ktorych parametre tito podmienku spiﬁajﬁ takmer niet (ako sme uz spominali,
jedinymi znamymi dokonalymi kédmi st Hammingove kédy a Golayov kéd). Preto sa
podmienka o reprezentantoch tried rozkladu mierne oslabuje a zavadza sa pojem kvd-
zidokonalého kédu ako kédu definujiceho rozklad, v ktorom su reprezentantmi tried
rozkladu vsetky vektory vahy t a mens$ej a niekol’ko vektorov vahy t + 1. Ilustrujeme
zavedené pojmy na nasledujicom priklade.

Priklad 8.3. /2] Linedrny (5,2)-kéd C s generujiicou maticou

10111 |

= 1ono |

a kontrolnou maticou ) )
11100
H = 10010

| 11001 |

"Pripominame, %e pri prenose slova g-narnym symetrickym kandlom je pravdepodobnost toho, Ze
vznikne chyba mens$ej vahy vicésia, ako pravdepodobnost’ toho, Ze vznikne chyba vicésej vahy.
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md minimdlnu vzdialenost’ 3 a umoZriuje opravovat’ chyby vdhy 1. Matica $tandardného
rozdelenia kodu C vyzerat nasledovne:

00000 | 10111 01101 11010
00001 | 10110 01100 110711
00010 | 10101 01111 11000
00100 | 10011 01001 11110
01000 | 11111 00101 10010
10000 | 00111 11101 01010
00011 | 10100 01110 11001
00110 | 10001 01011 11100

Kod C je kvdzidokonaly kod, pretoZe okrem nulového vektora a piatich vektorov vdhy
1 st reprezentantami tried rozkladu aj dva vektory vdahy 2. Kéd opravuje vsetky chyby
vahy 1 a dve z desiatich mozZnych chyb vdhy 2. Pravdepodobnost nesprdavneho dekodova-
nia kédového slova preneseného bindrnym symetrickym kandlom (s pravdepodobnostou
sprdvneho prenosu znaku p = 0.99) je 0.0007860898.

Matica standardného rozkladu méze byt pre praktické pouzivanie prili§ velka. Vy-
uZijeme teraz to, Ze dekédujeme linearny kéd a na jeho dekédovanie zostrojime pod-
statne meng$iu tabulku dekédovania. Predpokladajme znova, Ze bolo odvysielané kédové
slovo u a zZe pri prenose nastala chyba e, v dosledku ktorej bolo prijaté slovo w = u + e.
Vynasobime prijaté slovo kontrolnou maticou a dostavame

(u+eH =uH' +eH' =0+eH' =s,

kde s je vektor diiky n — k, nazvany syndrémom chyby. Ako sme videli, syndrém chyby
nezavisi od odvysielaného kédového slova, ale len od samotného chybového vektora e.
Pozrime sa teraz na triedu rozkladu s reprezentantom e;:

le;] =vo +ey,.. <y Vgk_1 + e;.
Pre I'ubovoIny vektor w = v; + e; z triedy [e;] plati
(W)H—r = ijT + eiHT =0+ eiHT = Sji;

t.j. vSetky vektory z triedy [e;] maju rovnaky syndrém, s;. Ak budeme pouzivat’ metédu
dekédovania na zdklade maximalnej pravdepodobnosti (prijaté slovo w dekédovat na to
kédové slovo, ktoré bolo odvysielané s najvacsou pravdepodobnostou) tak:

T

1. vypocitame syndrém (w)H' =s;,

2. v tabulke dekdédovania najdeme reprezentanta triedy rozkladu, ktorej zodpoveda
syndrém s;; e;,

3. vypocitame kédové slovo: w — e;.
Tabulka dekédovania, ktorti sme pouZili v druhom kroku ma q™* riadkov a dva stfpce;

v prvom sd uvedené syndrémy chyb a v druhom im prislichajici reprezentanti tried
rozkladu.
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Priklad 8.4. /2] Linedrny (5,2)-kéd C z predchddzajiiceho prikladu md tabulku syndré-

mov
predstavitel’ triedy syndrom
rozkladu
00000 000
00001 001
00010 010
00100 100
01000 101
10000 111
00011 011
00110 110

8.3 Reedove-Mullerove kéody

V tejto casti uvedieme podrobnejsie jeden Specidlny pripad linearnych kédov, Reedove-
Mullerove kédy, ktoré majui jednoduchy popis a jednoduché dekédovanie. Reedove-Mullerove
kédy sa charakterizované dvoma zdkladnymi parametrami - radom r a hodnotou m;0 <

r < m uréujicou dizku kédového slova. Existuji Reedove-Mullerove kédy s rozliénymi
dizkami kédovych slov a roznymi opravnymi schopnost'mi. Reedov-Mullerov kéd s para-
metrami r, m budeme oznacovat’ symbolom R (r, m). V nasledujucej tabulke si uvedené
zakladné parametre kédu R(r, m).

n=2m dizka kédu (kédového slova)

k=2 o<j<r (T]n) pocet informac¢nych symbolov
n—k=3 .. (T) poéet kontrolnych symbolov
d=2m" miniméalna vdha/vzdialenost kédu

Tabulka 8.1: Zakladné parametre Reedovych-Mullerovych kédov

Ked'Ze Reedove-Mullerove kédy su linearne kédy, mozno ich zadat’ pomocou generu-
jucej matice. Generujuca matica pre Reedov-Mullerov kéd R (r, m) ma zvlastny tvar:

Go

Gy

G= )

Gy
Aby sme mohli popisat konstrukciu generujicej matice G kédu R(r, m), zavedieme
operaciu sucinu vektorov. Nech si u = (ay,...,a,) av = (by,...,b,) dva vektory vek-

torového priestoru V. Sucinom (pozor, nejedna sa ani o vektorovy ani o skalarny sucin
vektorov) vektorov u,v nazveme vektor uv = (a;by,...,anbn). (Ide o sicéin vektorov po
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zlozkach; v binarnom pripade moézeme pomocou konvencie jazyka C zapisat’ sucin vekto-
rov u,v nasledovne uv = u&v.) Podmatice Gy,..., G; generujicej matice G su definované
nasledovne:

1. Gy je jednotkovy vektor dlzky 2™;

2. G je matica typu m x 2™, ktorej stfpcami su vSetky mozné binarne vektory diiky
m;

3. Gy, 1 <1 < rje bindrna matica typu () x 2™; riadkami podmatice G, su vSetky

vektory, ktoré su vysledkom sicinu 1 vektorov z matice G;.

Ilustrujeme konstrukcie generujicej matice Reedovych-Mullerovych kédov na priklade
R(3,4).

Priklad 8.5. _ -
Go= [ 1111111111111 |

[ 00000000T1111111 |
0000111100001111
0011001100110011

| 0101010101010101

[ 0000000000001111
0000000000110011

G= _ 0000000001010101
0000001100000011
0000010100000101

| 0001000100010001

[ 0000000000000011
0000000000000101
0000000000010001

| 0000000100000001 |

G =

Gs; =

Generujuca matica kédu R(3,4) je matica typu (15,16). To znamena, ze kod R(3,4)
ma 15 informacnych a 1 kontrolny symbol. (Kéd R(3,4) je trividlny kéd s testom parity,
schopnym odhalovat chyby neparnej vahy.) Neskor zostrojime aj netrividlny Reedov-
Mullerov kéd a na nnom ilustrujeme metédy kédovania a dekédovanie informéacie. Skon-
Struujeme R(2,4), Reedov-Mullerov kéd radu 2 diiky 16 s generujicou maticou typu
(11,16) :

Z konstrukcie generujicej matice Reedovho-Mullerovho kédu vyplyva, ze R(r— 1, m)
je mozné zostrojit’ z R(r, m) tak, Ze sa z generujiucej matice G kédu R (r, m) vynecha pod-
matica G,. To ale znamena, ze R(r — 1,m) C R(r, m), a teda minimalna vzdialenost’ d*
kédu R(r, m) nemoéze byt vicsia ako je minimalna vzdialenost’ kédu R(r — 1, m). Uka-
zeme, ze

d*=2mT.
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Kazdy riadok podmatice G; generujicej matice G kédu R(r,m) ma vahu 2™ %, 0 < s <
r < m. Ked'Ze aj riadky generujicej matice predstavuju kédové slova kédu R(r, m),

d* S meT'

Ukazeme, 7e kéd R(r, m) opravuje chyby vahy 2™ "' — 1 a teda jeho minimélna vzdia-
lenost’ nie je mensia ako 2™ " — 1. Vzhladom na to, Ze kéd R(r, m) obsahuje len slova
parnej vahy, z vyssie uvedeného potom vyplyva, zZe d* = 2™ ". Ked'Ze Reedove-Mullerove
kody sd linearne kédy, mohli by sme pre kéd R(r, m) zostrojit kontrolnd maticu a na
dekddovanie prijatych slov pouzit’ klasickd metédu dekédovania linearnych kédov. Reed
navrhol zvlastnu metédu dekédovania Reedovych-Mullerovych kédov, ktora umoznuje
rekonstruovat’ informacéné symboly na zédklade prijatého slova priamo, bez toho, aby bolo
potrebné vypocitat syndrém chyby a urcéovat’ vektor chyb. PopiSeme teraz Reedovu me-
todu dekdédovania.

Nech je dany informaény vektori = (io,...,1ix_1). Vzhladom na struktiru generujice;j
matice kédu R(r, m), rozdelime aj informaé¢ny vektor na bloky velkost'ou zodpovedajice
podmaticiam Gj generujucej matice: i = (ig,iy,...,ir). Pripominame, Ze blok i; bude

mat dlzku (T) Koédové slovo u zodpovedajice informaénému vektoru i zostrojime tak,
Ze vynasobime informacny vektor generujicou maticou kédu:

Go
. . . Gi
u=1iG = (ig,i1,...,1p) X :
G
Predpokladajme, Ze pri prenose kédového slova doslo ku chybam, v désledku ktorych
bolo prijaté slovo v=u+ e, wt(e) < 2™ !, Podstata Reedovho algoritmu spoéiva v

tom, Ze sa pomocou kontrolnych sim, ktorych argumentami si symboly prijatého slova
v urcia informac¢né symboly bloku i, a potom sa vypocita slovo

Go

Gy

1 . . .
) =v—1i,G, = (ig,...,0p 1) ¥ : + e,

v!
Gy
ktoré je ,pokazenym“ kédovym slovom kédu R(r — 1, m). Podobnym sposobom postupne

urc¢ime hodnoty informacénych symbolov z blokov i,_1,...,i;. Hodnotu posledného infor-
macného bitu, iy = ip ur¢ime zo slova

r—1)

vir) =yl — 111Gy =1ig x Gy +e.

Ak iy =0, v(¥) = e, v opatnom pripade v\*) = €. To znamen4, ze ak wt(v(")) < 2m~1 i, = 0;
v opacnom pripade iy = 1. Otvorenou otazkou zostava, ako zostavit kontrolné sumy
na vypocet informac¢nych symbolov 1i4,...,1_1. RieSenie tohto problému ilustrujeme na
avizovanom priklade dekédovania kédu R(2,4).

Priklad 8.6. Nech je C Reedov-Mullerov kéd rdadu 2, dizky 16. Gen/erujllca matica kédu
C, doplnend kvdli ndzornosti o riadok obsahujiici kédové slovo a stlpec obsahujici infor-
macdny vektor, je uvedend v tabulke 8.2.
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H Vo Vi V2 V3 V4 V5 Vg V7 Vg Vo Vio Vi1 V12 Vi3 Vi4 Vi5
ip T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
i 0o 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
1) o o0 o o 1 1 1 1T 0 0 0 O 1 1 1 1
i3 o o 1 1 0 0 1T 1 0 O 1 1 0 0 1 1
g o 1.0 1 0 1 0 1T 0 1 0 1 0 1 0 1
i5 o 0 0o 0o 0o 0 0 0 0 0 o0 o0 1 1 1 1
ig o 0 0 0o 0 00 0 0 O 1 1 0 0 1 1
iz 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
ig o o0 o o o o0 1T 1T 0 0 0 0 0 O 1 1
19 o 0 o o o 1 0 1T 0 0 0 0 0O 1 0 1
io O O 0O 1 0 0 O 1T 0 0 O 1 o 0 0 1

Tabulka 8.2: Generujica matica kédu R(2,4)
Nech je

i=(10011100001)

informadny vektor, potom kédové slovo prisliichajiice vektoru i je
u = (1000 1000 1000 0111).
Predpokladajme, Ze pri prenose vznikla chyba e vdhy 1;
e = (0001 0000 0000 0000),

a bolo prijaté slovo
v=u-+e = (1001 1000 1000 0111).

Pri konstrukcii kontrolnych siim, budeme vychddzat zo vztahu w = iG; t.j. zo vztahov
medzi informaénymi symbolmi a symbolmi kédového slova u:

Uy = 1'L()
wu = ig+1ig
w = ig+1i3
u3 = ig+1iz+ig+ i
ws = io+i+---+1iyo
Vyjadrime nezndme hodnoty informacnych symbolov is, ..., 119 pomocou zndmych symbo-
lov prijatého slova v:
1o = vo+vi+va+vs
119 = v4+Vvs+vg+vy

110 Vg 4+ Vo 4+ V1o + V11

o = vio+viz+vig+vis
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Vsimneme si, Ze kaZdy symbol prijatého slova vystupuje prdve v jednej kontrolnej sume.
To znamend, Ze ak pri prenose vznikla chyba vdhy 1, chyba ovplyvni vysledok prdve jed-
nej kontrolnej sumy. Hodnotu i,y uréime ,hlasovanim®; v nasom pripade st hodnoty kon-
trolnych sum 0,1,1,1 a teda i;90 = 1. Podobne zostavime kontrolné sumy pre informacéné
symboly 19,13, 17, 16, 15 a uréime hodnoty uvedenych informacénych symbolov

1o = vo+Vvi+vs+vs =0

1o = vy+vi+vg+vy = 1 0 —0
1o = vg+Vvo+vi+Vvi3 =0 ? =

o = vig+vii+viga+vis = 0

1§ = vo+v2+vs+vg =0

ig = vi+v3+vs+vy =1 .

. 13:0
ig = vg+vio+viz+ve = 0

i = vo+vii+viz+vis = 0

17 = vo+vi+vg+ve =0

17 = vy+v3+vio+vn = 1 =0
i7 = va+vs+vip+viz = 0 7=

17 = vg+v7+vis+vis = 0

15 = vo+v2+vs+vi = 0

i = Vvi+Vv3+ve+vi = 1 .

. 1620
i = va+vg+vio+vizy = 0

i = vs+vsi+viz+vis = 0

i5 = vo+vs+vg+v2 = 1

15 = Vvi+V5+ve+vi3 = 1 1
15 = Vvy+Vvg+Vvip+Vig = 1 >

i5 = v3+vz+vii+vis = 0

Blok iz = (100001) informacnych symbolov vyndsobime podmaticou G, generujicej ma-
tice G a vysledok odpocitame od prijatého slova v:

v = 1001 1000 1000 0111
isG) = 0001 0001 0001 1110
vl = v —i5G; 1000 1001 1001 1001

Pripominame, Ze slovo vV je kédové slovo kédu R(1,4) ,pokazené“ chybou e. Zostavime
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kontrolné sumy na vypocet informacénych symbolov iy, ...,14:
iy =1
Vo + V1 = T |vy+v;3 0
V4 + Vs 1 |lve+v; =1
Vg + Vo = T|vig+vyy = 1
viot+viz = 1]vig+vis = 1
iz3=1
vo+va = 1|lvi+vy = 0
V4 + Vg = 1|vs+vy = 1
vg+vip = 1 |vo+vyy = 1
viotviy = 1T |viz+vis = 1
1L, =0
vo+vy = O0lvi+vs = 0
V2 + Vg = 0|v3+vy = 1
vg+viy = O0|vo+viz = 0
Vio+vis = 0]|vi1+vis 0
11=0
Vo + Vg = 0|vi+w = 0
v+vi = 0|vs+vyy = 1
vg+viy = 0|vs+vi3 = 0
ve+vy = O0|vs+vis = 0

Vyndsobime blok iy = (0011) informacnych symbolov podmaticou G generujiicej matice
kédu C a vysledok odéitame od vektora v\1):

Y
i;Gy

vi® = vl i, G

1000 1001 1001 1001
01100110 0110 0110
11101111 1111 1111

Napokon uréime iy. Vaha wt(v!2)) = 15 > 8, a to znamend, ze iy = 1.
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Cyklické kédy

Linearne kédy, ktoré sme Studovali v predchadzajucej ¢asti, boli prikladom samooprav-
nych kédov, ktoré sa dali efektivne konstruovat’ a pre ktoré existovali efektivne metody
kédovania a (aspon principidlne efektivne metédy) dekédovania. Pri $tidiu linearnych
kédov sme zaviedli zakladné parametre samoopravnych kédov (opravna schopnost’, mi-
nimalna vzdialenost’, prenosova rychlost’ a i.) a urcili vzt’ahy medzi nimi. Z praktického
hradiska je vSak najmé dekédovanie dlhsich linearnych kédov priestorovo naro¢né. Preto
je potrebné hladat’ iné triedy samoopravnych kédov, ktoré by zachovavali dobré vlast-
nosti linedarnych kédov a vyznacovali sa aj vypoctovo efektivnymi metédami dekédova-
nia. Cyklické kody, ktoré su podtriedou linearnych kédov, vd'aka silnejSej algebraickej
Strukture Ciasto¢ne spiﬁajl’l uvedené poziadavky.

Definicia 9.0.1. Linedrny kéd C nazveme cyklickym kédom, ak pre l'ubovolné kodové
slovo u = (ug,uy,...,un_1) € C plati 0’ = (up_1,up,u1,...,uy2) €C.

Nazov cyklicky kod vyplyva z toho, Ze operacia na slovach
(u0>u1>- . -)un—1) — (un—huO)uh s )un—l)

predstavuje cyklicky posun kédového slova. Na cyklické kédy sa mozeme teda divat’ ako
na linearne podpriestory vektorového priestoru GF(q)" spiﬁajﬁce dodato¢nu podmienku
na uzavretost vzhfadom na cyklicki posun kédovych slov. Z hl'adiska konstrukcie, kédo-
vania ale najmé dekédovania bude efektivnejSia polynomicka reprezentacia cyklickych
kédov; t.j. reprezentacia kédovych slov z C C GF(q)™ pomocou polynémov z faktorového
okruhu GF(q)[x]/x™ — 1.

Priklad. Uvazujme Hammingov (15, 11) kéd, ktory sme zaviedli v casti 7.4 s kontrolnou
maticou

H=

o —= O O

1
0
0
1

—_— O O

1 1 1T 0 1
0 1 011
1 0 T 1 1
0 1 T 1 1

— O O O

1 0 1 0
1 11 1
0 11 0
0 0 0 1

oS O = O

1
0
0
0

Permutaciou stipcov kontrolnej matice H dostaneme kontrolnd maticu H' kédu, ktory

105
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je ekvivalentny povodnému Hammingovmu (15, 11) kédu:

o = O O
—_ O O O
S = = O

0
0
1
1

—_ O = =
©C - O —
—— o = o
O —
—_ —_ a0
— o o
_—_ O =
—_ O —

1
1
0
0

o O O =
o O = O

Stipce kontrolnej matice H' mozeme chapat dvojako: bud’ ako vektory diiky 4 nad pol’om
GF(2), alebo ako prvky pola GF(2*). Nech je « primitivny prvok pola GF(2*), potom stlpce
kontrolnej matice H' mézeme vyjadrit pomocou mocnin prvku « nasledovne:

H = o0, o, o2, o, o, o, o, o, o8, o, o0, o' o2, 13, o]
Ako bude vyzerat dekédovanie? Nech u = (up,uy,...,u14) € C je kédové slovo. Potom
uH'™ =0.

Posledny vztah méZeme rozpisat nasledovne:

uH'T = uooco + uy ! + uzocz + ugoc3 + u4oc4 + u5a5 + uéoc6 + u70c7 +u+ 8o + u90c9 +

+ umcxm +unoc” +u1zoc1zoc]3 +u14oc]4 =0.

Zavedieme teraz prirodzenu koreSpondenciu medzi kédovymi slovami Hammingovho

(15,11) kédu a polynémami z okruhu polynémov GF(2)[x]/x" — 1:
(Ugy Uyy ...y Uyg) 2 Ug +uix + upx? + - - +u14x]4,

resp. vo vSeobecnom pripade vektor v =vy,..., v, 1 nad polom GF(q) budeme reprezen-
tovat’ polynémom vy + vix + - - - +vn_1x"' z okruhu polynémov GF(q)[x]/x™ — 1. Vratme
sa ku prikladu. Ndsobenie vektora v kontrolnou maticou H’' predstavuje vyéislenie hod-
noty polynému v(x) v prvku o € GF(2*). Je zrejmé, Ze prijaté slovo v je kédovym slovom
Hammingovho (15,11) kédu prave vtedy, ak v(«) = 0. Polynémy zodpovedajice kédovym
slovam, budeme nazyvat kédovymi polynémami.

V predchadzajicom pripade sme od kontrolnej matice nad polom GF(q) presli k takej
reprezentacii kontrolnej matice, v ktorej celému Vektoru-stipcu zodpovedal jeden prvok
nejakého rozsirenia pévodného pol'a (prvok pola GF(q™)). Toto vSak nie je jedind moz-
nost’, ako vyjadrit’ kontrolnd maticu ako maticu nad rozsirenim pévodného pola. Pred-
pokladajme, Ze je dand kontrolna matica H typu (n — k) x n nad polom GF(q) a ¢islo
(n — k) je delitelné m; t.j. (n — k) = mr. Vektor—stipec diiky (n — k) moézZeme rozbit na r
blokov diiky m a kazdy blok reprezentovat prvkom pola GF(q™):

Kontrolna matica H sa potom transformuje na nasledujicu maticu:

Bi1 P12 ... PBin

oo 5.21 B'zz B?n

B.ﬂ B.rl B;n
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kde By € GF(q™),i = 1...,1;j = 1,...,n. Namiesto p6vodnej kontrolnej matice typu
(n—k) x n nad polom GF(q) dostavame kontrolnt maticu typu r x n nad polom GF(q™);
kde r = (n — k)/m. Aby sme pri dekédovani mohli nahradit’ nasobenie prijatého slova
u kontrolnou maticou dosadzovanim prvkov pola GF(q™) do polynému u(x), budeme
kontrolni maticu H zapisovat v tvare

oo W
0 n—
Y5 vy oy
H=| 2 7 2 ;
Wovr o W
kde vq,...,vr € GF(q™). Parametre n, g, m nie su celkom nezavislé. Na zaciatok budeme

predpokladat, ze n = q™ — 1, neskor ukazeme, aké d’alSie hodnoty moze dizka kédu
nadobudat.

Dekddovanie prijatého slova u = (up, uy,...,uy 1) mozno realizovat’ dvojako: prijaté
slovo vynésobime kontrolnou maticou H v ktorej prvky vy, nahradime prislusnymi vek-
tormi dlzky m nad polom GF(q) a vypocitame syndrém s;

s=uH'.

V druhom pripade nasobeniu prijatého vektora (slova) u kontrolnou maticou H nad po-

Tom GF(q™) zodpoveda dosadzovanie prvkov yi,...,y, € GF(q™) do polynému u(x):
WY+ Wyl + - Fua v = ),
TouwY Wy e+ unyE T = ulyva),
uH' = . .
WY +wyl + - Uy = ulyar).
Podmienka uH" = 0 je ekvivalentna tomu, Ze prvky vi,...,yr € GF(q™) st korene poly-

nému u(x). Ilustrujeme uvedenu konstrukciu na priklade.

Priklad 9.1. Nech je « primitivny prvok pola GF(2*), nech n = 15. PoloZime yi = o, y2 =

o a zostrojime kontrolnu maticu H (15,7)-kédu:

Proky pola GF(2*) mézeme reprezentovat’ pomocou bindrnych vektorov dizky 4 (pozri
tabulku 15.4). Kontrolnd matica bude potom bindrnou maticou typy 8 x 15:

(1.0 001 00T T1TO0T1TO0T1 1 17
oroo01101To0o1T1T1T1TO0O0
oo1roo0o1T1To01TO01T 1T 1T1O0
H — ooo1oo0ot1T1To1TOTIT 11
10001 1000110001
oo0oo0o1 10001100011
oo01o0o10010100T1TO01
o111 10111101 111]
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Pri studiu Bose-Chandhury-Hocquenghemovych (BCH) kédov v nasledujticej podka-
pitole ukazeme, ze kod z predchadzajiceho prikladu je BCH kéd (15, 7) opravujici chyby
vahy 2.

9.1 Polynomicky popis cyklickych kédov

V tejto casti popiSeme najprv algebraicka struktiuru cyklickych kédov a potom ukazeme,
ako na zaklade tychto poznatkov mozno konstruovat’ cyklické kédy. Budeme uvazovat
cyklicky kéd C diiky n nad polom GF(q). Pripomenieme, Ze cyklicky kéd C je linearnym
podpriestorom vektorového priestoru dimenzie n nad polom GF(q) a ze C je uzavrety na
cyklicky posun svojich prvkov. Vektorovy priestor GF(q)™ mozZno prirodzenym spésobom
zobrazit’ na faktorovy okruh polynémov GF(q)[x]/x™ —1:

Yu € GF(q)n; u = (ug,Uy,...,Un_1) & Ug +u]X+LL2X2+ e —i—un,]x”*]

D4 sa l'ahko overit), ze faktorovy okruh polynémov GF(q)[x]/x™ —1 ma vlastnosti vektoro-
vého priestoru. Naviac, vo faktorovom okruhu GF(q)[x]/x™ —1 je definované (moduléarne)
nasobenie polynémov:

Va(x),b(x) € GF(q)[x]/x" —1:a(x)-b(x) =a(x)-b(x) (mod x™—T1).

Zostava najst’ vyjadrenie cyklického posunu pomocou operacii nad polynémami v okruhu
GF(q)[x]/x™—1. Cyklicky posun vektora u zodpoveda stcinu polynémov x-u(x). Skutocne,

x-u(x) = Up X"+ Un X"+ ux +upx (mod x™ — 1),
pricom
Un1Xm FunoxX™ T4+ L Fux? + upx o (xM—=1) =up_q
— Up X" +Un—1
Un_oX™ 1+ ... +uyx? 4 UpX + Un g

Cyklicky kéd mézeme teraz charakterizovat nasledujicim spésobom:

Veta 9.1.1. Nech GF(q)[x]/x™ — 1 je faktorovy okruh polynémov nad polom GF(q). Pod-
mnozZina polynomov C C GF(q)[x]/x"™ — 1 tvori cyklicky kod prdve vtedy, ak

1. C je aditivna podgrupa okruhu GF(q)[x]/x™ —1,
2. ak u(x) € Ca a(x) € GF(q)[x]/x™ — 1, tak

a(x)-u(x) (mod x"™—1)elC.
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Dokaz. Cyklicky kod je zaroven linearnym kédom. To znamenad, ze C tvori aditivnu
podgrupu okruhu GF(q)[x]/x™ — 1. Z linearnosti kédu C vyplyva, Ze aj sticin 'ubovolného
prvku a € GF(q) a polynému u(x) € C patri do C. Z cyklickosti C vyplyva, Ze pre u(x) € C
aj x* - u(x) € C. To znamen4, Ze pre 'ubovolny polyném a(x) € GF(q)[x]/x™ — 1;a(x) =
ao+ ajx + - - -+ an_1x™! patria aj polynémy ag - u(x), a;x - wu(x),...,an1x* ' -u(x)do C a
z toho, ze C je aditivna grupa vyplyva, Ze aj

ao - w(x) 4+ arx - wx) + -+ anx™ o ulx) = a(x) - u(x) € C.

Opacne, nech C spiﬁa uvedené dve podmienky. Z prvej vyplyva, Ze C je uzavreta na
sCitanie a z druhej, Ze C je uzavreta na nasobenie skalarom (ostatné vlastnosti nasobenia
a s¢itania sa do C prenasaju z okruhu GF(q)[x]/x™ — 1). To znamena, Ze C tvori linearny
podpriestor (linearny kod). Z druhej podmienky naviac vyplyva, Ze C je uzavreta na cyk-
licky posun; t.j. C je cyklicky kéd. O

Poznamka. Mnozina C tvori ideal okruhu GF(q)[x]/x™ — 1. Neskor dokazeme, Ze C je
hlavny ideal.

Preskimame teraz mnozinu C podrobnejsie. Budeme v nej hl'adat’ polyném g(x),
ktory je nenulovy, normovany a ma spomedzi vSetkych (nenulovych) prvkov-polynémov
mnoziny C minimalny stupen. Ked'zZe C je neprazdna mnozina, nenulovy normovany po-
lyném g(x) minimélneho stupna existuje. Ukdzeme, Ze je dany jednoznacne. Predpokla-
dajme opak, t.j. Zze v C existuju dva rozne polynémy g;(x) a gz(x) pozadovanych vlast-
nosti. Potom aj ich rozdiel, polyném g;(x) — g2(x) patri do C. Ale polynémy g;(x) a g2(x)
maju ten isty stupen a si normované. To znamena, Ze ich rozdiel je nenulovy polyném
nizsieho stupna, z ktorého po vydeleni koeficientom pri najvyssej mocnine mozno vytvo-
rit normovany nenulovy polyném nizsieho stupna ako je stupen polynémov g;(x) a g2(x).
Spor. Polyném g(x) je teda dany jednoznacne a z dévodu, ktory zakratko uvedieme, na-
zyva sa generujucim polynémom kédu C Preskimame vztah polynému g(x) a ostatnych
prvkov (polynémov) kédu C. Nech je u(x) nenulovy kédovy polyném kédu C. Potom exis-
tujua polynémy q(x) a r(x) také, ze

u(x) =q(x)g(x) +r(x) mod x™ —1,

pricom deg(r(x) < deg(g(x)). Ked'ze g(x) € C, tak potom podla vety 9.1.1 aj q(x)g(x) € C.
To vsak znamena4, Ze aj
u(x) —q(x)g(x) € C,

nakol’ko ide o rozdiel dvoch kédovych slov a C je cyklicky a teda aj linearny kod. Ale
u(x) — q(x)g(x) =r(x)

a deg(r(x) < deg(g(x)). To by znamenalo, zZe v kéde C existuje polyném nizsieho stupna
ako je stupen generujiceho polynému. To vSak je mozné len v pripade, ked r(x) = 0.
Potom vsak pre I'ubovolny kédovy polyném w(x) z C plati

Tym sme dokazali nasledujicu vetu
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Veta 9.1.2. Nech C C GF(q)[x]/x™ — 1 je cyklicky kod dl3ky n. Potom v kéde C existuje
Jediny nenulovy normovany polyném g(x) stupria n — k taky, Ze

C ={a(x)g(x); a(x) € GF(q)lx], deg(g(x)) < k}.

Ked'Zze cyklicky kod je jednoznaéne zadany svojim generujicim polynémom, ponu-
kaju sa prirodzené otazky, ¢i sa tento vzt'ah neda vyuzit pri konstrukecii, kédovani i
dekddovani cyklickych kédov a ak ano, ako. Odpoved na tieto otazky budeme hladat v
nasledujucej Casti tejto kapitoly. Zacneme zdkladnou otdazkou: aké vlastnosti musi mat’
polyném, aby bol generujicim polynémom cyklického kédu? Odpoved na tato otazku
dava nasledujica veta.

Veta 9.1.3. Cyklicky kéd C dizky n s generujiicim polynémom g(x) existuje prdve vtedy,
ak g(x)x™ —1.

Dokaz. Predpokladajme, ze C C GF(q)[x]/x™ — 1 je cyklicky kod diiky T s generujucim
polynémom g(x). Plati
X" —1=q(x)g(x) + r(x),

kde q(x),7(x) € GF(q)[x]/x™ — 1 a deg(r(x)) < deg(g(x)). Ked'#e plati
X"—1=0 modx"—1
a deg(r(x)) < n, tak potom
0=1(q(x)g(x) +(x)) mod x™—1=(q(x)g(x)) mod (x" —1) +7(x).

Kéd C je cyklicky a g(x) je jeho generujici polyném, preto aj (q(x)g(x)) mod x™ — 1 je
kédovy polyném kédu C. KedZe 0 je tiez kédovy polyném, potom aj r(x) = 0 — q(x)g(x)
musi byt kédovym polynémom kédu C. To je vsak mozné len v pripade, ked r(x) =0, a
teda

X" —1=q(x)g(x).

Nech opacne g(x) € GF(q)[x], g(x)[x™ — 1, deg(g(x)) = n — k. MnozZina polynémov C =
{a(x)g(x); a(x) € GF(q)[x], deg(g(x)) < k} je podla vety 9.1.1 cyklickym kodom. O

To, zZe polyném g(x) deli polyném x™ — 1 znamena, Ze existuje polyném, ozna¢ime ho
ako h(x), taky, ze x™ — 1 = g(x)h(x). Ak je g(x) generujicim polynémom cyklického kédu
C, tak potom sa polyném h(x) nazyva kontrolnym polynémom cyklického kédu C. Podobne
ako generujuci polyném, zohrava aj kontrolny polyném v teérii linearnych kédov délezitu
ulohu.

Pozrime sa teraz na polyném x™ — 1 nad polom GF(q). Vyjadrime x™ — 1 ako stcin
ireducibilnych polynémov nad polom GF(q):

Xt =1 ="f1(x) fa(x) - fi(x).

Generujuci polyném g(x) cyklického kédu dizky n nad pofom G F(q) sa da potom vyjadrit’
ako sucin vybranych ireducibilnych polynémov z rozkladu x™ — 1:

g(x) = fi, (x) - fi, (x) ... i, (x).
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Ked'Ze polyném x™ — 1 m4 | ireducibilnych faktorov nad pofom GF(q), existuje 2' roz-
li¢nych generujucich polynémov a préave tolko cyklickych kédov dizky n nad pofom GF(q).
Cyklicky kéd vsak tvoria kédové polynémy, ktoré st nasobkami generujiceho polynému;
u(x) = a(x)g(x). Kédovy polyném ma stupen nanajvys n — 1. Ak bude mat’ generujuci
polyném stupeni n — k, tak potom kéd bude obsahovat 2% kédovych slov. Z toho vyplyva,
Ze niektoré polynémy nebudu generovat’ pouzitel'né kédy. Ilustrujeme vytvaranie cyklic-
kych kédov pomocou generujicich polynémov na priklade [1].

Priklad. Uvedieme vSetky binarne cyklické kody dfiky 7. Polyném x” — 1! ma tri iredu-
cibilné faktory?
X —1= x4+ +x+ 1) +x2+1).

To znamena, Ze teoreticky existuje 8 binarnych cyklickych kédov diiky 7.

generujuci polynom kontrolny polyném kod
1 x =1 Cq
x+1 BHx+1DEC+x2+1) &
(3 +x+1) x4+ 1S +x2+1) C3
(3 +x*+1) (x+D(xXP+x+1) Cs
x4+ +x+1) (3 +x2+1) Cs
(x+1DE+x2+1) (P 4+x+1) Ce
BHEx+DE+HX2+1) (x+1) Cy
x’ =1 1 Cs

e kéd Cq pozostava zo vSetkych binarnych vektorov diiky 7, jeho opravna schopnost’
je nulova.

kéd G, je kéd s testom na paritu a ma 64 kédovych slov dizky 7 (parnej véhy)

kédy C; a C4 st Hammingove (7,4) kéd opravujice jednu chybu. Maja 16 kédovych
slov

kédy Cs a Cg st dualne kédy k Hamingovému (7,4) kédu, maja 8 kédovych slov

kéd C; ma dve kédové slova 0000000, 1111111, opravuje 3 chyby a nazyva sa kod s
opakovanim (repetition code).

kéd Cg ma jediné kédové slovo 0000000 a je prakticky nepouzitelny.

9.2 Maticovy popis cyklickych kédov

Cyklické kédy st podmnozinou linearnych kédov. Linedarne kédy je mozné zadat pomo-
cou generujucej, resp. kontrolnej matice. Jeden typ kontrolnej matice pre cyklické kédy

lpripominame, 7e nad pofom GF(2) x” —1 =x" + 1
%0 ireducibilite polynémov (x> + x + 1), (x> + x? 4+ 1) sa presvedéime 'ahko; ak by totiz boli reducibilné,
museli by mat’ aspon jeden faktor stupna 1, a teda ako koren prvok z pol'a GF(2).
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sme uz uviedli v avode tejto kapitoly. Medzitym sme zistili, Ze cyklické kédy je mozné
popisat’ pomocou generujucich a kontrolnych polynémov. Ukazeme teraz, aky je vztah
medzi generujucim plonémom agenerujicou maticou a kontrolnym polynémom a kon-
trolnou maticou cyklického kédu. Uvazujme cyklicky kod C diiky n nad polom GF(q) s
generujucim polynémom g(x) stupna n — k a kontrolnym polynémom h(x). KedZe cyk-
licky kéd C pozostava zo vsetkych nasobkov generujiceho polynému g(x), kédovymi po-
lynémami budd aj polynémy g(x),x - g(x),...,x*' - g(x). Ukdzeme, Ze polynémy g(x),x -
g(x),...,x*¥ - g(x), resp. vektory ich koeficientov su linearne nezavislé. Predpokladajme
opak, potom by musela existovat k-tica prvkov ay,...,ax1 € GF(q), s aspon jednym
nenulovym prvkom tak4, Ze (v polynomickom vyjadreni)

Q- g(x)+ap-x-g(x)+---+ ax_q T g(x) =0 9.1)
Zo vztahu 9.1 v8ak vyplyva, Ze
(apg+aj-x+---+ ax_1 -xk_])-g(x) =0,

resp.

ki]) = O)

(ag+ay-x+---+axq-x
o je vSak v spore s nenulovost'ou vektora prvkov ay, ..., ax_1. To znamena, Ze vektory ko-
eficientov polynémov g(x),x-g(x),...,x*'-g(x) st nezavislé a kedze cyklicky kéd C je za-
roven linearny kéd dimenzie k, vektory koeficientov polynémov g(x),x-g(x),...,x* - g(x)
tvoria jeho bazu. Tato baza zapisana v podobe matice predstavuje generujicu maticu
cyklického kédu C:

[0 o 0 0 gk k-1 --- 92 91 9o |
0 ... 0 Onk  Onk-1 9nk—2 --- 91 Go O

G = |0 cvv gnk Ynk1 9nk2 Ynk3 ... Go O O 9.2)
 gnk .- . 00 0 |

Teraz zostrojime kontrolnd maticu cyklického kédu C pomocou jeho kontrolného poly-
nému h(x). Ked'ze h(x)[x" — 1 existuje linearny kéd C’ s generujicim polynémom h(x).
Generujucu maticu H' kédu C’ mozno taktiez vyjadrit v tvare 9.2. Kéd C’' vSak nie je
duslnym kédom kédu C, pretoze G - H'T # 0, a teda matica H’ nie je kontrolnou maticou
kodu C. Ukazeme, Ze kontrolna matica cyklického kédu C odvodena z jeho kontrolného
polynému h(x) existuje a ma tvar

o ... 0 O hy hx1 ... hy hy ho |
0 .o 0 hy het heo ... hy ho 0
H = 0 e hk hk_1 hk_z hk_3 N ho 0 0 (9.3)

he ... ... 0 0 O
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Potrebujeme dokézat, ze G-H™ = 0. Vyuzijeme skutoénost, ze h(x)-g(x) =0 mod x™—1.
To znamena, Ze

goho =1,
(gohy + g1ho) = 0,
(goh2 + gihy + g2hy) = 0, (9.4)
(gn-k—1hx + gn-khx—1) = 0O,
gn—khk = 1.

Stéinom matic G - H' je matica typu (n — k) x (n — k) ktort mozno zapisat’ v tvare

an—1 Qan-—2 e Qy
an—2 Qan-3 P € . |
G-H' = e , (9.5)
an-kx Oan-—k-1 ... @
kde
m
am = Z Jm—ihi, O<m<n.
i=0
Zo vztahov 9.4 vyplyva, Zze a,, = 0 pre m = 1,...,n — 1 a teda matica 9.3 je kontrolnou

maticou kédu C. Ukazeme, Ze linearny kéd C*, dudlny ku kédu C je zaroven cyklicky
kéd s generujiicim polynémom x* - hx~'. Staéi ukazat, ze polyném x* - hx ! deli polyném
x™—1. Vyjadrime polyném x™ — 1 v podobe sic¢inu generujiceho a kontrolného polynému
X" — 1 = g(x) - h(x), dosadime x := x~! a vysledni rovnost’ vynisobime polynémom x™.
Dostavame rovnost’

X" og(x ) h(x ) =x"Rg(x ) -k or(x ) =1 — XM

Z poslednej rovnosti vyplyva, ze polynémom x* - h(x~') deli polyném x™ — 1.

Poznamka. Koéd C’ zadany generujucou maticou H' sa niekedy tiez nazyva dudlnym
kédom kédu C. V skutoénosti sa viak nejedna o dudlny kéd (pretoze G - H'T # 0) ale ide
len o kéd ekvivalentny s dudlnym kédom C*.

9.3 Koédovanie pomocou cyklickych kodov

Spravu, ktord potrebujeme zakédovat pomocou cyklického (n,k)-kédu C (s generujicim
polynémom g(x) stupnia n — k rozdelime na postupnost’ disjunktnych blokov dfiky k
(informacné vektory). Kazdému informa¢nému vektoru i = (1o, ..., 1x_1) priradime infor-
maény polyném i(x) = ig+ 11 - x + - - + i1 - x¥°! stupna nanajvys k — 1. Ked'ze kédové
slova (polynémy) cyklického kédu C st nasobkami generujiceho polynému g(x), staci
informaény polyném vynasobit’ generujicim polynémom a dostaneme kédovy polyném
kodu C
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Takyto spésob kédovania je korektny, ale je nesystematicky, pretoze z kédového poly-
nému u(x) sa neda bezprostredne uréit informacny polyném i(x). Existuje aj systema-
ticky sposob kédovania, ktorého podstata je nasledovna:

¢ Informaény polyném i(x) vynasobime polynémom x™ k.

e Vypoéitame x™ % - i(x) mod g(x)

n—k n—k .

e Od polynému x i(x) od¢itame x i(x) mod g(x) a dostdvame hfadané kédové

slovo x™ % -i(x) —x" % -i(x) mod g(x).

KedZe stupen polynému x™ % -i(x) mod g(x)je nanajvys n —k — 1 a prvky informag-
ného vektora tvoria v kédovom slove koeficienty pri mocninach x™ %, ..., x" !, v kédovom
slove su jednoznacne oddelené informacné a ,kontrolné“ symboly tak, ako sme pozado-
vali, obr. 9.1.

i(x) —x"%.i(x) mod g(x)

Obr. 9.1: Kédové slovo systematického cyklického kédu

9.4 Dekoédovanie cyklickych kédov

Kedze cyklické kody st podmozinou linearnych kédov, mozno na ich dekédovanie pouzit’
tie isté metddy ako na dekédovanie linearnych kédov. Pri dekédovani linearnych kédov
s vacSou opravnou schopnostou sme narazali na to, Ze si bolo potrebné pamitat’ roz-
siahlu dekédovaciu tabulku (obsahujicu zoznam syndréomov chyb a im prislichajiacich
chybovych vektorov). Vyuzijeme algebraicku struktiru cyklickych kédova na zostrojenie
efektivnejsieho algoritmu dekédovania. Predpokladajme, Ze informécia, ktord spraco-
vavame, je zapisana vo forme polynémov. Do popisu spracovania zahrnieme aj kédovanie
sprav:

1. informacny vektor i transformujeme na informacény polyném i(x),

2. informaény polyném (napriklad nesystematicky) transformujeme na kédovy poly-
nom: u(x) = i(x) - g(x) s vektorom koeficientov u,

3. koeficienty kédového polynému sa prenasaju prenosovym kanalom. Poc¢as prenosu
vznikne chyba e, ktora transformuje prenasané kédové slovona slovov=u+e.V
polynomickom vyjadreni v(x) = u(x) + e(x).

4. Prijemca interpretuje prijaté slovo v ako polyném v(x), vydeli prijaty polyném ge-
nerujucim polynémom a vypocita zvySok po deleni:

v(x) mod g(x) = (u(x)+e(x)) mod g(x) =u(x) mod g(x)+e(x) mod g(x) =
e(x) mod g(x) = s(x).
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Vysledkom delenia je polyném s(x), ktory sa nazyva syndrémovy polyném. Je zrej-
mé, Ze deg(s(x)) < deg(g(x)). Ked'ze 'ubovolné kédové slovo u(x) je nasobkom gene-
rujiceho polynému g(x), u(x) mod g(x) = 0 a teda syndrémovy polyném nezavisi
od odvysielaného kédového polynému, ale len od polynému chyb.

Skor ako budeme pokracovat vo vyklade, uvedieme kvoli prehl'adnosti zoznam poly-
némov, ktoré sa pouzivaju pri popise, kédovani a dekédovani cyklického (n, k)-kédu.

nazov oznacCenie stupen
generujuci polynom g(x) n—k
kontrolny polyném h(x) k
informaény polyném i(x) k—1
kédovy polynéom u(x) n—1
chybovy polyném e(x) n—1
prijaty polyném v(x) n—1
syndrémovy polyném s(x) n—k—1

Tabulka 9.1: Polynémy cyklickych kédov

Aby bolo mozné pouzivat syndrémovy polyném s(x) na urcenie chyby e(x), potrebu-
jeme mat zaruku, Ze syndrém chyby uréuje chybu® jednoznaéne; t.j. Ze neexistuju dve
rozne chyby vahy mensej alebo rovnej opravnej schopnosti kédu s tym istym syndrémom.
Tuto délezita vlastnost cyklickych kédov sformulujeme a dokdzeme v nasledujicej vete.

Veta 9.4.1. Nech je d minimdlna vzdialenost’ cyklického kédu C, potom kazZdému poly-
nému chyb vdahy mensej ako d/2 zodpovedd prdve jeden syndrémovy polyném.

Dokaz. Kazdému chybovému polynému e(x) zodpoveda nejaky syndrémovy polyném
s(x) = e(x) mod g(x). Predpokladajme, ze existuju dva rozlicné chybové polynémy vahy
mensej ako d/2; ej(x) # ez(x) s tym istym syndrémovym polynémom s(x). To znamena,
ze

er(x) = qilx)-g(x)+s(x)

e2x) = qa(x)-g(x) +s(x)

ale potom je rozdiel chybovych polynémov

e1(x) —ea(x) = (qi(x) — q2(x)) - g(x) (9.6)

nasobkom generujiceho polynému, a teda kédovym slovom. Ale polyném e;(x) — ez(x)
ma vahu < d, ¢o je v spore s minimalnou vahou kédu C. To znamena, ze e;(x) —ez(x) =0,
resp. e1(x) = ex(x). O

Priklad. Uvazujeme (7,4) Hammingov cyklicky kéd s generujicim polynémom g(x) =
x> + x + 1. Tento kéd ma minimalnu vzdialenost' 3, a opravuje chyby vahy 1. Vsetky

3podobne ako pri linearnych kédoch, aj tu sa rozumie chyba vahy mensej alebo rovnej opravnej schop-
nosti kédu
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chybové polynémy vahy nanajvys 1 a im prislichajice syndrémové polynomy si uvedené
v tabulke
chybovy polyném e(x) syndrémovy polyném s(x)
0 0
1
X
X2
x+1
X2 +x
X2 +x+1
X2+ 1

X_A

X R R XX
- AR IR NSRS Y

Priklad spracovania (kédovanie, prenos a dekédovanie) sprav pomocou Hammingovho
kédu je uvedeny v tabul'ke

vektor/polynom \ oznacenie vektor polyném sposob vypoctu
informac¢ny i(x) 1011 X 4+ x+1

kédovy u(x) 1000101 x® 4+ x% +1 u(x) =1i(x) - g(x)
odvysielany u(x) 1000101 x® +x% + 1

chybovy e(x) 0010000 x*

prijaty v(x) 1010101 X+ 4+x* +x2 +1 v(x) =u(x) + e(x)
syndrémovy s(x) 110 x> +x v(x) mod g(x)
chybovy e(x) 0010000 x* s(x) « e(x)
opraveny u(x) 1000101 x® 4+ x% +1 u(x) =v(x) —e(x)
informac¢ny i(x) 1011 X 4x+1 i(x) = ux) + g(x)

Pouzitie polynomickej reprezentacie kédu umoznilo nahradit’ maticové opracie (na-
sobenie vektorov generujiucou, resp. kontrolnou maticou) jednoduchsie realizovatelnym
nasobenim a resp. delenim generujicim polynémom, ale zdkladny problém dekédova-
nia linearnych kédov—potrebu rozsiahlej dekédovacej tabulky—nevyriesilo. Vyuzijeme
teraz silnejSiu algebraicku struktiru cyklickych kédov na navrh efektivnejsej metody
dekddovania.

Predpokladajme, Ze kédové slovo u(x) bolo pri prenose modifikované chybou e(x) a
v dosledku toho bolo prijaté slovo v(x) = u(x) + e(x). Zakladna myslienka dekédovania
spociva v tom, ze pri cyklickom posune prijatého slova sa sicasne posiva kédové slovo
aj chyba:
x-v(x) =x-u(x)+x-e(x) mod x"™—1.

To znamena, Ze po istom pocte cyklickych posunov prijatého slova dostaneme slovo, ktoré
bude predstavovat kédové slovo (kédovy polynom), v ktorom bude chybou modifikovany
koeficient pri mocnine x™~! (a mozZno aj niektoré iné koeficienty). Ak by sme ttito chybu
doké&zali odhalit’ a opravit’, potom by stacilo cyklicky posunit opravené slovo o patriény
pocet miest, aby sme dostali p6vodne odvysielané kédové slovo u(x). Co potrebujeme na
to, aby sme dokazali odhalit’ chybu v koeficiente pri najvyssej mocnine prijatého poly-
nému? Stacilo by na to mat’ zoznam syndrémov chyb zodpovedajicich vsetkym (danym
kédom opravitelnym) kédovym slovam e(x), e, 1 # 0. Potom bude stacit’ posavat prijaté
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slovo, vyc¢isfovat’ v kazdom kroku syndrém chyby a porovnavat ho s redukovanou tabul-
kou syndrémov. Na tejto myslienke je postaveny Meggitov algoritmus dekédovania cyk-
lickych kédov, ktory bol publikovany v roku 1960. Meggitov algoritmus naviac vyuziva ta
skutoénost, Ze na vypoéet postupnosti syndrémov polynémov v(x),x - v(x),...,x" 1 - v(x)
nie je potrebné poéitat ((x - v(x) mod x™—1) mod g(x), j =0,...,n—1, ale staéi poéitat’
(¥ - s(x) mod g(x). Toto zjednodusenie sa zaklad4 na tvrdeni nasledujticej vety.

Veta 9.4.2. Nech je dany cyklicky kod C s generujiicim polynémom g(x) a nech je v(x) po-
lynom prijaty po odvysielani (nejakého) kédového slova kédu C. Nech je s(x) syndrémouvy
polyném polynému v(x), potom md polyném x -v(x) mod x™ — 1 (cyklicky posun prijatého
slova) syndromovy polynom x - s(x) mod g(x).

Dékaz Nechjev(x) =vo+v;-x+---+v,_1-x"! prijaty polyném. Plati
v(x) = q(x) - g(x) + s(x).

Cyklicky posun prijatého slova je (v polynomickom vyjadreni):

mod x" — 1 =vy_ 1 +vo-x+v; - x4 dv XV =

v(x)

v(x) =vnog - (X" = 1) =x-v(x) = vn_1 - g(x)h(x) =

(q(x) - g(x) +s(x)) —vn1 - g(x)Jh(x) = x - s(x) +x- q(x) - g(x) —vn_1 - g(x)h(x) =
(

s
s(x) +g(x) - (x- q(x) =vn - h(x)) =x-s(x) mod g(x).

|
v xR

O]

Uvedieme teraz Meggitov algoritmus dekédovania cyklickych kodov. Kvoli jednodu-
chosti vykladu sa obmedzime na binarne cyklické kédy; zovseobecnenie Meggitovho al-
goritmu na g-arne cyklické kédy ponechame na citatela. Predpokladéame, zZe

e C je cyklicky (n,k)-kéd nad polom GF(2) s generujicim polynémom g(x)

e bol odvysielany kédovy polyném w(x),

e pri prenose vznikla (kédom C korigovatelna) chyba e(x), v désledku ¢oho bol prijaty
polyném v(x).

Meggittov algoritmus dekédovania binarnych cyklickych kédov [1]

1. Vytvor dekédovaciu tabulku 7 obsahujicu vsetky syndréomy, zodpovedajice pred-
stavitefom tried rozkladu faktorového okruhu GF(2)[x]/x™ — 1, podl'a cyklického
kédu C; chybovym polynémom stupna n — 1. (To si chybové polynémy, v ktorych je
koeficient pri najvy$sej mocnine x nenulovy.)

2. Vydel prijaty polyném v(x) generujicim polynémom g(x) a vypocitaj syndrémovy
polyném: s(x) = v(x) mod g(x).
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3. Porovnaj syndrém s(x) so syndrémami v dekédovacej tabulke 7; ak sa s(x) nacha-
dza v dekédovacej tabulke 7, oprav (aktualne) najvyssi koeficient prijatého poly-
nému v(x):

v(x) — v(x) +x.

4. Vykonaj cyklicky posun prijatého polynému:

v(x) < x-v(x) mod x"™—1.

Ak sa krok 4 vykonal n — 1-krat, vykonaj posledny cyklicky posun polynému v(x)
a skonci. (Dekédované slovo predstavuju koeficienty polynému v(x).) V opa¢nom
pripade pokracuj krokom 2.

Poznamka 1. Meggittov algoritmus mozno zefektivnit vyuzitim vysledku vety 9.4.2 a
namiesto cyklického posunu prijatého slova a vypo¢tu syndrému na zaklade posunutého
slova len ,prepocitavame” syndrom podla vztahu s(x) < x - s(x) mod g(x). Problém
je v tom, Ze v tych krokoch, ked opravujeme chybu v prijatom slove, meni sa samotné
prijaté slovo a treba vypocitat novy syndrém. Oznaéme kvoli jednoduchosti polyném x™ !
mod g(x) symbolom o(x), potom syndrém chyby prijatého slova po korekcii najvyssieho

bitu bude
(v(x) +x™ ") mod g(x) =v(x) mod g(x)+x™" mod g(x) = s(x) + o(x).

Meggittov algoritmus sa potom da zapisat nasledovne:

1. Vytvor dekédovaciu tabulku 7 obsahujicu vsetky syndréomy, zodpovedajice pred-
stavitelom tried rozkladu faktorového okruhu GF(2)[x]/x™ — 1, podla cyklického
kédu C; chybovym polynémom stupna n — 1. (Predstavitelia tried rozkladu su chy-
bové polynémy, v ktorych je koeficient pri najvyssej mocnine x nenulovy.) o(x) «
x*1 mod g(x), s(x) < v(x) mod g(x), PocetPosunov « 0.

2. Ak s(x) = 0 pokracuj krokom 6, ina¢ pokracuj krokom 3.

3. Zisti, ¢i sa s(x) nachadza v tabulke 7. Ak ano pokracuj krokom 4, ak nie, pokracuj
krokom 5.

4. v(x) — (v(x) +x™ 1), s(x) « s(x) + o(x), pokraéuj krokom 5.

5. v(x) « x-v(x) mod x", s(x) « x-s(x) mod g(x), + + PocetPosunov pokracuj
krokom 2.

6. v(x) « x"FocetPosunovy(x) mod x"—1 (cyklicky posun prijaté slovo o n—PocetPosunov

miest.
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Poznamka 2. Meggittov algoritmus sa da velmi efektivne realizovat pomocou deko-
déra zalozeného na posuvnych registroch s linedrnou spdtnou vdzbou (linear feedback
shift register, LFSR), pomocou ktorych sa vykonavaju cyklické posuny, modularne naso-
benie a delenie polynémov. Nie je problém v pripade potreby modifikovat najvyssi bit,
ktory LFSR obsahuje, ale konstrukcia LFSR by sa skomplikovala, ak by bolo potrebné
zabezpecit’, aby bolo mozné v kazdom kroku menit’ 'ubovolné bity LFSR. Preto sa v 3.
kroku koriguje len aktualne najvyssi bit slova, ktoré register obsahuje, hoci syndrémovy
polynom jednoznacne urcuje aj pripadné d’alSie chyby. Na druhej strane, kedZze sa v 3.
kroku opravuje len najvyssi bit spracovavaného slova, dekédovacia tabulka nemusi ob-
sahovat’ chybové polynémy.

Ilustrujeme teraz Meggittov algoritmus na priklade [1].

Priklad. Uvazujme binarny cyklicky (15,7)-kéd C s generujicim polynémom g(x) =
x8 4+ x7 + x® +x* + 1, opravujici chyby vahy 2. Dekédovacia tabulka obsahuje 15 syn-
drémovych polynémov. Kvoli nazornosti v nej uvadzame aj syndrémom prislichajuce
chybové polynémy, ktoré vsak v dalsom pri dekédovani nebudeme pouzivat.

| chybovy polyném | syndrémovy polyném | syndrém |
X1 x4+ X0 +x° +x3 1110 1000
x4+ 1 X +x0+x0 %3+ 1 1110 1001
x4+ x X+ xe+x°+x3 +x 1110 1010
x4+ x? x4+ x4+ X0+ +x2 1110 1100
x4 x3 x” + x84+ x° 1110 0000
x4 4 x4 x4+ xe X x4+ %3 1111 1000
x4+ x5 X+ x0+x3 1100 1000
x4 x® x4+ x4+ %3 1010 1000
x4 x7 X0 %7 +x3 0110 1000
x4 x38 X +xt 31 0011 1001
x4+ x7 X x4 x4 1001 1011
x4 x10 3+ x2+x 0000 1110
x4 ! X x4+ xt+x24+1 (11110101
x4 x12 x4+ x0 +x* +x 1101 0010
x4 4 x13 x4 x* +x3 + %2 1001 1100

Tabulka 9.2: Dekédovacia tabulka binarneho (15,7)-kédu

Predpokladame, Ze bolo odvysielané slovo u(x), poc¢as prenosu vznikla chyba e(x) a
bolo prijaté slovo v(x):

u(x) 0111011 11110001 x4+ x4 x4+ x7 x84+ %" +x° + x> +x* +1
e(x) 0000010 0001 0000 x7 + x*
v(x) 0111001 1110 0001 x4+ x'2 4+ x4 x8 %7 +x0 +x° + 1

V nasledujicej tabulke st uvedené hodnoty koeficientov spracovavaného polynému
v(x) a syndrému s(x) v jednotlivych krokoch algoritmu. Kvéli stru¢nosti uvddzame len
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vektory koeficientov prislusnych polynémov, pricom koeficienty pri najvyssich mocni-
nach su vlavo.

’ krok \ v(x) s(x) s(x) € DT? ‘
0. [011 1001 1110 0001|0110 0011 —
1. | 111 0011 1100 0010|1100 0110 —
2. | 110 0111 1000 0101 [ 0101 1101 —
3. | 100 1111 0000 1011|1011 1010 —
4, 1001 1110 0001 0111 [ 1010 0101 —
5. | 011 1100 0010 1110|1001 1011 v
6. | 111 1000 0101 1101|1110 0110 —
7. [ 111 0000 1011 1011 | 0001 1101 —
8. [110 0001 0111 0111|0011 1010 —
9. [100 0010 1110 1111 0111 0100 —
10. {000 0101 1101 1111|1110 1000 v
11. {000 1011 1011 1111 | 0000 0000 —

011 1011 1111 0001 | 0000 0000 *

Tabulka 9.3: Dekédovanie (15,7)-k6du pomocou Meggittovej metody

Poznamka. Vratme sa este k predchadzajicemu prikladu. Z porovnania zlozZitosti de-
kédovania uvedeného (15,7)-kédu pomocou Standardnej metédy dekédovania linearnych
kédov a Meggittovej metédy, jednoznaéne vychadza lepsie Meggittova metéda. Stan-
dardna tabulka dekédovania obsahuje 256 dvojic (syndrém, chyba), zatial ¢o Meggit-
tov dekodder pracuje s tabulkou pozostavajicou z 15 poloziek (syndrémov). Meggittova
metéda umoznuje opravit’ vSetky chyby vahy najviac 2; t.j. 121 rozliénych chyb. Chyby
vahy vacsej ako 2 Meggittov dekdéder neopravuje. Ak sa na (15,7)-kédu pozerame ako
na linearny kod, tak zostavajucich 135 tried standardného rozkladu vektorového pries-
toru GF(2)" podla kédu méa ako predstavitelov vektory-chyby vahy vaésej ako 2. Ked'ze
binarnych vektorov dizky 15 vahy 3 je 455, v idealnom pripade (ak by predstavitePmi
ostavajucich tried rozkladu boli chybové vektory vahy 3), by dekéder linearneho kédu
umoznil popri chybach vahy 0,1 a 2 opravit asi 30% chyb vahy 3.

Cyklicky posun prijatych slov kédovanych pomocou cyklickych kédov mozno vyuzit’
na este efektivnejSie dekddovanie, ako poskytuje Meggittov dekdéder v pripade, ak sa
chyby v prijatom slove nenachadzaju prili§ d’aleko od seba. V takomto pripade je mozné
pouzit metédu nazyvanu error trapping , ktord podrobnejsie popiSeme v nasledujicej
casti.

9.5 Error trapping dekédovanie

Error trapping dekédovanie (,,chytanie/lapanie“ chyb) je metéda dekdédovania cyklickych
kédov. Vhodna je pri kédoch opravujucich jednu, pripadne dve chyby a v situaciach, ked’
ocakavame vyskyt chyb na blizkych poziciach v kédovom slove (tzv. burst chyby).
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Budeme predpokladat’, zZe C je cyklicky (n, k) kéd nad GF(2) opravujtci t chyb. Teda
kédové slova v C maju dizku n a k informaénych symbolov. Nech g(x) je generujuici po-
lyném kédu C . Metéda error trapping funguje spravne vtedy, ak je najviac t chyb roz-
miestnenych na najviac n — k susednych poziciach.

n

[TT X T IXIXIX T TIX X[ T T 711
;—w_g
<n-Fk

Nech f(x) = ag+aix+ax*+- - -+anx™ je polyném nad GF(2). Oznaéme wt(f(x)) = >
jeho vahu. Nech w je slovo s najviac t chybami. Potom platia nasledujice tvrdenia.

Lema 1. A% je vdha syndrému slova w najviac t, tak chybovy polyném je rovny syn-
drému.

Dékaz. Oznacme s(x) syndrom a e(x) prislusny chybovy polyném slova w. Potom plati:
s(x) = e(x) mod g(x).

Inak povedané, e(x) = q(x)g(x) + s(x). Z predpokladu o poéte chyb vo w vyplyva, zZe
wt(e(x)) < t. NavySe vieme, ze wt(s(x)) < t (predpoklad lemy). Teda vaha e(x) — s(x)
je najviac 2t. Kéd C opravuje t chyb, teda minimalna vzdialenost T'ubovolnych dvoch
kédovych slov je aspon 2t+1. Ked'Ze e(x)—s(x) je kédové slovo (je to ndsobok generujiceho
polynému) s vahou najviac 2t a 0 je tiez kédové slovo, dostavame:

e(x) —s(x) =0.
Odtial bezprostredne vyplyva tvrdenie lemy. O
Lema 2. Ak st chyby na najviac n — k susednych poziciach, tak existuje cyklicky posun

w, ktory md syndrém vdhy najviac t.

Dékaz. Vezmime taky cyklicky posun w, pre ktory st chyby ,najviac vpravo® (formalne,
stupen chybového polynému pre prislusny cyklicky posun je minimalny). Oznaéme ta-
kyto posun w' a prislichajtci chybovy polyném e’(x). Podla predpokladu lemy je deg(e’(x)) <
n —k — 1, kde symbolom deg oznac¢ujeme stupen polynému. Pre syndrém s’(x) mame:

s'(x) = €/(x) mod g/(x).
KedZe g(x) je generujicim polynémom kédu C , deg(g(x)) = n — k. Preto s’(x) = €'(x). Po

zohFadneni predpokladu o poéte chyb vo w dostdavame wt(s'(x))) < t. d

Predchadzajice dve lemy poskytuju teoretické zdovodnenie pre error trapping dekoé-
dovanie cyklickych kédov (samozrejme, pri splneni predpokladov o umiestneni chyb v
dekédovanom slove w). Postupne skusame pre vSetky rotacie w’ slova w:
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1. s’(x) « w'(x) mod g(x)
2. ak wt(s'(x)) <t (podla lemy 2):

(a) opravw’: W (x) « w'(x) + s'(x) (lema 1)
(b) w « aplikuyj ,inverznu“ rotaciu na w’

(¢) koniec

Pod pojmom inverzna rotdcia mame na mysli to, Ze ak sme w' dostali z w cyklickym po-
sunom o p pozicii dofava, tak teraz opravené w’ posunieme cyklicky o p pozicii doprava.
Na konci dostaneme vo w opravené slovo.

Priklad. Uvazujme binarny cyklicky kod (15, 7) opravujuci 2 chyby, s generujicim poly-
némom
g(x) =x3+x"+x x4 1.

V tomto pripade bude error trapping metéda dekédovania tispesna pre tie dvojice chyb,
ktoré su od seba vzdialené (cyklicky) o najviac 15 — 7 = 8 pozicii. A to sa vSetky

Samozrejme, slova s jednou (alebo dokonca Ziadnou) chybou dokézZe error trapping
dekédovat’ vidy.

Priklad. Uvazujme binarny cyklicky kod (15,5) opravujuci 3 chyby, s generujicim poly-
némom
gx) =x"0+x¥+x +x P x 1.

Vzdialenost’ chyb musi byt v tomto pripade najviac 15— 5 = 10. Pre chyby vahy mense;j
ako 3 je podmienka trividlne splnena. Demonstrujme si priklad dokédovania na slove
w = 100000100010110. Poznamenajme, ze pri vypoctoch budeme polynémy reprezento-
vat ako vektory ich koeficientov (pre prehladnejsi zapis). Postupne rotujeme w dolava,
pocitame syndrém a hl'adame taky, ktory ma vahu najviac 3:

posun: 0 posun: 1
100000100010110 000001000101101
10100110111 1000101101
1001001100110
10100110111
11010111010
10100110111
1110001101
posun: 2 posun: 3
000010001011010 000100010110100
10100110111 10100110111
101101101 1011011010
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posun: 4
001000101101000
10100110111
10110110100
10100110111

10000011

Viha syndrému pre posun 4 je rovna 3. Takze mdZeme opravit’ slovow’ = 0010001011010006
10000011 = 001000111101011 a posunut ho naspét (o 4 pozicie doprava). Teda opravené
slovo w je:

101100100011110.

Urobme este skusku spravnosti, ked skusime vydelit’ toto slovo generujicim polynémom
(pre kédové slovo otakavame zvysSok 0):

101100100011110
10100110111
101001101110
10100110111
0

V pripade binarneho cyklického (15,5) kédu moZe nastat’ prave pat rozmiestneni 3
chyb, ked tieto nelezia v daseku dlzky 10. Jedno rozmiestnenie je nakreslené na nasledu-
jucom obrazku, ostatné su jeho cyklickymi posunmi.

LTI TIX [TTIXITTT]

Pravdepodobnost, ze takato situacia nastane pri ndhodnej volbe prave 3 chyb je
5/(%) ~0,011.

9.6 Golayov kéd

V casti 7.2 sme zaviedli pojem dokonalého kédu a nasledne sme ukazali, ze Hammin-
gove kody su dokonalé binarne kédy. Okrem trivialnych kédov neparnej diiky pozosta-
vajucich z dvoch kédovych slov s maximalnou moZnou vzdialenost'ou slov sa ndm iné
dokonalé kédy nepodarilo najst. To naznacuje, Ze dokonalych kédov nemusi byt vela,
resp. Ze iné dokonalé kédy ani nemusia existovat. V tejto ¢asti najprv popiseme netri-
vialny bindrny cyklicky dokonaly kéd opravujici 3 chyby a potom v nasledujucej ¢asti
uvedieme vysledky o (ne-)existencii dokonalych kédov.

Nutnou podmienkou existencie dokonalého g-arneho kédu opravujiceho t chyb je

splnenie rovnosti
t
_ n ;
=y (].)(q—w,
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t.j. mohutnost’ ,kédovej gule“ musi byt mocninou q. Tato podmienka je splnend pre n =

23,q =2 at =3, nakolko
23 N 23 n 23 n 23\ S
0 1 2 3) 77

Ukazeme, zZe kéd s uvedenymi parametrami skutoéne existuje. Ide o Golayov binarny
cyklicky (23,12)-kéd opravujuci tri chyby.

Najprv najdeme generujuici polyném daného kédu. (Pripominame, Ze by to mal byt
polyném stupria 11 nad pofom GF(2), ktory deli polyném x** — 1). Rozlozime polyném
23 _ 1 na vhodné éinitele:

XB —1=(x—1)-g(x)-§(x),
kde

gx) = THx2+xP 4+ +x8 x4 9.7
Gx) = T4+x+x+x0+x"+x8+x (9.8)

Vyberieme ako generujuci polyném cyklického kédu C a ukazeme, Ze Ze tento kéd sku-
tocne opravuje 3 chyby. Kedze generujici polynom g(x) ma 7 nenulovych koeficientov,
mainimalna vzdialenost’ kédu C neméze presiahnut hodnotu 7. UkaZeme, Ze miniméalna
vzdialenost’ kédu C je skutocne 7. Kéod C je linearny, a preto by stacilo zostrojit’ jeho kon-
trolnd maticu a ukazat, Ze jej 'ubovolnych 6 stipcov je linedrne nezavislych. To by vSak
znamenalo preverit’ (263) = 100947 moznosti ¢o by sa pomocou pocitaca dalo spravit’. Uve-
dieme iny, rafinovanej$i kombinatoricky dokaz [2]), ktorého podstata spociva v tom, Ze
vyliéime existenciu kédovych slov vahy mensej ako 7 v kéde C.* Dokaz rozdelime na tri
casti, v ktorych postupne ukazeme, ze kéd C neobsahuje slova

1. vahy mensej alebo rovnej 4;
2. vahy 2,6,10,14,18,22;
3. vahy 1,5,9,13,17,21.

Najprv ukazene, zZe g(x) a g(x) su ireducibilné polynémy nad polom GF(2), potom sa
pozrieme na korene tychto polynémov v rozsirenom poli GF(2'"). Nech je « generator
cyklickej grupy pola GF(2'"). To znamens, ze rad prvku « je 2'" — 1 = 2047. Cislo 2047 sa
da rozlozit na suéin prvoéisel 23 - 89. Potom prvok p = &% aj inverzny prvok k prvku p,
prvok f~! = «'?8 pola GF(2!"") maju rad 23. Oznaé¢me minimalne polynémy prvkov  a
B! symbolmi mg(x), resp. mg-1(x). Korenimi minimélneho polynému mg(x) su prvky

BZ’ [34’ 68’ B]G) [332 [39 [564 B]S B]ZS [513 6256 63 [3512 BG [51024 B]Z [32048 B)
a korefimi minimalneho polynému m; -1 (x) st vSetky prvky pola G F(2") tvaru (B! )zj j=
1,2,...;tj. prvky

B, 6", ", B, B, % B, B, B, B

*Idea dokazu sa nikde inde nevyuziva, a preto dékaz mozno pri prvom &tani preskoéit.
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Oba minimaélne polynémy mg(x), ms-1(x) maja po 11 koreriov; t.j. maju stupen 11 a daju
sa vyjadrit’ ako sti¢in lineaarnych ¢initelov:

mg(x) = (x—B)-(x—Pp%)----- (x—B'%)
mea(x) = (x—p?)- (x—p")- - (x—B'"")

Ked'ze multiplikativna podgrupa pola GF(2'") generovana prvkom  ma prvoéiselny rad
(23), kazdy z prvkov B, B?,..., p*2 ma rad 23, a teda polyném x— ' deli polyném (x—p33),
j =1,...,22 a, samozrejme, aj polyném x — 1 deli polyném (x — f%3). To znamena, Ze
polyném (x — 23) moZeme vyjadrit v tvare stéinu

(x— B*) = mp(x) - mp—1 (x) (x = 1).

Rozklad polynému na siéin ireducibilnych polynémov (nad danym polom) je jednoznaény,
a to znamena, ze
mg(x) - mg-1(x) = g(x) - §(x),
resp. (napriklad)
mp(x) =g(x)  g(x) =mg-1(x),

t.j. generujuce polynémy g(x) a §(x) st zaroven minimalnymi polynémami prvkov 3 a
B~ pola GF(2""). Teraz vylié¢ime existenciu nenulovych kédovych slov vahy mensej alebo
rovnej 4 v kéde C.

Lema 3. Cyklicky kod C s generujicim polynomom ¢(x) neobsahuje nenulové kodové
slovd vdhy mensej alebo rovnej 4.

Dékaz. Kedze prvky B, 3%, B3, p* st korerimi generujiiceho polynému g(x) a kazdy ké-
dovy polyném je nasobkom generujiceho polynému, musia byt uvedené prvky korenmi
kazdého kédovéhom polynému kédu C. V maticovom vyjadreni to vyzera nasledovne: ak
je u(x) kédovy polyném kédu C, tak u- H' = 0, kde u je vektor koeficientov kédového
polynému u(x) a H je matica tvaru

18 B2 ... p2
1 2 4 21
H = 1 B3 E6 Ezo
1 64 BS [319

Matica H je zrejme kontrolnou maticou kédu C. Ak vyberieme Tubovolné 4 stipce matice
H, dostavame Stvorcovi podmaticu, ktorej determinant sa da vyjadrit v tvare

ph B2 Bl pH 1 1 1 1
il ol (NIRRT L
1 2 3 4 1 2 3 4

[541.1 6412 B4i3 6414 nyi] B?)iz 6313 [5314

Determinant na pravej strane je Vandermondov determinant, ktorého hodnota

[Ty —p")

i>1
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je nenulova, nakolko BY # B ak j # 1. To znamen4, ze 'ubovolna §tvorcova podmatica
4 x 4 kontrolnej matice H je regularna, resp. minimalna vzdialenost kédu C je aspon
5. O

Teraz vyluéime existenciu kédovych slov vahy 2,6,10,14,18,22.

Lema 4. Nech C je cyklicky (23,12) kod s generujicim polynémom ¢(x) a nech je u(x)
kédovy polyném pdrnej vahy. Potom je vaha kédového polynému u(x) delitelnd 4.

Dokaz. Nech je u(x) = uy + wix + ... upx?* kédovy polyném kédu C. V dokaze bu-
deme vyuzivat obe interpretacie kodovych slov - aj polynomickd, aj vektorovd. Ozna-
¢ime preto symbolom u = (up, uq,...,uy) kédové slovo—vektor koeficientov—kédového
polynému u(x). KedzZe C je cyklicky kéd, kédovy polyném u(x) sa da vyjadrit’ v podobe
sucinu

u(x) = g(x) - a(x),
kde a(x)je polyném nad GF(2). Ak je vaha kédového slova u parna, tak je hodnota } ; u;
parna, resp.

Z u; =0 mod 2. 9.9

1

Dosadime do kédového polynému u(x) hodnotu 1 a na zaklade 9.9 dostavame
ul)=uw+u+---+upy =0 mod 2.
To znamen3, Ze 1 je korenom kédového polynému u(x), resp., Ze
u(l)=g(1)-a(1)=0 (9.10)

Ked'Ze prvok 1 nie je korenom generujiceho polynému g(x), zo vztahu 9.10 vyplyva, Ze
prvok 1 je korennom polynému a(x), a kédovy polyném mozno rozlozit’ na sicin nasledu-
jucich €initelov:

u(x) =g(x)-b(x) - (x—1). (9.11)

R R

Uvazujeme teraz zrkadlovy obraz kédového slova u, slovo u™ = uy...ujupy. Slovu u

priradime polyném
ix) = ty+tyx+---+ ﬁz]XZ] + ﬁzzxzz = (9.12)

= Upm Fupx—+ - +ux® +uex?. (9.13)
Da sa lahko overit’, Ze pre koeficienty polynémov ii(x) a u(x) plati
iy =up_i, 1=0,...,22 9.14)
a samotné polynémy su spojené vztahom

~ 22

a(x) =x2-u(x). (9.15)

V dalsom budeme kombinovat’ polynémy ii(x) a u(x). Prvok f~' (= p??) je korenom
polynému 1i(x), pretoze podla 9.15

B =p2 u(p)=0.
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Minimalnym polynémom prvku B~ je polyném §(x). Ak ' je koreriom polynému 1i(x),
tak g(x) deli ti(x); t.j. existuje polyném da(x) taky, ze

U(x) = g(x) - a(x). (9.16)
Teraz vynasobime polynémy ii(x) a u(x):

(x)-alx)-g(x)-b(x) - (x=1) =g(x) - g(x) - (x =1) - b(x) - d(x) =

ax)-u(x) = _
xB —1)-b(x) - a(x). 9.17)

{a}]

—

Vyjarime sucin polynémov ii(x) a u(x) explicitne, aby sme mohli kombinovat ich koefi-
cienty

a(x)-u(x) = fg-ug+ (Tg-uy + 1 - Up) - x+ (Tho - Up + Ty -y + g - ug) - x>+
4+ (Tho - uz + Ty -y + Ty -y + 13- up) - xS 4 - T - ugy - XM

Vyuzijeme vzt'ah 9.14, v stiéine polynémov ii(x) a u(x) nahradime koeficienty {i; ,obycajnymi“
koeficientami a vyjadrime ho v tvare konvoliicie postupnosti koefiecientov.

4 22

wlx) - ulx) = Z Zui Uppyig X,

=0 i=0

Kvoli zjednoduseniu tuprav polozime u; = 0 pre (i < 0) V (i > 22). RozSirime teraz
sumacny rozsah premennej i v poslednej sume

44 oo
) -ux) =) > uwi-upygc¥ (9.18)
j=0 i=—00

a rozdelime sumacny rozsah premennej j na tri disjunktné intervaly: (0 <j <44) = (0 <
j<22)V (j =22)V (23 < j < 44). Potom sa siéin polynémov ti(x) a u(x) rozpadava na tri
sumy:

21 00 0o 44 0o
(x) - u(x) = Z Z Ui - uppig - X + Z uiz x4 Z Z Ui - Upppij - X (9.19)
j=0 i=—0c0 i=—00 j=23 i=—00

Koeficienty u; st prvky pola GF(2), a preto uf = u;. Kédové slovo u ma parnu vahu a
teda druha suma v stéine 9.19 je nulova®

[e.e] (o)
Zuf-xzz:xzz- E u; = 0.
i=—o00 i=—00

Teraz upravime 1. a 3. sumu v stucine 9.19. Posunieme hranice sumacie v prvej z uvede-
nych sim substiticiou j :=j — 1, resp. j :==j + 22 v druhej sume:

22 [e’e) 22 [e’e)
a(x) - u(x) = Z Z Ui Upzpig X+ Z Z Ui Uiy - x0T (9.20)

j=1 i=—o0 j=1 i=—o0

v modularnej aritmetike nad pofom GF(2).
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Teraz zavedieme substiticiu i := 1+ j v druhej sume 9.20

22 oo 22 o]
~ j—1 j+22
i(x) - u(x) = Z Z Ui - Up3pi - X+ Z Z Ui Uiy - x0T (9.21)
j=1 i=—00 j=1 i=—00
a upravime
22 [es) 22 0o
. j—1 j—1
A -ux) = > > uwirupag ¥ T HY ) weu e —
j=1 i=—00 j=1 i=—00
22 o) 22 o)
j—1 +22 _
j=1 i=—oc0 j=1 i=—00
22 [eS) 22 o
j—1 j—1 23
=3 1D weusptucug [ O DYDY wwg X BT (9.22)
j=1 Li=—o0 j=1 i=—o0

Stéin polynémov ii(x)-u(x) je podla vztahu 9.17 deliteIny polynémom (x> —1) Z rovnosti
9.22 vyplyva, ze aj polyném

22 00
Z [Z Wi - U234 +ui‘ui+j] ] (9.23)

j=1 Li=—oo

musi byt nasobkom polynému (x?> — 1). Polyném 9.23 ma vsak stupen mensi ako 23, a

ak ma byt nasobkom polynému (x?*> — 1), musi byt nulovy. To znamen4, ze
Z Ui - U3 4i—j T Ui - Wiy = 0 mod 2, j = 1,...,22. (9.24)
i=—o00

Ak v sustave 9.24 prejdeme od modularnej k celociselnej aritmetike, sastavu rovnic 9.24
mozZno zapisat nasledovne

Z Wi - U23+i—j + Ui - Wiyj = Zdj; d)' €z, j= 1,...,22. (9.25)

1=—00

Ak vo vztahu 9.25 zavedieme substitdciu j := 23 — j, dostavame

Zdj,23 = Z Wi - Ui + W - U3 = Zdj; dj €eZ,j=1,...,22. (9.26)
i=—o0
To znamena, Ze dj = dj_»3 prej = 1,...,22. SpocCitame teraz hodnotu sictu stim z 9.25 v

celoéiselnom obore

o0

22 22 11
Z Z i - (W34 + Uigj) =2 Z dj = 4Z dj = 4d, (9.27)
= =1

j=1 i=—o0 j
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kde d je nejaké celé cislo. Rozdelime sumu 9.27 na dve sumy. Vzhladom na to, Ze kazdy
zo sumandov obsahuje faktor 1y, méZeme zizit sumacny rozsah premennej i na interval
0 <1< 22. Potom v prvej sume pouzijeme substiticiu j := 23 —j

2 oo 2 2 2 2
DY w s twig) =) ) WiWigt ) D Wi uiy. (9.28)
=1 im—oo j=1 i=0 j=1 i=0

VSimneme si, Ze sumy v pravej casti rovnosti (9.27) obsahuju vSetky dvojice u; - u; také,
ze i #£j; t.j.

2 2
D) wic(uppigtuig) =) ) uwi-uj=4d. (9.29)
I — im0 A

Nech je wt([)u] = w. Sumu (9.29) rozlozime na dve sumy podla toho, akt hodnotu nado-
bada u;: a upravime:

22

Do wy = ) Y uy(w=0+) Y uy-(w=1)=

i=0 jA i A i A

= 0+) (w=0) =) w=0-w-N=w-(w-1).
i jA i

Z posledného vztahu a z (9.29) dostavame, zZe
w-(w—1) =4d.

Ked'ze Hammingova vaha slova u je parna, hodnota w—1 je neparna, a teda w musi byt
delitelné 4. O

Golayov kod teda neobsahuje slova parnej vahy, ktora nie je delitelna 4. To znamena,
Ze spomedzi kandidatov na kédové slova vypadavajua slova vah 2,6,10, 14,18, 22. Poten-
cidlne vahy kédovych slov su teda 5,7,8,9,11,12,13,15,16, 19, 20, 21, 23. Problematické su
slova vahy 5, pretoze ak by Golayov kéd obsahoval také kédové slova, znamenalo by to,
Ze jeho minimalna vzdialenost’ je 5. Existenciu kédovych slov vahy 5 (a d’alsich) vylicime
v nasledujuicej leme.

Lema 5. Golayov kéd neobsahuje kédové slovd vah 1,5,9,13,17,19, 20, 21.

Dékaz. Pripomenieme, Ze polyném x?* — 1 sa da vyjadrit v podobe siéinu
XP—T=(x—1)-g(x)-3(x).
To znamena, Ze polyném
fx)=xB—1/(x=1) =T+x+x>+x> 4+ xx?
je kédovym slovom Golayovho kédu, nakolko

X2 —1/(x=1) =g(x) - §(x).
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Golayov kéd je zaroven linearnym kédom, a to znamenad, Ze sucet dvoch kédovych slov
(kédovych polynémov)je opat kédovym slovom (polynémom). To znamend, Ze pre 'ubo-
volny kédovy polyném u(x) je aj polyném u(x) + f(x) kédovym polynémom. Kédovy poly-
ném f(x) ma Hammingovu vahu 23; Hammingova vaha kédového polynému u(x)+f(x) je
23 — wt(u). Ak teda Golayov kéd neobsahuje slova vahy w, neméze obsahovat ani slova
vahy 23 — w. Z tohto faktu a z liem 3 a 4 vyplyva tvrdenie nasej lemy. [1Teraz moézeme
sformulovat’ zakladné tvrdenie o Golayovom kaéde.

Veta 9.6.1. Bindrny Golayov (23,12) kdd je dokonaly kéd opravujiici 3 chyby.

Dokaz. Vyplyva priamo z tvrdeni liem 3, 4 a 5. O

Blahut [2] pomocou pocitaéa analyzoval vahy slov Golayovho kédu. Vysledky jeho
skimania si uvedené v nasledujucej tabulke

vaha | pocet slov
0 1

7 253

8 506

11 1288

12 1288

15 506

16 253

23 1
spolu 4096

Tabulka 9.4: Vahy slov Golayovho (23,12)-kédu

9.7 Dokonalé a kvazidokonalé kédy



Kapitola 10

Boseove-Chandhuryove-
Hocquenghemove

koédy

Boseove-Chandhuryove-Hocquenghemove (BCH) kédy! tvoria pomerne rozsiahlu pod-
triedu cyklickych kédov, ktoré sa vdaka svojim dobrym vlastnostiam ¢asto pouzivaju v
praxi a sd predmetom intenzivneho teoretického $tudia. Zaujem o BCH koédy vyplyva
podla [2] najm4 z toho, Ze

1. BCH kédy existuju pre pomerne rozsiahlu mnozinu parametrov (dizka, minimélna
vzdialenost’ a i.); a uz pre malé dlzky (k6du) existuji dobré BCH kady,
2. pre BCH kédy existuju jednoduché metédy kédovania a dekédovania,

3. podtriedou BCH kédov st zname Reedove-Solomonove kédy, ktoré st pre niektoré
parametre optimalne samoopravné kédy a

4. studium BCH kédov je dobrym zakladom pre pochopenie zlozZitejsich kédov.
Vyklad BCH kédov zacneme konstrukeiou binarnych BCH kédov opravujicich 2 chyby.
Potom formalne zavedieme BCH kédy a dokazeme vetu o minimalnej vzdialenosti BCH

kédu. V dalsom sa budeme zaoberat’ rozlicnymi metédami dekédovania BCH kédov a
kapitolu zavi§ime ¢ast’'ou venovanou spominanym Reedovym-Solomonovym kédom.

10.1 Binarne BCH kédy opravujiuce 2 chyby

BCH kédy su zov§eobecnenim Hammingovych kédov. Kym v§ak Hammingove kédy maju
dlzky q™ — 1 a opravujui jednu chybu?, BCH kédy st podstatne rozmanitejsie: existuji

'BCH kédy objavil v roku 1959 A. Hocquenghem a nezavisle od neho v roku 1960 R.C.Bose a D.K.Ray-
Chaunhuri.
2my sme sa zaoberali bindrnymi Hammingovymi kédmi; t.j. pripadom q = 2

131
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BCH kédy roéznych dizok nad polom GF(q), q # 2, ktoré opravuju t chyb, t > 1. Skor,
ako sa budeme konstrukciou, vlastnostami a dekédovanim BCH kédov zaoberat vo vse-
obecnosti, pozrieme sa na zvlastny pripad BCH kédov—Dbinarne BCH kédy opravujuce 2
chyby a ilustrujeme na nich konstrukcie, ktoré budeme v d’alsich castiach tejto kapitoly
pouzivat.

Vratme sa k Hammingovmu (15,11) kédu zo zaciatku kapitoly 9. Tento kéd sme za-
dali pomocou kontrolnej matice H’, ktora sa dala interpretovat’ dvojako: bud’ ako matica
typu (4,15) nad polom GF(2), alebo ako matica typu (1,15) nad polom GF(2*). V druhom
pripade sa kontrolna matica redukovala na 1 riadok, obsahujuci postupnost mocnin pri-
mitivneho prvku « pola GF(2%):

H=01ao® ... "
a dekédovanie prijatého slova v = (vo,v1,...,vi4) = u + e; t.j. vypocet
v.-H ' =u-HT+e -HT,

sa dalo interpretovat ako vy¢islenie hodnoty polynému v(x) = vy + vi - x + vy - x> +
co- 4+ vy - x'* v prvku «; t.j. vypoéet hodnoty v(«). Ak poéas prenosu kédového slova
nevznikla chyba (resp. vznikla chyba, ktora odvysielané kédové slovo u transformovala
na iné kédové slovo v) tak v(x) = 0. Predpokladajme, Ze pocas prenosu vznikla chyba
vahy 1; t.j. chybovy polyném bude mat tvar e(x) = x'. Potom po dosadeni prvku « do
prijatého polynému v(x) dostavame hodnotu syndréomu

Poznamka. V d’alSsom budeme kvoéli jednoduchosti hodnoty jednotlivych zloZiek syn-
drému oznaéovat symbolmi Si; v(«!) = Si, i = 1,2,.... Pripominame, Ze hodnoty S; nie
su koeficientami syndrémového polynému s(x), ale tak syndrém S;,... ako aj syndré-

movy polyném s(x) nesu tud istt informaciu.

V pripade Hammingovho kédu informacia, ktoru obsahuje syndrém S; postacuje na
uréenie chyby. Staéi uréit hodnotu exponentu (S; = «') ¢o sa d4 spravit napriklad po-
mocou tabul'ky a potom negovat’ i-ty bit prijatého slova. Prejdeme teraz od konkrétneho
Hammingovmu (15,11) kédu k vSeobecnému Hammingovmu kédu diiky n=2"—1s
kontrolnou maticou

H=[laxo? ... «™ ]

a pozrieme sa na to, co by sa stalo, keby pocas prenosu vznikli v odvysielanom kédovom
slove dve chyby. Nech . .
e(x) = x" +x'2.

Dosadenim prvku « do prijatého polynému dostavame hodnotu
v(a) = e(a) = & + 2,

Tato hodnota na urcéenie pozicii chyb nesta¢i a preto potrebujeme n4ajst’ dalsie vztahy
medzi o', x'2. Skisime rozsirit’ kontrolni maticu H pridanim d’alSieho riadku tak, aby
nasobenie prijatého vektora kontrolnou maticou viedlo k stistave rovnic s neznamymi
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al1, «'2. Novy riadok kontrolnej matice bude mat rovnaky tvar ako riadok pévodnej kon-
trolnej matice; tj. 1 B p2 ... p™'. Ak p = o, (« je primitivny prvok pola GF(q™)) tak
sicin v - H' moZno zapisat v podobe ststavy dvoch rovnic

v(a) =Sy, v(B) =v(d) = 5

Ako vybrat’ prvok ? Je zrejmé, Ze 3 # «, pretoze v opacnom pripade by kontrolna matica
H obsahovala dva rovnaké riadky a stéin v- H' by viedol k ,ststave“ dvoch identickych
rovnic. Ako sa ukaZe neskor p nemoéze patrit do mnoziny (cyklu) «, o, o*, ... &%, ...,
pretoze v tomto pripade by rovnice v ststave zadanej sti¢inom v - H' boli zavislé. To
znamen4, 7e spomedzi kandid4tov na prvok B vypadli «, o’ a prvym prirodzenym kan-
didatom je «3. Kontrolna matica bude po rozsireni vyzerat nasledovne:?
2 n—1
R F ety

Kontrolna matica H urcuje cyklicky kéd C, ktory sa vyznacuje tym, Ze vSetky kédové
polynémy maji korene «, o, pretoze

[ueCHu-HT:O} — {u(cx) =u(cad) :O].
To znamena, Ze generujicim polynémom kédu C bude

g(x) = lem(my(x), mys(x)),

3

resp. kedZze minimalne polynémy prvkov «, o’ st rézne, nemoézu mat spolocny faktor, a

teda

g(x) = ma(x) - mys(x).
Ak pri prenose kédového slova vznikli 2 chyby; e(x) = x'' + x%2, tak pri dekédovani
vyéislime hodnotu prijatého polynému v(x) v prvkoch o, > a dostavame ststavu

(o) = ot 4 2

v(a) =
o’ (o) = oY + B2, (10.1)

e
v(ie’) = e
Aby sme trocha zjednodusili zapis, zavedieme oznacenie
i i
Xi=a1, Xpy=«7

a prepiseme sustavu (10.1) do prehladnejSej podoby:

X1+X = &
X3+X5 = Ss. (10.2)
Hodnoty X;,X; € GF(2™) sa nazyvaja lokdtory chyb. Ak sa nam totiz podari na za-

klade hodn6t syndréomu vypocitat hodnoty lokatorov chyb X;, X,, tak potom vypocitame
log, (X1) =11 alog,(X;) =i, a tak uréime pozicie iy, 1, na ktorych vznikli chyby. Sustavu

¥Kontrolna matica H zapisand v bindrnej podobe nad polom GF(2) m4 2m riadkov.
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(10.2) nebudeme riesit’ priamo, ale spravime trochu umely krok. Zavedieme pomocny po-
Iyném A(x) nad polom GF(2™), ktorého korenmi budua prave lokatory chyb a ukazeme,
ze pomocou hodnét syndrému dokazeme vyjadrit’ koeficienty uvedeného polynému:

AX) = (x=X))(x=X2) =x> + (X3 + X2) - x + X3 - Xa. (10.3)

Potrebujeme najst’ explicitné vyjadrenie sucinu X; - X; z (10.3) pomocou znamych hodnét
syndrému. Spoc¢itame

S3 X4 +X3 2 2 2 2
-— = =X7+X - X0+ X5 =(X1+X +X1- X2 =87+ X7 - X,
5 X 1% 1 1- X2+ X3 = (X3 +X3) 1-X2=§ 1-X2
Teraz vyjadrime sucin lokatorov
Xi-Xg=="+857= .
1°X2 S1+ 1 3

Nakoniec vyjadrime explicitne pomocou syndrému koeficienty polynému lokatorov chyb:

Sg—l—S?

5 (10.4)

Alx)=x>+S1-x+
Ked'ze koeficienty polynému A(x) dokdZzeme vyjadrit pomocou hodnét syndrému, po-
lyném lokatorov chyb na zaklade prijatého slova dokazeme zostrojit' a ndjdenim jeho
korenov urcit’ aj pozicie, na ktorych su v prijatom slove chyby. Korene polynému A(x)
mozno v pripade malého m n&jst’ dplnym preberanim. Existuju vsak aj efektivne me-
tody faktorizacie kvadratickych polynémov nad pol'om GF(2™), pomocou ktorych mozno
najst’ korene polynému A(x) rychlejsie ako iplnym preberanim. Zostrojeny kéd opravuje
2 chyby. Pozrime sa eSte na to, o sa stane, ak pri prenose vzniknud chyby inej vahy ako
2.

Chyba vahy 0 V tomto pripade je chybovy polyném e(x) nulovy, v(x) = u(x) a
St =v(x) =v(a®) =S3 =0.
Chyba vahy 1 Chybovy polyném e(x) = x! a syndrém bude vyzerat nasledovne:

S1 = v(a) = o
S; = v(oc3):oc3i:S?.

Chyba vahy > 2 Uvedeny BCH kéd opravuje chyby vahy 2. To znamen4, Ze jeho mini-
malna vzdialenost je 5. Chyby vahy 3 a vic¢sej moze kod odhalit’, ale nedokaze ich
spravne opravit.

Zhrnieme teraz ziskané poznatky a uvedieme dekéder binarneho BCH kédu opravu-
jaceho 2 chyby [16].

1. Vypocitaj hodnoty syndrému
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2. Ak S; = S3 = 0, bolo prijaté kédové slovo. (Predpokladame, Ze pri prenose nevznikla
chyba).

3. Ak Sy # 0 a S3 = S3, predpokladdme, Ze pri prenose vznikla chyba vahy 1. Lokator
chyby je S1 = X; a hodnota log, S1 = i uréuje miesto, na ktorom v prijatom slove
vznikla chyba.

4. Ak Sy #0a S; # S3, predpokladdme, Ze pri prenose vznikla chyba vahy 2. Zostro-
jime polyném lokatorov chyb A(x) a najdeme jeho korene. Ak ma A(x) dva rozli¢né
korene X; # X, tak chyby nastali na poziciach i;,1; X7 = &', X, = «'2. V opaénom
pripade (polyném lokatorov chyb A(x) nema dva rozlicné korene) nastala pocas
prenosu neopravitelna (ale odhaliteIna) chyba.

5. Ak S; = 0,S3 # 0, pocas prenosu dos§lo ku chybe vahy > 3. Tuto sme sice pri deko-
dovani odhalili, ale nedokaZeme ju opravit'.

Tlustrujeme popisant metédu na priklade.

Priklad 10.1. Zostrojime bindrny BCH (15,7)-kéd opravujiici 2 chyby a ukdZeme, ako
sa dekoéduju prijaté slovd, zataZené chybami vdhy 0, 1, 2 a 3. Budeme potrebovat’ ko-
necéné pole GF(2%). Jeho konstrukcia je podrobne popisand ¢asti 15.4 a preto len pripome-
nieme, Ze stac¢i faktorizovat’ okruh polynémov GF(2)[x] vhodnym ireducibilnym polyno-
mom stupria 4 nad polom GF(2). Vyberieme polyném 1+x+ x* a faktorovy okruh polynd-
mov GF(2)[x]/14+x+x* predstavuje hladané pole. Oznaéime symbolom o primitivny prvok
pola GF(2%). Pruky pola GF(2*) vyjadrené v bindrnom tvare a pomocou mocnin primitiv-
neho prvku si uvedené v tabulke 15.4. Zostrojime generujiuci polynom BCH (15,7)-kédu.
Minimdlne polynémy prokov «, &> si
ma(x) = T4+x+x4
my(x) = 1 +x+x*+ x> +x

a generujici polyném bude mat tvar

gx) = lem (mq(x), mes(x)) = ma(x) - mes(x) =
T4+xt+x%+x7 +x8.
Potrebujeme este nejaké kédové slovo. Vyndsobime generujiici polyném vhodnym infor-

macénym polynémom a dostdvame

ux) = (T+x+x°) - g(x) =T+ x+x+xC +x"T +x2 4x1.

Budeme predpokladat, Ze pri prenose kédového slova u(x) vznikla chyba e(x) a bolo
prijaté slovo v(x) = u(x) + e(x).

Chyba vahy 0 e(x) = 0, v(x) = u(x). VyuZijeme bindrnu reprezentdciu prvkov pola
GF(2%) (tabulka 15.4) a vypocitame syndrém chyby. (Pri vypocétoch budeme vyuZi-
vat, Ze pole GF(2*) md charakteristiku 2, t.j. pre Pubovolny prvok p € GF(2*) plati
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B+P =0aze o =od m415) Vypocet kvoli struénosti uvddzame v tabulkovej forme.

v(x) v(a) v(ad)
1 1 0001 1 0001
X o 0010| o 1000
x* | ot 0011 | o2 1M
x° «® 1100 | o 1000
XM« 1110 o 1000
x| o2 1111 & 1100
x|« 1101 «f 1010
Sy = 0000|S; = 0000

Ked’2e syndrom chyby je nulovy, predpokladdme, Ze bolo prijaté odvysielané kédové
slovo (polynom) u(x) =1+ x +x* +x0 +x"" +x'2 + x'3. Informaény polyném potom
dostaneme vydelenim prijatého polynému generujiicim polynémom:

ix) =u(x):g(x) =1+x+x.
Chyba vahy 1 e(x) = x"', bolo prijaté slovo (polyném)
v(x) =1 +x+x* + x4+ x1? +x13.

Vypoditame syndrom

v(x) v(ax) v(ad)
1 1T 0001 1 0001
X o« 0010| o 1000
x| oo 0011 o2 11N
x° o° 1100 | o 1000
x12 | o2 1111 & 1100
xB | o 1101 & 1010
Si= 1110[S;= 1000

Syndrém chyby nadobiuda v tomto privade hodnoty S1 = «'',S; = . Obe zlozky
syndromu su nenulové, ale ((x)'")? = &3 = &3, a teda S3 = S?. To znamend Ze
v prijatom slove je chyba vdhy 1. Ked’?e S1 = «'', chybovy vektor je e(x) = x'.
Opravime prijaté slovo:

v(x)+ex) =ux) =T+x+x" +x°+x" +x"2 +x'3,
Chyba vahy 2 e(x) = x’ + x'?, bolo prijaté slovo (polyném)
vix)+e(x) =ulx)+e(x) =1+x+x +x0+x" +x"T+x"3.

Vypoditame syndrom

v(x) v(x) v(ad)
1 1 0001 1 0001
X o 0010 | o 1000
x* | ot 0011 | &M 1111
x° o® 1100 | o« 1000
x/ o/ 1011 a® 1100
X" o 1110 | o2 1000
x|« 11101 | o 1010
Sy = 0100 | S3= 0000
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tj. S1 =083 =0.Ked%e S # 0a S3 # S3, predpokladdme, Ze v slove v(x) je chyba
vdhy 2. Zostrojime polyném lokdtorov chyb (10.4)

Ax) = ot + o - x 4+ x?

a postupnym prehladdvanim pola GF(2*) ndjdeme jeho korene.

vi0)= o ot #£0
vil)= o+l +1= & #0
v = o+ad+at= «?#£0
viet)= ot +at+at= ot #£0
vied)= ot +ad+ab= o #£0
v = ot +alb+ad= o #£0
v(ed)= o+ + o= ol?#£0
vie®)= ot +ad+al?= o #£0
v )= ot +af +at= 0 v

Nasli sme prvy koreri, «’. Usetrime si dalsie prehladdvanie a vydelime polynom
lokdtorov chyb polynémom x + «’. Dostdvame

Ax) = (x+ o) - (x + '),
t.j. korerimi polynomu A(x) st o
prijaté slovo

, 2. Z toho vyplyva, ze e(x) = x’ + x'2. Opravime

v(x)+ex) =ux) =T+x+x* +x°+x" +x"2 +x'3,

Chyba vahy 3 Nech e(x) = x'" + x'? + x'3 a bolo prijaté slovo v(x) = 1 + x + x* + x°.
Syndrém chyby v tomto pripade bude

vix) | v() V(o)
1 10001 1 0001
X o 0010 | o 1000
x| ot 0011 &% 1111
x° «® 1100 | «* 1000
S1= 1100 |S;= 1110
tj. S1 = oS3 = ol a S; # S3. Usiidime, Ze pri prenose nastala chyba vdhy 2.

Zostrojime polyném lokdtorov chyb
Alx) = ot + o - x 4+ %2

a uréime jeho korene. Tymi st proky «°, &, ktoré uréujii chybovy polyném e'(x) =
x° + x’. Prijaté slovo upravime na kédové slovo
v(x)+e(x)=T+x+x+x° +x°+x,

ktory sa viak nezhoduje s odvysielanym kédovym slovom u(x).

Tym istym sposobom, ako sme zostrojili binarny kéd opravujici 2 chyby, mozno zo-
strojit aj BCH kéd opravujuci tri chyby (kontrolna matica sa rozsiri o 3. riadok: 1, o,
o0 ..., ™ 1)), My sa touto konstrukciou nebudeme zaoberat, pripadnych zaujemcov
odkazujeme na [16] a prikro¢ime k zovSeobecneniu a formalizacii definicie BCH kédov.
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10.2 Definicia BCH kodov

BCH kédy su cyklické kédy nad polom GF(q), ktoré su definované pomocou prvkov z
rozsirenia pé6vodného pola, GF(q™).

Definicia 10.2.1. Nech 3 € GF(q™) je prvok rddu n; t je lubovolné prirodzené a 1 l'ubo-
vol'né celé ¢islo. Potom cyklicky kod C s generujiicim polynomom

Q(X) = lem {mﬁHl (x), Mgi+2 (x)..., Mg+t (X)} s

kde mg;(x) je minimdlny polyném prvku BJ, sa nazyva BCH kédom.

Ak n = qm™—1;t.j. B je primitivny prvok pola GF(q™), BCH kéd diiky T sa nazyva pri-
mitivnym BCH kédom. Parameter 1 sa casto kladie rovnym nule (v mnohych ale nie vset-
kych pripadoch to vedie ku konstrukeii generujiceho polynému minimalneho stupna).
BCH kédy s hodnotou parametra 1 = 0 sa nazyvaju BCH kédmi v tizkom zmysle. Uve-
dieme niekolko prikladov ré6znych BCH kédov. Za¢neme binarnym kédom diiky 15, na
ktorom budeme neskér demonstrovat’ metédy dekédovania BCH kédov.

Priklad 10.2. Nech q = 2,1 =0,t = 3, m = 4. BCH kdd s danymi parametrami existuje,
je to bindrny (15,5) kod opravujiici 3 chyby. Zaddme ho pomocou jeho generujiiceho poly-
nému. Ked’ze ide o primitivny BCH kéd, budeme potrebovat’ prvok rddu 15, t.j. primitivny

prvok pola GF(2*). Nech je « dany primitivny prvok. Korerimi generujticeho polynému

budi proky «, o, o3, o, &, «®; t.j. generujiici polynom bude

g(x) = lem{mgy(x), my2(x),..., mys(x)}.
Proky «, o, &* v§ak maju ten isty minimdlny polyném, podobne proky o3, «°;
x, o, ot o me(x) =14+ x4+ x4
o o o ma(x) =T+Hx+x+x° x4
5

3(
o o mys(x)=1+x+x
To znamend, Ze

gx) = (T4x+x) - T+x+x2+x3+x") - (1+x+x2) =
= THx+x2 x4+ 48 %10 (10.5)

10.3 Hranica BCH kodov

Vyuzijeme skutoc¢nost, Ze cyklické kody su zaroven linearne kédy, uréime rang kontrol-
nej matice BCH kédu a potom na zaklade vety 8.1.2 a jej dosledku uré¢ime minimalnu
vzdialenost BCH kédov, resp. jej dolny odhad.

Veta 10.3.1. Nech je g(x) generujici polyném BCH kédu C dizky n, s korenimi B, ...,
B2t kde B je prvok rdadu n pola GF(q™). Potom minimdlna vzdialenost d kédu C je
aspori 2t + 1.
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Dokaz. Kontrolni maticu BCH kédu C mozno zapisat v tvare

1 B(H—]) BZ(I-H) . B(n—])(l—H)

1 g2 g2 gn-NL2)
H=

.] B(lJth) 62(1+2t) . B(nfa)(lJth)

Ukazeme, ze T'ubovolna Stvorcova podmatica typu (2t,2t) kontrolnej matice H je regu-
larna; t.j. Ze T'ubovolnych 2t stlpcov kontrolnej matice je linearne nezavislych (a teda
minimalna vaha kédu C je aspon 2t + 1). Uréime hodnotu determinantu Stvorcovej pod-

matice tvorenej vybranymi stlpcami ji,jz,...,j2t kontrolnej matice H:
B gL gia(l)
Bi] (14+2) [5]'2(1+2) . [_?,J'Zt(lJrZ)

det | . ) =

B2 g2 g2y

1 1 . 1

j j2 jot
— B(il+iz+"-+izt)'(l+1) det B B o B
BT pRRtT) i)

Druha matica je Vandermondova matica, ktorej determinant ma tvar

[1(s"—p"). (10.6)

i>k

KedZe B je prvok radun, prvky pJ1, ..., /2t si navzdjom rozne, a teda determinant (10.6)
je rozny od nuly. O

Poznamka. Hodnota 2t + 1 garantovana predchadzajicou vetou sa nazyva konstruk-
¢nou vzdialenostou BCH kédu. Je dana dlzkou stvislej postupnosti moenin prvku f
(BY, ..., B2Y), ktoré su korenmi generujiceho polynému kédu. Ale ked’Ze generujuci
polyném g(x) je definovany ako najmensi spoloény nasobok minimalnych polynémov
svojich korenov a miniméalne polynémy prvkov p'*' ..., B2t nie si vo vSeobecnosti
linedrne, moézu mat aj iné korene, ktoré ,predizia® postupnost B, ..., BY*2t. Potom
bude skuto¢na minimalna vzdialenost’ kédu vicsia ako jeho konstrukéna vzdialenost.
Existujui odhady skutocnej minimalnej vzdialenosti BCH kédov. Skor, ako sa nimi bude-
me zaoberat, uvedieme niekol'ko prikladov, na ktorych ilustrujeme rozdiel medzi kon-
§trukénou a minimalnou vzdialenostou BCH kédu.

Priklad 10.3. Uvasujme bindrny BCH kéd C dizky 31 (v uzkom zmysle) opravujici 4
chyby, Nech « je primitivny prvok pola GF(2°). Korerimi generujiiceho polynému g(x)
kédu C musia byt proky «, o, ..., o8 pola GF(2°); resp. generujiici polyném g(x) mozno
definovat ako

g(x) = lem mya(x), mg2(x), ..., mus(x)},

kde m;(x) je minimdlny polyném proku of. Bez toho, aby sme zostrojili generujtici poly-
noém g(x), ukdZeme, Ze minimdlna vzdialenost kédu C prevysuje konstrukcéniu vzdialenost.
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VyuZijeme na to skutoénost, Ze ak md v poli charakteristiky 2 polyném f(x) koreri B, tak
potom md aj korene B2, B4, ..., sz, .... Rozdelime prvky pola GF(2°) do tried (cyklov); do
Jjednej triedy ddame vietky proky B, B2, B*,...,B%,.... kde B € GF(25). Je zrejmé, ze kazdej
triede rozkladu zodpovedd jeden (minimdlny) polyném, ktorého korerimi sti prdve prvky
z danej triedy.

trieda minimdlny
polyném
0 mo(x)
1 my (x)
a« of o b My (%)
B of o o &7 mys (x)
oo (X1 0 OCZO o’ (X1 8 M,ys (X)
o oM o2 B & m,z (x)
ol a2 &3 o262 My (x)
% o0 o o o mys(x)

Z uvedenej tabul’ky rozkladu pola GF(2°) vyplyva, Ze

g(x) = mu(x) - mys(x) - mys(x) - my7(x)

a polyném g(x) md teda okrem poZadovanych koreriov «, o, ..., &3 aj korene o a «'°. To

vSak znamend, Ze minimdlna vzdialenost BCH koédu C je 11. Pre zaujimavost’ dopocitame
aj hodnoty jeho ostatnych parametrov: stuperi generujiiceho polynomu je 20, a teda pocet
informacénych symbolov v kédovom slove je 11. Kod C je teda bindrny (31,11) BCH kéd (v
tuzkom zmysle) opravujtici 5 chyb.

Rozdiel medzi konstrukénou a minimalnou vzdialenostou BCH kédu moéze byt velky.
Berlekamp uvadza priklad binarneho BCH kédu v izkom zmysle diiky 2121 s konstruk-
¢nou vzdialenostou 768, ktorého skuto¢na minimalna vzdialenost’ je 819 (citované podl'a
[7]). Uvedené priklady mézu vzbudit pochybnosti o tom, ak4 je vypovedna hodnota dol-
nej hranice BCH pre opravnii schopnost BCH kédu. V praci [12] je uvedena rozsiahla
tabulka, ktoru zostavil Chen, obsahujuica vSetky bindrne cyklické kédy neparnej dizky
(n < 65) spolu s ich najdolezitejsimi parametrami, vratane dolnej hranice BCH a sku-
tocnej minimalnej vzdialenosti. Hranica BCH sa od skuto¢nej minimalnej vzdialenosti
odliSuje pomerne ¢asto a v niektorych pripadoch aj dost’ vyrazne. Vztah medzi hranicou
BCH a skuto¢nou minimalnou vzdialenostou pre pomerne Siroku podtriedu BCH kédov
vyjadruje nasledujica veta [12].

Veta 10.3.2. Nech je dgcy konstrukénd vzdialenost primitivneho BCH kédu nad polom
GF(q). Potom pre minimdlnu vzdialenost d tohto kodu plati

d<q-dpcg+9—2.
Dokaz. Neuvadzame, ¢itatel ho méze n4jst’ v praci [12]. O

Poznamka. V binarnom pripade skutotna miniméalna vzdialenost’ (primitivneho) BCH
kédu neprevysuje dvojnasobok konstrukénej vzdialenosti.
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10.4 PGZ algoritmus dekédovania BCH kédov

BCH kédy su cyklické kody, a preto na ich dekédovanie je mozné pouzit’ 'ubovolnd me-
todu dekédovania cyklickych kodov. Existuju vSak efektivnejSie metédy dekédovania,
navrhnuté Specidlne pre BCH kdédy. V tejto casti popiSeme Petersonov-Gorensteinov-
Zierlerov algoritmus dekédovania.

Predpokladdame, Ze je dany BCH kéd C diiky n opravujuci t chyb nad polom GF(q), s
generujucim polynémom ¢(x). Kvéli zjednoduseniu vykladu budeme tiez predpokladat’,
ze C je BCH kéd v izkom zmysle, t.j. ze korenmi g(x) sa prvky B, p?,..., % (Prvok B
nemusi byt primitivnym prvkom pola GF(q™); zrejme staci, aby jeho rad n delil g™ —1.)
Nech bolo odvysielané slovo u(x) a pocas prenosu nastala chyba vahy v, 0 < v < t, ktord
zapiSseme v podobe chybového polynému:

e(x) =ey+ex+ ezxz I en_]xn—1.

Chybovy polynom ma prave v koeficientov nenulovych. Oznac¢me tieto koeficienty
€i,,...,€i, a vynechajme v e(x) nulové ¢leny. Chybovy polyném bude po redukcii vyzerat
nasledovne

e(x) = ey, X" + e, x4 - +ep X\, (10.7)

Prijali sme polyném (slovo) v(x) = u(x) + e(x). Pre prijaté slovo v(x) mozno vypocitat dva
rozliéné syndrémy:

e syndrémovy polyném s(x) =v(x) mod g(x) a

e syndrom (S1,S,,...,Sy), ktorého zlozky (parcidalne syndrémy) sa dajua vypocitat’ zo
vztahu S; = v(B)) = e(B’). Pripomenieme, Ze pre tento syndrém plati aj
[Sl)sb R )SZt] = [VO)VM cee )vn71] : HT)
kde H je kontrolna matica kodu C a (vo,v1,...,vn_1) prijaté slovo (koeficienty prija-

tého polynému).

Vypocitame parcidlne syndrémy dosadenim korenov generujiceho polynému do prija-
tého polynému v(x):

Si=v(p) =e, P +e, 24+, B, j=1,...,2L

Aby sme zjednodusili zapis, zavedieme podobne ako v pripade binarnych BCH kédov
nové oznacenie:

e hodnoty B',..., A" oznaéime symbolmi Xi,...,Xy; X = B a nazveme lokatormi

chyb;

e hodnoty chyb oznaé¢ime symbolmi Yy; e, = Y1,...,e;, =Y,.

v
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Pripominame, ze lokatory chyb su prvky pola GF(q™) a hodnoty chyb sd prvky pola
GF(q). Parciadlne syndromy moézZeme potom vyjadrit pomocou sustavy rovnic:

St =Xy + 0+ NX
S.z - ix: o+ ... + Yy X2 108)
éZt _ iXit o+ L. + Y, X2t
Nasou tlohou je najst na zaklade znamych hodnét syndrému Sy,..., S, nezname hod-
noty lokatorov chyb a hodnét chyb: Xi,...,Xy;Ys,...,Y,. Ukdzeme, Ze systém rovnic

(10.8) ma prave jedno rieSenie. Vzhladom na nelinearnost’ systému (10.8) by jeho priame
rieSenie bolo naroc¢né. Preto podobne ako v predchadzjicej ¢asti zavedieme pomocny po-
Ilyném A(x) lokatorov chyb; tentoraz vSsak v mierne modifikovanej podobe: jeho korenmi
nebudi lokatory chyb, ale prevratené hodnoty lokatorov chyb.

Alx) = (T=xX)(1T=xX2) oo (T=xXy) = T4+ Apx + A2 4 -+ AV, (10.9)
Ak by sme poznali koeficienty Aq,..., Ay, dokazali by sme zostrojit polyném A(x) a (na-
priklad uplnym preberanim) najst jeho korene Xﬂ,. .., X5'. Problém je v tom, Ze ne-

pozname ani len stupen v polynému A(x), t.j. vahu chyby ktora vznikla pri prenose.
Ukazeme, ako sa daju urcit’ koeficienty polynému A(x) na zaklade znamych hodnot par-
cialnych syndrémov Sy,..., S, pomocou rieSenia systému linearnych rovnic. Ked'zZe ko-
renmi polynému A(x) st prevratené hodnoty lokatorov chyb, plati

AXT) = THMXTT H X2+ WXV =0, i=T1,...,v (10.10)
Zbavme sa zapornych mocnin lokétorov chyb tym, Ze vyndsobime rovnice sustavy (10.10)
élenmi V;X)™, kde 1 <j < v:
Yo Y XY XY T A X =0, i=T,., (10.11)
Teraz sc¢itame (10.12) cezi=1,...v:
Z YiXJ:fV + N Z YiXJfV*] +A2 Z YiXJ%H*Z +o A Z YiX% =0 (10.12)
i=1 i=1 i=1 i=1
Ale (pozri (10.8)) posledna rovnost’ predstavuje
Sjtv T+ AM1Sjv1 + A2Sjv 2+ F A S =0,

resp. po presunuti ¢lena S, na pravu stranu a preusporiadani ostatnych ¢lenov na Iavej
strane rovnice dostavame

Sj)\v + Sj+17\\,,1 +---+ 7\1Sj+y,1 = —Sj+v. (10.13)

kedze A < v, pre 1 < j < v, indexy zloziek syndrému zo sustavy (10.13) su z intervalu
(1,2t) a teda v sustave (10.13) sa vyskytuji len zndme hodnoty syndréomu S;,...,Sx.
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Sustavu (10.13) mozZno prehladnejsie zapisat' v maticovej forme:

[S1 S, ... Sy Sy Ay [ —Svi1
S 83 ... Sy Svi Av_1 —Svi2
S3 S4 ... Svir Sviz || A2 | = | —Sviz . (10.14)
| Sv Svqr oo Sov2 Sovar | L A | —Sov |
Kvoli zjednoduseniu zapisu v dalSom texte zavedieme nasledujice oznacenie
(ST S, ... Syq Sy ]
SZ 83 ce S'\/ SV+1
S3 S4 ... Svii Sy | =M. (10.15)
L Sv Svaro... Sovez Savar |

Ak by matica M, bola regularna, tak by bolo mozné riesit’ sistavu (10.14). V nasleduji-
cej leme dokazeme, za akych podmienok je M, regularna.

Lema 6. Nech pri prenose kédového slova doslo k chybe vahy v < t. Potom je matica M,
reguldrna a matica M,,, kde n > v singuldrna.

Doékaz Maticu M, 0 <v < p <t moZno rozlozit na suéin troch matic;

M,=A B-AT,
kde )
[ 1 1 1 1
X] Xz X3 o X
Ao|X X X . x
G GOl e
a B je diagonalna matica
[ XY, 0 0 ... 0 i
0 X2Y; 0... 0
B—|0 0  X3¥3 ... 0
|0 0 0 e XYYy

Zrejme
det(M,) = det(A) - det(B) - det(A").

Ak p > v, medzi hodnotami chyb Y7,...,Y, je aspon jedna nulova. To znamen4, Ze v
matici B sa na diagonale vyskytuje aspon jedna nulova hodnota a jej determinant je
nulovy. Na druhej strane, ak 1 = v, det(B) # 0 a ked'Zze A je Vandermondova matica a
lokatory chyb X, ..., X, st rozne, det(A) = det(AT) # 0. O

Ziskané poznatky vyuzijeme pri navrhu dekédera BCH kaédov.

Petersonov-Gorensteinov-Zierlerov dekéder
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1. Na zaklade prijatého slova v(x) vypocitaj syndrém Sy,...,Sy; Sj = v(p)).

N

. N4jdi najvicsie prirodzené v také, ze matica M, je regularna.

w

. Vyries systém linearnych rovnic (10.14) a urci koeficienty A, ..., Ay. Zostroj polynom
lokatorov chyb A(x).

-

. N4ajdi korene polynému lokatorov chyb A(x) (iplnym preberanim, alebo faktorizaciou)
a urci pozicie chyb. Ak je dany BCH kéd binarny, tak invertuj bity na poziciach
urcenych lokatormi chyb a skon¢i, inaé pokracuj krokom 5.

ot

. Vyries§ systém linearnych rovnic pre hodnoty chyb

YiXs + 20 + ...+ Y Xy, = §
iXi 4+ X5 o+ . o+ WX =S,
: : (10.16)

Y1XY + YzX}/ + ...+ WXy =S,

K tuplnosti popisanej metody zostava este ukazat, ze systém (10.16) ma jediné rieSenie.

Lema 7. Ak su Xj,...,Xy rozlicné lokdtory chyb, tak potom md systém (10.16) jediné
rieSenie.

Dokaz Determinant sustavy (10.16) sa da upravit’ na Vandermondov determinant

X; Xo ... Xy 1 1 e 1
X2 X2 ... X2 X; X, .0 X
det | ' 77 Yl = (XX, .. X,) det Y
Xy Xy o...oXy X7y o Xy

Ked'ze lokatory chyb si nenulové a rozne, determinant sustavy (10.16) je nenulovy, a
teda sustava (10.16) ma rieSenie. O

Tlustrujeme pouzitie PGZ dekédera na niekol'kych prikladoch.

Priklad 10.4. UvaZujeme bindrny (15,5) BCH kéd z predchddzajiiceho prikladu. Nech
bolo odvysielané kédové slovo

ulx) =14% +x° +x10 +x"T + x4+ xM
a pri prenose vznikla chyba e(x) v désledku éoho bolo prijaté slovo v(x) = u(x) + e(x).
1. Chyba vdhy 0. Syndrém chyby je
$1=5,=8;=8,=S5=5;,=0.

Ked’Z2e syndrom chyby je rovny nule, predpokladdme, Ze pri prenose nedoslo k chybe
a prijaté kédové slovo je zhodné s odvysielanym.
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2. Chyba vdhy 1; napr. e(x) = x'*, bolo prijaté slovo v(x) =14 x> + x> +x"0 + x4+ x12,

S] :(XM 5220(13 33:()(]2 34206” 5520(10 36:0(9
Uréime pocet chyb, v.
o a3 §12
M= | a® o2 &
12 11 10

0.8 x x

Ale det M3 = 0. Vytvorime maticu M, a vypocitame determinant tejto matice:

Mo — O(M “13
2 “13 (X]Z :

Ked’2e det M, = 0 v prijatom slove je najviac jedna chyba. Ale My = «'* # 0, a
14

teda predpokladdme, Ze v prijatom slove je chyba vdhy 1, S; = X4, tj. e(x) =x"* a
odvysielané slovo bolo u(x) =1+ x> 4+ x> + x10 + x4+ x1% + x4,
3. Chyba vdhy 2. Chybovy polyném je (napr.) e(x) = x> 4+ x’; bolo prijaté slovo
vix) =145 +x7 +x10 x4 x4

Syndrém chyby je

S;=a* S5=a® S3=&° Syu=a Ss5=al% Sz=«l°
Uréime pocet chyb, v.
o o8 o
Mz=|a® o «
«© « ol

Ked’2e det M3 = 0, vytvorime maticu M; a vypoclitame jej determinant:

ot ob

Mzz{(xs (XS]; det M, = o #0.

V prijatom slove je pravdepodobne chyba vdhy 2. Uréime koeficienty polynému lo-
kdtorov chyb:

5 8
det | © (XS 13
A — X & . o . (Xm
2= det M, o
Podobne . s
det |: (XS x :| 7
A « o | o o
1= det M, o

Vyjadrime polyném lokdtorov chyb a ndjdeme jeho korene:
Alx) =1+ o*x + «'0%2,
Korene polynému A(x) sme nasli uplnym preberanim (a faktorizdciou polynému);
na tomto mieste uvedieme len jeho vysledok:
A =T4+a+a*=0, AL®)=1+a"?+a'"=0;

12

t.j. htadané korene si o'?, «® a chyby vznikli na pozicidch 3 (&' = a3) a 7 (&« =

ad).
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4. Chyba vdhy 3. Predpokladajme kvéli jednoduchosti, Ze e(x) = x> + x'° + x'3 a bolo
prijaté slovo
v(x) =14+ + x4+ %12 +x13 x4,

Syndrém chyby je
51 :OCG 8220612 SgZOC9 3420(9 3520610 5620(3.

Ked’Ze det M3 = 1, predpokladdme, Ze pocas prenosu vznikla chyba vdhy 3. Vypoci-
tame koeficienty polynému lokdtorov chyb a zostavime A(x):

Ax) =14 o 4+ %% + «3x3.

Korerimi polynému A(x) st «'°, o, o, ktoré uréuji polyném chyb e(x) = x> +x'°0 +

x'3. Odéitame chybovy polyném od prijatého slova a dostaneme kédové slovo, o kto-
rom predpokladdme, Ze sa zhoduje s odvysielanym kédovym slovom.

Na zaver uvedieme este priklad konstrukcie a dekédovania ternarneho BCH kédu.
(Tento priklad este doplnime a upravime)

Priklad 10.5. ¢ Skonstruujeme terndarny BCH kéd dizky 26 opravujici tri chyby. Najprv
zostrojime pole GF(33) tak, Ze faktorizujeme okruh polynémov nad polom GF(3) iredu-
cibilnym polynémom tretieho stupria x> + 2x + 1. Tento polyném je zdrover primitiv-
nym polynémom a jeho koreri, ktory oznacéime symbolom «, je primitivnym prvkom pola
GF(3%) = GF(3)[x]/x> + 2x + 1. Na ziskanie lepsej predstavy o poli GF(3%) vyjadrime vsetky
Jeho nenulové prvky pomocou mocnin primitivneho prvku, lidra triedy rozkladu faktoro-
vého okruhu-pola GF(3)[x]/x3+2x+1, linedrnej kombindcie mocnin primitivneho proku a
vektora koeficientov tejto linedrnej kombindecie. (Vo vypocétoch budeme vsak vyuZivat prvi
a poslednii reprezentdciu prvkov pola.)

Ndjdeme vhodny generujiici polynom BCH kédu. V tabulke sii uvedené minimdlne
polynémy jednotlivych prvkov koneéného pola GF(3%) (vrdtane nulového):

0 X

o® X+ 2

ol o3 of x3 4+ 2x+1

o of '8 3 4+x2Fx+2
ot ol X4 xE 42
ol B2+ x+1
067 0621 OCH X3+X2—|—2X+1
o8 o2 o2 23+ xEx+1
o3 X+ 1

oM o6 022 3 x4 1

o7 o o B4+ 1

Ked’2e kéd, ktory konstruujeme, md opravovat’ 3 chyby, korerimi generujticeho poly-
nému musi byt’ postupnost’ Siestich za sebou nasledujiicich mocnin primitivneho prvku

*Tento priklad je upravenou verziou domécej ilohy, ktort vypracovala Monika Steinova
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0 0 0| 000
o° 1 11001
o X o 010
o x2 o 100
o3 x +2 o +2|012
ol x2 4+2x or 2 120
o | 2x2 Hx 42|20 4o +2[212
o | x2 4x +1| oF o +1]111
o x2 4+2x 42| o«f +2x 42122
o | 2x2 +2 | 22 +2 {202
o +x +1 +o +11]011
ol X2 4x o +a 110
ol X x 42| oF 4a 42112
al? | X2 +2 | o? +2 1102
ol3 2 2002
o4 2x 2x 020
ald | 2x? 20 200
ole 2x  +1 200 +1 | 021
o7 | 2% 4x 26+« 210
ol x2 42x 41| oF F2a +11]121
ol | 2%% 42x 42| 202 42 421|222
o | 2% 4x 41|20 4o +1]211
o | X2 +1 | o? +1 1101
o2 2x 42 200 +2 022
o | 2x2 4+2x 20 +2« 220
ot | 2%% 42x 42| 20 4200 41221
o | 2x? +2 | 22 +1 1 201
26 1 11001

Tabulka 10.1: Pole GF(33).
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o. Nech s to napriklad proky «, o2, ..., «°. Potom je podla definicie BCH kédu generu-
Jtcim polynémom kédu polyném

g’ (x) =lem (My(x), ..., mue(x)) = (S +2x+ DS +x2 +x+2) (3 +x2 +2) (3 + 22 +x +1).

Ak priddme ku koreriom generujiiceho polynému aj prvok o° (ktorého minimdlny polyném
Jje linedrny) minimdlnu vzdialenost’ konstruovaného BCH kédu rozsirime na 8 za cenu
pridania jedného kontrolného symbolu. Generujiicim polynomom tohto kédu bude

gix) = g'(x)- (x+2) =x3+ 2"+ 27 +x +xF +x3 + 2x + 2.

Kod zadany generujicim polynémom g(x) je terndrny (26,13) BCH kod v vizkom zmysle
opravujuci chyby do vahy 3 a odhalujiici chyby vdhy 4.

Teraz ukdzZeme ako vyzerd kodovanie a dekddovanie terndrnej informdcie pomocou
terndrneho (26,13) BCH kédu. Nech je i(x) = x" 4+ 2x'0 4+ 2x7 +x3 + x5 + 2x* + 2x3 + x2
informadny polyném. Pri systematickom kédovani najprv vypocitame polyném v(x):

r(x) = (KM 4+2x"0 4+ 2x7 +x% +x° + 2x* + 2x% + x?) * x"3) mod g(x) =
= X+ 2B+ 2P+ + x84+ 2% + 2x"1® +x"° mod g(x) =
212 4 2 10 4 20 4 28 2 2
a potom kdédové slovo c(x) vyjadrime ako
c(x) = i(x)xx" —r(x) =x2 + 2xB £ 2x2 + 2T + x84 2x7 4+ 2x1° + x5 +
+ X2 20 X xt E 23 xP +2
Nech pri prenose vznikla chyba vahy 3 zadand chybovym polynémom e(x) = x'*+2x124+x7

a bol prijaty polynom

V(X) — X24+2X23+2X22+X2] +X]8+2X17+2X]6+X15+2X]4+X1]+2X]0+2X9+X6+X4+2X3+X2+2.

Zistime ¢i nastala chyba a ak dno, opravime ju. Vypocéitame hodnoty syndromu Sy, ...Sg;,S; =
vial), i=1,...,6.
S] :ch 522062 332065
Si=a’ Ss=0of Sg=«f

Teraz zostrojime maticu M3 a vypocitame jej determinant:

S] Sz 53 0(]9 O(z 0(5
detMs=det | S, S3 Ss | =det| o2 o o« | =a
33 54 S5 0(5 (XO O(8

Determinant matice M3 nie je nulovy a na zdklade toho predpokladdme, Ze pri prenose
vznikli tri chyby. Hladdme teraz kubicky polyném lokdtorov chyb

Alz) =T4+Mz4+Mz2 + 7328 = (1 —x12) (1 —x22) (1 — x32)
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Pre hladané koeficienty plati nasledujiica stistava rovnic:

o

S1A3 + S)A2 4+ S3A1 4+ SgAy =
So)As + S3A2 + SauA + Ss5A0 =
S3A3 + S4A; + SsA7 + SgAp = O

o

resp.
oA+ A+ N+ & =0
A3+ *h + oA+ o = 0
N 4+ N+ oA+ & = 0

Riesenim tejto stustavy dostdvame:

7\320(22 Azzoczz A = o 7\0:oc0

a polynom lokdtorov chyb bude

Alz) =1+ a2+ o222 + a??23.

14 2612 | 26—14
2 X 2

Korenimi polynomu A(z) st proky «'%, «'* o7 a teda chyby vznikli pri x a
x26=17_ Pri bindrnom kéde by sme v tomto momente skonéili, pretose odhalenie pozicie
chyby stadi aj na opravenie tejto chyby. V terndrnom pripade viak este treba zistit, akd
chyba nastala. Oznacéme si teda Y1, Y, Y3 koeficienty, ktoré boli v chybovom polynéme po-
stupne pri ¢lenoch Xi,X3, X3. Tieto si viazané vztahmi, vyjadrenymi v nasledujticej sti-
stave (10.16):

«2Y; + &Y, + oY =
oY 4+ &Y, + «y; = of
o0+ oY, 4+ oY = O

Riesenim tejto stustavy rovnic je: Y1 =2, Y =2 a Y3 = 1 a teda chyba, ktord nastala je
e(x) = XiY1 + XaY2 + X3Y3 = 2! 4 22 4 %7,

Prijaty polyném v(x) upravime na kédovy polyném u(x) = v(x) — e(x) a vypocitame
informaény polyném u(x) div x26713) = {(x) = x"T + 2x10 4 2x7 + x& + x> + 2x* + 2x3 + x%

Informacny polyném i(x) = x" 4+ 2x'10 + 2x7 + x3 + x> + 2x* + 2x3 + x? budeme tento-
raz kodovat’ nesystematicky, vyndsobenim generujicim polynomom: c(x) = g(x) - i(x). V
nasom pripade dostdvame kédové slovo

cx) = 2B x4+ x4 2 X7 x5 M x4
+ 2104 27 x4 2x0 4+ 2xt XA
Nech pri prenose vznikla chyba e(x) = 2x” + x. Potom bolo prijaté slovo
v(x) = 2B x4+ 12 X7 X6 x5 2
+ x4 2310 2% 42X 0 2 2% x.
Zistime ¢i v prijatom slove nastala chyba. Syndrém chyby slova v(x) je

S] = 0624, Sz = O(]O, 33 = O(zo, S4 = O(M, 55 = 0625, S6 = (X4.
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Ked’Ze syndrém je nenulovy, prijaté slovo je zataZené nejakou chybou. Uréime vdahu chyby,
v. Zostavime maticu M3 a vypocitame jej determinant:

detM; =det | «'® o2 o« | =0.
20 14 25

o G
Yo znamend, Ze vdha chyby je mensia neZ 3. Zostavime teda maticu M, a vypocitame jej
determinant:

0624 061 0

det M = [ o0 o0 ] = o7 #0.

Z toho, Ze je matica M3 singuldrna a matica M, reguldrna, vyplyva, Ze pri prenose vznikli
pravdepodobne dve chyby. Na ich urcéenie potrebujeme zostrojit’ polyném lokdtorov chyb

A(x) = T4 Ax + Ax2.

Riesenim sustavy rovnic

N+ A + o0 = 0
N+ A + oM = 0

uréime koeficienty polynému A(x)

)\2 :OCS, 7\1 = 0(25, 7\0 =1.

Dostdvame polyném

Ax) =14+ a«Bx 4+ odx?

ktorého korene si X; = o' a X3 = «.

Potrebujeme uz len zistit’ aké chyby nastali. Znova budeme riesit’ sustavu rovnic (10.16)

R

Y+ Y, = o
oY + oy, = «l°

Riesenim tejto siistavy rovnic je Yy = 1 a Y, = 2. Chybovy polyném je e(x) = 2x” + 1x
a kodové slovo c(x) = v(x) — e(x). Nakoniec uréime informacné slovo. KedzZe bolo pouZité
nesystematické kédovanie informacné slovo (polyném) dostaneme vyndsobenim kédového
slova c(x) kontrolnym polynémom h(x). V nasom pripade h(x) = x"3 + x'"" +x7 + 2x” +
2x% 4+ %% + 2x + 1 a informaény polyném je

hix)u(x) = x" +2x10 + 2x7 +x8 + X% + 2x* + 23 + X2
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10.5 Iné metédy dekodovania BCH kédov

Vypoctovo najnarocnejsou cast'ou Peterson-Gorenstein-Zierlerovho algoritmu je riesenie
sustavy linearnych rovnic (10.14). Ak tiuto siustavu rieSime vypoctom inverznej matice
syndrémov, zloZitost vypoctu je O(v3), ¢o pre velké hodnoty v moze byt prilis vela.
Vsimnime si vSak Struktdru matice syndréomov zo sustavy (10.14). Nech S¢,S,,...,Ss
je postupnost’ hodnét syndrémov a

AX) =T+ Ax4+Ax2 4 AXY

je polynom lokatorov chyb. Riadky matice syndrémov tvoria stvislé podpostupnosti diiky
v postupnosti hodnét syndrému: prvy riadok matice syndrémov tvori podpostupnost’
Si,...,Sy, druhy podpostupnost’ Sj,...,Sy.1, az napokon posledny riadok matice syn-
drémov tvori podpostupnost’ S,,...,S,, 7. Naviac, hodnoty S,1,...,Ssy, mozno vyjadrit’
pomocou predchadzajicich v hodnét syndrému jednotnym sposobom:

v
SJ :_Z}\lslfl’ ] :'V-i-],...,z'v. (1017)

i=1

Berlekamp vyuzil $truktiru matice syndrémov a navrhol efektivny algoritmus na rie-
Senie sustavy (10.14). Massey preformuloval pévodné Berlekampove riesenie do zrozu-
mitelnejsej podoby, v ktorej ho budeme prezentovat’ aj my. Budeme postupovat’ nasle-
dovne: najprv uvedieme princip algoritmu, potom ilustrujeme na priklade aké problémy
algoritmus riesi. Napokon popiseme algoritmus formalne a dokazeme jeho korektnost’ a
optimalnost’.

Ak zrusime obmedzenie na j, rekurentny vztah (10.17) popisuje nekonecnu postup-
nost’ S1,S,,... generovanu posuvnym registrom s linearnou spétnou viazbou (linear fe-
edback shift register, LFSR), ktora je zadana polynémom lokatorov chyb A(x), obr. 10.1.
Na to, aby sme urcili polyném lokatorov chyb A(x), potrebujeme najst najkratsi LFSR,
ktory generuje postupnost’ S1,S,,...,Soy.

Si1 | S52 Sj—v+1 || Sj—v = Sj—v—1...525

r

Obr. 10.1: LFSR so spatnou vizbou zadanou A(x)

Podstata Berlekampovho-Masseyovho algoritmu spociva v iterativnej konstrukeii re-
gistra (LFSR) generujiceho postupnost’ hodnét syndrémov S1,S;,...,S;,;S; € GF(q). Ak
su zname registre RU) generujice pociatoéné podpostupnosti Si,S,,.. oS5 g =T,
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E 0 +— AN (x)=14x

Obr. 10.2: LFSR R

r — 1, tak register R(" generujici podpostupnost’ S1,S5,...,S.1,S, sa bud zhoduje s re-
gistrom R™ ") alebo sa da zostrojit tpravou registra R"™!) pomocou niektorého z pred-
chadzajucich registrov. Modifikécia registra R"") musi zaruéit, aby novy register, R(")
spiﬁal nasledujuce dve poziadavky:

1. aby spravne generoval prvych r ¢lenov postupnosti,
2. aby sa dizka registra R(" zvéésila oproti registru R™") minimalne.

Tento postup budeme opakovat dovtedy, kym nezostrojime register R(V)

diiky, ktory generuje postupnost’ S1,S,,...,Ssy.

minimalne;j

Skor ako formalne popiseme Berlekamp-Masseyov algoritmus a dokazeme jeho ko-
rektnost’, ilustrujeme jeho ¢innost’ na priklade. Kvoli jednoduchosti budeme pracovat s
polom GF(2).

Priklad. Nech je dana postupnost 0,0,1,0,1,1,0,1,0, 1. Ndjdeme register RU'%, ktory ju
bude generovat. Register R(" diiky 1 so spatnou vézbou 1 + x a pociatoénym stavom 0,
obr. 10.2 generuje postupnost’ {0}i>1. (Ten isty register by z poc¢iato¢ného stavu 1 genero-
val postupnost’ {1}>1.) To znamena, zZe R(M generuje spravne prvé dva ¢leny postupnosti,
ale chybne generuje treti (R? = R()). Musime zvadsit dizku registra R®a pripadne
modifikovat jeho spatnd vizbu tak, aby sme zostrojili register R©). Najprv ukaZeme,
Ze Ziaden register diiky 2 nemoze generovat podpostupnost 001. Predpokladajme opak.
Nech je R LFSR dizky 2 so spétnou vézbou A(x) = 1+ Ajx + A;x%. Aby R spravne ge-
neroval prvé dva éleny postupnosti, jeho pociatoény stav musi byt 00, ale potom treti
prvok postupnosti ma hodnotu OA; + OA; a to je pri F'ubovolnom vybere hodnét Aq, A; vzdy
0. To znamens, Ze register R®) musi mat’ dizku aspoti 3 a na to, aby dspesne generoval
postupnost’ 0,0, 1, musi mat’ pociatoény stav (zapisané sprava dolava) 100. Spatna vazba
v prvych troch taktoch neovplyvni vystup registra R, a teda pre Tubovolny polyném
spatnej vazby
A(X) = T4+ Ax 4+ Ax? + Asx®

bude register R©® s poéiatoénym stavom 100 generovat postupnost 001.> Vyberieme R
so spitnou vizbou zadanou polynémom 1 + x3. Tento register bude spravne generovat
aj Stvrty prvok postupnosti, 0, ale v piatom takte dojde ku chybe a je potrebna korek-
cia spatnej vazby a mozno aj prediienie registra. Ukazeme, ¢o znamena modifikacia
spatnej vazby registra. Register R©®), obr. 10.3 generuje postupnost 0,0,1,0,0,1,0,0,1, ....
Jednym z moznych rieseni je predizit’ register na dlzku 5 a nastavit ako jeho potiatoény

SEste raz pripomenieme, Ze stav registra sa zapisuje sprava dolava a postupnost ktord generuje v opaé-
nom poradi, t.j. zlava doprava.
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11 0] 0 — 00100...

Obr. 10.3: LFSR R®

stav postupnost’, ktord ma generovat. Tento register by (bez ohladu na to, ako by sme
zvolili spatnu vdzbu) generoval pozadovanu postupnost. Skisime teraz péjst’ kratsi re-
gister, generujuci postupnost 0,0,1,0,1. Vystup registra R = RG) splia nasledujici
rekurentny vztah:

Si3=S5;, i=12,....

V prvych 3 taktoch sa na vystupe registra R} objavuji jednotlivé bity jeho poéiatoé-
ného stavu, v 4. takte je vystupom (spravna) hodnota, ktora bola vypocitana v 1. takte
(54 = S1), problematicka hodnota 0, ktora sa na vystupe registra objavi v 5. takte, bola
vypocCitana v 2. takte. Ak nejako zmenime spétnu vdzbu registra a zachovame jeho dizku
a poCiatocény stav, vystup registra v prvych troch taktoch sa nezmeni ale méze sa zmenit’
aj vystup v 4. a 5. takte (vystup registra v d’alsich taktoch nas v tomto momente nezau-
jima). K spétnej vizbe registra mozeme pridat ¢leny x, x%, x> alebo nejaki ich kombina-
ciu. Potrebujeme dosiahnut’, aby prispevok pridanych ¢lenov spétnej véazby bol v prvych
2 taktoch 0, 1. Pozrieme sa na to, aké hodnoty budu generovat mozné ¢leny spéitnej vazby
v prvych 2 taktoch, ak bol poéiatoény stav registra R 001.

x 1,
x* 0,
x> 0

S = O

b

Pozadovanu postupnost’ nachadzame v druhom riadku; ak pridame do polynému spétnej
vizby ¢len x?, hodnota generovana spitnou viazbou v prvych dvoch taktoch bude S; +
S5,S,+ 83, resp. 0, 1 ¢o zabezpeci spravne generovanie 4. a 5. ¢lena postupnosti. Vysledny
register R1®) je na obrazku 10.4. Register R1®) spravne generuje aj 6. prvok postupnosti,

(+)
\T/

1, 0| 0o 001011,1,...

Obr. 10.4: LFSR R®

ale chyba nastava v 7. te}kte. Opét je potrebna korekcia spitnej vazby. Problém vsak je
v tom, Ze Ziaden LFSR dlzky 3 postupnost’ 0010110 nedokéze generovat. Ak by existoval
register R dlzky 3 s polynémom spétnej vazby

A(X) = T4+ Ax 4+ Ax? + Asx®

a pociatocnym stavom 1,0,0 a generoval spravne 4., 5., 6. a 7, prvok postupnosti, jeho
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spitnd vizba by musela spliiat nasledujice podmienky

A= 0,
A=,
AM+A; = 1,
M+A =0

Z prvej, druhej a Stvrtej podmienky vyplyva spor. Skisme teraz prediiit’ register o 1;
nech je RLFSR dféky 4, so spatnou véazbou 14+x%+x3 a poéiatoénym stavom 0100. Register
R generuje postupnost’ 0,0,1,0,1,1,1,...; chyba, ktora sa objavila na vystupe v 7. takte
vznikla v 3. takte. Aby sme ju opravili, potrebujeme k spdtnej vizbe pridat ¢leny, ktoré
by z pociatocného stavu 0100 generovali postupnost’ 0,0, 1. V nasledujicej tabulke su
uvedené postupnosti generované potencialnymi ¢lenmi spéatnej vazby:

-

Do tdvahy prichadza bud élen x*, alebo kombinacia x + x> - obe rieSenia zabezpecuju
korekciu 7. generovaného prvku postupnosti. Vyberieme ,opticky“ jednoduchsie rieSenie
a ako polyném spitnej vazby registra R©®) vyberieme A(x) = 1+ x? + x> + x*, obr. 10.5.

0,0,1,0,1,1,0...

Obr. 10.5: LFSR R”)

Register R(") sa v 8. takte dopusta chyby. Chybna hodnota bola vytvorena v 4. takte.
Do spétnej vazby registra R"7) potrebujeme doplnit’ ¢leny, ktoré by z poéiatoéného stavu
0100 generovali postupnost’ 0,0, 0, 1. Prispevky potencidalnych prvkov spatnej viazby uva-
dzame v nasledujucej tabulke

X

AW N

X
X
X

Pozadovant korekciu 0,0,0, 1 generuje kombinacia x + x> + x*. Register R®) m4 dizku
4, spatni viazbu A(x) = 1+ x + x? a z poéiatoéného stavu 0100 generuje postupnost
0,0,1,0,1,1,0,1. Chyba viak nastdva uZ v nasledujicom 9. takte. Ziaden register diiky
4 nebude generovat’ postupnost’ 0,0,1,0,1,1,0,1,0. Zoberieme register R diiky 5 so spat-
nou viazbou A(x) = 14+x+x%, ktory bude z poéiatoéného stavu 10100 generovat postupnost’
0,0,1,0,1,1,0,1,1. Hodnota, ktora sa na vystupe registra R objavila v 9. takte, bola ge-
nerovana v 4. takte. Na jej korigovanie potrebujeme do spétnej vazby pridat’ ¢leny, ktoré
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by generovali postupnost’ 0,0, 0, 1. Pomocou nasledujicej tabulky

x 1,1,0,1
X 0,1,1,0
¥ 1,0,1,1
Xt 0,1,0,1
X 0,0,1,0

néjdeme potrebnu korekciu: x2 + x* + x°. Register R®) dizky 5 so spatnou vézbou A(x) =
1+ x + x* + x> generuje prvych 9 prvkov postupnosti, ale chyba nastava v poslednom,
10. prvku postupnosti. Chybna hodnota bola vytvorena v 5. kroku, a to znamena, Ze po-
trebujeme korigovat spatni vizbu registra R(”)tak, aby korekcia generovala postupnost
0,0,0,0,1. Z tabul'ky

x

X X xR X
S, RS IUIRE Y

vyplyva, Ze pozadovana korekcia pozostava z ¢lenov x + x% + x3. Register (obr. 10.6) ma
dlzku 5, spatni viazbu A(x) = T4+x+x?+x3+x* +x° a z poéiatoéného stavu 10100 generuje
postupnost’ 0,0,1,0,1,1,0,1,0, 1.

— ...1010110100

.....

registra bolo jednak rozhodnut, ¢i je potrebné a ak, tak o kolko prediiit’ register a
najst’ vhodni modifikaciu spitnej viazby. V priklade sme tento problém zakazdym ne-
jako vyriesili, ale jednak to nebolo systematické riesenie a jednak sme nemali zaruku, ¢i
ziskané rieSenie (LFSR) bolo optimalne. Berlekampov-Masseyov algoritmus umoznuje
jednoznaéne stanovit’ ¢i treba, a ak ano, tak ako je potrebné v jednotlivych taktoch mo-
difikovat aktualnu spatni véazbu registra, aby sme nasli optimalne rieSenie. Zavedieme
niekol'ko formalnych oznaceni a popiSeme kI'acovy krok Berlekampovho-Masseyovho al-
goritmu presnejsie. LFSR R diiky L so spatnou vazbou zadanou polynémom A(x) budeme
oznacovat R: (L, A(x)) a skuto¢nost’, Ze LFSR R generuje postupnost’ Sq,..., Sy ozna¢ime
R:(LAKX)) & Sy,...,Sk Nech je dana postupnost Sy, ... prvkov pofa GF(q). Predpokla-
dame, ze pre k = 1,...,r — 1 st uz zname registre (LFSR)
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en

R (L, AW (x)) g

S
R (L, AP (x) & sys,

en

RUD (Lo, AU (%) € 8,S,,...5,

a pomocou nich zostrojime register
RO (L, AP (x)) & S, s, ..., Sy

Nechame najprv register R~ vypoéitat’ este jeden (r-ty) prvok. Jeho hodnota bude

r—1
—1
Si=—> Ns.
i=1

Teraz porovname vypocitani hodnotu S so skuto¢nou hodnotou S,. Rozdiel medzi tymito
hodnotami oznac¢ime symbolom A,:

r—1 r—1
A = Sr — S/T = Sr + ngr—ﬂsr_i _ Z)\i(r—l)sr_i)
i=1 i=0

pri poslednej tprave sme vyuzili to, Ze Ay = 1. Ak A, = 0, register RU""!) spravne ge-
neroval aj r-ty prvok postupnosti, a teda

R =R (L, ATV () 81,85, S

Ak A, # 0, musime spravit’ korekciu spétnej vézby registra R(=1) a pripadne zvaésit jeho
dlzku. Nova spéitna vazba je zadana polynémom

A x) = A D (x) + A X A (%), (10.18)

V definicii polynému A (x) v (10.18) vystupuje niekol'ko zdhadnych parametrov, ktorych
vyznam a hodnoty zakratko urc¢ime. Zatial prezradime, ze A € GF(q), | je prirodzené
¢islo a AM=1(x) je jeden z polynémov spétnej vazby, ktory bol zostrojeny pri predcha-
dzajucich iteraciach. Vypocéitame rozdiel medzi hodnotou S, a hodnotou r-tého prvku
generovaného registrom so spitnou viazbou zadanou polynémom (10.18):

T—1 r—1 r—1
A=Y AUS =3 As i p ALY AMs (10.19)
i=0 i=0 i=0

Teraz potrebuje zvolit parametre m, A, 1 tak, aby AL = 0. Vyberieme m < r také, ze
An # 0. Polozime 1 = r — m a nakoniec A = —A,/A,.. Upravime 10.19 a dostavame
Ay

A=A — 5 An =0,
m
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Zostrojeny register R™ : (L., Al”(x)) je teda generatorom postupnosti S;,S;,...,Sy. Os-
tala este otvorena jedna otazka, a to vyber m, na ktory sme zatial nekladli Ziadne pod-
mienky. Ako dokaZeme neskor, ak vyberieme najvicsie m také, zer > ma L, > L1,
dostavame generator R minimélne;j dizky.

Teraz, ked uz mame dostatoéni predstavu o ¢innosti Berlekamp-Masseyovho algo-
ritmu, moézeme ho popisat’ forméalne a dokazat’ jeho korektnost’ a optimalnost’. Formula-
cia vety a jej dokazu je s malymi modifikaciami prebrata z [2].

Veta 10.5.1. (Berlekampova-Masseyova) Nech je dand postupnost’ Sy, ..., Sy prvkov pola
GF(q), nech pre poéiatocné podmienky A% (x) =1,BO(x)=1alo=0prer=1,...,2t

r—1
A= Y NTUs (10.20)

i=0
L. = r( - er1) + (] - Br)l—rf]; (10.21)
AT = AU —A - x-BI (x); (10.22)
BU(x) = AT 5 AT+ (1-8,) -x- BTV (x); (10.23)

pricom

5 _{1 akA, #£0& 2L, <1—1,
=

0 indc.

Potom A2V (x) je polyném minimdlneho stupria, ktorého koeficienty splriaji nasledujice
podmienky

r—1
NS s e AR re Lt et

i=1

Formulacia vety je na prvy pohlad zlozita. V podstate vSak ide o iterativnu kon-
strukciu polynému spétnej vazby generatora postupnosti Sy,...,Sy; popisand vztahom
(10.18). Veli¢ina 6, indikuje, kedy dochadza k prediieniu registra a zloZito vyzerajuci
polyném B[ (x) vyjadruje aktudlnu korekciu polynému spiatnej viazby (ak je korekcia
potrebna). Pripominame, Ze A, = 0 len v tom pripade, ked 5, = 0. To ndm umoznuje
definovat hodnotu 8, /A, = 0 v pripade, ked’ 4, = 0.

Samotny dokaz vety rozdelime na dékazy dvoch pomocnych tvrdeni. V prvej leme
odhadneme zdola dizku L, registra R(" pomocou diiky L._7 jeho bezprostredného pred-
chodcu, registra RT—"). V druhej leme zostrojime pomocou Berlekampovho-Masseyovho
algoritmu generator postupnosti Sy,...,S;, a dokazeme, Ze jeho dizka L, bude dosahovat
dolny odhad z prvej lemy, ¢im zavirsime dokaz optimalnosti Berlekampovho-Masseyovho
algoritmu.

Lema 8. Nech R0V : (L._;, A"V (x)) je LFSR minimdlnej dizky, /ktory generuje po-
stupnost’ S1,...,S,_1 a nech R : (L., A" (x)) je LESR minimdlnej dizky, ktory generuje
postupnost’ Si, ..., Sy, pricom A"V (x)) £ Al (x)). Potom

L, > max (L, ;,7— L, 4). (10.24)
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Dokaz. Musime dokazat dve nerovnosti

1. L > L,
2. L,>r—L;.
Prva nerovnost’ je zrejma, pretoze ak register generuje nejaku postupnost’, tak potom
generuje aj jej po¢iatoénu podpostupnost’. Ostava dokazat druhu nerovnost’. Ak by
L2
potom by L, > r —r =0, ¢o je trividlne. Preto budeme predpokladat’, ze
L1 <.

Druhu nerovnost’ teraz dokazeme sporom; budeme predpokladat’, Ze druha nerovnost’
neplati; t.j. Ze
Ly<r— LT,1,

resp.
I_T ST—] —Lr,1.

Pozrieme sa teraz na postupnost generovant registrom R, Z predpokladov lemy vy-
plyva, Ze register R'"") generuje prvych r — 1 prvkov postupnosti

Ly
Si=—> A7USi, j=Loa+l,r—1 (10.25)

i=1

ale negeneruje r-ty:

Ly
Se#— Y AUs (10.26)
i=1
Register R(" generuje prvych r ¢lenov postupnosti:
L,
SjZ-Z?\gr)Sj_i, j=L+1,...,1.
i=1

Vyjadrime S,

Lr
Se=—3 NS (10.27)
i=1

V sume (10.27) vystupuju ¢leny S, 1 ,...,S;_;. Ale podl'a predpokladu
r—L>r—(r—1-L4)=L_+T,

a to znamena, zZe kazdy z ¢lenov S,_| ,...,S,_1 mdZeme vyjadrit pomocou (10.25). Dosta-

vame
Ly Ly L1 1
Se=—> A=Y A" > ATUs .
k=1 k=1 i=1
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Zmenime poradie sumadcie, upravime vnitorni sumu a dostavame

Ly Ly L1
-1 —1
Se=> AN ATs ==Y AlUs,
i=1 k=1 i=1

Dostali sme spor s (10.26), ¢éim je tvrdenie lemy dokazané. O

7 predchadzajucej lemy vyplyva, Ze ak pri konstrukcii LFSR generujiceho postup-
nost Si,...,S; zostrojime v r-tom kroku register diiky L, = max(L, y,r— L), r =
1,2,..., tak je tento register optimalny. Ostava dokazat, ze LFSR konstruované pomo-
cou Berlekampovho-Masseyovho algoritmu tito podmienku spiﬁajﬁ.

Lema 9. Nech . .
RO (L, AV (%) B 81,S5,...,S5, j=1,2...

Je postupnost’ registrov generujucich pociatocné podpostupnosti postupnosti {Syl>1. Ak
v registri R tejto postupnosti doslo k zmene spdtnej vizby v porovnani s predchddzaji-
cim registrom;

A (x) # AT (),

tak pre dizku registra R") plati
L, = max(L, 4,7 —L; 1)

a Pubovolny LFSR dizky L, generujici postupnost Si1,Ss, . .., S je registrom-generdtorom
minimdlnej diZky.

LFSR R") zostrojeny podla Berlekampovho-Masseyovho algoritmu je generdtorom mi-
nimdlnej diZky postupnosti S1,Sy,...,S;.

Dokaz. Z predchadzajucej lemy vyplyva, Ze dizka registra R(") neméze byt mensia nez
max(L,_;,7—L._7). Ak sa preto podari ukazat, ze L, = max(L,_;,r — L,_7), bude to zna-
menat, Ze register R(") je generatorom (postupnosti S;,S,,...,S;) minimalnej diiky. Uka-
Zeme, Ze pre v = 1,2, ... sa d4 zostrojit’ generator miniméalnej dizky. Dokaz budeme viest
matematickou indukciou vzhfadom na dizku generovanej postupnosti.

Pre k = 1 tvrdenie plati, lebo Ly = 0,1 = 1.
Predpokladajme, zZe pre k = 1,...,7 — 1 st uz zostrojené registre
RO (L, AT (%)) B8 81, S0, Sk
a zakazdym, ked’ doslo k zmene spéitnej vizby; t.j. ak AM(x) £ A& (x) plati
Ly = max(Ly 1,k — L _1).

Teraz vyjadrime rozdiel medzi hodnotami, ktoré generuje register R v jednotlivych
taktoch a prisluSnymi ¢lenmi postupnosti {S;};>1.

L L .
_ _ 0 =L g+1,...,7—1,
S+ 3 As = Y Al s = J=had bt
i i—0 A =
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Register R0—") spravne generuje prvych r — 1 ¢lenov postupnosti {Sjlj>1. Ak A, = 0, tak
R(—1) spravne generuje aj r-ty ¢len postupnosti a

L=L_;; A=A,

Ak A, =# 0 musime spravit' korekciu spétnej vézby a zostrojit novy register. Posledna
zmena dlzky registra nastala v kroku m. Potom

]—mfl .
_ 0 =Lpng+T1,...,m—1
SJ+Z?\Em ])iji: J. m1+ ) , m
- An #0 j=m.
Vyuzijeme indukény predpoklad a vyjadrime L._; pomocou L, ;:
Ly =Ln=max(Lypj,m—Lyn 1) =m—Ly .
Zostrojime novy polyném spitnej vazby
Ar
Am

Dzka registra R je L, = deg A (x). Ked'Ze
deg A"V (x) < L,

/\(T) (X) — /\(T'_” (X) _ . XT—mA(m—” (X)

a
deg(x MAM™ (%)) < T —m+ Ly,

pre dizku registra R(" dostdvame nasledujici horny odhad
L < maXU—r—] yT—m -+ Lm—]) < maX(Lr—l yT— Ly )

Ukazeme, Ze register R" generuje postupnost Si,S.,...,S,. Vyjadrime rozdiel medzi
hodnotami generovanymi registrom R(™ v jednotlivych taktoch a prislusnymi élenmi po-
stupnosti S1,Sy,...,S;.

Ly L- Lin—1
_ A _
Sj — <— Z 7\?)5]'1) = Sj + Z 7\? ])iji — Air Sj7r+m + Z Agm ])ijrerii =
i=1 i=1 m i=1
_Jo j=Li+1,...,r—1
AT—AA—;-Am:O j=r.

Ked'ze register R'") generuje postupnost’ Si,S,,...,S,, podla predchadzajicej lemy
L, > max (Lr—1 y T — LT—]) .
To znamena, Ze
L, = max (Lr—1 y T — L )
a register R : (L., A" (x)) je optiméalny LFSR generujtci postupnost’ Si,S,,...,S;; resp.
R(2Y : (Ly, AY(x)) je optimalny LFSR generujtci postupnost S1,Ss,. .., Sx. O

Vratime sa k prikladu zo zac¢iatku paragrafu a zostrojime LFSR pomocou Berlekamp
Masseovho algoritmu.

Priklad. Nech je dana binarna postupnost’ 0,0,1,0,1,1,0,1,0,1. V tabulke 10.2 st uve-
dené hodnoty parametrov Berlekamp-Masseyovho algoritmu v jednotlivych krokoch vy-
poctu.
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r A6 L AT (x) B (x)
olofoT]o 1 1
1T1o0|0]O0 1 X
210010 1 x2
3011113 1+x3 1
4101013 14+ X
5111013 1+x%+%3 x2
60013 T+x2+%3 x3
711|114 THx2+x3+x4 14+ x2+%3
8| 1014 1+x+x2 x +x3 4+ x*
911|115 THx+xt4x° 14+ x2+%3
1011105 | 14+x24+x3+x*+x | x+x3+x*

Tabulka 10.2: Berlekamp-Massey

10.6 Zvlastnosti dekédovania binarnych BCH kédov

10.7 Reedove-Solomonove kédy

Specialnym pripadom BCH kédov si Reedove-Solomonove kédy, ktoré, ako zakratko
ukazeme, su z istého hl'adiska optimalne.

Definicia 10.7.1. Reed-Solomonov kéd (RS kéd) je primitivny BCH kéd dizky n = q—1
nad polom GF(q).

Kedze RS kédy tvoria podtriedu BCH kédov, RS kéd opravujuci t chyb mozno za-
dat’ generujiicim polynémom g(x) s korenimi odo*!, odot2 . Jot2t kde « je primitivny
prvok pola GF(q). Kvéli zjednoduseniu polozime j, = 0 a ndjdeme explicitné vyjadrenie
generujuceho polynému. Generujuci polyném BCH kédu je definovany ako najmensi spo-
lo¢ny nasobok minimalnych polynémov svojich korenov. Minimalnym polynémom prvku
ot pola GF(q) je polyném m,:(x) = x — &' nad polom GF(q). To v8ak znamen4, %e gene-
rujuci polyném g(x) bude stic¢inom minimalnych polynémov svojich korenov:

gix) = (x — o) (x — a?) ... (x — &?Y).
Urcéime opravné schopnosti RS kédu. Konstrukéna vzdialenost’ RS-kodu ako §pecidlneho
pripadu BCH kédu je d > 2t + 1. Na druhej strane, g(x) je kddovym slovom a jeho vaha
neprevySuje 2t + 1 (tito hodnotu by polyném g(x) dosiahol v pripade, ak by boli vSetky
jeho koeficienty nenulové). Stupen generujiceho polynému cyklického kédu zodpoveda
poc¢tu kontrolnych symbolov. To znamena, Ze

deg(g(x)) = 2t =n —k,

resp. n — k+ 1 =2t + 1. RS kéd je zaroven linearnym kédom a pre linearne kédy plati
Singeltonova hranica d < n — k + 1. To znamen4, Ze minimalna vzdialenost RS kédu je
d =n —k+ 1. Tym sme dokazali nasledujicu vetu.
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Veta 10.7.1. RS kéd md minimdlnu vzdialenost n — k + 1 a je kédom s maximdlnou
(minimdlnou) vzdialenostou.

Z uvedenej vety vyplyva, Ze pre dané n, k neexistuje kéd, ktorého minimalna vzdiale-
nost’ by bola vicésia ako minimalna vzdialenost’ RS kédu. Tato skutoénost’ v§ak nemozno
precenovat, pretoze ¢asto potrebujeme zostrojit kéd s parametrami n’/,k’ pre ktoré ne-
existuje RS kéd, ale existuju iné dostato¢ne dobré samoopravné kody.

RS kédy nie su binarne, ale ked' zvolime q = 2™, symboly kédovej abecedy mozno
priamo nahradzat binarnymi vektormi dlzky m. Uvedieme niekol'ko prikladov RS kédov
a potom sa budeme zaoberat’ ich praktickym pouzitim pri opravovani zhlukov chyb.

Priklad. Za¢neme kratkym RS kédom. Nech q = 8. Pole GF(23) zostrojime faktoriza-
ciou okruhu polynémov GF(2) ireducibilnym polynémom x> + x + 1. Prvky pola GF(23)
vyjadrené pomocou mocnin primitivneho prvku « a linearnych kombinacii mocnin pri-
mitivneho prvku « st uvedené v nasledujicej tabul'ke:

ol o o o [od o of
10 o0 1 ot 1 0
oo 1T 0 [T 1T 1
o |1 0 0 o |1 0o 1
ocl0 1 1 10 0 1

1. RS kéd opravujici chybu vahy 1 je zadany generujicim polynémom s korenmi
o, X,
%)

2. RS kéd opravujici chybu vahy 2 je zadany generujicim polynémom s korenmi

o, 2, 0, ot

gx) = (x —a)(x — o) (x — o) (x — o) = x* + %3+ x2 + ax + .
Ked'Ze generujici polyném ma stupen 4, informacny polyném bude mat’ stupen 2.
Nech i(x) = a*x? + o®x + «°. K6dovym polynémom bude

i(x) - g(x) = xbat + x°a® + x*o? +x30® + x2a® 4+ xot + o

Ak vyjadrime k(’)giové slovo v tvare vektora a nahragiime prvky pola GF(23) binar-
nymi vektormi dlzky 3, dostavame binarny vektor dlzky 21:

110 101 100 111 111 110 100.

Pozrieme sa este na RS kod diiky 15 nad polom GF(2%), opravujici 3 chyby. Tento kéd

bude zadany generujicim polynémom g(x) s korenmi «, «?, ..., «%;

g(x) = (x —a)(x — &) (x — o) (x — o*) (x — &) (x — &°).
a bude opravovat chyby vahy < 3. Pri binarnom zapise kédovych slov dostavame z RS
(15,9) kédu (60, 36) kéd. Ak by sme RS kdéd cheeli pouzit' na kédovanie informacie pre-

néasanej kandlom, na ktory posobi biely Sum, binarny zapis kédovych slov je skor nevy-
hodou. Ak totiz v kédovom slove (dlzky 60) vznikne chyba vahy 4 alebo vicésej, zmeni
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pravdepodobne viac nez 3 hexadecimalne symboly kédového slova, ¢o prevysi opravnu
schopnost’ daného RS kédu. V mnohych aplikaciach je vsak predpoklad o nezavislosti
chyb neopodstatneny: ak dojde k poskodeniu CD, elektrickému vyboju alebo poruche,
tieto udalosti ovplyvnia pravdepodobne niekol'ko susednych znakov kédového slova. Ta-
kymto chybam sa hovori zhluky chyb (burst errors), a RS kédy sa daja vyhodne pouzit
prave na ochranu informécie prenasanej kanalom, v ktorom dochadza k zhlukom chyb.

Definicia 10.7.2. (Cyklickym) zhlukom chyb dfz“ky t
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Kapitola 11

Modifikacie samoopravnych
kodov

Niekedy sa stane, Ze nevieme ndjst dobry samoopravny kéd, ktory vyhovuje presne na-
$im potrebam, ale vieme o existencii dobrého samoopravného kédu, ktorého parametre
sa od nami pozadovanych hodné6t vel'mi neodliSujui. Pontika sa prirodzena otazka, ¢i sa
znamy kéd ned4a upravit tak, aby si zachoval svoje dobré vlastnosti a zaroven splnil
nase poziadavky. Ako zakratko uvidime, metédy umoznujice transformécie samooprav-
nych kédov skutocne existuju. V tejto kratkej kapitole struéne popiseme Sest’ zakladnych
metod tprav samoopravnych kédov. Budeme pracovat prevazne s linearnymi kédmi; nie
vSak preto, Ze by sa dané metédy nedali pouzit na tpravy nelinearnych kédov, ale preto,
Ze v pripade linearnych kédov maji modifikacie, ktoré budeme uvadzat, vel'mi jednodu-
chu interpretaciu. Metédy modifikacie samoopravnych kédov mozno néjst’ prakticky v
Iubovolnej monografii venovanej kédovaniu; ¢itatel'ovi pre podrobnejsie Stiidium proble-
matiky odporicame vynikajico spracovanu kapitolu v [7], resp. prednasky [?], z ktorych
sme prebrali niektoré priklady.

Linearny kod C ma tri zakladné parametre: dizku n, pocet informacénych symbolov
(= dimenzia linearneho podpriestoru) k a pocet kontrolnych symbolov n — k. Podstata
zakladnych metéd modifikacie spociva v tom, Ze sa jeden z troch uvedenych parametrov
fixuje a ostatné dva sa menia. Celkovo teda mame 6 zakladnych moznosti ktoré kvoli
prehl'adnosti uvadzame v nasledujicej tabulke (ked'Ze slovenska terminolégia zatial ne-
existuje, budeme sa pridrziavat aglického oznacenia):

No. Nazov metody n|lk|in—-%k
1. | augmenting | zvic¢Senie | - | T 1
2. | expurgating | zmensenie | - | | T
3. | extending rozSirenie | T | - T
4. | puncturing | zlUzenie - 1
5. | lengthening prediienie T -

6. | shortening | skratenie | | | | -

Pripomenieme, Ze linearne (n, k) kédy je mozné zadat generujicou maticou G typu k x
n alebo kontrolnou maticou H typu n — k x n. Vo v§eobecnosti sa pri zmenach poctov

165
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informaénych a kontrolnych symbolov a nemenne;j dizke kédovych slov pridavaju alebo
vynechavaju riadky v generujucej/kontrolnej matici; pri zmenach dizky kédového slova
sa pridavaju alebo vynechavaju stipce generujucej/kontrolnej matice. Pozrieme sa teraz
na jednotlivé metédy modifikacie kédov podrobnejsie.

Met6ody Lengthening a Shortening

Pri predlzovani a skracovani kédu sa meni celkova dizka kédu a pocet informacnych
symbolov, zostava zachovany pocet kontrolnych symbolov. Pri predlZovani (lengthening)
zvacSujeme dizku kédu (a pocet informacnych symbolov) a ku kédu pridavame nové ko-
dové slova; pri skracovani (shortening) kédu naopak odstranujeme informacné symboly
a tak z povodného kédu odstranujeme kédové slova.

PredlZovanie linearnych kédov sa robi pridavanim rovnakého poctu riadkov a stfpcov
ku generujucej matici. Standardny sposob predlZovania linearnych kédov spoéiva v pri-
dani nulového stipca ku generujicej matici a nasledne v doplneni nulového riadka, ktory
v8ak ma nenulova hodnotu v poslednom (pridanom) stipci. Skracovanie linearneho kédu
predstavuje inverzny postup k predlZovaniu kédu. Najprv upravime generujicu maticu
kédu tak, aby obsahovala jeden riadok, ktory ma nulové hodnoty na vSetkych miestach s
vynimkou posledného. Odstranenim tohto riadku a posledného stipca z generujicej ma-
tice dostaneme generujicu maticu skrateného kédu. Ina moznost’ skracovania a predlzo-
vania kédu spoc¢iva vo vynechdvani resp. pridavani vybranych sticov kontrolnej matice.

Priklad (skratenie kédu). Uvazujme Hammingov (15,11) binarny kéd zadany kontrol-
nou maticou

(11.1)

©c oo =
oo —=o
o —-oc o
—oc oo
©C O ==
© = = o
- — o o
_ O — -
o = o =
— o = o
[ S Y
Y
—_ —
—_—_— O =
—_ O —

Odstranenim stipcov 12,13 a 14 dostavame (12,8) kéd opravujuci 1 chybu, zadany
kontrolnou maticou

100010011011
w_l01o01 1010110
0010011010710
000100110101

Zostrojeny kéd ma dve prednosti: informaény vektor ma dizku 8 a ked'ze sme z povod-
nej kontrolnej matice odstranili stfpce maximalnej vahy, zjednodus§ili sa kontrolné sumy
(namiesto pévodnych 8 ¢lenov obsahuju teraz 5 a 6 ¢lenov). Na druhej strane, pocet ko-
dovych slov klesol z pé6vodnych 2048 na 256.

Priklad (prediienie kédu). (n—1, k) Reedov-Solomonov kéd prediiime pridanim dvoch
novych informaénych symbolov a zostrojime Reedov-Solomonov kéd s parametrami (n +
1,k + 2). Aby sme zaistili opravovanie chyb v doplnenych symboloch kédovych slov, nové
informaéné symboly musime zaradit’ aj do kontrolnych stiim. To dosiahneme doplnenim
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kontrolnej matice o také dva nové stipce, aby sme neznizili rang kontrolnej matice:

1T o« o ... o2 101 o« o ... o2

1 o2 ot ... o2 001 o o ... o202
H=| . . = | .

i o2t ot (xzt(.an) O 1 1 o2t ot (quﬁfz)

Metody Augmenting a Expurgating

Pri tychto modifikaciach si kéd zachovava nemennt dizku kédového slova, ale meni
sa pocet kontrolnych a informacnych symbolov. Ked’ sa zvicsuje pocet informacénych sym-
bolov (augmenting), rastie aj pocet kédovych slov, ale zmensuje sa pocet kontrolnych
symbolov a mézZe sa zmens§it (a spravidla sa aj zmensuje) minimalna vzdialenost’ a tym
aj opravna schopnost’ kédu. Naopak, pri zvac¢sovani poc¢tu kontrolnych symbolov (expur-
gating) v slove sa zmensuje pocet informacnych symbolov, klesa pocet kédovych slov a
moéZe sa zvacSit minimalna vzdialenost’ kédu.

V pripade linearneho kédu sa metédy Augmenting a Expurgating realizujua jedno-
ducho: ak chceme kéd zviacsit, pridame do generujicej matice novy riadok (¢asto sa
pridava jednotkovy riadok); ak potrebujeme kéd zmensit, z generujicej matice odstra-
nujeme riadky, resp. pridivame riadky do kontrolnej matice kédu. Metédu Augmenting
sme pouzili pri konstrukcii Reedovych-Mullerovych kédov; ku generujicej matici kédu
R(r — 1, m) sme pridali maticu G, a dostali generujicu maticu kédu R(r, m):

G
Go GO
Gy !
G= _ = :
' G,
Grfl GT ]
- T -

Povodny R(r — 1, m) kéd mal dizku 2™ a mal Zogj “r (T) informaénych symbolov, dizka
kédovych slov kédu R(r, m) zostala zachovana, ale pocet informaénych symbolov v slove

vzrastol v porovnani s kédom R(r —1,m) o (7).

Priklad (metéda Expurgation). Metédu expurgation sme pouzili pri konstrukeii cyk-
lického (15,7) kédu opravujiceho 2 chyby z Hammingovho (15,11) kédu v tivode 8 kapi-
toly. Kontrolni maticu H (11.1) rozsirime o 4 riadky a dostavame kontrolni maticu typu
8 x 15,

1 00 01T 00110101117
o1ro0oo011o1To1T 11100
oo1oo0o1T 10101 1T 1T 10
W ocooot1roo0o1T1o1To1T 111
10001 1T 000110001
Ooo0oo01T 10001 1T000O0T11
Ooo1To0o1T001T01T0010O01
o111 10111101111}
ktord kvéli struénosti zapiSeme ako maticu nad polom GF(24):
o © o 2 B o X o o o & o0 K &2 o M
T2 o o o a2 o a® o o o o oB o o o2
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Délezita metéda zmensenia kédu sa zaklada na vybere podmnoziny kédovej abecedy
a vylaceni vSetkych slov povodného kédu, ktoré obsahuju aj iné symboly. Presnejsie, nech
je dané konecné pole F a nech je C kéd nad polom F. Nech je G podpole pola F. Podk6dom
kédu C nad podpolom G nazveme mnozinu kédovych slov kédu C, ktorych vsetky zlozky
patria do podpola G. Takyto podkdd ,zdedil“ mnohé dobré vlastnosti pévodného kédu a
mohol nadobudnit aj d’alSie dobré vlastnosti. Ttito metédu sme vyuzili pri konstrukeii
Reedovych-Solomonovych kédov.

Metody Extending a Puncturing

V obidvoch pripadoch si kéq zachovava pocet informacénych symbolov (a zaroven aj
pocet kédovych slov). Meni sa dlzka kédového slova a pocet kontrolnych symbolov.

Ked sa kéd rozsiruje (extension), pridavaju sa nové kontrolné symboly. Pri reduk-
cii sa naopak pocet kontrolnych symbolov v kédovych slovach zmensuje. Pri zniZzovani
poctu kontrolnych symbolov méze dojst’ k znizeniu minimélnej vzdialenosti a pri pri-
davani kontrolnych symbolov sa minimalna vzdialenost’ kédu moéze zvacsit. Rozsirenie
linearneho kédu sa da realizovat’ doplnenim nového stfpca generujucej matice, naopak
redukcia linearneho kédu sa realizuje odstranenim stipca generujucej matice. Linearny
(n,k)-kéd C mozno rozsirit’ tak, ze sa ku kazdému kédovému slovu v = (vq,...,v,) prida
novy kontrolny symbol v,, .1, ktory je linedrnou kombinaciou symbolov povodného slova;

Vn4l = Qv + ava + -+ + QpVn.

Vektor aj,..., a, by nemal patrit do dudlneho kédu C, pretoze v tom pripade by v,..1 =
0. Poziadavky na vyber vektora a sa analyzuju v [7], my sa nimi zaoberat nebudeme.
Pri rozsirovani linearnych kédov sa najcastejsie ku kédovym slovam pridava paritny
symbol; t.j. kédové slovo v = (v1,...,vn,Vn11) potom spiﬁa nasledujicu rovnost’

n+1

Z Vv = 0.
i=1

(V tomto pripade vektor a = (—1,...,—1).)



Kapitola 12

Prinos kodovania

Ked na prenos sprav pouzivame komunikacény kandl, na ktory vplyva nejaky zdroj Sumu,
hrozi Ze Sum modifikuje prenasanu spravu do takej miery, Ze prijemca nebude schopny
zrekonstruovat pé6vodne odvysielanu spravu. Existuju principidlne dva sposoby, ako eli-
minovat’ alebo aspon zniZit riziko modifikacie, ktoré by sp6sobilo nespravnu interpreta-
ciu prijatej spravy;

e zvySenie odolnosti signalov voéi Sumu a

e pouZitie samoopravnych kédov.

Doteraz sme sa zaoberali takmer vyluéne rieSeniami zaloZenymi na pouZiti samoop-
ravnych kédov. Su v8ak situacie, kedy samoopravny kéd nedokéaze zaistit’ potrebnu tro-
ven spolahlivosti komunikacie, inokedy je jednoduchsie zvysit’ robustnost’ vysielaného
signalu (napriklad zvysit hlasitost vysielania v hluénom prostredi) alebo je vyhodné
kombinovat’ technické (pouzitie robustnejsich signalov na prenos sprav) a matematické
rieSenie (samoopravny kéd). Predpokladajme, Ze nasou ulohou je pre dany komunikaény
systém najst’ optimalne rieSenie, ktoré by zaistilo poZadovanu turoven bezpecnosti ko-
munikéacie (vyjadrent napriklad pravdepodobnostou nespravneho dekédovania alebo
interpretacie prijatého slova), pricom mame moznost ovplyvnovat robustnost signalov
prostrednictvom zmien vykonu vysielaca a pouZzit nejaky samoopravny kéd. Aby sme
dokazali postudit prispevok pouzitia samoopravného kédu k zmene! spolahlivosti komu-
nikacie, budeme v tejto kapitole studovat’ vztah medzi energiou signalu pripadajiceho
na jeden symbol prenasanej spravy (kédovanej alebo nekédovanej) a pravdepodobnostou
nespravneho dekédovania prijatého slova.?

Na zjednodus$enie vykladu prijmeme nasledujice predpoklady:

e kédova abeceda je binarna,

e vysiela¢ ma ohraniceny (konstantny vykon) a na prenos jedného bitu pripada ener-
gia Ey, joulov,

zySeniu alebo zniZeniu
2Vyklad vychadza z prace [15] a vyuziva matematicky aparat teérie signalov z prace [5]
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e na prenos sprav sa pouzivaju amplitidovo modulované signaly; 1 je reprezentovana
signadlom S hodnotou /Ey, a 0 je reprezentovana signalom s hodnotou —+/Ey.

Poznamka. Signal reprezentujici 1 mézeme popisat’ funkciou S(t) (impulzom) s obdlz-
nikovym priebehom:

0 1inac.

VE, —1/2<t<1/2
Mnozstvo energie pripadajicej na impulz je [5] tak, ako sme predpokladali Ey:

00 1/2
J S(t)zdt:EbJ dt = Ey,.
-12

—0Q
Predpokladame d’alej, Ze na prenosovy kanal posobi zdroj bieleho Gaussovského adi-
tivneho sumu?. Vysledkom jeho posobenia je ndhodny signal N(t) (noise), ktory sa pri-
pocitava k signalu prenasajicemu spravu. Aby sme sa nemuseli zaoberat’ ¢asovou alebo
spektralnou reprezentaciou signalu S(t) a Sumu N(t), signdlu (aj Sumu) na intervale
jednotkove;j diiky priradime ¢iselné hodnoty S resp. N (dané napriklad priemernou hod-
notou prislusného signalu na intervale, alebo hodnotou ktort nadobida v strede inter-
valu). Sum potom méZeme chéapat ako ndhodni premennt s norméalnym rozdelenim so
strednou hodnotou 0 a disperziou o?. Hodnoty signélu a Sumu sa séitavaji a vysledna
hodnota S + N sa interpetuje (demodulatorom) nasledovne

N
o LS
0 1nac.

Je zrejmé, ze demodulator chybne interpretuje prijaty signal vtedy, ak sa v désledku
Sumu meni znamienko signalu, t.j. povodne kladna hodnota signdlu reprezentujiceho 1
sa pripo¢itanim hodnoty Sumu zmenila na zapornu, ktora reprezentuje 0 a vice versa. To
znamena4, Ze, napriklad pri prenose 0 hodnota Sumu musela prevysit \/Ep a pri prenose 1
déjde ku chybe, ak N < —/Eyp. VyuZijeme to, Ze ndhodna premennd N popisujiica posobe-
nie Sumu ma norméalne rozdelenie a vycislime pravdepodobnost’ toho, Ze Sum nadobida
vys$S§ie uvedené hodnoty.

P(N > /Ep) = \/;mjﬁe—fz/wdt —1-0 (,/E‘;) , (12.1)
b

VE
P(N < —/Epy) = \/szJ e /2% 4t = @ (-MI;‘;) , (12.2)

kde @ (x) je distribu¢na funkcia normalneho rozdelenia. Zo symetrie hustoty normalneho
rozdelenia vyplyva, ze P(N > /Ep) = P(N < —/Ep) =1 - @ < (EE) . Zaujimavy je

argument funkcie @; pomer Ey,/0? sa nazyva pomer signdlu k Sumu (signal to noise ratio),

3presnt charakteristiku takého $umu mo#no najst v [5]
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SRN a ako sa ukaze neskor, pomocou neho sa d4a kvantitativne vyjadrit’ odolnost’ signdlu
voci Sumu.

Vyjadrili sme pravdepodobnost’ vzniku chyby pri prenose jedného bitu. Aby sme
mohli urcit’ efekt kédovania, predpokladajme, ze nekédovana sprava pozostava zo slov
dizky k bitov. Na kédovanie pouzijeme (n,k) kéd, takze pri preneseni n-bitového ké-
dového slova prenesieme v skutoénosti len k informacénych bitov; ak by sme nezmenili
modulator ani vysiela¢, prenosova rychlost’ by po kédovani nadobudla hodnotu R = k/n.
Aby sme toto znizenie prenosovej rychlosti kompenzovali, musime za jednotku ¢asu pre-
niest’ 1/R = n/k bitov kédového slova. Ked'ze vysiela¢ ma konstantny vykon, znamena
to, Ze po takejto uprave bude mnozstvo energie pripadajice na jednotkovy signal (signal
reprezentujuci jeden bit prenasanej spravy) REy, t.j. mensie. Tym sa zniZi aj robust-
nost’ signalu a pravdepodobnost’ toho, Ze pri prenose jedného bitu dojde vplyvom Sumu

k chybe stipne na
REp

Na prvy pohfad to nevyzera dobre, pretoze zjavne p. < p.. Efekt samoopravného kédova-
nia sa vSak prejavi az pri dekédovani slov. Porovname pravdepodobnosti chybného deko-
dovania/interpretacie prijatého slova v pripade ked na jeho zapis pri prenose nebol/bol
pouzity samoopravny kéd. V prvom pripade prenasame slovo diiky k a interpretujeme
ho spravne, ak pri prenose nevznikla Ziadna chyba. V druhom pripade prenasame slovo
diiky n a chyba dekédovania nastane vtedy, ak poc¢as prenosu v slove vzniklo viac chyb,
ako dekéder dokézal opravit. Ilustrujeme tieto skuto¢nosti na dvoch prikladoch.

Priklad. [15] Kozmicka sonda Mariner, vypustena v roku 1969 pouzivala na kédovanie
obrazov (32, 6)-kéd opravujuci chyby vahy 7 a mensej. Predpokladajme, Ze tolerovatelna
pravdepodobnost nespravneho dekédovania slova je 107*. Bez pouZitia samoopravnych
kédov bude mat’ prendsané slovo dizku 6 bitov a ak je pravdepodobnost’ chyby v jednom
bite p., pravdepodobnost’ chyby v slove bude

Pe=1—(1—p)¢ <10 (12.4)

Z nerovnosti 12.4 vyjadrime p.: 1—10~% < (1—p,)°; potom (1—10~4)"/¢ < 1—p. a napokon
Pe < 1—(1-10"%)1/® = 1.66674-107°. Aby sme dosiahli pozadovani spolahlivost prenosu,
hladdame takd hodnotu pomeru signal/sum Ey /o2, aby

1074 Ep . Eyp 1074
WNé"_®< ), M-®< #>_1—€;_QW%&

Plati ®(4.15) = .9999833763, a teda Ep/0? ~ 4.15% = 17.22. Pravdepodobnost chyby v
jednom bite sa pri pouziti 32 bitového samoopravného kédu vyrazne zvysi (lebo R = 6/32)
a dosiahne

pL=1—D0(\/17.22%6/32) =1 — ®(1.79687) = 0.0361757483.

Kéd vsak ma opravnu schopnost’ 7 a to znamena, Ze ak v prenaSanom slove nevznikne
viac ako 7 chyb, dekéder dokaze prijaté slovo dekédovat spravne. Pravdepodobnost’
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vzniku aspon 8 chyb v slove je

32
2 . .
PE=) <3’i >( DM —pl)32 Tt =0.00001413616427,
1=8

¢o je podstatne lepsie ako pozadovana hodnota 107, (Pri pouziti ,mikkych“ metéd de-
modulécie a dekédovania sa d4 dosiahnut dokonca az hodnota P; = 2- 107" [15]).

Uvedieme este jeden priklad. Binarny BCH (15,5) kéd opravujuci tri chyby nam dobre
poslizil napriklad pri vyklade metéd dekédovania BCH kédov. Ale pomohol by nam zvy-
§it’ spol'ahlivost’ prenosu udajov z Marinera?

Priklad 12.1. Aby sme mohli porovnat’ ,kvality“ BCH (15,5) kédu s kédom pouZitym
na kédovanie tidajov Marinera, zachovajme tiroveri spolahlivosti P = 10~*. Pri prenose
bez pouzitia samoopravného kédu budeme prendsat’ 5 bitové slovd a pravdepodobnost
chybného prenosu 1 bitu dosiahne p. =2-107° = 1— ®(4.107479655) a pomer signdl | Sum
bude Ey/0? = 16.87138910. Pri pouZziti uvedeného bindrneho (15,5) kédu sa prenosovd
rychlost znizi na tretinu (R = 5/15). Vyjadrime pravdepodobnosti p;, a Pg:

pL =1—®(2,37145448) = 0.0088591145

Pf = 0.7776185512-107°.

Pravdepodobnost’ chybného dekédovania prijatého slova bude teda pri pouZziti bindrneho
BCH (15,5) kédu 12 krdt niZsia v porovnani s pravdepodobnostou chybnej interpretdcie
prijatej pdtice (nekédovanych) informacnych bitov.

Napriek optimistickym vysledkom predchadzajicich prikladov, pouzitie samooprav-
nych kédov nemusi zaistit’ zvySenie spolahlivosti komunikacie; resp. presnejsie pove-
dané, kazdy samoopravny kéd ma svoj rozsah pouzitia a jeho pouzitie mimo tohto roz-
sahu moéze dokonca znizit* spolahlivost komunikécie.

Co sa da spravit’ v pripade, ak pomocou samoopravného kédu zvysime spolahlivost
prenosu nad stanovenu hodnotu (vyjadrentu pravdepodobnostou nespravneho dekédo-
vania prijatého slova, Pg)? Ak nam stanovena hranica spolahlivosti prenosu postacuje,
moéZeme znizit’ mnozZstvo energie pouzité na prenos jedného bitu

e zniZzenim vykonu vysielaca,

e zvySenim poctu bitov prenesenych za ¢asovi jednotku.

Ked'Ze v obidvoch pripadoch ide o stanovenia mnozZstva energie/signal prenasajuci 1 bit,
ktoré postacuje na dosiahnutie Zelanej hodnoty Pg, staci sa zaoberat prvym pripadom. V
pripade sondy Mariner na dosiahnutie pozadovanej trovne Py = 10~* postaéuje hodnota
SRN 14.83. Pouzitie samoopravného kédu v tomto pripade malo pozitivny efekt, ktory sa

4pouzitie samoopravného kédu mozno kombinovat aj so zmenou inych parametrov komunikaéného sys-
tému, ¢o méze ovplyvnit rozsah pouzitelnosti kédu
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kod t | coding gain
Hammingov(7,4) 1| 3.066127697
Hammingov(15,11) | 1 | 2.824701569
Hammingov(31,26) | 1| 2.615760124
BCH(15,5) 3| 5.750883407
Golayov(23,12) 3| 5.447658460
RM(2,4)x* 1| —2.398093804
Mariner(32,6) 7| 0.6489199602

Tabulka 12.1: Efektivnost’ vybranych samoopravnych kédov

dokonca da vyjadrit’ aj kvantitativne - pomerom SRN (bez kédovania):SRN (s kédova-
nim); v naSom pripade je hodnota pomeru 1.1611. Na dosiahnutie pozadovanej spolah-
livosti prenosu by teda bolo mozné znizit' vykon vysielaca asi o 15%. ,,Pomer pomerov®,
ktory sme pred chvilou zaviedli sa skuto¢ne pouziva na meranie efektu kédovania.

Pomer SRN (nekédovaného)/SRN (kédovaného) prenosu pre rovnaku pravdepodob-
nost’ chyby dekédovania prijatého slova® sa nazyva prinos kédovania (coding gain) .

Prinos kédovania sa vyjadruje v decibeloch (dB) a vypocitava sa ako desatnasobok
hodnoty dekadického logaritmu z pomeru SRN (nekédovaného)/SRN (kédovaného). V
pripade kédovania prenosu Marinera je prinos kédovania 0.65 dB. Pre BCH (15,5) kéd je
prinos kédovania este vacési (5.75 dB). V tabulke 12.1 su pre porovnanie uvedené niektoré
zo samoopravnych kédov, ktorymi sme sa doteraz zaoberali a hodnoty code gain pre Py =
10~*. Pri Reedovom-Mullerovom kéde je minimalna vzdialenost 4, ale opravna schopnost
kédu je len 1.

Na zaver tejto kapitoly eSte pripomenieme, Ze to, Ze prinos kédovania je kladny®
nemusi samo o sebe byt dostatoénym dévodom na pouzitie samoopravného kédu. Samo-
opravné kédy si o. i. vyzaduju (softvérovo alebo hardvérovo realizovany) kéder a dekéder,
¢o sa prejavuje tak na cene komunikac¢ného systému, ako aj na ¢ase spracovania sprav.
Ten isty efekt, ako zavedenie samoopravnych kédov moézeme dosiahnut’ pouzitim iného
komunikaéného kandla alebo inych signalov, ktoré su odolnejsie voéi Sumu. Pri hladani
optimalneho rieSenia na zaistenie pozadovanej irovne spolahlivosti komunikacie je po-
trebné zvazovat tak technické moznosti a ohranicenia, ako aj moznosti samoopravnych
kédov.

Sak nebolo pouzité kédovanie, tak chyba dekédovania znamend, Ze nastala chyba v Pubovolnom bite
prendsaného slova
6SRN (nekédovaného)>SRN (kédovaného) prenosu
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Kapitola 13

Shannonova teoréma

Samoopravné kédy umoznuju zvysit pravdepodobnost spravneho dekédovania prijatej
informacie. Cena, ktori za to treba zaplatit,, je doplnenie informaénych symbolov v ké-
dovom slove o kontrolné symboly. V malych kédoch, ktoré sme konstruovali v predcha-
dzajucich kapitolach bol podiel kontrolnych symbolov na celkovej dizke slova pomerne
znacny. Zdalo by sa, Ze opravna schopnost’ a rychlost’ prenosu sd v nepriamej imere; t.j.
Ze podiel poctu informaénych symbolov na celkovej dizke kédového slova sa bude nutne
zmensovat so vzrastajicou miniméalnou vzdialenostou kédu. Prekvapujici vysledok pri-
nasa klasicka Shannonova veta. Ukazuje sa, Ze pre mnohé prenosové kanaly je mozné

e prenasat informaciu rychlost’ou blizkou prenosovej rychlosti kanala;

e pravdepodobnost’ chybného dekédovania prijatej informacie mozno stlacit’ pod T'u-
bovol'ne malu, dopredu zadant hodnotu.

V tejto Casti vyslovime a dokdZeme Shannonovu vetu. Najprv uvedieme a vysvet-
lime predpoklady Shannonovej vety a pripomenieme pojmy, ktoré budeme pri jej dokaze
potrebovat’.

Budeme predpokladat’, ze prenosovy kandl, ktory sa pouziva na prenos sprav (kédo-
vanej informaécie) je binarny symetricky kandl bez pamate; t.j. na kédovanie sprav sa
pouziva binarna abeceda a prenosy jednotlivych binarnych symbolov sa uskutoénuju s
nasledujicimi pravdepodobnostami:

P 0—-0, T—1
l—-p=q: 0—=1, 120

Budeme pracovat s kédom C = {xy,...,xm}, ktory ma M kédovych slov diiky n. Pred-
pokladame, ze kédové slova kédu C sa na vystupe zdroja informacie vyskytuji rovnako
casto; t.j., ze

vx; € C; P(xi) =1/M. (13.1)

Predpokladajme, Ze bolo odvysielané kédové slovo x; a prijaté slovo y. Prijaté slovo y sa
dekéduje ako kédové slovo x; také, ze

175
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P(ylx;) = g;gg{l’(ylxk)}- (13.2)

Prijaté slovo sa teda dekdéduje na zdklade maximalnej pravdepodobnosti; ak vznikne
chyba malej vahy, prijaté slovo sa dekéduje spravne, ak vznikne chyba vicsej vahy, ako
je opravna schopnost’ pouzitého kédu, prijaté slovo sa dekéduje nespravne. Odhadneme
pravdepodobnost’ nespravneho dekédovania prijatého slova. Pravdepodobnost’ nesprav-
neho dekédovania odvysielaného (a Sumom pri prenose modifikovaného kédového slova)
X; oznac¢ime symbolom P;. Pravdepodobnost’ nespravneho dekédovania prijatého slova
pri pouziti kédu C je

1 M
Pc = MZPi.
i=1

Uvazujme teraz mnozinu C, mnozinu v§etkych binarnych kédov, ktoré maja M slov diéky
n a zavedieme:
P*(M,n,q) = min{P¢}.
CecC

Pre konkrétny kéd C je dizka kédu nemenna. V Shannonovej konstrukcii budeme potre-
bovat’ parameter n menit. Predpokladame, Ze v zavislosti od n sa bude menit’ aj pocet
kédovych slov; t.j., M = M(n). Kvéli stru¢nosti budeme namiesto M(n) pisat len My;

P*(Mn,n, q) = min{Pc}. (13.3)
ceC

Pripomenieme este, Zze Hammingova vzdialenost’ dvoch vektorov u, v, ktorta oznacujeme
symbolom d(u,v) je dand poctom zloéiek, v ktorych sa oba vektory lisia. Gul'ou so stre-
dom v bode (vektore) x a polomerom r ozna¢ime mnozinu vektorov

B.(x) ={y € {0, 1} d(x,y) <7} (13.4)
Napokon, rychlost’ prenosu R kédu C definujeme ako podiel R = |C|/2™.

Veta 13.0.2 (Shannonova teoréma). Nech je prenosovd rychlost’ kédu 0 <R < 1+plgp+
qlg q a mohutnost kédu M = 2R, potom

P*(Mn,n,q) — 0

pre . — oo.

Dokaz. Pravdepodobnost toho, Ze v kédovom slove x; vznikne pri prenose k chyb, je
(¥) - p™*(1 — p)*. Tato hodnota zavisi len od parametrov p,n a nezavisi od toho, aké
slovo bolo odvysielané. Zavedieme nahodnud premenndu &, vyjadrujicu pocty chyb v
odvysielanych slovach;

n _
Je zrejmé, Ze ndhodna premenna &,, ma binomické rozdelenie pravdepodobnosti so
strednou hodnotou E(&, ) = nq a disperziou Var(&, ) = npq. Pre 'ubovolni nahodnu
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premennu ( so strednou hodnotou E((), disperziou Var(() a l'ubovolné realne ¢islo o > 0
plati (CebysSevova nerovnost)

Var(¢)

PUC—E(Q) > o) < ——
X

Polozime v éebyéevovej nerovnosti « = \/2npq/e, ( = &, a upravime:

_ npq ¢
P(|&pn — gl > v/2npq/e) < Inpaje ~ 2 (13.5)

Z nerovnosti (13.5) vyplyva, Ze pre pocet chyb v prendsanom slove s pravdepodobnos-
tou 1 — ¢/2 plati

ng —+/2npq/e < & n < nq+ /2npq/e. (13.6)

Nas zaujimaju chyby vacsej vahy, ktoré veda k nespravnemu dekédovaniu. Z (13.5)
vyplyva, Ze

€
P(&pn > nq++/2npq/e) < 7
Vsimneme si, Ze ak n — 00, 0 < p,q < 1 a ¢ > 0 st konstanty,
Epm =14 + O(1/(n),

t.j. da sa ocakavat, Ze v prenaSanom slove vznikne asi nq chyb. Polozime

t=|nq+ v2npq/ej (13.7)

a zistime, aka je pravdepodobnost’ toho, Ze pri prenose vznikne v slove viac chyb ako t.

Zavedieme dve funkcie. Prva je indikator, ktory pre dvojicu vektorov u, v uréi, ¢i su
vo vzdialenosti < t alebo nie:

flu,v) = 0 dua,v)>t (13.8)
' 1 duv) <t

Pre Tubovolné kédové slovo x; € C a Pubovolny bindrny vektor dizky n, y € {0, 11" zave-
dieme nasledujuicu funkciu:

gily) =1—fly,xi) +)_f(y,x). (13.9)
jA
Posledna funkcia si zaslizi podrobnejsie vysvetlenie: ak je x; odvysielané a y prijaté
slovo, tak mozZu nastat’ tri mozZnosti:

1. x; jejediné kédové slovo také, Ze d(x;,y) < t. Potom f(xi,y) = 1,aleVj #1 f(xj,y) =
0. To znamena, Ze v tomto pripade

gily) =1-1+0=0
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2. d(xi,y) < t a existuje eSte asponi jedno kédové slovo x;;j # 1 také, ze d(x;,y) < t.
Potom
g(y)=1-T+1+) fly,x)=1+) fly,x).
k#1,j k#1,j

Suma ) oy f(y, Xy ) je nezaporn4, a teda v tomto pripade
gily) > 1.
3. d(xi,y) > t; t. f(xi,y)=0a
gily) =1-0+ Zf(y,x)-) =1+ Zf()’,X]’)-
j# j#

Suma Zj 4 f(y,X;) je nezdporna, a teda aj v tomto pripade g;(y) > 1.

Funkcia g;(y) teda nadobtida hodnotu 0 v pripade, ak prijaté slovo y lezi vo vzdialenosti
mensej alebo rovnej t od kédového slova x; a lezi vo vzdialenosti vacsej ako t od ostatnych
kédovych slov. V opaénom pripade nadobuda hodnotu vacsiu alebo rovnu jedne;j.

Pristipime teraz k dékazu Shannonovej vety. Vyberieme kédové slova kodu C nahod-
ne a nezavisle na sebe:
C={xy,...,XMm}-

Predpokladame, Ze sme odvysielali kédové slovo x; a prijali slovo y. Prijaté slovo deké-
dujeme nasledovne:

e Ak existuje jediné kédové slovo x; také, Ze d(xj,y) < t dekédujeme prijaté slovo
ako x;. Ak i = j, dekédovali sme spravne, v opacnom pripade sme sa dopustili
chyby dekédovania.

e Ak existuje niekol'ko kédovych slov leziacich vo vzdialenosti < t od prijatého slova
y; resp. neexistuje Ziadne kédové slovo, ktoré by lezalo vo vzdialenosti < t od prija-
tého slova y!) vyhlasime chybu.

Aka je pravdepodobnost’ chybného dekédovania?

Ppo < ) Plykxi)-gily)= D Plyx) [1—fly,x)+ ) fly,x)| =
ye{o,n ye{o,1m i
= Y Plylx)-0—fly,x)+ Y Y Py fly,x) (13.10)
ye{o,1)m ye{o,1n j#A4

Prva suma z vyrazu (13.10) sa da zapisat’ takto

> Plylxi) - [d(xi,y) > t] =P(d(xi,y) > t). (13.11)
yefo,1}m

'kéd C sme vytvarali nahodne



179

Vyraz (13.11) vyjadruje pravdepodobnost’ toho, Ze prijaté slovo nepatri do gule B((x;) a
da sa odhadnut zhora nasledovne

Pdxyy) > t) < 2

25

pretoze to, ze d(x;,y) > t znamenad, Ze pri prenose (slova x;) vznikla chyba vahy viacsej
ako t. Spocitame pravdepodobnost’ nespravneho dekédovania prijatého slova, ak bolo
odvysielané niektoré kédové slovo.

Pe=wm1 ZPl—z”lZ > ) Plylxi) - fly,xp). (13.12)

i=1 ye{0,1}m j#i
Hlavna myslienka dokazu spoéiva v tom, zZe
P*(MTL)n» q) < E(PC))

t.j. minimalnu hodnotu chyby dekédovania mozno odhadnut zhora strednou hodnotou
chyby dekédovania, ktora berieme cez vSetky mozné kody C:

P*(My,m,q) <E ,Hiz > D Plykxi) - fly,x;) | (13.13)

i=1 yelo,1)m j#

Upravime (13.13) pomocou nasledujicich pravidiel pre stredni hodnotu:

e pre 'ubovolnu konstantu c, E(c) = c;

e pre 'ubovolné dve nahodné premenné o, \, E(@ +1) = E(@) + E(V).

Dostavame

P*(Mn,n, q) < fs—i——Z Z ZE (ylxi) - f(y,x5)] . (13.14)

i=1 ye{0,1}™ j#i

Zmenime poradie sumacie v (13.14) tak, aby sme najprv pocitali sumu vzhl'adom na
y €{0, 1}™:

M
P*(Mn,n, q) Sf E[P(ylxi) - f(y,x;)]. (13.15)
2
i=1 jA yelo,Im

Vnutornd sumu z (13.15)

> ElPyixi) - f(y,x)] (13.16)
ye{0,1}n

rozdelime na dve ¢asti

Y EP(ylx) - fy,x;)] = > EP(ylx) - fly,x)+ D E[P(ylxi) - f(y,x;)]

ye{o,1m yE{0,11MNB(x5) y&{0,11"MB (x;)
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KedZe f(y,x;) = 0 prey € {0, 1" N By(x;), a f(y,x;) = 1 pre y € {0, 1}™ N By(x;)

Y EPMx)-flyx)l= Y EP(yx).

ye{o,1m ye{0,11"MB (%)

Podmienent pravdepodobnost’ P(y[x;) vyjadrime nasledovne:

R P(yv Xi)
Ale P(x;) = 1/M, a teda
> EPyE)-fly,x)]=M- >  E(P(y,x). (13.17)
ye{o, 1 y<{0,11"NB¢ (x;5)
Dosadime (13.17) do vztahu (13.15):
P*(Mn,m, q) g e + Z > 2 EPx) (13.18)

i=1 j#i ye{0,1)"NB(x3)

a upravime trojitd sumu. Postupne dostavame

M
Z > oo Y EPyx) = M-DY Y E(Py,x) =

i=1 ye{0,11"NBx (x5) j# i=1 ye{0,11"NB¢(x;)
M=1) > ZE (y,x:) = M=1) >  E(Py)=
ye{0,11"NBy (%) i=1 ye{0,1 NB¢ (x;5)
_ Byl
(M—1) > E2™M = M-1) zi. (13.19)

yE{0,1*NB¢(x;)

Pre pravdepodobnost’ P*(M,,, n, q) sme zatial z (13.15) a (13.19)odvodili nasledujici horny

odhad
Byl

Zn
Upravime (13.20) (najprv od¢itame od oboch stran %5, vysledok logaritmujeme a napokon
obe strany vydelime hodnotou n):

P*(Mn,m, q) < %s +(M—=1)- (13.20)

. 1 B
P*(Mnym, q) = 3¢ oI

Yo < 1gM—1) +1g(Bd) - n

IN

M—1)-

lg(P*(My,m, q) —

E =
lg(P*(M ]
gPMuma)—3e) _ lgM | IgBd) | .
n n n
Ostava odhadnut’ vyraz % z vyrazu (13.21). Odhadneme najprv mohutnost’ gule s

polomerom t (v bindrnom vektorovom priestore dimenzie n) zhora (pripominame, Ze



181

t<n/2)

n (13.22)

1g B¢
n

Teraz na zaklade odhadu (13.21) zostrojime horny odhad pre

1g |B.| T[T t t
< —|lg-n—tlg——(n—t)lg(1—=)| =
L = n[gzn tlg——(n t)g( n)}

1 1
n n n n n n

Pripominame, Ze t = [nq + \/2npq/e|. Odhadneme vyrazy t1gta (1—1)Ig(1—1):

t _ [nq+2npg/e]  nq+/2npq/e+0(1) L0 1
n n N n =4 Vn
tl t_ +0 ! 1 +0 ! =qlgq+0 ] (13.23)
a0 (G5l o (G —amwaro(5) - 0e
Podobne odhadneme vyraz (1—1)1g(1—3%)
t t 1

Pripomenieme este, Ze prenosova rychlost kédu je 0 < R < 1+plgp+ qlgq a mohutnost’
kédu je M = 2[R tj. existuje kladna konstanta § > 0 taka, ze R=1+plgp+qlgq—p.
Potom

n n n -
(T+plgp+qlgq—B) (13.25)

Teraz dosadime odhady (13.24) a (13.25) do (13.21)

lgMn _ lg2ittelerralea ) In(1+plgp+qlgq—p)| _

lg(P*(My,n, q) — %e) < Ig M, B
n - n

1
1 1 1 — | <
+plgp+q gq+0<ﬁ>} <

1 1
<(+plgp+qlgqg—B) - [1 +plgp+q1gq+0<\/ﬁ)} =—B+0 (\/ﬁ>

Nakoniec odhadneme zhora samotnua pravdepodobnost’ P*(M,,,n, q):

. 1
1g(P* (Mn, m, q) — 5¢)

1 :
P"(Mn,m,q) < e +27Fm,

IN

—pn+0 (vVn) =—p'n

kde B’ > 0 je konstanta. Veta je dokazana. O
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Kapitola 14

Hranice parametrov
samoopravnych kodov

Pozrieme sa najmé na dolné odhady miniméalnej vzdialenosti kédov.
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Cast’ I1I

Matematické zaklady teorie
kédovania
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Konstrukcia kédov, skiimanie ich vlastnosti a navrh efektivnych metéd kédovania a
dekédovania si vyZadujui pomerne rozsiahle vedomosti z matematiky, informatiky a nie-
ktorych technickych vied. Predpokladame, Ze citatel absolvoval zakladné kurzy z mate-
matiky (najmé z algebry a linedrnej algebry) a ma aspon zakladné poznatky z tedrie
pravdepodobnosti. V tejto casti uvedieme prehl'ad tych poznatkov z matematiky, ktoré
citatel potrebuje na $tddium nasej knihy. Prehlad matematiky ma slazit na rychle pri-
pomenutie si zabudnutych poznatkov, pripadne doplnenie chybajicich fragmentov zna-
losti, ale v Ziadnom pripade nema ambiciu nahradit’ systematicky vyklad uvedenej prob-
lematiky ako je napriklad [8, 9]. Citatelovi, ktory ma zaujem o hlbsie stidium proble-
matiky uvedenje v tejto kapitole, resp. objavil vo svojich vedomostiach hlbsie medzery,
odporucéime prace, v ktorych najde potrebné informéacie spracované v dostupnej forme.
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Kapitola 15

Algebra

Konstrukcie viacerych kédov vychadzaja z takych algebraickych struktir, ako su grupy,
vektorové priestory, konecné polia, kone¢né geometrie a iné. Zavedieme tieto algebraické
strukiry a popiSeme ich najdolezitejsie vlastnosti.

Budeme predpokladat), ze ¢itatelovi si zname pojmy mnoZiny, podmnoZiny, uspo-
riadanej dvojice, kartézskeho sti¢inu mnoZin, reldcie a zobrazenia, pozri napr. ??.

15.1 Grupy

Nech je M nejaka mnozina. Zobrazenie f : M x M — M budeme nazyvat bindrnou
operdciou na mnozine M. Casto budeme pracovat’ s nejakymi podmnozinami zakladnej
mnoziny a vtedy moze dojst k pripadu, ked vysledok operacie nad prvkami z podmnoziny
uz nebude prvkom danej podmnoziny. Ak pre 'ubovolné dva prvky x,y € M’ a binarnu
operaciu f plati f(x,y) € M’, budeme hovorit, Ze mnozina M’ je uzavretd vzhladom
na bindrnu operdciu f. Algebraickou $truktiirou alebo algebraickym systémom budeme
nazyvat mnozinu M s jednou alebo viacerymi operaciami na M.

V d’alsom nebudeme skimat’ nejaké abstraktné binarne operacie, ale takmer vylucne
sa budeme zaoberat’ aditivnymi a multiplikativnymi operaciami. Preto budeme namies-
to zapisu f(x,y) pouzivat pre binarnu operaciu tradi¢né oznacenie x o y, kde o oznacuje

operator "+"v pripade aditivnej operacie a "*"v pripade multiplikativnej operacie.

Priklad. Symbolmi N, Z, Q, R budeme (aj v dalsich ¢astiach knihy, ak nebude povedané
inak) oznacovat mnoziny prirodzenych, celych, racionalnych a realnych ¢isel. Pripomi-
name, Ze nula (0) je prirodzené ¢islo. Na mnozine R definujeme Standardnym spésobom

"non

operacie séitania ("+"), od¢itania ("—"), nasobenia ("x") a na mnozine R — {0} aj operaciu
delenia ("/"). Potom

1. mnoziny N, Z, Q, R st uzavreté vzhladom na operacie + a x;
2. mnoziny Z, Q, R st uzavreté vzhl'adom na operaciu —;

3. mnoziny Q — {0}, R — {0} st uzavreté vzhladom na operéciu /.

189
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Operacia o na mnozine M sa nazyva

e asociativnou, ak pre 'ubovolné prvky a,b,c € M plati:

ao(boc)=(aob)oc

e komutativnou, ak pre 'ubovolné prvky a,b € M plati:

aob=>boa.

Mnozina M s operaciou o (v dalSom budeme takuto algebraicka struktiaru oznacovat’
(M, o)) sa nazyva pologrupou, ak je M uzavretda vzhfadom na operaciu o a operécia o je
(na M) asociativna.

Prvok u € (M, o) nazyva neutrdlnym prvkom mnoziny M vzhl'adom na operaciu o,
ak pre I'ubovolny prvok a € M plati a ou = wo a = a. Pologrupa (M, o) s neutralnym
prvkom u sa nazyva monoidom.

Nech je a F'ubovolny prvok monoidu (M, o), potom prvok b € (M, o), pre ktory plati
aob=boa=mu,

sa nazyva opaénym alebo inverznym prvkom prvku al

Priklad. Uvazujme mnozinu Q racionalnych ¢isel s operaciami s¢itania a nasobenia.
Neutralnym prvkom pre operaciu séitania je ¢islo 0, pre operaciu ndsobenia je neutral-
nym prvkom ¢islo 1. Pre 'ubovolné racionalne ¢islo a existuje opacné ¢islo —a € Q. Ak
a # 0, tak pre a existuje inverzné ¢islo 1/a.

Dalsi pojem je natolko déleZity, Ze si zasluhuje explicitnd definiciu.

Definicia 15.1.1. MnoZina G s operdciou o, ktord spliia nasledujiice podmienky

1. G je uzavretd vzhl'adom na operdciu o,
2. operdcia o je asociativna,
3. G obsahuje neutrdlny prvok vzhladom na operdciu o,

4. ku kazZdému prvku mnoziny G existuje opacny prvok vzhladom na operdciu o

sa nazyva grupou.

lpojem opaény prvok sa zvykle pouZivat v stvislosti s aditivnou operaciou a pojem inverzny prvok zasa
v suvislosti s multiplikativnou operaciou.
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Poznamka. Je zrejmé, Ze pologrupa, v ktorej ku kazdému prvku existuje opacny pr-
vok, je grupou.

Ak je operacia o grupy (G, o) komutativna, grupa (G, o) sa nazyva komutativnou alebo
abelovskou grupou.

Priklad. (Komutativnymi) grupami sd napriklad nasledujice algebraické struktiry:
(Z,+), (Q,+), (R,+), (Q — {0}, %), (R — {0}, *). Uvedieme este jednu, menej obvykld grupu.
Mnozina Z3 = {0,1,2} s operaciou modularneho s¢itania @ definovaného nasledujicou
tabul'kou je komutativna grupa:

S
0
1

2

N = OO
O N —| =
— O NN

Grupa, ktora ma konec¢ny pocet prvkov, sa nazyva konecnou grupou. Pocet prvkov
konecnej grupy G budeme oznacovat symbolom |G| a nazyvat rddom grupy. V grupe
moézZe existovat podmnozina prvkov, ktoré spolu s operaciou defiinovanou na nadmno-
Zine tvoria grupu. Takato podmnoZina s operaciou prevzatou s grupy (nadmnoziny) sa
bude nazyvat podgrupou. Zrejme najmensou podgrupou grupy je jednoprvkova mnozina
obsahujica neutralny prvok grupy. Definujeme teraz pojem podgrupy exaktne.

Nech je (G, o) grupa. Podmnozina G; C G, taka, ze G;,0 je grupa, sa nazyva podg-
rupou grupy G. Podgrupu mozno charakterizovat aj nasledujicim spdsobom (predpo-
kladajme, zZe operacia o je aditivna):

Veta 15.1.1. PodmnozZina G grupy (G,+) s operdciou + je podgrupou (grupy G) prdve
vtedy, ak pre lubovolné prvky a,b € Gy plati a —b € G;.

Déokaz. Ak je (Gp,+) podgrupou, tak spifia vSetky Styri axiémy grupy. To znamena. Ze
pre I'ubovolny prvok b € G; je aj —b € Gy; a pre 'ubovolné dva prvky z G; je prvkom G;
aj ich sucet.

Nech na druhej strane plati, ze ak a,b € G; tak potom aj a — b € G;. Zoberieme

Iubovolny prvok a € Gi, podla predpokladu je aj a—a = 0 prvkom G;. To vSak znamena,
Ze pre 'ubovolny prvok ¢ € G; je aj k nemu opacny prvok ¢ = 0 — ¢ € Gj; resp. pre

Iubovolné prvky a,b € Gy jeaja+b =a— (—b) € G;. To znamena, Ze G; je uzavreta
vzhladom na asociativnu operaciu +, obsahuje neutralny prvok a ku kazdému prvku
obsahuje opaény prvok. Tj. (G, +) je grupa. dJ

Poznamka. Tvrdenie predchadzajicej vety mozno zovSeobecnit’ nasledovne: Podmno-
Zina G grupy (G, o) s operaciou o je podgrupou (grupy G) prave vtedy, ak pre 'ubovolné
prvky a,b € G plati ao b’ € Gy, kde b’ je opaény/inverzny prvok k prvku b.

Priklad. 1. Uvazujme mnozinu Z; = {0,1,2,3,4,5} s operaciou + definovanou nasle-
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dovne:
+10 1 2 3 4 5
0|0 1 2 3 4 5
111 2 3 4 5 0
212 3 4 5 0 1
3/3 45 0 1 2
414 5 0 1 2 3
515 0 1 2 3 4

Je zrejmé, Ze (Zg, +) je grupa. Jej podgrupami sd nasledujice mnoziny {0},{0, 3},{0, 2,4} s
operaciou +.

2. Nech je m I'ubovolI'né celé cislo. Da sa F'ahko ukazat, Ze mnoznina mZ = {0, m, —m,
2m, —2m,. ..} vSetkych celociselnych nasobkov ¢isla m tvori s operaciou + aditivnu grupu
ktora je podgrupou aditivnej grupy celych cisel (Z,+). (Staci dokazat’, ze rozdiel 'ubovol-
nych dvoch celociselnych nasobkov ¢isla m je opat’ celoc¢iselnym nasobkom cisla m.)

Uvazujme teraz grupu (G, *) s multiplikativnou operaciou, nech je a € G I'ubovolny
prvok, a m € N. Definujeme mocniny prvku a nasledovne:

1. a® =1, kde 1 je neutralny prvok grupy G vzhladom na multiplikativnu operaciu,

2. a™ =aMsxa=axax*---*aq,
~—
m+1

Kvoli zjednoduseniu oznaéenia budeme namiesto a' pisat len a. Podobnm spdsobom
mozno zaviest "mocniny"prvku a v pripade aditivnej operacie:

1. a® =0, kde 0 je neutralny prvok grupy G vzhl'adom na aditivnu operéciu,

2. am+1:am+a:a+a+...+a)
~—

m+1

Tam kde nebude potrebné odliSovat’ multiplikativne a aditivne grupy, budeme pou-
zivat terminolégiu multiplikativnych grap (inverzny prvok, jednotkovy prvok, mocnina
prvku a pod.)

Definicia 15.1.2. Nech je (G, *) grupa s multiplikativnou operdciou, potom sa grupa G
nazyva cyklickou grupou, ak existuje taky prvok g € G, Ze pre l'ubovolné a € G existuje
prirodzené ¢islo j € N také, Ze a = ¢); t.j., Ze vsetky proky grupy G moZno vyjadrit v
podobe mocnin prvku g. Prvok g sa nazyva generatorom cyklickej grupy G a cyklickd
grupa generovand prvkom a sa oznadcuje symbolom (a).

b
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Priklad. 1. Uvazujeme mnozinu Zs = {0, 1, 2, 3,4} s multiplikativnou operéaciou * defino-
vanou tabulkou

*x0 1 2 3 4
0j{0 0 0 0 O
1170 2 3 4 5
210 2 4 1 3
310 3 1 4 2
410 4 3 2 1

(Zs, *) je sice len monoid, ale ak z neho odstranime problematicky prvok 0, pre ktory v
(Zs, *) neexistuje inverzny prvok, dostavame multiplikativnu grupu (Zs — {0}, +). Tato
grupa je cyklicka a prvky 2, 3,4 si jej generatormi.

2. Grupa (Zg, +) z prikladu 15.1 je cyklicka. jej generatorom sua prvky 1,5.
3. Aditvna grupa celych cisel (Z,+) je cyklicka, jej generatormi su cisla 1, —1.

Uvazujme koneénu grupu (G, ) a prvok a € G. MnoZina mocnin {a, a?,...} je v dé-
sledku konec¢nosti G a uzavretosti G vzhladom na operaciu * konetna a s operaciou *
tvori podgrupu nazyvanu podgrupou generovanou prvkom a. Pre Iubovolné a € G exis-
tuje prirodzené &islo k také, Ze a* = 1, kde 1 je neutralny prvok gupy G. Je zrejmé, ze
podgrupa generovana prvkom a méa prvky a, a?, ..., a* = 1. Rddom prvku a € G budeme
nazyvat rad podgrupy generovanej prvkom a. MnoZinu mocnin a, a?,...,a* = 1 budeme
nazyvat cyklom.

Budeme skumat niektoré vzt'ahy medzi grupami a ich pologrupami. Na to potrebu-
jeme zaviest’ pojem rozkladu alebo faktorizacie grupy.

Nech je M Tubovolna mnozina. Potom M = {M;,... M; C M} systém podmoZin
mnoziny M sa nazyva rozkladom mnoZiny M, ak splna nasledujtce tri podmienky:

1. Vi M; £ 0,
2. UyMi =M,
3. MiNM; =0; i#].
Prvky systému M budeme nazyvat triedami rozkladu.

Existuju zvlastne relacie na mnozine, ktoré definuju rozklady tejto mnoziny.

Nech je M Tubovolna mnozina. Potom relacia R € M x M na mnozine M nazyva
reldciou ekvivalencie (ekvivalenciou) , ak

1. pre l'ubovolné x € M, (x,x) € R (reflexivnost),
2. pre I'ubovolné x,y € M plati, ak (x,y) € R, tak potom aj (y,x) € R (symetria),

3. pre l'ubovolné x,y,z € M plati, ak (x,y) € R a (y,z) € R tak potom aj (x,z) € R
(tranzitivnost).
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Poznamka. Relacia ekvivalencie sa zvykne oznacovat symbolom ~ alebo =. Namiesto
= (x,y) budeme pisat x = y.

Prikladom ekvivalencie je rovnost’. Relacia ekvivalencie urcuje rozklad mnoziny. Triedy
rozkladu mnozZiny M urcené relaciou ekvivalencie = na mnozZine M sa nazyvaju triedami
ekvivalencie a su definované nasledovne:

[a] ={x e M; x = a};

t.j. jednu triedu rozkladu/ekvivalencie tvoria vSetky tie prvky mnoziny M, ktoré su na-
vzajom ekvivalentné. Trieda rozkladu je jednoznacne urcéena I'ubovolnym svojim prv-
kom, a preto sa z kazdej triedy rozkladu vyberie nejaky prvok, ktory reprezentuje dana
triedu, nazyvany reprezentantom alebo predstavitelom triedy.

Priklad. Nech je m € N prirodzené ¢islo, m > 1. Relacia = definovana na mnozine
celych ¢isel nasledujicim spésobom

a=b& ml(a—D>)

je ekvivalencia. Rozklad mnozZiny celych ¢isel definovany touto ekvivalenciou pozostava
z tried [0],...[m — 1]. Prvkami triedy ekvivalencie [t] su vSetky celé ¢isla, ktoré maju
rovnaky zvysSok po deleni ¢islom m ako reprezentant triedy. Tuto ekvivalenciu budeme
este potrebovat’, a preto pre nu zavedieme Specidlne oznacenie; to Ze pre celé ¢isla a,b
plati m|/(a — b), budeme oznacovat nasledovne

a=b modm.

Uvazujme grupu (G, *) a nejaki jej podgrupu (H, x); H = {h; ... hy}. Zostrojime teraz
rozklad grupy G nasledujiucim spésobom:

1. prvou triedou rozkladu je podgrupa H; reprezentantom tejto triedy rozkladu je pr-
vok 1;

2. predpokladame, Ze sme zostrojili i— 1 tried rozkladu; ak existuje prvok a; € G, tory
nepatri do Ziadnej z prvych i — 1 tried rozkladu, vyberieme ho ako reprezentanta
i-tej triedy, ktord zostrojime nasledujicim sposobom:

l[ai] = a;*hy, ..., qp % hye

3. krok (2) opakujeme dovtedy, kym budu existovat prvky mnozZiny G, ktoré nepatria
do ziadnej triedy rozkladu.

Je zrejmé, Ze triedy [a;] su neprazdne a Ze kazdy prvok mnoziny G patri do niektorej
triedy. Ukazeme este, Ze [a;] ([a;] = 0 1 # j. Predpokladajme opak, t.j. Ze existuje prvok
x € [ai] Nlay]. To vSak znamen4, Ze existuju prvky h,, hy € H také, Ze

X = a; * hy = qj * hs.
Kedze G je grupa, obsahuje prvok ai_1 , inverzny k prvku a;. To znamena, zZe
—1 —1

a; *x(apxh) =(q

—1

>s<c1i)>x<hT:hT:a;]>x<(c1j>|<hs)=(aiL * aj) * hy;
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t.j. (af * a;) € H, ateda a; € aj x H, z ¢oho vyplyva, Ze [a;] = [q;]. Systém {[a;]}; teda
naozaj predstavuje rozklad grupy G, ktory budeme nazyvat rozkladom grupy G podla
podgrupy H. Rozklad grupy podl'a podgrupy je uvedeny v nasledujticej tabulke.

hy h, hy
ar az*h1 Clz*hz az*hk
a; | ai*hg aixhy ... ai*xhg
am | am*xhy amxhy ... am*hg

Poznamka. YV pripade ak multiplikativha operacia x nie je komutativna, bude po-
trebné rozliSovat nasobenie sprava a zlava, pretoze vo v§eobecnosti a*H # Hx a. Triedy
axH (Hxa) budeme nazyvat Favymi, resp.pravymi triedami rozkladu. Podgrupa H grupy
(G, %) sa nazyva normdlna, ak pre kazdy prvok a € G plati a * H = H % a; t.j. ak sa pravé
a lavé triedy rozkladu grupy G podla H rovnaji. My budeme pracovat s abelovskymi
grupami, ktorych podgrupy si norméalne podgrupy.

Z konstrukcie rozkladu konecnej grupy podl'a jej podgrupy vyplyva nasledujici kla-
sicky vysledok.

Veta 15.1.2 (Lagrange). Rdd konecnej grupy je celo¢iselnym ndsobkom rdadu kazdej jej
podgrupy.

Pripominame, Ze rad prvku bol definovany ako rad podgrupy, ktora dany prvok ge-
neroval. Z Lagrangeovej vety potom vyplyva nasledujici

Dosledok. Rad kazdého prvku konecnej grupy G je delitelom radu grupy G.

Vratme sa este k systému tried, vytvorenych pri rozklade grupy G podl'a normélnej
podgrupy H; ktory budeme oznacovat’ symbolom G/H,;

G/H ={lai] = a; * H}.
Definujeme na systéme G/H bindrnu operaciu * nasledovne:
lai] * [q;] = [a; * qj].

Da sa l'ahko overit, ze (G/H, %) tvori grupu, ktorti budeme nazyvat faktorovou grupou
(grupy G podla (normdlnej) podgrupy H).

Priklad. Faktorizujeme grupu (Z,+) podla podgrupy (2Z,+), kde 2Z je mnoZina vset-
kych parnych celych cisel. Rozklad Z/27 bude mat’ dve triedy, 27,7 — 27, pri¢om trieda
Z — 27 pozostava zo vSetkych neparnych celych cisel. Vyberme ako reprezentantov tried
rozkladu ¢isla 0, 1. Potom 2Z = [0] a Z—2Z = [1]. Operacia s¢itania na Z/H je definovana
nasledujicou tabul'kou:
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Faktorova grupa (Z/2Z,+) zodpoveda (az na oznacenie prvkov) grupe (Z;,®), kde Z, =
{0,1} a ® oznacuje s¢itanie mod 2.

Zovseobecnime predchadzajuci priklad. Pre Tubovolné prirodzené éislo m > 2 2 ozna-
¢ime symbolom (Z,,,+) faktorovi grupu (Z/mZ,+) s operaciou sc¢itania mod m. Kvoli
zjednoduseniu zapisu budeme prvky mnoziny Z,, oznacovat symbolmi 0, ..., m—1. Grupy
Z., budeme v dalSom casto pouzivat.

15.2 Okruhy

Doteraz sme sa zaoberali algebraickymi Struktirami s jednou binarnou operaciou. V
tejto casti zavedieme agebraické struktiry s dvoma binarnymi operaciami - s¢itanim a
nasobenim.

Definicia 15.2.1. Okruh (A, +,-) je mnoZina A spolu s dvoma bindrnymi operdciami,
oznacenymi ako + a -, ktord splnia nasledujiice podmienky:

1. A je abelovskd grupa vzhladom na aditivnu operdciu +,

2. multiplikativna operdcia - je asociativna, t.j. pre Pubovolné a,b,c € A plati (a-b) -
c=a(-b-c);

3. plati distributivny zdkon; t.j. pre lubovolné a,b,c € Aplatia-(b+c)=a-b+a-c
a(b+c)-a=b-a+c-a.

Okruh (A, +.-) budeme kvdli zjednoduSeniu zapisu oznacovat symbolom A, symbo-
lom 0 budeme oznacovat neutralny prvok vzhladom na aditivnu operaciu a symbolom 1
neutralny prvok vzhladom na multiplikativnu operaciu (ak okruh taky prvok obsahuje);
opacny prvok k prvku a vzhladom na aditivnu operaciu budeme oznacovat symbolom
—a. Namiesto a+ (—b) budeme pisat’ a—b a stcin a-b budeme strucnejsie zapisovat’ ako
ab. Da sa l'ahko odvodit), Ze pre 'ubovolné a,b € A plati a-0 =0a (—a)b = a(—b) = —ab.
Ak ab = ¢, budeme hovorit,, Ze prvky a,b su delitel'mi prvku c. Je zrejmé, ze 1 - ¢c = c;
t.j. prvky 1 a c st deliteI'mi c. Ak su delitele a, b, rozne od prvkov c, 1 tak sa nazyvaju
vlastnymi delitel’'mi prvku c.

Teraz zavedieme niektoré algebraické struktury, ktoré maju okrem vlastnosti okruhu
aj d’alsie vlastnosti.

Definicia 15.2.2. Okruh A sa nazyva
1. unitdrnym, ak v A existuje prvok 1, neutrdlny prvok vzhl'adom na multiplikativnu
operdciu;
2. komutativnym okruhom, ak je operdcia - komutativna;

3. oborom integrity, ak je komutativnym unitdrnym okruhom, 1 # 0 a z rovnosti ab =0
vyplyva a = 0 alebo b =0,

?Postidenie pripadov m < 1 ponechdvame na &itatel'a
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4. telesom, ak je (A —{0}, ) multiplikativna grupa,

5. polom, ak je komutativnym telesom.

Klicovym pojmom, s ktorym budeme v teérii samoopravnych kédov neustale pra-
covat’, je pojem (konecného) pola. Konecnym poliam sa budeme v tejto kapitole veno-
vat podrobnejSie, a preto si len struéne zrekapitulujeme vlastnosti pola. Pole je algeb-
raicka Struktira s aditivnou a multiplikativnou operaciou. Tvori abelovsku grupu vzhla-
dom na aditivnu operaciu a jeho nenulové prvky tvoria abelovskd grupu vzhladom na
multiplikativnu operaciu. Obe operacie si navzajom zviazané distributivnym zakonom:
a(b +¢) = ab + ac. Pole je aj oborom integrity, to znamena, ze nema4 vlastnych delitelov
nuly; resp. z toho, Ze ab = 0 vyplyva a 'ab = b = 0; resp. abb~! = a = 0.

Vratime sa este k pojmu okruhu. Podobne ako sme pre grupu definovali pojem podg-
rupy, zavedieme pre okruh najprv pojem podokruhu a potom definujeme podokruhy so
$pecialnymi vlastnost’ami.

Definicia 15.2.3. Podmnozina S okruhu A sa nazyva podokruhom okruhu A, ak je uzav-
retd vzhladom na operdcie + a - a tvori vzhladom na tieto operdcie okruh.

Pri konstrukcii polynémov budeme potrebovat k podokruhu pridavat nové prvky. Na-
sledujica veta [8] hovori, ako to moZno urobit tak, aby vysledna algebraicka struktura
zostala okruhom.

Veta 15.2.1. Nech A je podokruh unitdrneho komutativneho okruhu (B,+,-) a nech 1 €
A. Potom pre lubovolny prvok b € B je najmensi podokruh generovany mnozinou A U{b}
okruh C,+-), kde

C={ap+aib+---+anb™neN,ap,aj,...,a, € A}

Dokaz. Da salahko overit, Ze (C, +, -) je okruh. Ked'ze AU{b} C B, (C,+, -) je podokruh
okruhu (B, +, ). UkazZeme, Ze (C, +,-) je najmensi podokruh okruhu (B, +, -) obsahujuci
mnozinu AU{b}. Predpokladajme, Ze existuje okruh (C’, +, -) taky, Ze AU{b} C C’ ¢ C C B.
Nech d € C — C/, potom existuje m € N a prvky a; € A, i =0...m také, ze

d=ay+ab+---+anb™
KedZe b € C'a (C/, +, ) je okruh, potom pre 'ubovolné k € N aj b* € C’ a teda aj ayxb* € C’

pre ax € A C C'. To znamena, Ze d € C'. Dostavame spor s predpokladom, ¢o dokazuje
platnost’ vety. O

Poznamka. Podokruh (C,+,-) generovany mnozinou A U {b} budeme oznacovat sym-
bolom (A[b], +, ).

Definicia 15.2.4. Podokruh | okruhu A sa nazyva idedlom ak pre kazdé a € Jar € A
platiar € Jara€].
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Priklad. Uvazujme okruh (Z, +, -). Mnozina vSetkych parnych ¢isel tvori podokruh (Z,,+, )
okruhu Z. KedZe siéin I'ubovolného celého ¢isla a parneho éisla je parne ¢islo, (Z;,+, )
je idealom okruhu Z.

Pri studiu vlastnosti tzv. cyklickych kédov budeme pracovat’ s algebraickou struktu-
rou nazvanou okruhom hlavnych idealov.

Definicia 15.2.5. Nech je A komutativny okruh. Idedl | okruhu A sa nazyva hlavnym
idedlom, ak v okruhu A existuje prvok a, ktory je generdtorom cyklickej grupy idedlu ].
Idedl | sa nazyva hlavnym idedlom generovanym prvkom a.

Definicia 15.2.6. Komutatvny okruh A nazyvame okruhom hlavnych idedlov, ak je kaZdy
idedl okruhu A hlavny.

Grupy bolo mozné faktorizovat podla ich normalnych podgrip a vytvarat faktorové
grupy. Podobne je mozné faktorizovat’ okruhy. Ulohu normalnej podgrupy pri faktorizacii
okruhov zohrava ideal.

Veta 15.2.2. Nech je lidedl okruhu A, +, -);nech [a] ={a+1, a € A}je trieda rozkladu A /1
aditivnej grupy (A, +) podla normdlnej podgrupy (1, +) obsahujiica prvok (reprezentanta)
a. Potom mnoZina A/1 tried rozkladu s operdciami +, - definovanymi nasledovne

[a]l + [b] =[a+bl, [a]-[b]=[a-b]

kde a,b € A, tvori okruh. Ak je okruh A komutativny, tak je aj okruh (A/1,+,-) komuta-
tivny.

Dokaz. Je priamociary; staci overit’ platnost’ axiém okruhu pre (A/I, +,-). Prenechame
preto tuto dlohu citatelovi. O

Poznamka. Okruh (A/I, +,-) nazyva faktorovym okruhom okruhu A podla I.

Priklad. UvaZujme aditivnu faktorovi grupu (Z/Z4, +) Této grupa ma q prvkov: [0], ... [q—
1l ={m € Z;m mod q =3j;j =0,...q—1}. Operacia nasobenia prvkov faktorovej grupy
(Z/Z4,+) je asociativna

Vlal, [bl,[c] € Z/Zg;[al - (Ib] - [c]) = (la] - [b]) - [c]
a plati distributivny zdkon
Vial, [bl,[c] € Z/Zg;[al - (Ib] 4 [c]) = ([a] - [b]) + [a] - [c], ([b] + [c]) - [a] = [b] - [a] + [c] - [a].

To znamen4, Ze Z/Z, s uvedenou aditivnou a multiplikativnou operaciou tvori faktorovy
okruh (Z/Z4,+,-).

Nie vSetky okruhu celych ¢isel sa prenasaju automaticky do faktorového okruhu
(Z/Z4,+,-). Okruh celych cisel je oborom integrity, t.j. z rovnosti a - b = 0 vyplyva, Ze
aspon jeden z prvkov a,b je nulovy. Uvazujme teraz faktorovy okruh (Z/Zg, +,-). Je
zrejmé, Ze [2](3] = [2- 3] = [6] = [0], pricom [2] # [0], [3] # [0].

Na zaver tejto Casti zavedieme eSte jeden dolezity pojem.



15.3. POLYNOMY A OKRUHY POLYNOMOV 199

Definicia 15.2.7. Nech je R lubovolny okruh a existuje také kladné celé &islo n, Ze pre
lubovolné r € R plati nr = 0. Potom najmensie také ¢islo n sa nazyva charakteristikou
okruhu R. O okruhu R v takom pripade hovorime, Ze md kladni charakteristiku. Ak
kladné celé ¢islo n s poZadovanymi vlastnostami neexistuje, hovorime, Ze okruh R md
charakteristiku 0.

Priklad. Okruhy komplexnych, redlnych, racionalnych, celych, prirodzenych ¢isel maju
charakteristiku 0, okruh (Z/Z¢, +,-) ma charakteristiku 6.

Charakteristika okruhu nie je nezavisla od ostatnych vlastnosti okruhu.

Veta 15.2.3. Nech je R +# {0} obor integrity s jednotkou a kladnou charakteristikou. Potom
Jje charakteristika R prvocislo.

Dokaz. KedZe R obsahuje nenulové prvky, R ma charakteristiku n > 2. Ak by n nebolo
prvocislo, dalo by sa zapisat’ v podobe sucinu celych cisel, n = km, kde k,m € Z,1 <
k,m < n. Nech e oznacuje multiplikativnu jednotku oboru integrity R. Potom z vyssie
uvedeného vyplyva, ze 0 = ne = (km)e = (ke)(me). Nakol'ko R je obor integrity, z posled-
nej rovnosti vyplyva, ze bud ke = 0 alebo me = 0. Ale potom je charakteristika R bud k
alebo m — spor s minimalnostou n. O

Predchadzajica veta ma zaujimvy a velmi délezity dosledok pre konec¢né polia.

Veta 15.2.4. Konecéné pole md prvodiselni charakteristiku.

Dokaz. Konecné pole je oborom integrity a obsahuje jednotkovy prvok (e). To znamena,
Ze staci dokazat, Ze ma konec¢nu charakteristiku. UvaZujme postupnost’ kladnych celo-
¢iselnych nasobkov jednotkového prvku

e,2e,3e,....

Vzhladom na to, Ze pole je uzavreté na operaciu scitania, predchadzajica postupnost’
obsahuje prvky daného kone¢ného pola. KedZe pole je konecné, budu sa v uvedenej
postupnosti prvky opakovat. Zoberme najmensie také k; > k;, ze kje = kze. Potom
(k1 —k2)e =0, a teda dané pole ma kladnu charakteristiku. O

15.3 Polynémy a okruhy polynémov

Dalsim délezitym pojmom teérie samoopravnych kédov je pojem polynému. Kédové slova
sa daju reprezentovat pomocou polynémov, syndrémy chyb sa daju vypocitat’ dosadzova-
nim istych hodnét do plynémov reprezentujcich prijaté slova a pozicie chyb v kédovych
slovach sa daju urcit pomocou korenov polynému nazyvaného lokatorom chyb. Zave-
dieme preto pojem polynému a popiSeme najdolezitejSie vlastnosti polynémov.

Nech je A unitarny komutativny okruh® a nech je B jeho podokruh, obsahujtci jed-
notkovy prvok. Nech x € A — B je l'ubovol'ny prvok. Prvky podokruhu B[x] sa podla vety

3y dalsom budeme najéastejsie predpokladat, ze A je pole
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15.2.1 daja vyjadrit’ v tvare

ao+ arx 4+ ax? -+ anx™; ax €B, neN; (15.1)
pricom pre n > 0 predpokladame, Ze a, # 0. V niektorych pripadoch by vyber prvku
x mohol viest’ k nejednoznacnosti vyjadrenia prvkov z okruhu B[x]. Predpokladajme, zZe
existuje prvok, ozna¢me ho symbolom a(x), ktory je mozné vyjadrit v tvare 15.1 dvoma
rozlicnymi sposobmi

a(x) = ap+ arx + @x? -+ anx™ = by + bix + bax? - - - 4 bypx™.
Bez ujmy na vSeobecnosti budeme predpokladat, Ze n > m. UkazZeme, Ze jednoznaénost’
vyjadrenia prvku a(x) je ekvivalentna jednoznacnosti vyjadrenia nulového prvku okruhu
B[x] v tvare 15.1. Vypocitame rozdiel dvoch rozli¢cnych reprezentacii prvku a(x):

0 = a(x)—alx)=a+arx+a? -+ anx™ — (bg + byx + byx? -+ + byx™) =
= (ap—bo) + (a1 —by)x + (@2 —b2)x* -+ + (@m — b )X™ + @ x™ ! +
. e + Clan. (152)

Z rovnosti 15.2 vyplyva, ze 'ubovolny prvok okruhu B[x] je mozné vyjadrit’ jednoznacne
v tvare 15.1 prave vtedy, ak rovnost’

O=co+cix+---cnx"

plati prave vtedy, ak
co=cy---=cyp=0. (15.3)

Ak totiz plati 15.3, pre vyjadrenie a(x) platin = ma ay =by k=0,...,n. Prvok x € A,
pre ktory je mozné nulovy prvok okruhu B[x] vyjadrit’ jednoznacne, t.j. plati 15.3, sa
nazyva transcendentym prvkom nad B; v opatnom pripade sa x nazyva algebraickym
prvkom nad B. Ak je prvok x transcendentny nad okruhom B, budeme okruh B[x] nazyvat
okruhom polynémov neurdcitej x nad B. Prvky okruhu B[x] budeme nazyvat polynémami
v neurditej /| premennej x, alebo len struc¢ne, polynémami. Nech je a(x) € B[x] polyném,
a(x) = ag+ a;x+ ax? - - -+ anx™. Prvky ao, ..., an € B nazyvame koeficientami a s¢itance
axx® élenmi polynému. Ak n # 0, éislo n nazyvame stupriom polynému, koeficient a,
vediicim koeficientom a ¢len a,x™ vediicim ¢lenom polynému a(x). Stupen polynému f(x)
budeme oznacovat symbolom deg(f(x)). Polyném f(x) = 0 nazvame nulovym polynémom
a stupen nulového polynému definujeme ako deg(0) = —oco. Ak je vedici ¢len polynému
a(x), an = 1, polyném a(x) nazyvame normovanym polynémom. Uvedieme este, Ze ak su
a(x),b(x) dva polynémy, a(x) = ap + arx + - -- + anx™; b(x) = by + bix + --- + byx™, tak
ich sucinom je polyném a(x)b(x) = agbg + (aiby + agbi)x + -+ + (apbx + ayby_1 + -+ +
abo)x + - + apbypx™m.

Priklad. Mnoziny redlnych R a racionalnych Q cisel s operaciami sc¢itania a nasobe-
nia tvoria okruhy. Je zrejmé, Ze okruh racionalnych ¢isel je podokruhom realnych cisel.
Vyberieme rozne redlne ¢isla x a vytvorime okruhy Q[x].

1. Vyberme najprv ako neurcitu raciondlne ¢islo; x € Q. Potom vsak Q[x] = Q, lebo
ao+arx+---+apx™ € Q prex, ax € Q.
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2k
2. Polozime teraz x = /2; je zrejmé, 7e x ¢ Q. Nakolko vsak (\/2) = 2k ¢ Q,

Qx| = {ap + a1v2; ag,a; € Q}. Naviac, napriklad prvok 4 sa da vyjadrit v tvare
15.2.1 viacerymi spdsobmi: 4 = 4 + 0x + 0x? + - - = 2+ 0x + 1x? = 2x? = x4, atd.

3. Napokon, polozme x = e. Prvok e je transcendentny a okruh Q[e] tvoria prvky,
ktoré sa daju jednoznacne vyjadrit' v tvare

ao+aje+---+ene; neN, ax € Q.

V d’alsom sa budeme zaoberat’ deliteInostou polynémov, a preto budeme skiumat’ po-
lynémy nad nejakym polom F. Okruh polynémov nad pol'om F budeme oznacovat sym-
bolom F[x].

Definicia 15.3.1. Nech je F[x] okruh polynémov nad polom F a nech su f(x), g(x) poly-
némy z okruhu F[x]. Budeme hovorit, Ze polyném g(x) deli polynom (je delitelom poly-
nomu) f(x), ak v okruhu Flx] existuje taky polynom q(x), Ze f(x) = g(x) - q(x).

Je zrejmé, ze kazdy polynom je delitelny sebou samym, resp. (vzhfadom na to, Ze F
je pole) prvkami pola F, ktoré predstavuju v okruhu F[x] polynémy nultého stupna, resp.
konstanty. Tieto delitele su trividlne delitele polynému. Ak polyném f(x) nema v okruhu
FIx] inych delitefov okrem trivialnych, budeme ho nazyvat ireducibilnym polynémom
v okruhu F[x]. Polyném, ktory nie je ireducibilny, budeme nazyvat reducibilnym poly-
némom. Pripominame, Ze ireducibilita polynému sa vzt'ahuje na isty okruh polynémov.
Napriklad, polyném f(x) = x? — 2 je ireducibilny v okruhu polynémov Q[x], ale v okruhu
Rlx] 4 ma netrividlne delitele x — v2 a x + v/2. Nech je f(x) = fo + fix + -+ + fox" je
Tubovolny polyném okruhu F[x]. Pre I'ubovolny prvok a € F definujeme hodnotu f(a) =
fo+fia+ -+ fa™ Potom polyném f(x) predstavuje zobrazenie (polynomickiu funkciu)
f:F — F. Hodnotu f(a) budeme nazvat hodnotou polynému f(x) pre prvok a. Dolezité su
tie prvky pola F, ktoré sa polynomickou funkciou zobrazuju na nulovy prvok pola F.

Definicia 15.3.2. Nech je f[x] okruh polynémov nad polom F a nech f(x) € F[x] je poly-
ném. Prvok a € F budeme nazyvat’ koreriom polynému f(x), ak f(a) = 0.

V okruhu polynémov nemoézeme vo v§eobecnosti zaviest delenie polynénov, ale po-
dobne ako pre okruh celych ¢isel mézeme aj v okruhu polynémov F[x] zaviest’ delenie so
zvySkom.

Veta 15.3.1 (O delitel'nosti polynémov). Nech su f(x), g(x) lubovolné polynémy nad po-
lom F a nech g(x) # 0. Potom v okruhu F[x] existuju polynomy q(x),r(x) také, zZe

f(x) = q(x)g(x) + r(x), (15.4)

kde deg(r(x)) < deg(g(x)) a polynomy q(x),r(x) si uréené jednoznacne.

4stadil by aj okruh polynémov Q[ﬂ} [x]
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Dokaz. Budeme robit indukciou vzhl'adom na stupen polynému f(x).

1. Nech deg(f(x)) < deg(g(x)). Potom q(x) = 0 a r(x) = f(x).
2. Predpokladajme, Ze tvrdenie vety plati pre deg(f(x)) > deg(g(x)); deg(f(x)) < n.

3. Dokazeme platnost’ tvrdenia vety pre deg(f(x)) = n, deg(f(x)) > deg(g(x)). Nech
f(x) = fux™ + -+ + fix + fo; g(x) = gmXx™ + -+ + g1x + go, n > m. Od¢itame od
polynému f(x) polyném f, g, x* ™ - g(x), kde g, je prvok pola F inverzny k ve-
dicemu koeficientu polynému g(x) a dostaneme polyném f;(x). Tento polyném méa
stupen deg(fi(x)) < n, a teda podl'a indukéného predpokladu existuju také poly-
némy q;(x),r1(x) nad polom F, Ze

f1(x) = qi(x)g(x) +11(x).

Potom v8ak mozno v tvare 15.4 vyjadrit’ aj polyném f(x):
f(x) = f1(x) + fugp X ™ g(x) = (fag X" ™ + qi(x)) - g(x) + 11 (x);

tj. r(x) =11(x) a q(x) = fugy) x™ ™ + qi(x).
Predpokladajme este, Ze existujd polynémy q’(x) # q(x) a v'(x) # r(x), také, ze

q'(x)g(x) +1'(x) = f(x) = q(x)g(x) + 7(x).

Potom vsak

0 =q(x)g(x) +r(x) — q(x)'g(x) —'(x) = (q(x) — q'(x))g(x) + (r(x) — ' (x)).

Predpokladajme, Za polyném (r(x) —1'(x)) je nenulovy. Ked'ze polyném (q(x)—q’(x))g(x)
je bud nulovy, alebo ma stupen

deg((q(x) — q'(x))g(x)) > deg(g(x)) > max{deg(r(x)), deg(r'(x))} > deg(r(x) —1'(x)),

dostavame, Ze (q(x)—q’(x))g(x)+ (r(x) —7'(x)) # 0. Spor. To znamena, zZe (r(x) —1'(x)) =0
a(q(x)—q'(x))g(x) = 0. Kedze g(x) # 0, musi byt (q(x) —q'(x) =0, a teda polynémy q(x )
(podiel) a r(x) (zvySok) su uréené jednoznacne.

Vratime sa ku skiimaniu vlastnosti okruhu polynémov F[x]. Zo skutocnosti, Ze v
okruhu F[x] je definované delenie so zvyskom (veta 15.3.1), vyplyva znamy fakt, ze kazdy
ideal okruhu F[x] je hlavny; t.j. Ze okruh F[x] je okruhom hlavnych idealov.

Veta 15.3.2. Nech je Fx] okruh polynémov nad polom F. Potom je F[x] okruhom hlavnych
idedlov.

Dokaz. Ukazeme, ze pre kazdy ideal | # (0) okruhu F[x] existuje jednoznaé¢ne urceny
normovany polyném g(x) € F[x] taky, ze ] = (g(x)). Ked’ze F je pole, okruh F[x] je obo-
rom integrity. Nech je ] =# (0) ideal okruhu F[x] a nech je h(x) polyném najmensieho
stupna, ktory sa v ] nachadza; nech je b veduci koeficient polynému h(x). Polozime
g(x) = b 'h(x). Je zrejmé, ze g(x) € J a g(x) je normovany polyném. Zoberieme teraz
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Tubovolny polyném f(x) € ] a vyjadrime ho v tvare 15.4: f(x) = q(x)g(x) + r(x), pricom
deg(r(x)) < deg(g(x)) = deg(h(x)). Ked'Ze | je ideal, polyném f(x) — q(x)g(x) = r(x) € J.
Nakol'ko h(x) bol polyném najmensieho stupna v J, polynom r(x) je nulovy. To znamena,
Ze (Tubovolny polyném z idedlu ]) f(x) je nasobkom polynému g(x) a teda, ] = (g(x).
Ostava este ukazat jednoznacnost vyberu polynomu g(x). Predpokladajme, Ze existuje
iny normovany polyném g;(x) € F[x], ktory je generatorom idealu J. Potom vsak g(x) =
c1(x)gi(x) a g1(x) = c2(x)g(x). Z uvedenych rovnosti vyplyva, Ze g(x) = c1(x)c2(x)g(x), a
teda polynémy c;(x),c2(x) si konstantné. Ked'Ze obidva polynémy g(x), g;(x) si normo-
vané, cic; = 1, a teda g(x) = g1(x). Tym je dokdzana jednoznacnost’ urcenia generatora
idedlu J. O]

Kazdy nenulovy polyném f(x) okruhu F[x] definuje (hlavny) ideal, (f(x)). Rozlozime te-
raz okruh F[x] podla idealu (f(x)); triedy rozkladu budd mnoziny polynémov g(x)+ (f(x)),
kde g(x) € Fx]. (Triedu rozkladu g(x) + (f(x)) budeme oznacovat symbolom [g(x)].) Dve
triedy rozkladu, [a(x)], [b(x)] sa buda zhodovat prave vtedy, ak a(x) — b(x) € (f(x));
t.j. ak f(x)[(a(x)(x). Tato podmienka sa da vyjadrit' aj tak, Ze polynémy a(x),b(x) da-
vaju po deleni polynémom f(x) rovnaky zvySok. Kazda z tried rozkladu [g(x)] obsahuje
jediny polyném r(x) € F[x], stupnia deg(r(x)) < deg(f(x)). Tento polyném sa da vypo-
citat ako zvySok po deleni polynému g(x) polynémom f(x) a nazyva sa reprezentan-
tom triedy [g(x)]. UkZeme este, zZe v kazdej triede rozkladu sa nachadza jediny polyném
stupna < deg(f(x)). Predpokladajme opak, t.j. nech r1(x),r(x) € [g(x)] sa dva polynémy
stupna < deg(f(x)), ktoré patria do tej istej triedy. Ale potom plati f(x)[r(x) — ri(x) a
deg(r(x) —r1(x)) < deg(f(x)). To znamena4, zZe r(x) —r1(x) = 0 a r(x) = r1(x). Ked'ze kazda
trieda rozkladu obsahuje jediny polyném stupna < deg(f(x)), moéZeme explicitne charak-
terizovat triedy rozkladu F[x]/(f(x)): si to mnoZiny polynémov r(x)-+(f(x)), kde r(x) € F[x]
a deg(r(x)) < deg(f(x)). Ak na triedach z rozkladu F[x]/(f(x)) definujeme operacie sé¢ita-
nia a nasobenia tradi¢nym spdsobom; t.j. pre I'ubovolné [a(x)], [b(x)] € F[x]/(f(x)) polo-
Zime

[a(x)] + [b(x)] = [a(x) + b(x]], [a(x)] - [b(x)] = [a(x) - b(x]],
dostavame okruh, ktory budeme nazyvat faktorovym okruhom polynémov nad polom
F podla polynému f(x). Faktorové okruhy polynémov budeme v dalSom vyuzivat pri
konstrukecii konecnych poli.

Podobne ako v okruhu celych cisel, mézeme aj v okruhu polynémov nad polom F

.....

nomov.

Definicia 15.3.3. Nech je Flx] okruh polynémov nad polom F a nech su f(x), g(x) poly-
noémy z okruhu F[x].

1. Normovany polyném d(x) € F[x] nazveme najvdcésim spoloénym delitelom polyné-
mov f(x), g(x), ak d(x)|f(x), d(x)|g(x) a pre lubovolny polynom h(x) € F[xl, ktory deli
polynomy f(x), g(x) plati h(x)|d(x). Najudcsi spoloény delitel’ polynémov f(x), g(x)
budeme oznacovat’ symbolom ged(f(x), g(x))

2. Normovany polyném a(x) € F[x] nazveme najmensim spoloénym ndsobkom poly-
némov f(x), g(x) (oznacenie lem(f(x), g(x))), ak f(x)|a(x), g(x)la(x) a pre lubovolny
polynom b(x) € FIx], ktory je delitelny polynémami f(x), g(x) plati, Ze a(x)|b(x).
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Veta 15.3.3. Nech su f(x), g(x) dva nenulové polynémy okruhu F[x]. Potom existuju také
polynémy a(x),b(x), Ze

ged(f(x), g(x)) = a(x)f(x) + b(x)g(x).

Doékaz. Uvazujme mnozinu polynémov | = {c;(x)f(x) + c2(x)g(x)} c1(x),ca(x) € Flx].
Je zrejmé, zZe | je idedl a ze ] # (0). Okruh F[x] je okruhom hlavnych idealov, a preto
existuje d(x) € F[x], ktory generuje ideal J. Vzhladom na to, ako su vyjadrené prvky
idedlu | z toho, ze d(x) € ] vyplyva existencia polynémov a(x),b(x) takych, ze d(x) =
a(x)f(x)+b(x)g(x). Ukazeme este, ze d(x) = ged(f(x), g(x)). Oba polynémy f(x),g(x) patria
do J, a preto d(x)|f(x) a d(x)|g(x). Ak by existoval iny (normovany) polyném, d;(x) taky,
ze (di(x)) =], di(x)ld(x) a d(x)ld1(x), t.j. d(x) = dy(x). O

Najvacsi spolocny delitel dvoch polynéomov f(x), g(x) € F[x] mozno vypocitat pomocou
Euklidovho algoritmu. Predpokladajme kvdli jednoduchosti, Ze g(x) # 0 a Ze g(x) nie je
delitelom polynému f(x), potom budeme postupne delit’:

fix) = qilx)g(x) +mi(x) 0 <deg(r(x)) < deg(g(x))
g(x) = q(xIri(x) +r2(x) 0<deg(r2(x)) < deg(r(x))
nx) = qz(x)ra(x) +r3(x) 0 < deg(r3(x)) < deg(ra(x))

Ts2 = Qs(x)re(x) +75(x) 0 < deg(rs(x)) < deg(rs—1(x))

Tso1 = qsp1(x)Ts(x).

V tejto postupnosti si q;(x), ..., qst1(x);T1(X) ..., Ts(x) polynémy okruhu F[x]. Kedze deg(g(x))
je konec¢ny a v kazdom kroku sa stupen polynému r;(x) zmensuje, procedura po konec-
nom pocte krokov skonéi. Nech ma polyném rs(x) veduci koeficient a, potom najvacsi
spoloény delitel polynémov f(x), g(x) vyjadrime nasledovne: ged(f(x),g(x)) = a 'rg¢(x).
Normované polynémy f(x),g(x) € F[x] nazveme nesudelitelnymi (relatively prime), ak
ged(f(x),g(x) = 1.

Délezita dlohu pri $tudiu vlastnosti okruhu polynémov F[x] zohravaju ireducibilné
polynémy. Kazdy polyném z F[x] sa da totiz jednoznacne vyjadrit’ ako siéin ireducibil-
nych polynémov. Skér ako formulujeme a dokazeme tento poznatok, vyuzijeme vetu o
delitelnosti polynémov na ustanovenie vztahu medzi korenmi polynému a delite'nos-
tou polynému.

Veta 15.3.4. Nech je f(x) lubovolny polynom nad polom F a nech je c l'ubovolny prvok
pola F. Potom polyném (x — c) deli polyném f(x) prdve vtedy, ak je c koreriom polynému
f(x).

Dokaz. Nech polyném (x — c) deli polyném f(x), potom existuje taky polyném f;(x), ze
f(x) = (x —c)f1(x). Potom vsak f(c) = (c —c¢)f(c) =0, a teda c je koreriom polynému f(x).
Nech na druhej strane f(c) = 0; t.j. prvok c je koreniom polynému f(x). Podla vety 15.3.1
sa polyném f(x) da vyjadrit’ nasledovne:

f(x) = (x —c)q(x) + r(x),
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pricom deg(r(x)) < deg(x —c) = 1. To vSak znamen4, Ze r(x) musi byt kon§tantny poly-
noém. Ale f(c) = (c —c)q(c) +r(c) =7(c) =0, ateda r(x) =0. O

Veta 15.3.5. Nech su fi(x),...,fm(x) € Flx], nech je g(x) € FIx] ireducibilny polynom.
Potom plati: ak g(x) deli sucin fi(x) - f2(x)...fm(x), tak potom g(x) deli aspori jeden z
polynémov f1(x), ..., fm(x).

Dokaz. Bezujmy na vSeobecnosti mozeme predpokladat, ze polynémy g(x), f1(x), f2(x),...
9

st normované. Ak je g(x) ireducibilny polyném, tak potom ged(g(x), fi(x)) = g(x) ak je
polyném fi(x) nasobkom polynému g(x), v opacnom pripade ged(g(x),fi(x)) = 1. Ak by
totiz ged(g(x), fi(x)) = d(x) € {1, g(x)}, potom by d(x)|g(x), €o je v spore s ireducibilitou
g(x). Teda musi existovat i také, ze g(x)|f;(x). O

Veta 15.3.6 (O jednoznacnej faktorizacii polynémov). Nech je f(x) € F[x] Fubovolny poly-
noém stupria deg(f(x)) > 0. Potom sa f(x) dd zapisat’ v tvare sic¢inu

f(x) = afi(x)°" - fm(x)°™, (15.5)
kde a € F, e1,...,em € N a fi1(x),...,fin(x) si navzdjom rézne normované ireducibilné

polynémy z F[x]. Naviac, odhliadnuc od poradia ¢initelov v rozklade 15.5, je rozklad po-
lynomu f(x) urceny jednoznacne.

Dokaz budeme viest matematickou indukciou vzhfadom na stupen polynému. Pripad
n =1 je trividlny, nakol'’ko polynémy stupna 1 su ireducibilné nad F[x]. Predpokladajme,
Ze sa I'ubovolny polyném stupna mensieho ako n da zapisat’ v tvare 15.5. Ukazeme, Ze
aj polyném stupna n mozno rozlozit’ na sucin ireducibilnych polynémov v tvare 15.5.
Ak je f(x) ireducibilny polyném, staéi ho normovat, t.j. vyjadrit v tvare a='f(x), kde a je
veduci koeficient polynému f(x). Ak polyném f(x) nie je ireducibilny, moZno ho vyjadrit’ v
tvare sucinu aspon dvoch polynémov; f(x) = g1(x)gz2(x). Oba polynémy g;(x), g2(x) maju
stupen 1 < deg(g1(x)),deg(g2(x)) < n, a preto ich podla induk¢ného predpokladu mozno
vyjadrit v tvare 15.5.

Ostava ukazat jednoznacnost rozkladu 15.5. Predpokladajme, Ze existuju dva roz-
liéné rozklady polynému f(x); t.j.

f(x) = afi(x) - Fm(x)™ =gy (x) 4 -+ gs(x)%. (15.6)

Veduce koeficienty v rozlicnych vyjadreniach toho istého polynému sa musia zho-
dovat), preto a = b. Zoberieme teraz napriklad polyném f;(x). KedZe f;(x) deli polyném
f(x), musi delit’ aj g1 (x)41 - - - g5 (x)%. Ale f(x) je ireducibilny polyném, a potom podl'a pred-
chadzajuicej vety musi delit’ niektory z polynémov g;(x), napriklad gi(x). Ale aj gi(x) je
ireducibilny nad F[x], a teda fi(x) = cgx(x), kde ¢ € F. Oba polynémy f;(x), gk(x) su
normované, a teda fi(x) = gx(x). Vydelime rovnost 15.6 polynémom f;(x)(= gx(x)) a
analogickym sp6sobom budeme riesit nova identitu. Nakol'ko v kazdom kroku sa znizi
stupen polynémov v identite, po kone¢nom pocte iteracii dostaneme identitu 1 = 1. Tym
sme dokazali, Ze obe faktorizacie polynému f(x) su, az na poradie Cinitelov v sicine,
identické. O
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15.4 Konec¢né polia

Pole, ako sme uviedli v definicii 15.2.2, je okruh, ktorého mnozina nenulovych prvkov
tvori komutativnu grupu vzhIadom na multiplikativnu operaciu. Prikladmi poli sti mno-
ziny komplexnych, realnych a racionalnych ¢isel s operaciami sc¢itania a nasobenia. Na
druhej strane, celé ¢isla tvoria okruh (dokonca obor integrity), ale nie pole. Spominané
polia st nekonecné. V teérii kédovania pracujeme a koneénymi mnozinami, a preto bu-
deme vyuzivat polia s kone¢nym poctom prvkov — konecné polia. Uvedieme najprv ko-
necné polia zalozené na okruhu celych ¢isel a potom sa budeme zaoberat kone¢nymi
polami vychadzajicimi z okruhu polynémovw.

Pripomenieme, Ze (Z,+,-) je okruh (obor integrity) a (Z/Z4,+,-) je faktorovy okruh,
ktorého prvkami su triedy rozkladu [0],...,[q—1]. Kym okruh (Z, +, -) nemohol byt polom
(s vynimkou 1 a -1 inverzné prvky k celym c¢islam nie su celé ¢isla), faktorovy okruh
(Z/Z4,+,-) za istych podmienok moze byt’ pofom .

Veta 15.4.1. Faktorovy okruh (Z,+,-) je polom prdve vtedy, ak je q prvocislo.

Dokaz. Nech je q prvocislo. Potrebujeme ukézat, ze ku kazdému nenulovému prvku
okruhu (Z/Z4,+,-) existuje v tomto okruhu inverzny prvok. Pripomenieme najprv, zZe
nulovym prvkom okruhu (Z/Z4,+,) je [0] a jednotkovym trieda [1]. Nech je s celé Cislo,
s € {l,...,q—1}. KedZe q je prvoéislo, plati ged(s,q) = 1 a teda existuju také dve celé
¢isla a, b, zZe

aq + bs = ged(s,q) = 1.

To znamena, Ze
(1] = [aq + bs] = [aq] + [bs] = [0] 4 [bs] = [bs] = [b][s],
a teda [b] je inverznym prvkom k prvku [s] a faktorovy okruh (Z/Z4,+,-) je polom.

Na druhej strane, predpokladajme, Ze okruh (Z/Z,+, -) je pole, ale q nie je prvocislo,
t.j. q je zlozené Cislo a d4 sa zapisat ako sucin ¢isel q = q1q2, kde 1 < q1,q2 < q. Kedze
(Z/Z4,+,") je pole, k nenulovému prvku [q;] existuje v poli inverzny prvok, [q]_]]. Potom
plati
[0] # [q2] = [q1]lq7 Mla2) = [(q1 - q7") - q2l = 47" - (a1 - q2)] = [q7 " - q] = [0],
spor. O

Zjednodusime trocha vypocty v poli (Z/Zg,+,-) zavedenim vhodnejSej reprezentacie.
UvaZujme mnoZzinu celych ¢isel Fq = {0,...,q — 1} a definujeme operécie s¢itania @ a
nasobenia ® prvkov z F; nasledovne (a,b € Fy):

adb=(a+b) mod q, a®b=ab mod q.

Definujeme teraz zobrazenie ¢ : Z/Z; — Fy; @([la]) = a mod q. Je zrejmé, Ze ¢ je
bijekcia. Ukazeme, Ze je aj homomorfizmus:
o([al+[b]) = o(la+bl)=a+b modq=a®b=e(al)® e(b])
o(ldb]) = e¢(la-bl)=a-b mod q=a®b=g(la)® ¢e([b]).
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Z vyssie uvedeného vyplyva, Ze ¢ je izomorfizmus, (Fq, ®,®) je konetné pole a polia
(Z/Z4,+,-) a (Fq, ®,®) st izomorfné. Pole (Fy, ®,®) budeme nazyvat’ Galoisovym polom
a oznacovat symbolom GF(q). Tam, kde to nepovedie k nedorozumeniu, budeme opera-
cie pola GF(q) oznacovat standardnym spésobom — ako + a -.

Podobne ako sme zaviedli konecné polia GF(q) pomocou okruhu celych cisel, zave-
dieme teraz rozsirenia koneénych poli pomocou okruhu polynémov.

Veta 15.4.2. Nech je F[x] okruh polynémov nad polom F, f(x) € F[x] a F[x]/(f(x)) je fakto-
rovy okruh polynémov nad polom F. Potom F[x]/(f(x)) je polom prdve vtedy, ak je polyném
f(x) ireducibilny polyném okruhu F[x].

Dokaz. Predpokladajme, Ze polyném f(x) je ireducibilny polyném okruhu F[x]. Uka-
zeme, ze k I'ubovolnému nenulovému prvku faktorového okruhu F[x]/(f(x)) existuje v
tomto okruhu inverzny prvok; t.j.

V(g(x)) € FIx]/(f(x)); (g(x)) # (0)3(h(x)) € FIx]/(f(x));  (f(x))(h(x)) = (1)

Nech (g(x)) € F[x]/(f(x)) je 'ubovolny nenulovy prvok faktorového okruhu. Bez ujmy
na vSeobecnosti moézeme predpokladat’, ze deg(g(x)) < deg(f(x)). KedZe polyném f(x)
je ireducibilny polyném nad polom F, ged(f(x),g(x)) = 1 a existuju také dva polynémy
a(x),b(x) € Flx], zZe

a(x)f(x) + b(x)g(x) = ged(f(x), g(x)) =1.

To znamena, Ze

(a(x)f(x) +b(x)g(x)) = (a(x)f(x)) + (b(x)g(x)) = (0) + (b(x))(g(x)) = (b(x))(g(x)) = (T)
a prvok (b(x)) je inverznym prvkom prvku (g(x)) faktorového okruhu F[x]/(f(x)).

Opacne, nech faktorovy okruhu F[x]/(f(x)) je pole a nech polyném f(x) je reducibilny
polyném okruhu F[x].To znamenad, Ze v okruhu F[x] existujui polynémy f;(x) a f,(x) také,
ze f(x) = f1(x)f2(x) a 0 < deg(fi(x)),deg(f2(x)) < deg(f(x)). Kedze F[x]/(f(x)) je pole k
prvku (fi(x)) € F[x]/(f(x)) existuje v tomto poli inverzny prvok, trieda (f;(x)™'). Potom
plati

(0) # (fa(x)) = (M(f2(x)) = (F10)7)(F10))(F2(x)) = (F10) 7 F1(x)F2(x)) =
= (fi(x)7f(x) = (f1(x)7)(0) = (0)

spor. [

Z predchadzjicej vety vyplyva, Ze ak je dané konecné pole GF(q) a polyném f(x) €
GF(q)[x] ireducibilny v okruhu polynémov GF(q)[x], tak m6zZeme skonstruovat’ konecné
pole GF(q)[x]/(f(x)), ktoré bude mat rad qde&(f®)), Otvorenou zostdva otdzka, &i exis-
tuja ireducibilné polynémy potrebnych stupnov. Skor, ako sa budeme zaoberat tymito
problémami, ilustrujeme na priklade konstrukciu kone¢ného pola pomocou faktorového
okruhu polynémov.

Priklad. Pri konstrukcii tzv. BCH kédov budeme vyuzivat koneéné pole GF(24). Pri jeho
konstrukcii budeme vychadzt z binarneho koneéného pola GF(2). Potrebujeme najst’



208 KAPITOLA 15. ALGEBRA

No | stupen polyném rozklad poznamka
1 0 0 0 prvok pola
2 0 1 1 prvok pola
3 1 X X ireducibilny
4 1 x4+ 1 x+ 1 ireducibilny
5 2 x? XX reducibilny
6 2 X2+ 1 (x +1)? reducibilny
7 2 x? 4 x x-(x+1) reducibilny
8 2 x* x4 1 x> x4+ 1 ireducibilny
9 3 x> XXX reducibilny
10 3 x>+ 1 (x+1)(x*+x+1) | reducibilny
11 3 X3 +x x(x+1)2 reducibilny
12 3 x3 + x? x2(x+1) reducibilny
13 3 x4+ x 41 x4+ x4+ 1 ireducibilny
14 3 x4+ X%+ 1 x4+ x% 41 ireducibilny
15 3 X3+ x2 +x x-(x*+x+1) reducibilny
16 3 X3 +x+x+1 (x+1)3 reducibilny

Tabulka 15.1: Polynémy stupna 0, 1,2, 3 nad polom GF(2)

ireducibilny polyném stupna 4 nad pofom GF(2). Polyném stupna 4 nad bindrnym polom
ma tvar
ao+a1x+azx2+a3x3+a4x4, a; €{0,1}, 1=0,...,4.

Aby mal polyném pozadovany stupen (4), a; = 1 a na vyber ostatnych 4 koeficientov
zostava 2* = 16 moznosti. Aby bol hladany polyném ireducibilny, nesmie byt delitelny
inym polynémom nizsieho stupna. To znamenad, Ze staci overit, ¢i je dany polyném de-
liteIny ireducibilnymi polynémami stupna 1 a 2. V tabulke 15.1 uvadzame polynémy
stupna 3 a mensieho nad polom GF(2).

Preverime teraz 16 polynémov stupna 4 nad pofom GF(2) na delitelnost ireducibil-
nymi polynémami stupna 0, 1,2, 3. Vysledky st uvedené v tabul'ke 15.2.

Okruh polynémov GF(2)[x] budeme faktorizovat pomocou ireducibilného polynému
f(x) = x* 4+ x + 1. Prvkami pola GF(2)[x]/x* + x + 1 st triedy rozkladu okruhu polynémov
GF(2)[x] podla ireducibilného polynému f(x). V jednej triede rozkladu su tie polynémy
okruhu polynémov GF(2)[x], ktorych rozdiel je delitelny polynémom f(x). Je zrejmé, zZe
v kazdej triede rozkladu existuje prave jeden polyném stupna 3 alebo mensieho, ktory
budeme nazyvat predstavitelom triedy. Ked'ze polynémov okruhu GF(2)[x] stupna 3 a
mensieho je 16, pole GF(2)[x]/x* + x + 1 obsahuje 16 prvkov. V tabulke 15.3 uvadzame
prvky pola GF(2)[x]/x* +x+1; prvok (trieda rozkladu) je reprezentovany predstavitelom
triedy.

Kvoli lepsiemu prehladu zhrnieme najdoleZitejSie poznatky o koneénych poliach v
nasledujucej tabul'ke [2]. Cast’ z nich sme uz dokézali, dokazovanim ostatnych poznatkov
sa budeme zaoberat'.

1. Rad (pocet prvkov) 'ubovolného kone¢ného pola je mocninou prvocisla.
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No | stupen polyném rozklad poznamka
1 4 x4 x? R
2 4 x* 1 (x+1)* R
3 4 x* +x x-(x+1D(x2+x+1) R
4 4 xtFx+1 Xt x+ 1 I
5 4 x4 %2 X% (x +1)? R
6 4 Xt x2 1 (x> +x+1)? R
7 4 xt %% 4 x x- (3 +x+1) R
8 4 X2 x4 1 (x+1)-(3+x*+1) R
9 4 x* +x3 x- (3 +x*4+1) R
10 4 x4+ x3+1 x4 x3 41 I
11 4 xt 3 x x- (3 +x*4+1) R
12 4 x* %3 4 x2 x2(x2 +x+1) R
13 4 X3 x+ T (x+1)%- (x*+x+1) R
14 4 3+ xE 1 (x+1)-(x+x+1) R
15 4 Xt x3 Fx? Fx x-(x4+1)3 R
16 4 X3 x| x4+ I

Tabulka 15.2: Polynémy stupna 4 nad polom GF(2)

(x)
(?)
(x3)

0030 Utk W N -

©

(x+1)

(x%2 +x)

3 +x%)

3B +x+1)

A +1)

(3 +x)

10| 2+x+1)

11| 3+x2+%)

12 GG+ +x+1)
13| C+x2+1)

14| 3+1)
15| (1)
16 | (0)

Tabulka 15.3: Prvky pola GF(2)[x]/x* +x + 1
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2. Pre I'ubovolI'né prvocislo p a celé kladné ¢islo m je najmensim podpol'om pola GF(p™)
pole GF(p). Prvky pola GF(p) sa nazyvaju celymi ¢islami pola GF(p™) a ¢islo p
jeho charakteristikou

3. V konec¢nom poli charakteristiky 2 pre 'ubovolny prvok pola 3 plati f = —f3.
4. Pre I'ubovolné prvocislo p a celé kladné ¢islo m existuje konecné pole s p™ prvkami.
5. Kazdé konecné pole GF(q) obsahuje aspon jeden primitivny prvok.

6. Nad kazdym kone¢nym polom existuje pre I'ubovolné kladné celé ¢islo m primi-
tivny polyném stupna m.

7. Kazdy primitivny prvok pola GF(q) ma nad I'ubovolnym podpolom pola GF(q)
ireducibilny miniméalny polyném.

8. Dve konec¢né polia s tym istym poctom prvkov st izomorfné.

9. Pre 'ubovolné q, ktoré je mocninou prvocisla a 'ubovolné celé kladné ¢éislo m je
pole GF(q) podpolom pola GF(q™) a pole GF(q™) je rozsirenim pola GF(q).

10. Ak ¢islo n nie je delitelom ¢isla m, tak pole GF(q™) nie je podpolom pola GF(q™).

11. Pre 'ubovolny prvok pola GF(q™) stupen jeho minimalneho polynému nad GF(q)
deli m.

Konecné pole predstavuje aditivnu abelovski grupu a mnozina jeho nenulovych prv-
kov je multiplikativna abelovska grupa. V dalSom budeme pracovat’ s multiplikativnou
grupou kone¢ného pofa.

Veta 15.4.3. Nech je GF(q) konecné pole a B1,...,Bq-1 st jeho nenulové pruky. Potom
plati

X4 —T=(x—B1)(x—B2)...(x— Bq-1)-

Dokaz. Staci ukazat, zZe I'ubovolny nenulovy prvok pola GF(q) je korennom polynému
x9~1 — 1. UvaZzujme prvok . Jeho mocniny f, f?,..., " = 1 tvoria podgrupu multipli-
kativnej grupy pola GF(q). Rad podgrupy, generovanej prvkom f deli rad multiplika-
tivnej grupy pola GF(q); hi(q — 1). To znamena, Ze existuje kladné celé ¢islo k také, ze
hk = (q — 1). Potom v8ak B9 = gt = (BM)* = 1% = 1, a teda B je koretiom polynému
X471 —1. O

Reprezentacia konec¢nych poli pomocou tried polynémov bola trocha neprehladna.
Ukazeme, ze multiplikativna grupa konec¢ného pola je cyklicka a budeme reprezentovat’
(nenulové) prvky kone¢ného pol'a mocninami generatora jeho cyklickej multiplikativne;j

grupy.

Veta 15.4.4. Multiplikativna grupa konecného pola GF(q) je cyklickd.
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Dokaz. Budeme postupovat podla [2]. Multiplikativna grupa kone¢ného pola GF(q)
ma rad q — 1. Ak by bolo ¢islo q — 1 prvocislo (napr. 3,7,31,127,...), tvrdenie vety by bolo
trividlne. Podl'a predchadzajicej vety musi rad kazdého nenulového prvku delit q — 1.
To znamena, Ze nenulové prvky maju bud rad 1 alebo rad q — 1. Jednotkovy prvok pola
GF(q) ma rad 1 a vSetky ostatné nenulové prvky maji rad q — 1 a teda sd generatormi
multiplikativnej grupy kone¢ného pola GF(q).

Nech je ¢islo g — 1 zloZené. Potom ho mozno jednoznaéne rozlozit na siucin prvocisel:
_ Vi v
q—1=p;"-ps°

Polyném x(9~1/Pi — 1 méZe mat najviac (q — 1)/p; korenov, to znamen4, Ze v poli GF(q)
existuje nenulovy prvok, ktory nie je koreriom polynému x(9-1/Pi — 1. Oznaéime tento
prvok symbolom a;. Je zrejmé, Ze pre l'ubovolné i, i = 1,...,s existuje nenulovy prvok
a; pola GF(q) taky, ze agq—n/ Pt - 1. Na zéklade prvkov a; zostrojime teraz prvky b; a b
pola GF(q):

(q=1)/p;

bi:ai a be]bz...bs

a ukazeme, zZe rad prvku b je q — 1; t.j. Ze b je generator multiplikativnej grupy pola
GF(q) a tym aj to, Ze tato grupa je cyklicka.

Najprv ukazeme, ze rad prvku b; je p.". Plati
v v\ Pit
Pt _ (a=D/pi* " (q-1) _
bt = (ai > =q =1.

To znamend, Ze rad prvku b; deli p;*, t.j. ma tvar p;"*, priom n; < v;. Predpokladajme,
Ze n; < vi. Potom by aj

Ale

vi—1

.1 vi\ Pi
Pt _ (q_])/pil N _ (g=1)/p:
b = <ai ) =a 75 1.

i

To znamena4, Ze n; = v;. Teraz ukazeme, zZe rad prvku b sa rovna q — 1. Predpokladajme,
Ze rad prvku b je n; t.j. b™ = 1. Pre l'ubovolné i = 1,..., s plati

bR Py /Pt
Vyjadrime teraz prvok b pomocou prvkov b; a vyuZzijeme to, Ze bfi P

(b1bz.. .bs)n'p‘V] RCEL (bﬂn'p]h“'pzs/pivi ”.(bi_])pfjﬂn.p?~~pZS/(ijﬂ i

v v Vi Vigl v v Vi1l Vi v v Vs Vi
(bi)n-m‘---pss/pi‘ (bm)piﬁ npy epds /e ) __'(bs)pssn-pﬂ---psz /Pt

vy v v Vi Vi Vi v Vi vq Ve Vigl Vi

— (‘I)Tl"Pz '"PZS/PiI . ‘I)n‘P] '"P:S/Pilpil] . (bi)n'p] “Pst/Pit (‘I )Tl"P1 "‘pss/(pii] Pit) .
e

1 o

(s e (b))
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Z toho, ze rad prvku b; je p,* a z poslednej rovnosti vyplyva, Ze, ze p;* deli n pre i,...,s.
Cisla p;* su vSak navzdjom nesudelitelné, a to znamena, ze

Vs _

n=pl =g,
O

Prvok b radu q — 1, ktorého existenciu sme dokézali v predchadzajicej vete, je primi-
tivhym prvkom pola GF(q). Tym sme zaroven dokazali nasledujice dolezité tvrdenie.

Dosledok 2. V kaZdom koneénom poli existuje primitivny prvok.

Vratime sa k polu GF(2*) = GF(2)[x]/x* +x + 1 z prikladu 15.4 a najdeme jeho primi-
tivny prvok. Pole GF(2%) sme zostrojili faktorizaciou okruhu polynémov GF(2)[x] pomo-
cou polynému f(x) = x* + x + 1. Uvazujme teraz prvok (x) pola GF(2*); (x) predstavuje
triedu polynémov z okruhu GF(2)[x], ktoré po deleni polynémom f(x) davajua zvySok x.
Dosadime prvok (x) do polynému f(x). Vzhladom na uzavretost pola GF(2*) na séitanie
a nasobenie dostaneme opit prvok pola GF(2*). Pripomenieme este, Ze pre 'ubovolné
a(x),b(x) € GF(2)[x] plati

(a(x)) + (b(x)) = (a(x) +b(x)), (a(x))(b(x)) = (a(x)b(x)).
Postupne dostavame
f((x) =)'+ xX)+1=0H+x+1) =" +x+1) = (0).

To znamen4, Ze prvok (x) je korefiom polynému x* +x + 1. Oznaéime prvok (x) symbolom
o a ukdzeme, Ze (zhodou okolnosti) je o primitivnym prvkom pola GF(2%). Vyjadrenie
prvkov pola GF(2*) v podobe mocnin primitivneho prvku « je uvedené v tabulke 15.4

V prvom stipci tabulky 15.4 je exponent mocniny primitivneho prvku «, v druhom je
uvedena mocnina «!, v tretom je bindrny kéd prislusného prvku a vo tvrtom je prvok ot
vyjadreny v podobe linearnej kombindcie mocnin prvkov o, o2, o', «°. Posledny stipec
si zasluhuje vysvetlenie. Zapis prvkov kone¢ného pola pomocou mocnin primitivneho
prvku umoznuje jednoducho realizovat nasobenie prvkov pola. Pre 'ubovolné dva prvky
pola of,of € GF(2%) plati a'od = 't = li+)) mod 15 Na druhej strane, aj ked je pole
GF(2%) aditivna abelovska grupa, uréit prvok, ktory predstavuje sicet «' + o/ nie je pri
tejto reprezentacii prvkov pola GF(2*)jednoduché.

Ukazeme, Ze sa kazdy prvok pola GF(2%) d4 zapisat’ pomocou linedrnej kombinacie
prvkov o, o, «', «° jednoznaénym spdsobom. Nulovy prvok pola sa da zapisat v podobe
linearnej kombinacia s nulovymi koeficientami. Vieme, ze 1 = «° a predpokladajme, Ze
sa vSetky mocniny !, 0 < i < n daju vyjadrit v tvare linearnej kombinacie prvkov
o3, o, ol «° . Ukazeme, ze potom takto da vyjadrit aj prvok o™'. Nech o™ = az&’ +
w4+ aja! + ag. Potom

oM = o™ o= azot + el + aja + apa.
Ked'ze « je koreriom polynému x* + x + 1, plati «* + « + 1 = 0 a (ked’ze pole GF(2*) ma
charakteristiku 2, a teda —o* = a*)plati a* = « + 1. VyuZijeme tento vztah a upravime
linedarnu kombinaciu pre o«™t':

o = ol +ared + agx + az(o+ 1) = @ + ajo® + (ap + az)x + a;.
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0 o 0001 1
1« 0010 x

2 o2 0100 o2

3 o8 1000 o

4 o4 0011 +o 41
5 o 0110 o +a

6 «° 1100 o +o

7 o« 1011 & +o +1
8 o« 0101 o +1
9 of 1010 ol +o
10 «° 0111 of 4o +1
11 o 1110 & +o2 +«

12 &% 1111 &3 4o +a +1
13 o« 1101 o +o? +1
14 o 1001 o +1
15 «'° 0001 1

Tabulka 15.4: Reprezentécia nenulovych prvkov GF(24)

Ostava este ukazat, ze vyjadrenie «' je jednoznaéné. Predpokladajme opak, t.j.

of = az0d + o + aja’ + ag = bz + bra® + b’ + by.

Potom vsak

0 = (130(34- azocz—i—a]oc] + Clo—b30(3+b2062+b106] + by =
= (a3 —bsz)o’ + (az —bp)a® + (@1 — by)a’ + (ap — bo).

Z poslednej rovnosti vyplyva, Ze a3 = bz, a; = by, a; = by, ag = by, a teda vyjadrenie
prvku pola v podobe linearnej kombinacie mocnin primitivneho prvku je jednoznaéné.

Poznamka. Ak budeme reprezentovat prvky pola GF(2*) pomocou 4-bitovych celych
¢isel, vypodet ot! mozno realizovat nasledovne:

if (a > 7) then a3 =1
a=(a<<1)+3; : a=aaa0+0011 =aya;ap]
else : a3 =0
a=(a<<1) :oa=aajap

Zovseobecnenim predchadzajicej konstrukcie dokdaZeme nasledujicu vetu.

Veta 15.4.5. Nech je GF(q™) lubovolné konecné pole, nech je o primitivny prvok tohto
pola. Potom l'ubovolny prvok (3 pola GF(q™) mozno jednoznaénym spésobom vyjadrit’ v
tvare

1

B=amn o™+ +aj+ ap, (15.7)

kde ay...,am—1 € GF(q).
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Na konstrukciu kone¢ného pol'a nam stacil I'ubovolny ireducibilny polyném. V pri-
klade, ktory sme uviedli, bol koren ireducibilného polynému pouzitého na vytvorenie
pola zaroven aj primitivnym prvkom zostrojeného pola. Takyto polyném sa nazyva pri-
mitivnym polynémom.

Definicia 15.4.1. Nech je dané konecné pole GF(q) a ireducibilny polynom f(x) nad
tymto polom. Polyném f(x) sa nazyva primitivnym polynémom nad polom GF(q), ak ko-
reritomj polynomu f(x) v rozsireni pola GF(q), poli GF(q)[x]/f(x) je primitivny prvok pola
GF(q)[x]/f(x).

Pripominame, Ze nie kazdy ireducibilny polyném f(x) nad polom GF(q) je zaroven
primitivnym polynémom. Na druhej strane, pre 'ubovolné konec¢né pole GF(q) existuju
primitivne polynémy (nad polom GF(q)) lubovolného stupna.

Priklad. Uvazujme ireducibilny polyném f(x) = x* + x> +x?> + x + 1 nad polom GF(2).
Tento polyném ma v poli GF(2)[x]/x* +x3 +x%+x+ 1 korene (x) = B; B2, p3, p*. Vyuzijeme
vztah p* + B3 + B2+ B + 1 = 0 a vyjadrime B* pomocou linedrnej kombindcie nizsich
mocnin prvku B: p* = B3 + B2 + B + 1. Jednotlivé mocniny si uvedené v tabulke 15.5.

0 B° 0001 1
1 B' 0010 B

2 B% 0100 p2

3 B3 1000 p3

4 B 1M1 B3 4B 4B +1
5 B> 0001 1

Tabul'ka 15.5: Mocniny prvku f pola GF(2%)

Prvok 3 ma teda rad 5. (Pomocou tabulky 15.5 Tahko dokazeme, Ze rad 5 maja aj
ostatné korene polynému f(x), prvky B2, p3, f*). Ireducibilny polyném x* +x3 +x* +x + 1
nad polom GF(2) teda nie je primitivny.

V d’alsej casti budeme pokracovat v skimani zakladnych vlastnosti koneénych poli.
Vieme, Ze charakteristika konecného pola je prvocislo. V akom vztahu je pole GF(p™) s
charakteristikou p s kone¢nym polom GF(p)?

Veta 15.4.6. Nech je GF(q) l'ubovolné konecné pole, potom GF(q) obsahuje jediné konecné
pole, ktorého rdd je charakteristikou pola GF(q).

Dokaz. Nech je 1 jednotka konecného polfa GF(q). Sumul+1+---+ 1 oznac¢ime sym-
~—_——

n
bolom n a zostrojime postupnost’

0,1,2,3...,p—1,p=0.

Tato postupnost’ je konec¢na (lebo GF(q) je konecné pole) jej prvky tvoria aditivnu cyk-
lickd grupu G. Scitanie prvkov je v grupe G definované ako sucet celych ¢isel mod p.
Vyuzijeme to, Ze v poli GF(q) plati distributivny zdkon a zavedieme nasobenie v grupe G
pomocou s¢itania mod p nasledovne («, f € G):
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1. -1 =aq,

2. 0-BP+1) =B+ .

dokonc¢it’ podl'a Niederreitera
L]

V tabulkach 15.1 a 15.2 sme uviedli ireducibilné polynémy stupna 2, 3,4 nad polom
GF(2). V poli GF(2*) sa vsak tieto ireducibiné polynémy dali rozloZit na sdéin linedrnych
¢initelov 15.6. Tento priklad ilustruje skuto¢nost, zZe ireducibilné polynémy nad polom
GF(q) mozu byt reducibilné nad vhodnym rozsirenim pola GF(q). Pri konstrukcii cyk-
lickych kédov budeme potrebovat zostrojit’ polyném nad nejakym koneénym polom s
predpisanymi korenmi; pozrieme sa preto na takéto polynémy podrobnejsie. Zavedieme
najprv jeden dolezity pojem.

Definicia 15.4.2. Nech je GF(q) konecné pole a GF(Q) je jeho rozsirenie; nech «x € GF(Q).
Normovany polynom my(x) nad GF(q) budeme nazyvat minimdlnym polynomom prvku
« nad polom GF(q), ak plati

1. my(a) =0,

2. ak existuje polynom a(x) nad GF(q) taky, Ze a(x) = 0, tak potom my(x)|a(x).

Minimalny polyném prvku « nad polom GF(q) je teda normovany polyném najmen-
Sieho stupna nad polom GF(q), ktorého korenom je prvok «. Minimalny polyném prvku
o vzdy existuje a je dany jednoznacne.

Priklad. Minimélne polynémy prvkov pola GF(2*) nad pofom GF(2) st uvedené v ta-
bulke 15.6

l?oznémka. Cast venovana kone¢nym poliam bola spracovana na zaklade [2] a [10].
Citatelovi, zaujimajicemu sa o teériu konec¢nych poli odporic¢ame do pozornosti najma
pracu [10]. Zaujimavy pohlad na kone¢né polia a ich aplikécie v kryptolégii ponika aj
praca [?].

15.5 Vektorové priestory

Zrejme najznamym prikladom vektorového priestoru je trojrozmerny Euklidovsky pries-
tor, ktory vystupuje v mnohych tlohach stredoskolskej matematiky a fyziky. Euklidov-
sky priestor mozno zovSeobecnit’ na n-rozmerny vektorovy priestor nad pol'om realnych
cisel, ktory taktiez nachadza uplatnenie v mnohych aplikaciach. V tedrii kédovania ne-
budeme pracovat s vektorovymi priestormi nad redlnymi cislami, ale budeme vyuZzi-
vat trocha abstraktnejSie vektorové priestory nad koneénymi polami. Tieto vektorové
priestory su zakladom pre konstrukciu ve'mi délezitych samoopravnych kédov, pre tzv.
linearne kédy. Zavedieme najprv zakladné pojmy a potom preskimame vlastnosti vek-
torovych priestorov, ktoré budeme potrebovat (napriklad) pre konstrukciu, kédovanie a
dekédovanie linearnych kédov.
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prvok miniméalny polyném
X

x4+ 1

x4 x4 1
x4+ 1

X x4+
x4+ 1

x4+ x4+ 1
X3 x 1
Xt x3 41
xtx+1
X3 X x T
X2 4 x+1
x4 41
X3 x 1
x4+ 41
X3 41

U1-J>UJN—‘OO

N

] R, 2 ] ] 8 ] 2 8

9\O

—_a a4
w N = O

RR R R R
N

Tabulka 15.6: Minimalne polynémy prvkov pola GF(2%)

Definicia 15.5.1. Nech je F l'ubovolné pole. Nech V je mnozina, na ktorej je definovand
bindrna operdcia +, a nech pre kazdé a € Fa v € V existuje prvok a -v € V, pricom pre
aditivne a multiplikativne operdcie platia nasledujiice podmienky:

. (V,+) je abelovskd grupa; pre lubovolné u,v € V a l'ubovolné a,b € F

.a-(u+v)=a-u+a-v;

1
2
3. (a+b)-v=a-v+b-v;
4. (a-b)-u=a(b-u);

5

. l-u=mu,

kde 1 je jednotkouvy prvok pola F. Potom V je vektorovy priestor nad polom F. Pruky mno-
Ziny V sa nazyvaju vektory a prvky pola F skaldry.

Poznamka. Vsimnite si, Ze v definicii vektorového priestoru nad polom F vystupuju
dve rozne aditivne operacie (sc¢itanie v poli F a sc¢itanie v grupe (V,+)) a dve takisto roz-
licné multiplikativne operacie ("vnitorné nasobenie prvkov pola a "vonkajsie nasobenie
vektora skalarom.) Z kontextu bude spravidla jasné, o aku operaciu sa jedn4, a preto na
oznacenie oboch aditivnych operacii budeme pouzivat’ symbol "+". Budeme sa pridrzat’
zauzivaného oznacenia a operator "-"budeme vynechavat tak pri oznacovani "vonkaj-
siehoéko aj "vnutorného"nasobenia. Aby sme odlisili vektory a skalary, budeme vektory
sadzat’ boldom.

Priklad. 1. Nech je F I'ubovolné pole a n > 1 je 'ubovolné prirodzené ¢islo. Potom sym-
bolom F" oznacime mnozinu vSetkych usporiadanych n-tic prvkov pola F. Definujeme
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operacie s¢itania n-tic a nasobenia n-tic prvkom pola nasledovne: pre 'ubovolné prvky
(n-tice) u,v e F*; u = (uy,...,un),v= (v1,...,vy) a l'ubovolny prvok c € F plati

u+v=(uw+vy...,un+vy), cu=(cuy,...,cuy).
Da sa ahko overit, Ze F" s takto definovanymi operaciami je vektorovy priestor.

2. Trocha netradiénym prikladom vektorového priestoru je faktorovy okruh poly-
nomov F[x]/(x™ — 1), pozostavajuci z tried reprezentovanych polynémami nad polom F
stupnia mensieho nez n.

Nech je dany vektorovy priestor V nad polom F, nech su uy,...,uy € V I'ubovolné
vektory a nech su ay,..., an, € FIubovolné skalary. Vektor

v:a]u1+"'+amum

budeme nazyvat linedrnou kombindciou vektorovuy,...,un. Mnozina vektorovuy, ..., un
sa nazyva linedrne zdvislou, ak existuje mnozina skalarov aj,...,an € F, z ktorych je
aspon jeden nenulovy a

0=au; + -+ amUm.

Ak mnozina vektorov uy,...,u;, € V nie je linearne zavisla, budeme o nej hovorit, ze
je linedrne nezdvisld. Je zrejmé, Ze ak ma byt nejaka mnozZina vektorov linedrne neza-
visld, nesmie obsahovat nulovy vektor a Ziaden z jej vektorov sa nesmie dat vyjadrit’
v podobe linearnej kombinacie ostatnych vektorov. MnozZinu vsetkych linearnych kom-
binAcii vektorov uy,...,uym € V{qjuy +--- + anm, a; ..., an € F} budeme oznacovat’
symbolom [uy,...,uny]. Budeme hovorit, Ze mnozina vektorov uy,...,uy generuje vek-
torovy priestor W, ak sa kazdy vektor z W da vyjadrit v podobe linearnej kombinacie
vektorov uy,...,um; t.j.
YwiveW —veu,...,unl).

Je zrejmé, Ze ten isty vektorovy priestor moZno generovat pomocou viacerych generu-
jacich mnozin vektorov. Budd néas zaujimat mohutnosti generujicich mnozin vektorov
vektorového priestoru.

Veta 15.5.1 (Steinitzova veta.). Nech je vektorovy priestor V nad polom F generovany

mnoZinou linedrne nezdvislych vektorov uy, ..., una nech st vektory vy,..., vk € Vlinedr-
ne nezdvislé. Potom k < n a existuje n—k vektorov u; takych, Ze [vy,..., Vi, 0y, ..., 05 | =
V.

Dokaz. Budeme postupne nahradzat vektory u; vektormi v; v mnoZine generujucej
vektorovy priestor V. Dokaz budeme potom robit’ matematickou indukciou vzhladom na
pocet vektorov v; v mnozine vektorov generujicich vektorovy priestor V.

Mnozina uy,...,u, generuje V; t.j. [uy,...,uy] = V. Pridajme do generujiicej mnoziny
vektor v;. Ked'Zze v; € V a vy # 0 existuje linearna kombinacia

Vi :Cl1111+"'+0.n11n,

taka, Ze medzi koeficientami a; ..., a, je aspon jeden nenulovy. Bez ujmy na vSeobec-
nosti mozeme predpokladat’, Ze a; # 0. Potom mézZeme vyjadrit’ vektor u; pomocou line-
arnej kombindacie

u; = vy + aﬂ aug - -+ a]’] anUp.
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Z toho vyplyva, Ze mnozina vy, us, ..., u, generuje vektorovy priestor V.
Predpokladajme, Ze mnozina vektorov vy,...,Vvs_1,Us, ..., U, generuje vektorovy pries-
tor V,

Definicia 15.5.2. Vektorovy priestor V nad polom F sa nazyva koneénorozmerny, ak exis-
tuju vektory uy,...,un € V také, Ze [uy,...,un] = V. Ak vektorovy priestor nie je konec¢no-
rozmerny, nazyvame ho nekoneénorozmernym vektorovym priestorom.

Definicia 15.5.3. Nech je vektorovy priestor V nad polom F konecénorozmerny. Vektory

uj,...,un € V nazyvame bdzou vektorového priestoru V, ak
1. [uyg,...,uy] =YV,
2. vektory uy, ...,y siu linedrne nezdvislé.

Jeden a ten isty (kone¢norozmerny) vektorovy priestor moze mat viacero rozlicnych
baz. Podstatné je, Ze vSetky budd mat rovnaky pocet prvkov.

Veta 15.5.2. Nech je V konecnorozmerny vektorovy priestor nad polom F. Potom vsetky
bdzy vektorového priestoru V maji rovnaky pocet prvkouv.

Pocet prvkov bazy (konecnorozmerného) vektorového priestoru teda nezavisi od vy-
beru bazy. Zavedieme na jeho oznacenie Specialny pojem.

Definicia 15.5.4. Dimenzia konecnorozmerného vektorového priestoru je pocet prvkov
niektorej z jeho bdz. Dimenzia nulového vektorového priestoru je 0. Dimenzia nekonecno-
rozmerného vektorového priestoru je oo.

15.6 Linearna algebra

V tejto Casti zavedieme matice, zakladné operacie s maticami a ich vlastnosti; pojem de-
terminantu, vlastnosti determinantov a pouzitie determinantov pri zistovani vlastnosti
matic a na rieSenie sdstav linearnych rovnic. Pgjde o zakladné poznatky nevyhnutné
najmé pre konstrukciu, kédovanie, dekédovanie a dokazovanie vlastnosti linearnych,
cyklickych a BCH kédov. Pri pisani tejto ¢asti sme cerpali najmé z prac [4], [8] a [13].

15.6.1 Matice

Definicia 15.6.1. Maticou A typu mxn nazyvame mn prvkov aj1,a12,...,a1n, 21y .-+, Amn
pola F° usporiadanych v m riadkoch a n stlpcoch:

ar,, a2, a3z ..., Ain
A— az, azo, azsy, ..., a2n
Am,1y am;2, amg3, ...y Qmn

Sniektoré vlastnosti matic platia aj pre slabsie algebraické Struktiry, napr. okruhy, ale véé$ina matic,
s ktorymi pracujeme v tedrii kédovania (najmé pri skimani samoopravnych kédov) je definovanych ako
matice nad nejakymi koneénymi polami, a preto sme aj my postavili definiciu matic na poliach.
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Maticu A typu m x n budeme oznacovat’' A = (a;;j)mn, alebo typ matice vypisovat
explicitne; A = (a;;) je matica typu m x n. Usporiadana dvojica (1,j) 1 <i<m,1<j<n
sa nazyva miestom matice , ¢islo i riadkovym indexom a ¢islo j stipcovjlm indexom
matice, prvok pola F priradené jednotlivym miestam matice A budeme nazyvat prv-
kami matice A. Ak m = b, maticu A budeme nazyvat Stvorcovou maticou radu n.
Prvky ai1,a22,...,ann, tvoria hlavni diagondlu Stvorcovej matice A (radu n) a prvky
A1y 201y, An,1 Vedlajsiu diagondlu matice A. Nulovou maticou sa nazyva matica,
ktorej vSetky prvky sd nulové (rovné neutralnemu prvku pola F vzhfadom na scitanie).
Stvorcova matica (radu n) sa nazyva diagondlna, ak aij =0, i#j; 1 <1,j <ntj. matica
moézZe mat nenulové prvky len na hlavnej diagonale a vSetky jej ostatné prvky su nulové.
Stvorcova matica (radu n) sa nazyva jednotkovd (alebo aj identickd), ak je diagondlna a
vSetky prvky na jej hlavnej diagonale nadobudaju hodnotu 1, t.j. neutralneho prvku pola
F vzhI'adom na néasobenie. Jednotkova matica radu m sa oznacuje symbolom I,,.

Definicia 15.6.2. Hodnostou matice sa nazyva maximdlny pocet linedrne nezdvislych
vektorov, tvorenych riadkami matice.

Veta 15.6.1. Nech je A matica typu m x n. Potom pre hodnost’ h matice A plati
h < min(m,n).

Definicia 15.6.3. Matica

ar,,  azi, asiy, ...y, Qmi
AT _ ar2, a2, az2, ..., Qm2
Ainy A2ny A3ny -..y Qmmn

ktord vznikne vymenou riadkov matice A za stl})ce (alebo preklopenim okolo hlavnej dia-
gondly) sa nazyva transponovana matica k matici A.

Veta 15.6.2. [13] Hodnost matice A sa rovnd hodnosti transponovanej matice A'.

Nasledujuce dve vety prevzaté z [13] poskytuju navod na vypocet hodnosti matice.

Veta 15.6.3. Hodnost matice A nad polom F sa nezmeni, ak

1. zmenime poradie riadkov v matici,
2. vyndsobime jeden riadok matice nenulovym prvkom pola F,

3. pripocitame k jednému riadku matice linedrnu kombindciu ostatnych riadkov ma-
tice,

4. vynechdme v matici riadok, ktory je linedrnou kombindciou ostatnych riadkov ma-
tice.

Poznamka. VyuZijuc vetu 15.6.2 moZeme upravy uvadzané vo vete 15.6.3 robit’ aj nad
stlpcami matice A.
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Veta 15.6.4. Matica

ap, a2, a3, a4y, ..., Qin
0, @y a3, a4, ..., @Qn
A = 0, O, as;s, asa, ceey Q3n (15.8)
o, ..., 0, amm ... Qamn
kde su prvky leZiace na diagondle ajj,...,amm nenulové a pruky pod diagondlou

rovné 0 md hodnost’ m.

Priklad 15.1. VyuZijeme operdcie uvddzané vo vete 15.6.3, upravime maticu na tvar
uvedeny vo vete 15.6.4 a uréime jej hodnost. UvaZujme celociselnt maticu A

2 0 35 1
6 =2 1 3 4
8§ -2 -2 8 5
4 1 2 0 -1

Treti riadok je linedrnou kombindciou prvych dvoch, a preto ho moZno vynechat

2 0 35 1
6 -2 1 3 4
4 1 2 0 -1

Teraz preusporiadame stipce matice

1 2 0 35
4 6 -2 1 3
-1 4 1 2 0

Od druhého riadku odéitame Stvorndsobok prvého a k tretiemu riadku pripocitame prvy
riadok:

1 2 0 -3 5

0 -2 =2 13 17

0O 6 1 -1 5

A nakoniec k tretiemu riadku pripocitame trojndsobok druhého

12 0 -3 5
0 -2 -2 13 17
0 0 -5 38 —46

Vyslednd matica spliia podmienky vety 15.6.4, a preto md matica A hodnost’ 3.

Teraz definujeme dolezity pojem podmatice, ktory budeme potrebovat’ pri vypocte de-
terminantov. Budeme vychadzat z matice A typu m x n. Z mnoziny 1,..., m vyberieme
k-prvkovi podmnozinu iy,...,1ix a podobne z mnoZiny 1,...,n vyberieme l-prvkovi pod-
mnozinu ji,...,j. Podmaticou A’ typu k x 1 nazveme maticu
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Aigiry Aoy Giggzy oeey Qi
Al — Aizjis  Qiggjay  Qigyjzy --y Qigjy
Qigjry  Hgjoy  Qigjzy o0y Qiggjy

Hoci matice vyzeraju zlozZito, mézu byt samy prvkami este zlozitejSich struktar. Uva-
Zujeme mnozinu matic typu m x n s prvkami z pola F (nad polom F). Najprv formalizu-
jeme zdanlivo trividlny, ale mimoriadne délezity pojem, rovnosti matic, ktory potrebu-
jeme na korektné zavedenie operacii nad maticami.

Definicia 15.6.4. Matica A sa rovnd matici B, ak st rovnakého typu a
Cli’j = bi,j Vl, ]
Pre tieto, resp. pre matice rovnakého typu nad tym istym polom moéZeme definovat
operaciu séitania.
Definicia 15.6.5. Sic¢tom dvoch matic A a B typu m x n je matica B typu m x n, takd Ze

ci’j:ai‘j—i—bid, 1§1§m,1§)§n

Ked’Ze do su¢tu matic sa premietaju vlastnosti suctu prvkov pola, sicet matic je aso-
ciativny, komutativny, v mnozine vSetkych matic toho istého typu nad polom F existuje
nulovy prvok (nulova matica 0) a pre kazdu maticu A existuje opacna matica —A taka,
ze

A+-A=0.
Mnozina vSetkych matic rovnakého typu nad tym istym polom s operaciu sc¢itania teda
tvori komutativnu grupu.

Matice moéZeme podobne ako vektory nésobit’ prvkom pol'a F: pre maticu A = (a;;)
typu m x n a prvok « € F definujeme ot- A = (- a;;).

AKko to je s ndasobenim matic? Aby vysledok nasobenia matic nad pol'om F bol maticou
nad polom F, vyuZijeme pri ndasobeni matic skalarny sucin vektorov. Potrebujeme este,
aby matica A mala tolko stipcov, kolko ma matica B riadkov. Ak je tato podmienka
splnend, moézeme definovat’ sicin matic

Definicia 15.6.6. Matica C typu m x n, takd Ze

P
Cij = Qiibi + Qibaj -+ aipby = Y @ik iy,
k=1

Je stucinom matic A typu m x pa B typu p x n.

Priklad 15.2. UkdZeme, Ze sti¢in matic nie je komutativna operdcia. UvaZujme dve Stvor-

cové matice nad polom R,
1 2 5 6
(i) ==(0%)
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19 24 23 34
AB:(% m) BA:(N %)

AB + BA.

Potom

a teda

Vlastnosti si¢inu matic zhrnieme v nasledujicej vete [4].

Veta 15.6.5. Nech si matice A typu m x p, B typu p x r a C typu v x n l'ubovol'né matice
nad polom F, nech st «, B Pubovolné prvky pola F. Potom plati

(AB)C = A(BC);
(A+B)C =(AC+BC);
AB+C)=AC + BC;
- (B-A=(ap) A

- (AB) = (x-A)B;
I,LA=A AI —A.

S vk L b o~

15.6.2 Determinanty

Uvazujme Stvorcovd maticu
al; a
A— 1,1 a1
azi1 azp
s prvkami z pola F. Determinantom matice A budeme nazyvat vyraz

a1 app
a1 a2

=aya22 —a12027. (15.9)

Determinant matice A budeme oznacovat symbolom det(A). Zov§eobecnime definiciu
determinantu na pripad $tvorcovej matice typu n x n, kde n > 2. Permutdciou mnoziny
M = {1,2,...,n} budeme nazyvat I'ubovolnu bijekciu ¢ : M — M. MnoZinu vSetkych
permutéacii mnoziny M budeme oznacovat symbolom P(M). Permutaciu ¢ mozno jedno-
znacne zadat pomocou tabulky:

resp. ak fixujeme poradie prvkov definicného oboru (prvy riadok tabulky), tak permuta-
ciu ¢ moézeme jednoznacne zadat’ pomocou druhého riadka tabulky zapisaného v podobe
vektora: (¢(1), d(2),...,d(n)). Inverziou permutdcie ¢ nazveme dvojicu (1 <i<j<n)
taku, ze ¢(i) > $(j). Napriklad identicka permutacia (1, 2,3,4,5) nema Ziadnu inverziu,
permutacia (2,1,3,4,5) ma jednu inverziu (1,2), permutacia (3,5,4,2,1) ma 8 inverzii:
(1,4):(1,5);(2,3);(2,4);(2,5);(3,4);(3,5);(4,5). Pre zovSeobecnenie pojmu determinantu
je popri pojme permutacie dolezity aj pocet inverzii permutacie; pocet inverzii permu-
tacie ¢ budeme oznacovat’ symbolom i(¢d).
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Definicia 15.6.7. Nech A je Stvorcovd matica typu n x n nad nejakym polom F, M =

{1,2,...,n};
arg Cl]’z e A1n
az;n a2 ... azn
A =
an,1 Qn2 Anmn

Determinanom matice A budeme nazvat’ vyraz

det(A) = > (=D xqy4ma2402) .- Anpmn)- (15.10)
$eP(M)

Vsimneme si dva pripady, n = 2,3. V prvom pripade existuju dve permutacie mno-
ziny {1, 2}; identicka permutacia ¢; a permuéacia ¢, = (2, 1). Identicka permutacia nema
ziadnu inverziu, permutacia ¢, ma prave jednu inverziu; (1,2). Determinant matice A
typu 2 x 2 vyjadreny podla vztahu 15.10 sa zhoduje so $pecifickym pripadom definova-
nym vztahom 15.9. Pozrime sa teraz na pripad matice typu 3 x 3. Existuje 3! = 6 réznych
permutacii trojprvkovej mnoziny, ktorym zodpovedaju nasledujice ¢leny sumy v 15.10:

¢; | permutacia | i(¢;)

b1 (1,2,3) 0 1,102,033
b2 (1,3,2) 1 | —aijaz3asp
b3 (2,3,1) 2 a1,202,303]
b4 (2,1,3) 1 | —aipazi1a33
bs (3,1,2) 2 7,302,103
ds | (3,2,1) 3 | —ai3a2a3,

Determinant matice A typu 3 x 3 sa da vypocitat’ podl'a tzv. Sarusovho pravidla takto:
k matici sa pripiSu prvé dva riadky a determinant sa vyjadri ako sucet sucinov clenov
leziacich na diagonalach smerujucich zl'ava doprava, od ktorych sa odc¢itaju siuciny ¢lenov
leziacich na diagonalach smerujucich sprava dofava:

arr a2 a13

azp azz azs
—ap3022037 < | A31 432 4az3 | — 4171022033
—az30a320q7 < | ajp a2 13| — Aaz70320713
—a33ap0z < | azy azz Qa3 | — 437072023

Uvedieme niektoré zakladné vlastnosti determinantov, ktoré vyuzijeme napr. na skima-
nie opravnych schopnosti linearnych kédov a dekédovanie BCH kédov. Budeme vycha-
dzat z prac[4] a [8]. Nasledujuca veta uvadza, ako zavisi determinat matice od vlastnosti
jej riadkov, resp. ako sa zmeni pri rozlicnych operaciach nad riadkami matice. Analogické
tvrdenia platia pre stice matice.

Veta 15.6.6. Nech je A Stvorcovd matica typu nxn nad polom F, s determinantom det(A).
Potom platia nasledujiice tvrdenia

1. Ak je niektory riadok matice A nulovy, tak potom det(A) = 0.
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2. Determinant matice A sa nezmeni, ak k niektorému riadku pripoéitame l'ubovolny
ndsobok iného riadku matice A.

3. Ak matica A obsahuje dva rovnaké riadky, tak potom det(A) = 0.

4. Ak je jeden z riadkov matice A linedrnou kombindciou ostatnych riadkov matice A,
tak det(A) = 0.

5. Ak matica B vznikne z matice A tak, Ze sa i-ty riadok matice A vyndsobi konstantou
¢, tak det(B) = c - det(A).

6. Ak matica B vznikne z matice A tak, Ze sa v matici A vymenia dva riadky, tak
det(B) = —det(A).

7. Matica A je reguldrna prdve vtedy, ak det(A) # 0.
8. det(A) = det(AT).

Dokaz. Dokazy vyssie uvedenych tvrdeni mozno n4jst’ napriklad v [8]. O

Pre determinant stc¢inu matic plati nasledujice tvrdenie, ktorého dokaz mozno tak-
tiez najst’ v [8].

Veta 15.6.7. Nech su A, B stvorcové matice typu n x n nad polom F. Potom plati
det(A - B) = det(A) - det(B).

Vratme sa teraz k pojmu podmatice. Nech je A matica typu m xn a A’ je jej Stvorcova
podmatica typu k x k k < min(m,n). Determinant matice A’ sa nazyva subdetermi-
nant k-teho stupna matice A. Zatial vieme prakticky vypocitat len determinanty matic
typu nanajvys 3 x 3. Ukazeme, Ze determinanty ,vacsich“ matic sa daju vyjadrit pomo-
cou subdeterminantov nizsich stupnov. UvaZzujem kvoli jednoduchosti prvok a;; prvého
riadku® matice A a vsetky ¢leny determinantu det(A), ktoré aj; obsahuju. Tito cast’
determinantu moéZeme vyjadrit’ v tvare a; ; - A;;, kde vyraz A;; sa nazyva algebraickym
doplnkom prvku a;;. Ked'Ze kaZzdy s¢itanec determinantu det(A) obsahuje prave jeden
prvok prvého (vo vSeobecnosti i-teho) riadku, determinant matice A mozno vyjadrit v
tvare

det(A) =ar;-Ajp+ai2- A+ -+ ain- A,

Ostava eSte urcit, ako sa vypocitaju hodnoty A; ;.

Definicia 15.6.8. Determinant

ar, a2 ... Q15 Arj+1 ... Qn

azn az» e (12,]',] a2,i+1 N azn
Aj=det| a7 @12 ... Q11 QTj4r ... Qicin
Qi1 Aip12 ... Qg1 Qiplg4r ... Qipin

an,1 an2 ... Anj—1 Anj+1 .- Ann

fdvahy a tvrdenia platia aj pre l'ubovolny prvok tabulky
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podmatice ktord vznikne vynechanim i-teho riadka a j-teho stlpca matice A sa nazyva
subdeterminant (n — 1)-ho stupria determinantu det A prislichajceho k prvku aij. Do-
plnkom Ai; prvku a;; v determinante det A nazyvame subdeterminant Aj; vyndsobeny
znamienkom (—1)";

_ i+
Ay = (=1)"7 - Ay.
Teraz mozeme dokoncit’ ivahy o vyjadreni determinantu pomocou subdeterminantov
nizsich stupnov.

Veta 15.6.8. (Rozvoj determinantu podla i-teho riadku) Nech je A Stvorcovd matica typu
n x n. Potom plati

det(A) = ai1-Appt+aiz-Aig+ 4 aipn - Ain =
= (=" ay Ay + (D ag A+ + (DM ain - Agg

Vetu 15.6.8 vyuzijeme pri vypocte Vandermondovho eterminantu, ktory zohrava mi-
moriadne doéleziti dlohu pri uréovani konstrukénej minimalnej vzdialenosti BCH kédov.

Veta 15.6.9. Nech je dand Stvorcovd matica

1T x x]z x? x?_1
2 3 x0]
A= det| ' 2 N N . (15.11)
T xn X3 X ... X!
Potom
det(A) = [ 05—x). (15.12)
1<i<j<n

Dokaz. Matematickou indukciou.

1. n=2

X1

X =X —X]. (15.13)

detA — “

2. Predpokladajme, Ze tvrdenie vety plati pre m < n a dokazeme jeho platnost pre
n. Upravime maticu 15.11 tak, ze od kazdého riadka druhym poc¢inajic od¢itame
prvy riadok:

1 X1 X% x? x?_1
_ 242 4343 n-1_ . n-1

0 xn—x1 X4—xF X —x3 ... BT
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Rozvinieme determinant matice A podla 1. stipca. Podrla vety 15.6.8 z 15.14 dosta-

vame
xo—x1 E—x F—x .. X —x!

det(A) — X3 — X] x%—x% xg—x? x}}*] —x?*] (15.15)
Xn—x1 X% —x3 x3—x3 o o =X

Vyjmeme z prvého riadku 15.15 x; — xy, druhého x3 — x; az n — 1-ho x,, — x7 a
dostavame

) n—o—

. T xa+x X3+xx+xF ... {‘:Ox'z"Zl-x%

2. n-2-1 .1

1T x34+%x X24+x3x1+x5 ... Kb X

det(A) = []0a—x)x sEX G e LT
e Lo NS L

T xn+X1 Xp+xaX1+X%7 oo ) DXy X4

Podla indukéného predpokladu ma Vandermondova matica typu (n — 1) x (n —1)

determinant
[T Ge—x)—x—x)= ] Ga—x).

2<j<k<n 2<j<k<n

O]

Poznamka. Aby sme rozptylili pripadné pochybnosti o tom, ¢i je posledny determinant
v predchadzajicom dékaze Vandermondov, spravime este dva kroky dokazu. Najprv od-
citame prvy riadok od vSetkych ostatnych. V prvom stipci mame v prvom riadku jednotky
a v ostatnych riadkoch nuly. Zasa spravime rozklad determinantu podla prvého stipca.
Kvoli zjednodusSeniu vykladu ozna¢ime maticu po poslednej tprave B = (b;;)—1,n—1. Po-
zrieme sa na k—1-vy riadok, 3 < k < n. Zrejme by o = 0. Prvok v druhom stipci nadobuda
hodnotu

b = (xx +x1) — (x2 +%7) = xx — %2,
v tretom stipci
by = (xﬁ + xkxq + X%) — (x% +%x2X7 + x%) = (xi — X%) + x1(xk — x2),
az napokon
n—2
R T )
1=0

Kazdy prvok k — 1-ho riadka je delitefny (xx — x;), a to znamen4, Ze z kazdého prvku v
k — 1-vom riadku méZeme vynat’ Cinitel (x;, — x,). Eliminovali sme d’alsi riadok a stlpec
matice a k hodnote determinantu prispevok [ [7_;(xx — x2).

15.6.3 Sustavy linearnych rovnic



Kapitola 16

Entropia a mnozstvo informacie

Pri rieseni niektorych problémov potrebujeme urc¢it mnozstvo informacie obsiahnuté
v udajoch. Predpokladajme, Ze na zaéiatku nemame o ddajoch Ziadnu informaciu, t.j.
udaje mézu byt ktorymkol'vek prvkom nejakej mnozZiny textov (tidaje mézu byt napri-
klad v sifrovej podobe a my nepozname ani pouzity Sifrovaci algoritmus a nemame k
dispozicii deSifrovaci kIi¢). M6Zeme nanajvys$ odhadnut potencidlnu mnoZinu otvore-
nych textov, ktorych zasifrovanim vznikli nase tidaje. Potom ziskame nejaku informéaciu
(napr. o dizke a formate udajov). Tato informacia redukuje pociatoéni neurcitost’ - mno-
Zina moznych textov vyhovujucich ziskanej informacii je mensia ako pé6vodna mnozina
textov. Takto budeme postupovat’ az do okamihu, ked jednoznaéne uréime tudaje a nere-
dukujeme neurcitost’ na nulova hodnotu. Kvantitativna miera informaécie obsiahnutej v
udajoch sa teda dala urcit’ pomocou miery neurcitosti. Na meranie neurcitosti sa pouziva
entropia. Zavedieme najprv entropiu a pomocou nej aj kvantitativnu mieru informaécie.

Nech je dany zdroj S, s abecedou s = {sg,...,Sm_1} a rozdelenim pravdepodobnosti
P ={po,...,pm-1}.- Na zac¢iatku budeme predpokladat’, Ze je rozdelenie pravdepodobnosti
rovnomerné, t.j. Ze sa vSetky symboly zdrojovej abecedy vyskytuju v textoch rovnako
casto. Funkcia, ozna¢me ju pracovne symbolom f, ktora ma merat neurcitost’ zdroja,
musi spiflat’ nasledujuce prirodzené podmienky:

1. jej hodnota nesmie zavisiet od symbolov! ale len od rozdelenia pravdepodobnosti
P,

2. funkcia je monoténne rastiica vzhfadom na poéet symbolov zdrojovej abecedy 2

3. aditivnost: ak s S1, S, dva nezavislé zdroje, tak potom

(S1,S2) = f(S1) +1(S2).

Vyssie uvedené poziadavky spiﬁa logaritmicka funkcia. R.V.L. Hartley (1928) definoval
logaritmickd mieru informacie (mieru neurcitosti) zdroja S s m-prvkovou abecedou a

lsymboly mézu byt reprezentované éislami
Zpripominame, Ze rozdelenie pravdepodobnosti je rovnomerné
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rovnomernym rozdelenim pravdepodobnosti nasledovne:
H(S) = log(m).

Zaklad logaritmov neovplyviiuje podstatne hodnotu entropie, vzhladom na to, Ze pre
logaritmy o zakladoch a, b plati

log, x = (log, b) log;, x.

Jednotkou miery informacie (neurcitosti) je v zavislosti od pouzitého zakladu logarit-
mov bit (binarne logaritmy) nat (prirodzené logaritmy) a Hartley (dekadické logaritmy).
Mnozstvo informacie sa najcastejSie vyjadruje v bitoch alebo jednotkach od nich dovede-
nych.

Akt informaciu nesie jeden symbol v pripade, ked rozdelenie pravdepodobnosti zdroja
nie je rovnomerné? Informacény obsah budeme tak ako v predchddzajicom pripade me-
rat’ znizenim neurcitosti, ktora zavisi od pravdepodobnosti vyskytu symbolu. Predpokla-
dajme napriklad, Ze zdroj ma generovat jednu z mnoziny moznych sprav, mozné spravy
mame usporiadané lexikograficky. Na vystupe zdroja sa objavi symbol s;;,. Pozrieme sa
na dve krajné moznosti: ak sa vSetky spravy za¢inajui symbolom s; , jeho objavenie nere-
dukovalo mnoZinu moZnych sprdav a teda symbol s;, nenesie Ziadnu informéaciu. Druha
krajnd moznost’ - existuje jedina sprava, zafinajica symbolom s; ; t.j. v tomto pripade
je mnozZstvo informacie obsiahnuté v s;; maximélne (rovné logaritmu po¢tu moZnych
sprav). Definujeme mnozZstvo informécie v s;, ako

log 1/ps,,

kde p;, = p(si,). V pripade rovnomerného rozdelenia pravdepodobnosti niesol kazdy
symbol rovnaké mnozstvo informacie. V pripade nerovnomerného rozdelenia pravdepo-
dobnosti symbolov tomu tak nie je a ma zmysel sa zaoberat strednou hodnotou mnozstva

informacie, t.j. hodnotou
m—1

H.(S) =) pilog, 1/p;.
i=0
Funkcia H,(S) sa nazyva entropiou zdroja S. Entropiu zdroja ako prvy definoval C. Shan-
non. Pozrieme sa teraz na vlastnosti entropie. Zaéneme skiimanim funkcie plg1/p.

Vypocitame derivaciu funkcie plg 1/p a urcime jej extrémy (obr. 1):

d(plg1/p)

dp =1gl/p—Ige=0,

ked'ze funkcia plg1/p je rastica na intervale (0,1/e) a klesajica na intervale (1/e,1),
nadobida v bode p = 1/e maximum (=~ 0.5307378454). V bode 0 nadobtiida funkcia plg1/p
nadobuida hodnotu 0 (L."Hospitalovo pravidlo). Casto budeme pracovat’ so zdrojom, ktory
ma binarnu abecedu a rozdelenie pravdepodobnosti p, 1 —p. Entropia sa v tomto pripade
da vyjadrit’ formulou:

Ha(p) =plgl/p+(1—p)lg1/(1 —p).

Funkcia H,(p) (obr. 2) dosahuje maximalnu hodnotu (=1) pre p = (1 —p) = 1/2.
Zhrnieme strucne podstatné vlastnosti entropie.
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Obr. 16.2: Graf funkcie H,(p)
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Veta 16.0.10. Nech je dany zdroj S, s abecedou Xs = {so,...,Sm_1} a rozdelenim pravde-
podobnosti P = {pg,...,pm_1}, m > 1; entropia zdroja H,(S) je definovand formulou

m—1

=Y pilgl/pi

i=0

Potom pre H;(S) plati:

1. Hy(S) je redlna nezdpornd funkcia,
2. Hy(S) = 0 prdve vtedy, ak existuje také i, Ze pi = 1 a p; =0 pre i #j,
3. Hy(S) <m.

Dokaz. Prvé dve tvrdenia su oCividné a ich dokazy prenechavame citatel'ovi. Doka-
Zeme tretie tvrdenie. Pouzijeme Lagrangeovu metédu neurcitych koeficientov. Nech

1 m—1
f(poyP1y- - Pmt) = Zpllnmol )+ A (Zpl—1>

Vypocitame parcidlne derivacie funkcie f(po, p1,...,Pm—1) @ poloZime ich rovné nule:

of 1 :
ap; ~Inz IO/PI—T+A=0, i=0,.om—1.

Z poslednej rovnosti vyplyva

1 .
}\:mﬁ—ln(]/pi)] i=0,...m—1.
KedZe A je konStanta, to znamenad, Ze pre lubovolné i,j plati p; = p; a teda p; = 1/m pre
i=0,...,m— 1. To znamena, Ze entropia dosahuje maximalnu hodnotu H;(S) = m pre
rovnomerné rozdelenie pravdepodobnosti. O
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