
Úvod do teórie
kódovania

Daniel Olejár
Martin Stanek

22. mája 2011
Verzia 2.0

Obsah

1 Úvod 1

2 Základné pojmy a označenia 7

2.1 Abecedy, slová a jazyky . 7

2.2 Údaje, informácia a komunikácia . 10

2.3 Kódovanie . 18

I Kódovanie zdroja 21

3 Nerovnomerné kódy 23

3.1 Rozdelitel’né kódy . 24

3.1.1 Prefixové kódy . 24

3.1.2 Kraftova - McMillanova nerovnost’ 25

3.1.3 Úplné kódy . 30

3.1.4 Kódové stromy . 32

3.1.5 Automatové dekódovanie. 33

3.2 Cena kódu . 36

3.3 Kvázioptimálne kódy a optimálny kód . 37

3.3.1 Shannonov kód . 39

3.3.2 Fanov kód . 40

3.3.3 Huffmanov optimálny kód . 41

3.3.4 Rozšírenie kódu . 43

3.3.5 Chyby v pravdepodobnostiach výskytu zdrojových symbolov 45

3.4 Kódovanie Markovovského zdroja . 48

i

ii OBSAH

3.5 Kódovanie pomocou orákula . 52

4 Metódy kompresie údajov 57

4.1 Slovníkové metódy kompresie dát . 57

4.2 LZ77 . 57

4.2.1 Kompresia (kódovanie) . 57

4.2.2 Dekompresia (dekódovanie) . 58

4.2.3 Poznámky . 59

4.2.4 LZSS . 59

4.3 LZW . 60

4.3.1 Kompresia (kódovanie) . 60

4.3.2 Dekompresia (dekódovanie) . 61

4.3.3 Poznámky . 63

4.4 Aritmetické kódovanie . 63

4.4.1 Kompresia (kódovanie) . 63

4.4.2 Dekompresia (dekódovanie) . 65

4.4.3 Implementačné poznámky . 65

4.4.4 Poznámky . 66

4.5 BWT . 66

4.5.1 Kódovanie . 66

4.5.2 Dekódovanie . 67

4.5.3 MTF . 68

4.5.4 Poznámky . 69

5 Kódovanie zvuku a obrazu 71

6 Kolmogorovská zložitost’ a hranice kompresie údajov 73

II Samoopravné kódy 75

7 Základné princípy samoopravných kódov 77

7.1 Binárny symetrický kanál bez pamäte . 77

7.2 Geometrická interpretácia samoopravného kódu 79

OBSAH iii

7.3 Jednoduché kódy odhal’ujúce/opravujúce chyby 83

7.3.1 Testovanie parity . 83

7.3.2 Obdĺžnikové kódy. 83

7.4 Hammingov kód . 85

8 Lineárne kódy 89

8.1 Základné vlastnosti lineárnych kódov . 90

8.2 Dekódovanie lineárnych kódov . 96

8.3 Reedove-Mullerove kódy . 99

9 Cyklické kódy 105

9.1 Polynomický popis cyklických kódov . 108

9.2 Maticový popis cyklických kódov . 111

9.3 Kódovanie pomocou cyklických kódov . 113

9.4 Dekódovanie cyklických kódov . 114

9.5 Error trapping dekódovanie . 120

9.6 Golayov kód . 123

9.7 Dokonalé a kvázidokonalé kódy . 130

10 Boseove-Chandhuryove-Hocquenghemove kódy 131

10.1 Binárne BCH kódy opravujúce 2 chyby . 131

10.2 Definícia BCH kódov . 138

10.3 Hranica BCH kódov . 138

10.4 PGZ algoritmus dekódovania BCH kódov 141

10.5 Iné metódy dekódovania BCH kódov . 151

10.6 Zvláštnosti dekódovania binárnych BCH kódov 161

10.7 Reedove-Solomonove kódy . 161

11 Modifikácie samoopravných kódov 165

12 Prínos kódovania 169

13 Shannonova teoréma 175

iv OBSAH

14 Hranice parametrov samoopravných kódov 183

III Matematické základy teórie kódovania 185

15 Algebra 189

15.1 Grupy . 189

15.2 Okruhy . 196

15.3 Polynómy a okruhy polynómov . 199

15.4 Konečné polia . 206

15.5 Vektorové priestory . 215

15.6 Lineárna algebra . 218

15.6.1 Matice . 218

15.6.2 Determinanty . 222

15.6.3 Sústavy lineárnych rovníc . 226

16 Entropia a množstvo informácie 227

Kapitola 1

Úvod

The fundamental problem of communication is that of reproducing at one
point either exactly or approximately a message selected at another point.

(Claude Shannon, 1948)

Komunikácia (výmena informácie medzi dvoma alebo viacerými zúčastnenými stra-
nami) je nutným predpokladom existencie a vývoja akéhokol’vek systému, ktorého časti
musia navzájom spolupracovat’ pri plnení spoločných úloh. Aby bola možná koordinácia
spolupracujúcich častí, komunikácia, ktorá medzi nimi prebieha, musí byt’ efektívna a
spol’ahlivá. Efektívnost’ komunikácie znamená, že výmena informácie musí prebehnút’
vo vymedzenom čase (nesmie trvat’ príliš dlho) a s vynaložením ohraničeného úsilia
(napríklad finančných zdrojov, energie). Aby sme mohli komunikáciu považovat’ za spo-
l’ahlivú, správa sa počas prenosu nesmie modifikovat’ tak, aby ju príjemca nedokázal
správne interpretovat’; t.j. príjemca musí dokázat’ na základe prijatej správy dostatočne
presne zrekonštruovat’ odvysielanú správu. Okrem toho sa na komunikáciu často kla-
die aj tretia požiadavka—bezpečnost’.1 Bezpečnost’ komunikácie je predmetom záujmu
disciplíny nazývanej informačná bezpečnost’ a v tejto práci sa ňou nebudeme zaoberat’.

Požiadavky na efektívnost’ a spol’ahlivost’ komunikácie sú už na prvý pohl’ad v pria-
mom protiklade (náklady na prenos informácie a výkon vysielača) a tak býva často
problém nájst’ pre komunikačný systém nejaké uspokojivé riešenie. Ešte v nedávnej mi-
nulosti sa kompromis medzi efektívnost’ou a spol’ahlivost’ou komunikácie riešil (a cel-
kom úspešne) empiricky. V roku 1948 vyšiel článok Claude Shannona A Mathematical
Theory of Communication, ktorý položil základy dvoch matematických teórií—teórie in-
formácie a teórie kódovania. Tieto teórie pomohli exaktne sformulovat’ známe problémy
efektívnosti a spol’ahlivosti komunikácie a vytvorit’ rámec pre ich riešenie. Teória in-
formácie skúma ohraničenia na prenos informácie a teória kódovania sa usiluje nájst’

1Bezpečnost’ komunikácie má viacero aspektov, z ktorých najdôležitejšie sú dôvernost’, integrita a
autentickost’ prenášanej informácie. Bezpečnost’ komunikácie sa zaist’uje pomocou rozličných prostriedkov
(kryptologických, technických, organizačných, právnych a pod.).

1

2 KAPITOLA 1. ÚVOD

taký spôsob zápisu (kódovanie) informácie, ktorý by umožnil dosiahnut’ hranice stano-
vené teóriou informácie. Vznik a rozvoj teórie informácie a teórie kódovania bol motivo-
vaný potrebou riešenia praktických problémov komunikácie2. Napriek tomu, že sa obe
teórie vyvíjali ako matematické teórie (teória informácie využíva najmä analytické a
pravdepodobnostné metódy, kým teória kódovania používa algebraické metódy), neod-
trhli sa od problémov reálnej komunikácie. Najmä komunikácia s kozmickými sondami
prinášala trvalé podnety pre hl’adanie efektívnych samoopravných kódov. V súčasnosti
zažíva aplikačný boom najmä teória kódovania. Postupujúca informatizácia spoločnosti
prináša digitalizáciu informácie; elektronické dokumenty nahrádzajú papierové, digi-
talizuje sa telefonická komunikácia, rozhlasové a televízne vysielanie, analógový zápis
zvuku, obrazu a videa je rýchle nahradzovaný digitálnym. Rôzne aplikácie využívajúce
digitálne zapísanú informáciu kladú čoraz náročnejšie požiadavky na spol’ahlivost’ a
efektívnost’ komunikácie. (Napríklad digitálny zápis filmov na DVD si vyžaduje zápis
vel’kého množstva informácie vo forme, ktorá umožní on-line dekódovanie a je zároveň
dostatočne odolná voči chybám.) Používatelia videa, MP3 prehrávačov, mobilných telefó-
nov, ani laickí používatelia informačných a komunikačných systémov nepotrebujú štu-
dovat’ teóriu kódovania, ani teóriu informácie na to, aby dokázali rozličné informačné
a komunikačné zariadenia úspešne používat’. V inej situácii sú informatici, ktorí budú
pracovat’ s rozsiahlymi údajmi a budú potrebovat’ zvolit’ na ich spracovanie čo najefek-
tívnejšie metódy. Dokonca aj v prípade, ked’ budú mat’ k dispozícii hotové programy,
budú potrebovat’ aspoň základné znalosti teórie informácie a teórie kódovania na to, aby
dokázali posúdit’, či sú dané programy vhodné na spracovanie ich údajov a ak nie, či
vôbec existujú efektívne metódy riešenia.

Od uverejnenia Shannonovho článku vyšlo množstvo dobrých kníh z teórie kódovania
(a samozrejme aj teórie informácie). Viacero z nich je dostupných na Internete. Na In-
ternete možno nájst’ aj univerzitné prednášky, informácie o štandardoch, spôsoboch kó-
dovania rozličných druhov informácie aj najnovšie vedecké výsledky teórie kódovania
a teórie informácie. S výnimkou elementárnych učebných textov si však uvedené in-
formácie od čitatel’a vyžadujú aspoň základné poznatky, ktorých získanie samostatným
štúdiom nemusí byt’ ani jednoduché, ani efektívne. V slovenskej odbornej literatúre bola
teórii kódovania venovaná jedna kapitola v Jablonského knihe Úvod do diskrétnej ma-
tematiky z roku 1982 a Adámkova Teorie kódování, ktorá vyšla v roku 1988, ale ucelená
učebnica alebo monografia z teórie kódovania chýba. Touto knihou chceme spomínanú
medzeru v slovenskej odbornej literatúre zaplnit’. Kniha je určená predovšetkým uni-
verzitným študentom informatiky, informatikom, matematikom a všetkým, ktorí majú
záujem o teóriu kódovania. U čitatel’a predpokladáme aspoň základné znalosti z mate-
matickej analýzy, algebry, lineárnej a teórie pravdepodobnosti v rozsahu úvodných kur-
zov magisterského, resp. inžinierskeho štúdia. Ciel’om knihy je oboznámit’ čitatel’a so
základnými problémami, ktoré teória kódovania rieši, metódami návrhu dobrých kódov,
efektívnnymi metódami kódovania a dekódovania informácie, ako aj hranicami, ktoré
pre konštrukciu kódov vyplývajú z teórie informácie. Preštudovanie tejto knihy by mu
mohlo pomôct’ využívat’ výsledky teórie kódovania na riešenie vlastných problémov sú-
visiacich s kódovaním informácie. Ak sme u čitatel’a vzbudili záujem o samotnú teóriu
kódovania, v závere knihy mu odporúčame literatúru pre d’alšie štúdium. Rozsah súčas-

2Claude Shannon a Richard Hamming, ktorý rozpracoval základy teórie kódovania, pracovali v tom čase
v American Telephone and Telegraph’s Bell Laboratories

3

ného poznania v teórii kódovania vyžaduje prijat’ rozhodnutie, ktorými čast’ami teórie
kódovania sa v knihe zaoberat’ nebudeme. Rozhodli sme sa obetovat’ teoretickejšie časti,
ktoré sa bezprostredne nedajú použit’ na konštrukciu kódov, resp. na posudzovanie ich
vlastností. Čitatel’a, ktorému by tieto časti chýbali, odkazujeme na literatúru uvedenú v
zozname, resp. odporúčania pre d’alšie štúdium uvedené v záverečnej kapitole.

Táto kniha vznikla na základe prednášok z teórie kódovania, ktoré sme na Fakulte
matematiky, fyziky a informatiky Univerzity Komenského prednášali pre študentov in-
formatiky od polovice 80-tych rokov. Pôvodne sme vychádzali z klasických prác [12], [3],
resp. [6] a prednáška bola koncipovaná viac teoreticky ako aplikačne. Vzhl’adom na za-
meranie poslucháčstva, medzi ktorým prevládali informatici (a časovým obmedzeniam)
sa postupne t’ažisko prednášky presunulo od matematickej teórie k algoritmom. Inšpi-
ráciu sme našli v Blahutovej knihe [2], ktorý nielen našiel rozumný kompromis medzi
nevyhnutnou, pomerne abstraktnou teóriou a efektívnymi algoritmami, ale dokázal túto
náročnú problematiku podat’ vel’mi prístupným spôsobom. Z tejto knihy sme intenzívne
čerpali podnety pre prednášku aj pre túto knihu. Lintova kniha [15] nám poskytla in-
formácie o aktuálnych teoretických výsledkoch, prehl’adný dôkaz Shannonovej vety a
zaujímavý pohl’ad na vzt’ah medzi technickými prostriedkami a samoopravnými kódmi
pri zaistení spol’ahlivosti komunikácie. Pozreli sme si množstvo prednášok z teórie kó-
dovania na špičkových svetových univerzitách; za všetkých spomenieme najmä meto-
dicky pekne spracované učebné texty J.I.Halla, [7] z Michigen State University a vel’mi
obsažné prednášky Mahdu Sudana z MIT. Vel’mi inšpiratívne boli Shannonovské pred-
nášky Roberta J. McEliecea z Caltechu o úlohe samoopravných kódov pri kozmickom
výskume. Teória kódovania a teória informácie sa od svojho vzniku uberali vlastnými
cestami. Hamming [3] ukázal na súvislosti výsledkov oboch teórií; v podobnom duchu, s
aktuálnym obsahom a širším záberom je napísaná kniha [11]. Títo a d’alší kolegovia, ma-
tematici a inžinieri pracujúci v teórii kódovania prispeli k rozvoju nášho poznania hĺbky
a krásy tejto teórie a významu jej aplikácií, za čo im patrí naša úprimná vd’aka. Ďaku-
jeme aj tvorcom programu Maple, vd’aka ktorému sme mohli do knihy zaradit’ viacero
príkladov, ktorých vypracovanie presiahlo možnosti ručných výpočtov; tvorcom progra-
mov TEXa LATEX, pomocou ktorých sme mali možnost’ upravit’ podl’a vlastných predstáv
grafickú podobu tejto knihy.

Počas práci na knihe sa jej pôvodné zameranie menilo a postupne presiahlo aj rozsah
základnej prednášky z teórie kódovania. Snažili sme sa preto o taký výklad problema-
tiky, ktorý by umožnil použit’ časti knihy ako učebné texty pre rozličné kurzy. Niektoré
z nich uvádzame na nasledujúcich schémach

TO DO

Pracovné verzie knihy slúžili ako študijné texty pre túto prednášku. Vd’aka tomu
sme dostali množstvo pripomienok, upozornení na existujúce chyby i návrhov na dopl-
nenie a prepracovanie niektorých častí. Za všetky pripomienky a námety, ktoré prispeli
k zlepšeniu obsahu i formy prezentácie úprimne d’akujeme. Osobitne by sme chceli po-
d’akovat’ Broni Brejovej a Tomášovi Vinařovi za príspevok k Reed Mullerovým kódom,
Jánovi Mazákovi a Edite Rollovej za podrobné errata a Monike Steinovej za spracovanie
príkladu o nebinárnych BCH kódoch.

V aktuálnej verzii 2.0. sú opravené tlačové a obsahové chyby, ktoré našla Edita Rol-

4 KAPITOLA 1. ÚVOD

lová, v porovnaní s predchádzajúcou verziou je doplnená čast’ Lineárna algebra. Nie sú
zatial’ opravené chyby v príklade o ternárnom BCH kóde, ani pripomienky študentov k
výkladu Berlekampovho-Masseyovho algoritmu.

Daniel Olejár a Martin Stanek

5

Poznámka. Poznámka. Tento text je pracovnou verziou knihy z teórie kódovania. Je
určený ako študijný text pre poslucháčov informatiky na Univerzite Komenského v Bra-
tislave. Akékol’vek iné použitie si vyžaduje písomný súhlas autorov.

(C) D.Olejár a M. Stanek, 2006.

6 KAPITOLA 1. ÚVOD

Kapitola 2

Základné pojmy a označenia

Mnohé pojmy teórie kódovania sa stali súčast’ou bežného jazyka a l’udia ich často použí-
vajú bez toho, aby si uvedomovali ich presný význam. V bežnej komunikácii to natol’ko
neprekáža, ale pri odbornom výklade by rozličná interpretácia základných pojmov mohla
viest’ k nedorozumeniam. Aby sme sa v d’alšom výklade vyhli zbytočným nedorozume-
niam, vybudujeme exaktne potrebný pojmový aparát.

2.1 Abecedy, slová a jazyky

Abeceda je l’ubovol’ná konečná neprázdna množina. Prvky abecedy budeme nazývat’
znakmi alebo symbolmi. Abecedu budeme označovat’ symbolom Σ; ak bude potrebné roz-
lišovat’ rozličné abecedy, budeme symbol Σ indexovat’ (Σ1, Σ2, . . .). L’ubovol’ná konečná
postupnost’ znakov z abecedy Σ sa nazýva slovom nad abecedou Σ. Ak nebude podstatné
o akú abecedu ide alebo z kontextu bude známe, o ktorú abecedu sa jedná, budeme kvôli
stručnosti slová nad abecedou Σ vynechávat’. Zjednodušíme aj zapisovanie slov; symboly
v postupnosti nebudeme oddel’ovat’ čiarkami a slovo (napr.) a, b, e, c, e, d, a budeme zapi-
sovat’ v tvare, ako sa slová v textoch štandardne zapisujú; t.j. abeceda. Nech je w slovo
nad abecedou Σ, potom počet znakov slova w nazveme dĺžkou slova w. Dĺžku slova w
budeme označovat’ symbolom l(w). Tak napríklad l(slovo) = 5, l(abeceda) = 7, l(a) = 1.
Postupnost’ znakov nad abecedou Σ môže byt’ aj prázdna. Takáto postupnost’ sa nazýva
prázdnym slovom a označuje sa symbolom ε. Pre dĺžku prázdneho slova platí l(ε) = 0.
Teraz definujeme operácie nad slovami, pomocou ktorých bude možné zo známych slov
vytvárat’ nové slová. Nech sú u, v dve slová nad abecedou Σ; u = a1 . . . an; v = b1 . . . bm.
Zret’azením slov u, v je slovo w = uv = a1 . . . anb1 . . . bm nad abecedou Σ. (Je zrejmé,
že operácia zret’azovania slov je asociatívna, ale vo všeobecnosti nie je komutatívna;
prázdne slovo ε je obojstranným neutrálnym prvkom vzhl’adom na operáciu zret’azenia
slov: pre l’ubovol’né slovow platíwε = εw = w). Slovo možno zret’azit’ aj so sebou samým,
napr. uu = a1 . . . ana1 . . . an. Pre l’ubovol’né slovo w a l’ubovol’né číslo k ∈ N definujeme:

7

8 KAPITOLA 2. ZÁKLADNÉ POJMY A OZNAČENIA

1. w0 = ε,

2. wk+1 = wkw.

Nech u = a1 . . . an je l’ubovol’né slovo, potom súvislú podpostupnost’ z = aiai+1 . . . ai+k−1;
1 ≤ i, i+k < n nazveme podslovom slova u. Ak 0 < k < n, slovo z nazveme vlastným pods-
lovom slova u. Slová u a ε sú triviálnymi podslovami slova u a v kódovaní sa nimi zvlášt’
zaoberat’ nebudeme. Zato však v teórii kódovania zohrávajú dôležitú úlohu podslová,
ktoré sú začiatkom alebo koncom nejakého slova. Zavedieme pre ne špeciálne pomeno-
vania. Nech u = a1 . . . an je l’ubovol’né slovo, slovo z = a1 . . . ak, 0 < k ≤ n nazveme
počiatočným podslovom (prefixom) slova u a slovo x = aiai+1 . . . an; 1 ≤ i = n nazveme
koncovým podslovom (sufixom) slova u. Znaky v slove možno aj preusporiadat’. Dôle-
žitým prípadom preusporiadania znakov je otočenie slova: zrkadlovým obrazom slova
u = a1 . . . an nazveme slovo uR = an . . . a1.

Slová môžeme zoskupovat’ do množín. Takéto množiny slov budeme nazývat’ jazykmi.
Presnejšie, l’ubovol’nú množinu slov nad abecedou Σ nazveme jazykom nad abecedou
Σ. Ked’že jazyky sú množiny slov, možno z existujúcich jazykov vytvárat’ nové jazyky
pomocou množinových operácií, ako sú zjednotenie, doplnok, rozdiel, prienik, symetrická
diferencia množín a prípadne iné. Pre slová sme zaviedli operáciu zret’azovania (slov).
Zavedieme teraz užitočné operácie s jazykmi, ktoré sú založené na zret’azovaní slov. Nech
sú L1,L2 jazyky nad abecedou Σ, potom L = L1L2 je jazyk nad abecedou Σ definovaný
nasledovne: L = {uv; u ∈ L1, v ∈ L2}. Jazyk možno zret’azovat’ so sebou samým; pre
l’ubovol’ný jazyk L a l’ubovol’né číslo k ∈ N definujeme:

1. L0 = {ε},

2. Lk+1 = LkL.

Na záver uvedieme ešte dve operácie nad jazykmi, ktoré nám umožnia popísat’ množinu
všetkých možných slov, ktoré sa dajú vytvorit’ pomocou operácie zret’azovania jazyka.
Nech L je l’ubovol’ný jazyk, potom jazyky L+ =

∪∞
i>0 Li a L∗ =

∪∞
i≥0 Li sa nazývajú

kladná, resp. nezáporná iterácia jazyka Li. Všimnite si, že abecedu Σ možno chápat’
aj ako jazyk pozostávajúci zo všetkých slov dĺžky 1 nad abecedou Σ a Σ∗ predstavuje
množinu všetkých slov nad abecedou Σ.

Ilustrujeme zavedené pojmy na príkladoch.

Príklad.

1. Binárna abeceda Σ1 je l’ubovol’ná dvojprvková množina. Znaky binárnej abecedy
najčastejšie označujeme číslicami 0, 1; binárnu abecedu budeme v tomto prípade
chápat’ ako množinu Σ1 = {0, 1}.

2. Na zápis prirodzených čísel vystačíme s abecedou 0, 1; Σ2 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

3. Racionálne čísla možno zapísat’ v podobe slov nad abecedou Σ3 = Σ2 ∪ {" + ", ", "."}.

4. Σ4 = {a, b, c, d, e, f, g, i, j, k, l,m,n, o, p, q, r, s, t, v,w, x, y, z} je abeceda pozostávajúca
z malých písmen anglickej abecedy.

2.1. ABECEDY, SLOVÁ A JAZYKY 9

5. Abecedu Σ5 = {A,B,C,D, E, F,G, I, J, K, L,M,N,O, P,Q, R, S, T, V,W,X, Y, Z} tvoria vel’ké
písmená anglickej abecedy.

6. Σ6 = Σ4
∪
Σ5.

7. Abecedu Σ7 = {α,β, γ, δ, ϵ, ε, ζ, η, θ, ϑ, ι, κ, λ, µ, ν, ξ, o, π,ϖ, ρ, ρ, σ, σ, τ, υ, ϕ,φ, χ,ψ,ω}

tvoria malé písmená gréckej abecedy.

8. Ďalšími užitočnými abecedami by mohli byt’ rozličné znakové sady, napr. všetky
znaky kódov ASCII. V teórii kódovania budeme často pracovat’ s abecedami, kto-
rých symboly sú prvkami konečných polí. Tieto symboly budeme zapisovat’ pomo-
cou prirodzených čísel; Σ8 = Zm = {0, 1, . . .m− 1}.

9. Slovo 2.78128 je slovom nad Σ3, ale nie je slovom nad abecedou Σ2 (pretože obsahuje
symbol ".", ktorý sa v abecede Σ2 nenachádza).

10. Zret’azením slov w1 = pismeno a w2 = male dostávame slová (napr. nad abecedou
Σ4) w1w2 = pismenomale a w2w1 = malepismeno .

11. Nech je dané slovo w1 = pismeno nad abecedou Σ4, počiatočné a koncové podslová
tohto slova sú uvedené v nasledujúcej tabul’ke:

prefix sufix
ε pismeno
p ismeno
pi smeno
pis meno
pism eno
pisme no
pismen o
pismeno ε

12. Nech je dané slovo w1 = pismeno nad abecedou Σ4, zrkadlový obraz slova w1 je
slovo wR1 = onemsip nad abecedou Σ4.

13. Nech sú L1 = {ne, pre, po, vy}, L2 = {mysli, hovor, pis, padni} jazyky nad abecedou
Σ4. Jazyk L1L2 je uvedený v nasledujúcej tabul’ke:

L1/L2 ne pre po vy
mysli nemysli premysli pomysli vymysli
hovor nehovor prehovor pohovor vyhovor
pis nepis prepis popis vypis
padni napadni prepadni popadni vypadni

14. Uvažujme binárnu abecedu Σ1 = {0, 1}. Uvedieme množiny slov Σk1 pre niekol’ko

10 KAPITOLA 2. ZÁKLADNÉ POJMY A OZNAČENIA

počiatočných hodnôt k:

k Σk1
0 {ε}

1 {0, 1}

2 {00, 01, 10, 11}

3 {000, 001, 010, 011, 100, 101, 110, 111}

4 {0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011, 1100,

1101, 1110, 1111}

5 {00000, 00001, 00010, 00011, 00100, 00101, 00110, 00111, 01000, 01001, 01010,

01011, 01100, 01101, 01110, 01111, 10000, 10001, 10010, 10011, 10100, 10101,

10110, 10111, 11000, 11001, 11010, 11011, 11100, 11101, 11110, 11111}

2.2 Údaje, informácia a komunikácia

V bežnom živote sa pojem informácie používa vol’ne a v rozličných významoch; hovorí
sa o rozličných druhoch informácie (obrazová, knižná, zvuková, genetická, novinová) a
informácii sa pripisujú rozličné atribúty (overená, čerstvá, aktuálna, pochybná, škan-
dalózna a i.) V teórii kódovania nás nebude zaujímat’ pôvod, význam ani hodnotenie
informácie; jediné čo pre nás bude podstatné je množstvo informácie. Budeme praco-
vat’ s údajmi a správami, ktoré budú obsahovat’ nejakú informáciu, tieto údaje budeme
spracovávat’ a budeme sa snažit’ nájst’ pre zápis informácie, ktorú údaje obsahujú formu
ktorá je z hl’adiska spracovania údajov/informácie najvhodnejšia.

V hovorovom jazyku sa pojmy informácia, správa a údaje chápu ako synonymá; uká-
žeme, že tieto pojmy majú odlišný význam. Ilustrujeme rozdiel medzi pojmami údaje a
informácia na príklade. Predstavme si

1. binárny ret’azec 0000000000001010,

2. výraz 012(01)2,

3. slovné spojenie „dvanst’ núl, jednotka, nula, jednotka, nula“,

4. 10,

5. A,

6. 000A.

Vo všetkých prípadoch ide o jednoznačné určenie tej istej binárnej postupnosti dĺžky
16; v prvom prípade je popisom explicitné vymenovanie členov postupnosti, v druhom
jej zápis pomocou regulárneho výrazu, v tret’om slovný popis vo štvrtom vyjadrenie čí-
selnej hodnoty binárneho čísla v desiatkovej sústave (predpokladáme, že informácia o
dĺžke slova je známa), v piatom ide o hexadecimálny zápis toho istého čísla (s vyne-
chaním počiatočných núl) a napokon posledný výraz je hexadecimálny zápis binárneho
ret’azca, vrátane prvých troch nulových hexadecimálnych číslic. Všetky popisy majú spo-
ločné to, že umožňujú v množine všetkých binárnych ret’azcov (v našom prípade dĺžky

2.2. ÚDAJE, INFORMÁCIA A KOMUNIKÁCIA 11

16) jednoznačne identifikovat’ daný ret’azec; t.j. obsahujú rovnakú informáciu. Údaje
teda predstavujú záznam informácie; informácia je obsahom údajov. Niekedy sa pojem
informácia spája aj so sémantikou (významom) údajov, ale toto spojenie chápanie infor-
mácie komplikuje, pretože do pojmu informácia zavádza subjektívný aspekt (toho, kto
údaje interpretuje a kontext). Preto sa budeme pridržiavat’ vyššie uvedeného chápania
informácie ako obsahu údajov.1 Pojem správa sa zvykne používat’ na označenie údajov,
ktoré majú istý formát a sú prenášané z jedného miesta na druhé. Okrem prenosu úda-
jov v priestore sa údaje často prenášajú aj v čase: zapíšu sa na nejaké médium a po
čase sa z neho čítajú. Pod komunikáciou budeme rozumiet’ činnost’ dvoch alebo viace-
rých entít (účastníkov komunikácie), ktorá pozostáva z prenosu údajov/správ od jedného
účastníka (odosielatel’a) k druhému/iným (príjemca/príjemcovia). Existuje mnoho spô-
sobov komunikácie, ktoré závisia tak od použitých komunikačných prostriedkov (pošta,
telefón, telegraf, televízia, rozhlas, a i.), typu údajov, ktoré sa pri komunikácii prenášajú
aj účelu komunikácie. Nebudeme ich rozoberat’, namiesto toho zavedieme pomerne vše-
obecný model komunikačného systému, popíšeme úlohu jeho jednotlivých subsystémov
a ukážeme, aké úlohy sa musia pri komunikácii riešit’. Uvedený model použijeme tak na
popis prenosu údajov v priestore, ako aj v čase.

Na obrázku 2.1 je uvedený Shannonov model komunikačného systému. Hoci je tento
model vel’mi všeobecný, hodí sa na popis mnohých komunikačných systémov a pre d’alšie
(napríklad komunikačný systém so spätnou väzbou) môže Shannonov model poslúžit’
ako základ, ktorý sa dá vhodne upravit’. Podrobnejší model komunikačného systému,
odvodený zo Shannonovho modelu je uvedený na obrázku 2.2

správa signál
prijatý
signál správa

zdroj
informácie vysielač kanál prijímač príjemca

zdroj
šumu

- - - -

6

Obr. 2.1: Shannonov model komunikačného systému

Zdroj informácie/údajov. Aby sme sa nemuseli zaoberat’ tým, odkial’ údaje (informá-
cia) pochádzajú, budeme predpokladat’, že existuje nejaký zdroj informácie (údajov), S
(Source). Zdroju prislúcha nejaká abeceda, ΣS, ktorú budeme nazývat’ zdrojovou abece-
dou, alebo abecedou zdroja. Ďalej ΣS budeme predpokladat’, že zdroj S generuje postup-
nost’ znakov xi, xi+1, . . . ; xi+j ∈ ΣS; napríklad tak že v diskrétnych časových okamihoch
(taktoch) sa na výstupe zdroja budú objavovat’ symboly zo zdrojovej abecedy. Postupnost’
znakov zdrojovej abecedy môžeme spracovávat’ po znakoch, alebo rozdelit’ na slová ko-
nečnej dĺžky. Bez ujmy na všeobecnosti môžeme predpokladat’, že údaje, ktoré budeme

1Základné poznatky o meraní množstva informácie v údajoch sú uvedené v kapitole 16

12 KAPITOLA 2. ZÁKLADNÉ POJMY A OZNAČENIA

spracovávat’, majú formu postupnosti slov2 nad abecedou ΣS.

Kóder K1 – kódovanie zdrojových údajov. Forma, v ktorej sú zapísané zdrojové
údaje, nemusí byt’ vhodná pre d’ašie spracovanie, a preto je postupnost’ slov vytvorená
zdrojom pred d’alším spracovaním zakódovaná. Toto kódovanie sa nazýva kódovanie
zdrojovej informácie, alebo kódovanie zdroja a realizuje ho kóder K1. Výsledkom kódova-
nia zdrojovej informácie je postupnost’ symbolov kódovej abecedy ΣC, ktorú budeme na-
zývat’ správou. Ked’že pôvodnú informáciu získavame priamo zo zdroja, kódovanie zdroja
nemusí riešit’ ochranu údajov pred prípadnými chybami, ale plní inú úlohu—zaist’uje
dosiahnutie efektívnosti zápisu zdrojovej informácie. Výsledkom kódovania zdrojových
údajov je (v ideálnom prípade) najkratšia správa nad kódovou abecedou, na základe
ktorej možno v plnom rozsahu zrekonštruovat’ zdrojové údaje v pôvodnej podobe. Požia-
davka na efektívnost’ kódovania správy sa dá vyjadrit’ tak, že vo výslednej (kódovanej)
správe sa l’ubovol’ná k-tica znakov kódovej abecedy bude vyskytovat’ s rovnakou pravde-
podobnost’ou3.

zdroj S - kóder K1 - kóder K2 - modulátor - vysielač -

p
r
e
n
o
s
o
v
ý
k
a
n
á
l-

šum -

príjemca � dekóder
D1

� dekóder
D2

� demodu-
látor

� prijímač �

Obr. 2.2: Zovšeobecnený model komunikačného systému

Na tomto mieste sa na chvíl’u zastavíme. Shannonov model komunikačného systému
predpokladá, že v ideálnom prípade sa príjemcovi podarí zrekonštruovat’ správu v pô-
vodnom tvare. Aj ked’ sa v reálnych systémoch používa kódovanie zdroja, ktoré realizuje
tzv. bezstratovú kompresiu (data compaction), údaje generované zdrojom častokrát ob-
sahujú informáciu, ktorú príjemca nedokáže využit’. Bezstratová kompresia takýchto
údajov by viedla ku správam, ktoré by boli zbytočne rozsiahle. Ak dokážeme určit’, ktorá
informácia obsiahnutá v zdrojových údajoch je podstatná a ktorá nie, môžeme na kó-
dovanie zdrojových údajov použit’ efektívnejšie kódovanie, založené na odfiltrovaní tak
redundancie, ako aj nepodstatnej informácie obsiahnutej v zdrojových údajoch. Takéto
kódovanie zdroja, pri ktorom dochádza k istej strate informácie sa nazýva (kompresia
so stratou informácie, data compression). Príkladom môže byt’ kódovanie hudby, ktoré
využíva skutočnost’, že údaje obsahujú informáciu ktorú príjemca nedokáže využit’ (ne-
počutel’né zvuky); táto informácia sa pri kódovaní zdroja jednoducho odfiltruje a tým

2v krajnom prípade slov dĺžky 1, teda znakov zdrojovej abecedy
3Zmyslom kódovania zdroja je odstránit’ redundanciu (nadbytočnost’) pôvodného zápisu. Požiadavka na

rovnakú pravdepodobnost’ výskytu všetkých k-tic kódovej abecedy znamená, že v kódovanej správe už ne-
bude možné objavit’ nejakú zákonitost’, ktorá by sa dala využit’ na d’alšie zefektívnenie zápisu.

2.2. ÚDAJE, INFORMÁCIA A KOMUNIKÁCIA 13

zvýši efektívnost’ zápisu (porovnajte nejakú hudobnú skladbu zapísanú na audio CD a
zápis tej istej skladby vo formáte MP3, príp. iných). Na druhej strane mechanické použi-
tie kompresie so stratou informácie nebude asi použitel’né pri spracovávaní exe súborov
(hoci inteligentná revízia zdrojových textov tých istých programov by nepochybne odha-
lila možnosti optimalizácie textu.)

Správa Kódovanú správu rozdelíme na bloky vhodnej dĺžky k. (O výbere k budeme ho-
vorit’ neskôr.) Pripomíname, že ak bol kóder K1 dostatočne kvalitný a kódovaná správa
dostatočne dlhá, všetky slová dĺžky k by sa v nej mali vyskytovat’ s rovnakými pravde-
podobnost’ami.

Kóder K2 Na rozdiel od kódovania zdroja, kde nebolo treba rátat’ so šumom a úlohou kó-
dera K1 bolo redukovat’ redundanciu zdrojových údajov, správu budeme čoskoro posielat’
cez komunikačný kanál, na ktorý pôsobí šum. Úlohou druhého kódera je transformovat’
slová dĺžky k nad kódovou abecedou ΣC na slová dĺžky n (kvôli jednoduchosti predpokla-
dajme, že nad tou istou kódovou abecedou ΣC) tak, aby sa len mierne zvýšila redundan-
cia a príjemca bol schopný odhalit’/opravit’ chyby, ktoré vzniknú pri prenose prenosovým
kanálom. Najprv budeme uvažovat’ kóder bez pamäte. Tento kóder realizuje injektívne
zobrazenie

ENC : ΣkC → ΣnC.

Kódery bez pamäte sa používajú na kódovanie pomocou blokových kódov a vyznačujú
sa tým, že nezohl’adňujú žiadne vzt’ahy medzi k-ticami vstupných údajov; to isté slovo
(dĺžky k) sa zakaždým zobrazí na to isté slovo (dĺžky n). Existujú aj kódery s pamät’ou,
ktoré pri kódovaní znaku (zväčša kódujú znak po znaku) zohl’adňujú aj predchádzajúce
symboly. Tieto kódery sa používajú pri tzv. konvolučných kódoch.

Modulátor Správy sa prenášajú z jedného miesta na druhé pomocou fyzikálnych veli-
čín, ktoré sa dokážu šírit’ cez vhodné prostredie. Fyzikálna reprezentácia správy sa na-
zýva signál. (My budeme pomocou jedného signálu reprezentovat’ menšie časti správy,
napríklad slová, alebo znaky kódovej abecedy.) Zariadenie, ktoré transformuje fyzikálnu
veličinu tak, aby predstavovala príslušný signál, sa nazýva modulátor. Predstavme si
napríklad rádiovú vlnu so sínusovým priebehom a amplitúdou 1 a binárnu kódovú abe-
cedu Σ = {0, 1}. Symbolu 0 priradíme hodnotu −1 a symbolu 1 hodnotu +1. Postupnost’
0, 0, 1, 1, 0, 1, 0, 1 bude reprezentovaná signálom, ktorého priebeh je uvedený na odrázku
2.3. Pre zaujímavost’ uvedieme aj hodnoty signálov reprezentujúcich jednotlivé bity:

−0.9479054106 −0.9450567393 0.9450567393 0.9479054110

−0.9180252682 0.9222918778 −0.9222918783 0.9180252668

Vysielač je d’alším prvkom komunikačného systému. Jeho úlohou je generovat’ signály
dostatočne silné na to, aby prekonali cestu k príjemcovi.

Prenosový kanál Signály sa môžu šírit’ v rôznorodých prostrediach; napríklad kozmic-
kým priestorom, po kovovom kábli, optickom vlákne a pod. Médium umožňujúce prenos
signálov budeme nazývat’ prenosovým kanálom. Predpokladáme, že prenosový kanál je
vystavený vplyvom okolitého prostredia, ktoré ovplyvňujú správy prenášané kanálom.
Faktorov, ktoré môžu pôsobit’ na prenosový kanál je tak vel’a, že sa dost’ dobre nedá

14 KAPITOLA 2. ZÁKLADNÉ POJMY A OZNAČENIA

–1.2
–1

–0.8
–0.6
–0.4
–0.2

0

0.2
0.4
0.6
0.8

1
1.2

–3 –2 –1 1 2 3x

Obr. 2.3: Signál

skúmat’ vplyv jednotlivých faktorov, ale namiesto toho sa skúmajú dôsledky ich spo-
ločného pôsobenia. Rôzne rušivé faktory vplývajúce na prenosový kanál, budeme nazý-
vat’ zdrojmi šumu a výsledok ich pôsobenia—šumom . Budeme predpokladat’, že šum
má podobu signálov, ktoré ovplyvňujú signály prenášajúce správu (napríklad sa s nimi
skladajú), v dôsledku čoho dôchádza k zmenám signálov, ktoré sa v prenášanej správe
prejavujú ako chyby troch základných typov:

1. nahradenie jedného symbolu prenášanej správy iným symbolom (kódovej abecedy);

2. zmazaním symbolu (čo môžeme chápat’ tak, že symbol prenášanej správy je nahra-
dený symbolom, ktorý nepatrí do kódovej abecedy);

3. výpadkom/doplnením nového symbolu (kódovej abecedy) do prenášanej správy (po-
rucha synchronizácie).

Šumový signál je zobrazený na obrázku 2.4

V tejto knihe sa budeme zaoberat’ kódmi, ktoré umožnia riešit’ chyby prvého a dru-
hého druhu; t.j. odhal’ovat’ a opravovat’ chyby. Poruchami synchronizácie sa nebudeme
zaoberat’, čitatel’ovi odporúčame

TO DO

Signály prenášané prenosovým kanálom zachytáva prijímacia strana pomocou prijí-
mača (napríklad anténa mobilného telefónu). Abstrahujeme od transformácií signálov,
ktoré realizuje prijímač a predpokladáme, že prijaté signály vstupujú do demodulá-
tora, ktorý transformuje signály na postupnost’ znakov kódovej abecedy. Demodulátor
už v podstate robí prvú korekciu chýb. V dôsledku pôsobenia šumu na kanál prijaté

2.2. ÚDAJE, INFORMÁCIA A KOMUNIKÁCIA 15

–0.6

–0.4

–0.2
0

0.2

0.4

0.6

0.8

1

1.2

–3 –2 –1 1 2 3x

Obr. 2.4: Šum

signály nebudú mat’ zd’aleka ideálny priebeh, obr. 2.5. Postupnost’ 0, 0, 1, 1, 0, 1, 0, 1 je
reprezentovaná postupnost’ou hodnôt4

bit pôvodný signál prijatý signál interpretácia
tvrdá mäkká

0 −0.9479054106 0.1824649004 1 ?
0 −0.9450567393 −0.2506249324 0 ?
1 0.9450567393 0.4439007163 1 1

1 0.9479054110 0.5558633849 1 1

0 −0.9180252682 −0.5960788882 0 0

1 0.9222918778 1.195406403 1 1

0 −0.9222918783 −1.159436952 0 0

1 0.9180252668 0.7084777992 1 1

Ani jedna z prijatých hodnôt (signálov) nepatrí do množiny {−1, 1}. Aby dekóder mo-
hol transformovat’ prijaté signály na znaky kódovej abecedy, musí použit’ pružnejšie pra-
vidlo; napríklad, signály s nezápornými hodnotami budú reprezentovat’ 1 a ostatné sig-
nály budú reprezentovat’ kódový znak 0. Pri použití tohto pravidla sa značne deformo-
vané signály transformujú na postupnost’ 1, 0, 1, 1, 0, 1, 0, 1. Demodulátor môže byt’ navr-
hnutý tak, aby zakaždým prijal rozhodnutie o interpretácii signálu (hard quantization).
To by však mohlo viest’ k nesprávnej interpretácii signálov blízkych k 0 demoduláto-
rom a problém (identifikáciu a opravenie chyby) by musel riešit’ dekóder. Napriek tomu,
že pri "tvrdej"transformácii spojitého signálu na diskrétne hodnoty sa dosahuje najvyš-
šia pravdepodobnost’ správneho priradenia, často sa používa alternatívne riešenia, tzv.
soft quantization. V krajnom prípade demodulátor neinterpretuje žiadne signály ako

4tieto predstavujú hodnoty signálu v strede príslušných intervalov.

16 KAPITOLA 2. ZÁKLADNÉ POJMY A OZNAČENIA

–1.5

–1

–0.5

0.5

1

1.5

–3 –2 –1 1 2 3x

Obr. 2.5: Prijatý signál

kódové znaky a posunie dekóderu vypočítané číselné hodnoty signálov na jednotlivých
časových intervaloch. Tým sa prakticky celé spracovanie prijatej správy presunie na de-
kóder, čo však zvyšuje nároky na jeho výkonnost’ (zložitost’ a zrejme aj cenu). Rozumné je
preto kompromisné riešenie, kedy demodulátor predspracuje prijaté signály napríklad
tak, že jednoznačne interpretuje tie signály, ktorých hodnoty dostatočne dobre zodpove-
dajú hodnotám reprezentujúcim jednotlivé znaky kódovej abecedy, problematické hod-
noty signálu bude reprezentovat’ nejakým novým symbolom a tieto výsledky odovzdá
dekóderu. Presnejšie, nech sk označuje priemernú hodnotu signálu v takte k, a ak je hod-
nota symbolu kódovej abecedy zodpovedajúca signálu sk. Potom pravidlo pre binárnu
kódovú abecedu by mohlo vyzerat’ napríklad takto

ak =


1 sk ≥ 0.3,
0 sk ≤ −0.3,

? −0.3 < sk < 0.3.

V našom prípade by demodulátor postupnost’ prijatých signálov interpretoval ako po-
stupnost’ ?, ?, 1, 1, 0, 1, 0, 1. Ak počas prenosu došlo ku chybe (nahradenie jedného znaku
kódového slova iným), informácia, ktorú dostal dekóder od demodulátora by mu umož-
nila odhadnút’ najpravdepodobnejšie miesta, na ktorých mohlo dôjst’ ku chybe (v našom
príklade sú podozrivé prvé dva symboly), čím by sa (ako uvidíme neskôr) značne zjedno-
dušilo dekódovanie.

Dekódery D2 a D1 Hlavnou úlohou dekódera D2 je čo najlepšie rekonštruovat’ odvysie-
lanú správu. Predpokladajme, že poznáme všetky kódové slová (budeme ich označovat’
ako ui), všetky možné prijaté slová vj a podmienené pravdepodobnosti pi,j = p(vj|ui).
Pravdepodobnost’ pi,j vyjadruje pravdepodobnost’ toho, že po odvysielaní kódového slova
ui bolo prijaté (nejaké) slovo vj. Základom pre rozhodovanie dekódera D2 je nasledujúci

2.2. ÚDAJE, INFORMÁCIA A KOMUNIKÁCIA 17

princíp dekódovania na základe maximálnej pravdepodobnosti (Maximum Likelihood
Decoding, MLD):

Prijaté slovo vj dekódujeme na také kódové slovo ui, pre ktoré je podmienená
pravdepodobnost’ p(vj|ui) maximálna.

Dekódovanie na základe maximálnej pravdepodobnosti vždy dáva výsledok (kódové
slovo). Takéto dekódovanie sa nazýva úplné dekódovanie . Ako sa dá očakávat’, okrem
úplného dekódovania bude existovat’ aj nejaké alternatívne riešenie, ktoré budeme na-
zývat’ neúplným dekódovaním. Pri neúplnom dekódovaní môžu nastat’ dva prípady:

1. dekóder dekóduje prijaté slovo t.j. priradí prijatému slovu kódové slovo,

2. dekóder namiesto kódového slova vypíše nejaký dohodnutý symbol (napríklad∞).

Druhý prípad nastane vtedy, ked’ dekóder našiel v prijatom slove chybu, ale nebol
ju schopný opravit’. Takúto situáciu nemôžeme vylúčit’, pretože dekóder nie je schopný
opravit’ slová, ktoré boli výrazne modifikované. V takom prípade je lepšie požiadat’ o
opätovné zaslanie informácie, ako sa pokúšat’ opravit’ prijaté slovo a dekódovat’ ho ne-
správne. Ani takýto prístup však nezaručuje, že dekódované slovo sa zhoduje s odvysie-
laným kódovým slovom. Ked’že dekóder rozhoduje na základe syntaxe (napr. zoznamu
kódových slov) a nie sémantiky prijatých správ, ak počas prenosu kódového slova nastala
chyba, ktorá ho transformovala na iné kódové slovo, dekóder takúto chybu nedokáže
identifikovat’. Preto dekóder postavený na princípe MLD bude mat’ síce najvyššiu prav-
depodobnost’ správneho dekódovania, ale ak sa pomýli, tak je dekódovaná správa zat’a-
žená chybou, ktorú je t’ažko odhalit’. Preto väčšina dekóderov, ktorými sa budeme za-
oberat’, vychádza z trocha slabšieho princípu, nazývaného IMLD (Incomplete Maximum
Likelihood Decoding); neúplné dekódovanie na základe maximálnej pravdepodobnosti:

Prijaté slovo vj dekódujeme bud’ na také kódové slovo ui, pre ktoré je podmie-
nená pravdepodobnost’ p(vj|ui) maximálna, alebo na symbol∞; bola odhalená
chyba.

Napriek použitiu samoopravných kódov nedokážeme garantovat’ správne dekódova-
nie prijatej správy. Budeme rozlišovat’ dva problematické prípady: chyba dekódera (de-
coder error) nastáva vtedy, ked’ dekóder nesprávne dekódoval prijaté slovo; t.j. interpre-
toval ho ako iné kódové slovo, ako bolo to, ktoré bolo odvysielané. Zlyhanie dekódera
zahŕňa tak chybu dekódera, ako aj ten prípad, ked’ dekóder odhalil chybu ale nebol ju
schopný opravit’.

Dekóder D1 transformuje dekódovanú správu do podoby, v ktorej ju môže d’alej spra-
covávat’ príjemca. Dobrým príkladom je dekódovanie binárne zapísanej zvukovej infor-
mácie (hudby) do počúvatel’nej podoby, alebo dekódovanie digitálne zapísaných filmov
na DVD.

18 KAPITOLA 2. ZÁKLADNÉ POJMY A OZNAČENIA

Všimneme si, že hoci sme v modeli prenosového kanála hovorili o prenose správ, tento
model možno priamo použit’ aj na popis uchovávania a opätovného čítania údajov. Za-
znamenávanie údajov a ich opätovné čítanie možno chápat’ ako prenos informácie v čase,
zatial’ čo pri prenose správ sa jedná o prenos informácie v priestore. Jeden podstatný
rozdiel medzi prenosom údajov v čase a priestore však je. Ak pri prenose informácie v
priestore dôjde k odhalitel’nej ale neopravitel’nej chybe, príjemca má možnost’ požiadat’
odosielatel’a o opätovné zaslatie správy. Ak však dôjde k poškodeniu údajov zapísaných
na nejakom pamät’ovom médiu, opätovné čítanie neumožní prečítat’ správne údaje. O
to dôležitejšie je pri uchovávaní údajov na pamät’ových médiách ochrana ich integrity
napríklad pomocou samoopravných kódov. Z hl’adiska úloh, ktoré rieši teória kódovania
nie je rozdiel informácie v čase a priestore podstatný, a preto sa v d’alšom sa sústredíme
na problémy vznikajúcimi pri prenose informácie v priestore.

2.3 Kódovanie

Vrát’me sa k modelu komunikačného systému z predchádzajúcej časti. Zostáva vyriešit’
problém, ako zapisovat’ správy, ktoré generuje zdroj S v podobe postupnosti znakov nad
abecedou ΣS pomocou kódovej abecedy ΣC. Existuje viacero riešení tohto problému. Za-
čneme tým najjednoduchším—kódovaním jednotlivých znakov zdrojovej abecedy. Nech
ΣS = {s0, . . . , sm−1} je zdrojová abeceda a ΣC = {b0, . . . , br} je kódová abeceda a nech sú
v0, . . . , vm−1 navzájom rôzne slová nad kódovou abecedou ΣC. Potom zobrazenie

s0 → v0

s1 → v1
...

sm−1 → vm−1

budeme nazývat’ kódovaním symbolov zdrojovej abecedy slovami nad abecedou ΣC. Mno-
žina V = {v0, . . . , vm−1} sa nazýva kód a prvky množiny V sa nazývajú kódovými slo-
vami. Všimneme si, že kódovanie po písmenách je totálnym (všade definovaným) zobra-
zením a ked’že zdroj S generuje len postupnosti znakov nad abecedou ΣS, každá správa
vytvorená zdrojom S sa dá vyjadrit’ pomocou postupnosti kódových slov kódu V . Prob-
lém však vzniká pri dekódovaní kódovaných správ. Predpokladajme, že je daná nejaká
správa si1 , . . . , sin nad zdrojovou abecedou a jej prislúchajúca kódovaná správa vyjad-
rená ako postupnost’ kódových slov vi1 , . . . , vin . Postupnost’ vi1 , . . . , vin sa však prenáša
po znakoch a pred dekódovaním je potrebné ju rozdelit’ na kódové slová. Ak sa to podarí,
nie je problém dekódovat’ jednotlivé kódové slová a získat’ pôvodnú správu si1 , . . . , sin .
Nasledujúci príklad ukazuje, že existujú také kódy, pre ktoré sa nie každá postupnost’
kódových symbolov dá jednoznačne rozdelit’ na kódové slová.

Príklad. Abeceda zdroja ΣS = {0, 1, 2, 3} pozostáva zo štyroch symbolov (prvých štyroch
desiatkových číslic) a kódová abeceda je binárna; ΣC = {0, 1}. Kódovanie prirad’uje de-

2.3. KÓDOVANIE 19

siatkovej číslici jej binárny zápis:

0 → 0 1 → 1

2 → 10 3 → 11

Uvažujme napr. binárnu postupnost’ 001011. Táto postupnost’ sa dá interpretovat’ via-
cerými spôsobmi, a síce ako binárny zápis desiatkových postupností 001011, 00103, 00211,
0023.

Jednoznačnost’ dekódovania je prirodzenou požiadavkou, ktorá sa kladie na kódovanie.
Nutným predpokladom jednoznačnosti dekódovania je tzv. rozdelitel’nost’ kódu.

Definícia 2.3.1. Kód V = {v0, . . . , vm−1} nad abecedou ΣC sa nazýva rozdelitel’ným, ak
pre l’ubovol’nú rovnost’ postupností kódových slov

vi1 . . . vik = vj1 . . . vjl

platí l = k, i1 = j1, . . . , ik = jk.

Čo vlastne vyjadruje rozdelitel’nost’ kódu? Ak je kód V rozdelitel’ný, znamená to, že
l’ubovol’nú postupnost’ nad Σ∗

C bud’ môžeme rozdelit’ na postupnost’ kódových slov jed-
noznačným spôsobom, alebo ju nemôžeme rozdelit’ vôbec. Pre rozdelitel’ný kód nemôže
nastat’ taká situácia, kedy by sme nejakú postupnost’ kódových symbolov mohli rozdelit’
na postupnost’ kódových slov dvoma rozličnými spôsobmi. Jednoduchým riešením prob-
lému rozdelitel’nosti sú blokové alebo rovnomerné kódy. Blokový kód sa vyznačuje tým,
že všetky jeho kódové slová majú rovnakú dĺžku.

Príklad. Rozšírime predchádzajúci príklad a uvedieme dva spôsoby binárneho kódova-
nia desiatkových číslic—rovnomerné a nerovnomerné:

desiatkový binárny blokový
zápis zápis kód
0 0 0000

1 1 0001

2 10 0010

3 11 0011

4 100 0100

5 101 0101

6 110 0110

7 111 0111

8 1000 1000

9 1001 1001

Dekódovanie postupnosti znakov kódovej abecedy bude v prípade blokového kódu re-
latívne jednoduché: postupnost’ sa najprv rozdelí na slová dĺžky rovnej dĺžke bloku a
potom sa (napríklad na základe tabul’ky) jednotlivým kódovým slovám priradia symboly
zdrojovej abecedy.

Príklad. Postupnost’ 100001001100100100110010 rozdelíme na kódové slová:
1000 0100 1100 1001 0011 0010 a dekódujeme pomocou tabul’ky z predchádzjúceho prí-
kladu: 843932. Všimneme si, že existujú aj binárne postupnosti, ktoré sa nedajú dekódo-
vat’, nakol’ko slová 1111, 1110, 1101, 1100, 1011, 1010 nie sú kódové slová.

20 KAPITOLA 2. ZÁKLADNÉ POJMY A OZNAČENIA

S rozdelitel’nost’ou vznikajú problémy pri použití niektorých kódov, ktoré obsahujú
slová nerovnakej dĺžky; tzv. nerovnomerných kódoch. Postupnost’ kódových symbolov v
tomto prípade nemožno mechanicky rozdelit’ na bloky rovnakej dĺžky, ale je potrebné
určit’ kódové slová. To sa v prípade nerovnomerných kódov vo všeobecnosti nemusí dat’
spravit’ (alebo nedá spravit’ jednoznačne). Ale aj medzi nerovnomernými kódmi exis-
tujú rozdelitel’né kódy. Nakol’ko tieto kódy umožňujú zapisovat’ informáciu častokrát
úspornejšie ako blokové kódy, používajú sa najmä na (bezstratovú) kompresiu údajov.
Podrobnejšie sa nimi budeme zaoberat’ v nasledujúcich kapitolách. Vrát’me sa teraz ku
kódovaniu zdrojovej informácie. Zatial’ sme kódovali jednotlivé znaky kódovej abecedy,
teraz pojem kódovania znakov zdrojovej abecedy zovšeobecníme.

Definícia 2.3.2. Nech je ΣS zdrojová abeceda, nech je množina U = {u0, . . . , uM} neja-
kých slov nad zdrojovou abecedou a nech sú v0, . . . , vM slová nad kódovou abecedou ΣC.
Zobrazenie

u0 → v0

u1 → v1
...

uM → vM

budeme nazývat’ kódovaním množiny U kódom V.

Všimneme si, že táto definícia kódovania zahŕňa aj kódovanie znakov zdrojovej abe-
cedy; stačí položit’ U = ΣS.

Príklad. Nech je U rovná množine všetkých podmnožín množiny prirodzených čísel
{0,99}, V = {0, 1}100 je množina binárnych vektorov dĺžky 100. Podmnožine {i0, . . . , ik}

z U je priradené slovo vj5, ktoré má jednotkové hodnoty na pozíciách i0, . . . , ik a nuly na
ostatných pozíciách. Je zrejmé, že V kóduje množinu U a že toto kódovanie je bijekciou.
Poznajúc mohutnost’ kódu V vieme určit’ aj mohutnost’ množiny U : |U | = 2100.

5tzv. charakteristický vektor

Čast’ I

Kódovanie zdroja

21

Kapitola 3

Nerovnomerné kódy

Vhodný kód na kódovanie daného zdroja informácie môžeme spravidla vybrat’ z viace-
rých kandidátov. To ktorý z nich nakoniec použijeme, závisí od účelu ktorý chceme kódo-
vaním zdroja dosiahnut’. Ako sme už spomenuli v predchádzajúcej kapitole, jednou z pri-
rodzených požiadaviek na kódovanie zdroja je, aby zakódovaná správa bola čo najkratšia
(a zároveň jednoznačne dekódovatel’ná), aby sa pri kódovaní nepoužívali zbytočne dlhé
kódové slová; resp. aby kódovanie bolo efektívne1. Ak má množina (znakov alebo slov)
ktorú potrebujeme kódovat’ mohutnost’ n, tak na rozlíšenie prvkov kódovanej množiny
budeme potrebovat’ blokový kód so slovami dĺžky aspoň ⌈logm n⌉, kdem je mohutnost’ kó-
dovej abecedy. V prípade, ked’ zdroj informácie generuje všetky znaky približne rovnako
často (a nie sú známe iné využitel’né vzt’ahy medzi znakmi/slovami zdrojových správ)2, je
celkom efektívne kódovanie zdoja pomocou blokových kódov. Iná situácia však nastane,
ked’ sa niektoré zo symbolov zdrojovej abecedy (slov nad zdrojovou abecedou) vyskytujú
v správach výrazne častejšie ako iné; to znamená, ak sa množstvo informácie obsiahnuté
v jednotlivých zdrojových symboloch (slovách nad zdrojovou abecedou) výrazne odlišuje.
V takomto prípade by kódovanie správ pomocou nerovnomerných kódov, v ktorých by
boli častejšie sa vyskytujúcim symbolom (slovám) priradené kratšie kódové slová efek-
tívnejšie3, ako použitie blokových (rovnomerných) kódov.

Základným predpokladom praktickej použitel’nosti nerovnomerných kódov je rozde-
litel’nost’. V tejto kapitole sa budeme zaoberat’ rozdelitel’nými nerovnomernými kódami.
Najprv zavedieme vel’mi užitočnú triedu efektívne dekódovatel’ných nerovnomerných
kódov, tzv. prefixové kódy. Potom dokážeme Kraftovu-McMillanovu nerovnost’, ktorá pred-
stavuje kritérium pre existenciu (nerovnomerného) rozdelitel’ného kódu s danými dĺž-
kami kódových slov. Nakoniec zavedieme pojem ceny kódu, skonštruujeme dolný odhad
ceny kódu a budeme sa zaoberat’ konštrukciami optimálnych a kvázioptimálnych kó-
dov. Kvôli zjednodušeniu výkladu budeme v priebehu tejto kapitoly predpokladat’, že kó-
dová abeceda je binárna a ak nebude explicitne povedané inak, budeme kódovat’ znaky
zdrojovej abecedy; to znamená správy vytvorené zdrojom informácie budeme kódovat’

1Zatial’ vystačíme s intuitívnym chápaním efektívnosti kódovania, neskôr ho upresníme pomocou pojmu
ceny kódu.

2jednotlivé zdrojové symboly obsahujú približne rovnaké množstvo informácie
3pre m-prvkovú kódovú abecedu a n prvkovú kódovanú množinu bude priemerný počet znakov kódovej

abecedy potrebný na zakódovanie jedného prvku kódovanej množiny nižší ako ⌈logm n⌉

23

24 KAPITOLA 3. NEROVNOMERNÉ KÓDY

po znakoch.

3.1 Rozdelitel’né kódy

3.1.1 Prefixové kódy

Štúdium nerovnomerných rozdelitel’ných kódov začneme skúmaním základných vlast-
ností prefixových kódov. Prefixové kódy totiž predstavujú rozsiahlu triedu nerovnomer-
ných kódov s dobrými vlastnost’ami (vyznačujú sa najmä rozdelitel’nost’ou a jednodu-
chost’ou dekódovania), ktoré budeme používat’ priamo na kódovanie zdrojových údajov,
ale aj na konštrukciu iných kódov a pri skúmaní parametrov nerovnomerných kódov.
Definujeme prefixový kód formálne.

Definícia 3.1.1. Kód V = {v0, . . . , vm−1} sa nazýva prefixovým kódom, ak pre l’ubovol’né
vi, vj ∈ V, i ̸= j; vi nie je prefixom slova vj.

Prefixový kód sa teda vyznačuje tým, že žiadne jeho slovo nemôže byt’ počiatočným pod-
slovom iného kódového slova. Kód z príkladu 2.3 nebol prefixový; kódové slovo 1 bolo
prefixom kódového slova 10. „Prefixovost’“ kódu je taká silná vlastnost’, že z nej vyplýva
rozdelitel’nost’ kódu; ináč povedané, prefixovost’ je postačujúcou podmienkou pre rozde-
litel’nost’ kódu. Sformulujeme a dokážeme toto tvrdenie formálne.

Veta 3.1.1. Nech je V = {v0, . . . , vm−1} (binárny) prefixový kód, potom je V (binárny) roz-
delitel’ný kód.

Dôkaz. Predpokladajme, že V je prefixový, ale nie rozdelitel’ný kód. Potom existuje
aspoň jedna binárna postupnost’, ktorá je rozdelitel’ná na postupnost’ kódových slov as-
poň dvoma rozličnými spôsobmi. Vyberieme zo všetkých takých binárnych postupností
postupnost’ β s minimálnou dĺžkou. Pre postupnost’ β teda platí :

vi1 . . . vik = vj1 . . . vjl .

Z toho, že postupnost’ β má minimálnu dĺžku vyplýva, že vi1 ̸= vj1 . V opačnom prípade
by bolo totiž možné slovo vi1 z postupnosti β vynechat’ a dostali by sme kratšiu binárnu
postupnost’, pre ktorú by platilo:

vi2 . . . vik = vj2 . . . vjl .

To je však v spore s predpokladom o minimálnej dĺžke postupnosti β. Ak však vi1 ̸= vj1 ,
potom bud’ slovo vi1 je prefixom slova vj1 alebo slovo vj1 je prefixom slova vi1 . To je zasa
v spore s predpokladom o tom, že kód V je prefixový. To znamená, že postupnost’ kódo-
vých symbolov, ktorá sa dá rozdelit’ na postupnost’ kódových slov aspoň dvoma rôznymi
spôsobmi nemôže existovat’, a teda kód V je rozdelitel’ný.

3.1. ROZDELITEL’NÉ KÓDY 25

Tvrdenie sme síce dokázali pre binárny prípad, ale platí všeobecne pre l’ubovol’nú
kódovú abecedu, ktorá obsahuje aspoň dva symboly. Prefixovost’ teda postačuje na to,
aby bol kód rozdelitel’ný; prirodzenou otázkou je, či je prefixovost’ zároveň nutným pred-
pokladom rozdelitel’nosti kódu, alebo ináč povedané, či existujú aj iné rozdelitel’né kódy
okrem prefixových. Ukazuje sa, že nie. Uvedieme príklad rozdelitel’ného kódu, ktorý nie
je prefixový.

Príklad 3.1. Kód V = {0, 01, 11} síce nie je prefixový, ale napriek tomu to je rozdelitel’ný
kód.

Kód z predchádzajúceho príkladu je tzv. sufixový kód, ktorý sa vyznačuje tým, že žiadne
kódové slovo nie je sufixom iného kódového slova. Vytvorili sme ho tak, že sme „otočili“
slová prefixového kódu {0, 10, 11}. Postupnost’ kódových symbolov správy kódovanej po-
mocou sufixového kódu budeme rozdel’ovat’ na kódové slová „odzadu“; t.j. až vtedy, ked’
máme k dispozícii celú kódovanú správu. Príkladom takejto postupnosti, ktorá sa nedá
rozdelit’ na postupnost’ kódových slov, kým sa nedočíta do konca, je postupnost’:

0111 . . . 1

Ak táto postupnost’ obsahuje párny počet jednotiek (napr. 2k), dá sa rozdelit’ nasledovne:
0(11)k; ak obsahuje nepárny počet jednotiek (2k + 1), tak sa rozdelí na kódové slová
nasledovne: 01(11)k.

TO DO: silne rozdelitel’né kódy

3.1.2 Kraftova - McMillanova nerovnost’

Aby sme získali čo najkratší zápis správy, snažíme sa na kódovanie používat’ kódy s krát-
kymi kódovými slovami. Ak je mohutnost’ abecedy zdroja menšia alebo rovná mohut-
nosti kódovej abecedy, tak potom možno znaky zdrojovej zbecedy kódovat’ slovami dĺžky
1 (znakmi kódovej abecedy). V opačnom prípade (a tých je prevažná väčšina) budeme
potrebovat’ použit’ kód s väčšími dĺžkami kódových slov. Je zrejmé, že si dĺžky kódových
slov nemôžeme volit’ l’ubovol’ne; ked’že existujú len dve binárne slová dĺžky 1 (0 a 1)
a štyri binárne slová dĺžky 2 (00,01,10,11) binárne kódy s tromi slovami dĺžky 1 alebo
piatimi slovami dĺžky 2 zrejme nemôžu existovat’. Ale existuje napríklad binárny kód
so štyrmi kódovými slovami dĺžok 1, 2, 2, 2; resp. existuje rozdelitel’ný kód nad abecedou
mohutnosti q ≥ 2 s dĺžkami kódových slov li = l(vi); i = 0, . . . ,m − 1? Na túto otázku
dáva odpoved’ veta 3.1.2, ktorú vyslovíme a dokážeme v tejto časti. Kvôli zjednodušeniu
výkladu budeme v d’alšom predpokladat’, že kódová abeceda je binárna a že zdrojová
abeceda ΣS obsahuje aspoň dva symboly, t.j. m ≥ 2.
Veta 3.1.2 (Kraftova-McMillanova nerovnost’). Nech sú l0, . . . , lm−1 l’ubovol’né nenulové
prirodzené čísla. Potom rozdelitel’ný kód V = {v0, . . . , vm−1} s dĺžkami kódových slov li =
l(vi); i = 0, . . . ,m− 1 existuje práve vtedy, ak platí nasledujúca nerovnost’

m−1∑
i=0

2−li ≤ 1. (3.1)

26 KAPITOLA 3. NEROVNOMERNÉ KÓDY

Dôkaz. Najprv dokážeme, že podmienka je nutná. Nech je V = {v0, . . . , vm−1} l’ubovol’-
ný kód. Priradíme mu generujúcu funkciu (enumerátor dĺžok kódových slov) definovanú
nasledujúcim spôsobom:

hV(x) =

m−1∑
i=0

x−l(vi).

Zavedieme teraz n-násobné zret’azenie (rozšírenie) kódu V ;

Vn = {wi; wi = vi1 . . . vin , vij ∈ V, j = 1, . . . , n}

Bude nás zaujímat’, aký je vzt’ah medzi vytvárajúcimi funkciami kódu V a jeho rozšíre-
nia, Vn. Kvôli lepšiemu pochopeniu si tento problém najprv ilustrujeme na jednoduchom
príklade.

Príklad 3.2. Uvažujme kód V = {0, 10, 11}. Jeho vytvárajúca funkcia je

hV(x) = x
−1 + x−2 + x−2 = x−1 + 2x−2.

Dvojnásobným zret’azaním kódu V dostávame kód

V2 = {00, 010, 011, 100, 1010, 1011, 110, 1110, 1111}

s enumerátorom
hV2(x) = x−2 + 4x−3 + 4x−4 = (x−1 + 2x−2)2.

Pokračovanie dôkazu. To, čo sme videli na príklade, platí aj vo všeobecnosti a dá sa
dokázat’ matematickou indukciou; t.j.

hVn(x) =

(
m−1∑
i=0

x−l(vi)

)n
. (3.2)

Predpokladajme teraz, že V = {v0, . . . , vm−1} je rozdelitel’ný kód s dĺžkami kódových
slov li = l(vi), i = 0, . . . ,m − 1. Symbolom Mi označíme počet slov dĺžky i v rozšírenom
kóde Vn a pomocou hodnôt Mi zapíšeme enumerátor kódu Vn. Označíme maximálnu
dĺžku slova v kóde V symbolom lmax. Potom dĺžka l’ubovol’ného slova kódu Vn nepre-
siahne n · lmax (v kóde aspoň jedno slovo takej dĺžky existuje, a je to slovo, ktoré sme
dostali n-násobným zret’azením slova maximálnej dĺžky kódu V). To znamená, žeMi = 0
pre i > n · lmax a generujúcu funkciu kódu Vn môžeme vyjadrit’ nasledovne

hVn(x) =

n·lmax∑
i=0

Mix
−i. (3.3)

Dosadíme v (3.3) namiesto premennej x hodnotu 2 a dostávame:

3.1. ROZDELITEL’NÉ KÓDY 27

hVn(2) =

n·lmax∑
i=0

2−iMi. (3.4)

Všimneme si, že suma v (3.4) môže obsahovat’ nulové členy; ak totiž V neobsahuje slovo
nulovej dĺžky ε, tak každé slovo v kóde Vn bude mat’ dĺžku minimálne n · lmin, kde lmin
je minimálna dĺžka kódového slova kódu V . Potom M0 =M1 =M2 = · · · =Mn·lmin−1 = 0.

Podobne, ak by kód V obsahoval len slová párnej dĺžky, tak ani kód Vn nemôže obsaho-
vat’ slová nepárnej dĺžky. Využijeme teraz skutočnost’, že kód V je rozdelitel’ný. Z toho
vyplýva, že všetky slová kódu Vn sú rôzne, a ked’že Vn je binárny kód, znamená to, že
Mi ≤ 2i. V opačnom prípade by sa aspoň jedna binárna postupnost’ dĺžky i musela dat’
poskladat’ zo slov kódu V rôznymi spôsobmi, čo je v spore s predpokladom o rozdelitel’-
nosti kódu V . Na druhej strane niektoré binárne postupnosti sa nemusia dat’ poskladat’
zo slov kódu V a v tomto prípade Mi < 2

i. Dosadíme horný odhad hodnoty Mi do vzt’ahu
(3.4) a po jednoduchých úpravách dostávame:

hVn(2) =

n·lmax∑
i=1

2−iMi ≤
n·lmax∑
i=1

2−i2i = n · lmax. (3.5)

Na druhej strane, zo vzt’ahov (3.2), (3.5) vyplýva

hVn(2) =

(
m−1∑
i=0

2−l(vi)

)n
≤ n · lmax. (3.6)

Ale nerovnost’ (3.6) platí pre l’ubovol’né n. Ak by teda

m−1∑
i=0

2−l(vi) = a > 1,

tak by existovalo také n0, že pre všetky n > n0 by

an > n · lmax,

pretože exponenciálna funkcia so základom a > 1 rastie rýchlejšie ako polynomická. To
však je v spore so vzt’ahom (3.6), a teda platí

m−1∑
i=0

2−l(vi) ≤ 1.

Postačujúcost’. Predpokladajme, že dĺžky kódových slov sú usporiadané vzostupne;
l0 ≤ l1 ≤ · · · ≤ lm−2 ≤ lm−1 a že pre ne platí Kraftova-McMillanova nerovnost’. Ukážeme,
že je možné zostrojit’ rozdelitel’ný kód s dĺžkami kódových slov l0, . . . , lm−1.

1. konštrukcia [1]. Použijeme matematickú indukciu.

1. Vyberieme l’ubovol’né binárne slovo dĺžky l0 ako kódové slovo v0.

28 KAPITOLA 3. NEROVNOMERNÉ KÓDY

2. Predpokladáme, že sme už vybrali slová v0, . . . , vk−1, k ≤ m − 1, dĺžok l0, . . . , lk−1
ktoré tvoria rozdelitel’ný (prefixový) kód.

3. V množine binárnych vektorov dĺžky lk nájdeme také slovo vk (dĺžky lk), že žiadne
zo slov v0, . . . , vk−1 nie je jeho prefixom. Ukážeme, že také slovo existuje. Všetkých
binárnych slov dĺžky lk, ktoré majú prefix v0 dĺžky l0 je 2lk−l0 . (Prvých l0 bitov sa
zhoduje so slovom v0, ostatných lk − l0 bitov možno vybrat’ l’ubovol’ným spôsobom.)
Všetkých binárnych slov dĺžky lk, ktorých prefixom je niektoré zo slov v0, . . . , vk−1
je

k−1∑
i=0

2lk−li . (3.7)

Teraz využijeme predpoklad, že pre doteraz zostrojený kód platí Kraftova-McMillanova
nerovnost’ a že k < m:

m−1∑
i=0

2−li ≤ 1.

Rozdelíme sumu z poslednej nerovnosti na dve časti:

m−1∑
i=0

2−li =

k−1∑
i=0

2−li +

m−1∑
i=k

2−li ≤ 1. (3.8)

Ked’že že všetky sčítance v sume (3.8) sú kladné čísla, vynechaním niektorých čle-
nov druhej sumy z (3.8) sa nerovnost’ zachová (existuje aj taká možnost’, že druhá
suma bude obsahovat’ len jediný člen, 2−lk):

k−1∑
i=0

2−li + 2−lk ≤ 1. (3.9)

Vynásobíme nerovnost’ (3.9) hodnotou 2lk a upravíme

k−1∑
i=0

2lk−li ≤ 2lk − 1. (3.10)

Zo nerovnosti (3.10) vyplýva, že, existuje aspoň jeden binárny vektor dĺžky lk, kto-
rého prefixom nie je žiadne zo slov v0, . . . , vk−1. Vyberieme tento vektor ako kódové
slovo vk. Takýmto spôsobom napokon zostrojíme prefixový kód V = {v0, . . . , vm−1} s
dĺžkami kódových slov {l0, . . . , lm−1}, čím sme dokázali tvrdenie vety.

Predchádzajúci dôkaz mal skôr existenčný ako konštruktívny charakter. Dokážeme ešte
raz, že ak platí Kraftova-McMillanova nerovnost’, tak potom možno zostrojit’ prefixový
kód požadovaných vlastností. Využijeme na to konštrukciu Shannonovho kódu4.
2. konštrukcia [6]. Rovnako ako v predchádzajúcom dôkaze budeme predpokladat’, že
dĺžky kódových slov sú usporiadané vzostupne; l0 ≤ l1 ≤ · · · ≤ lm−1 a že pre ne platí

4Ku koštrukcii Shannonovho kódu sa ešte vrátime vo vete 3.3.2

3.1. ROZDELITEL’NÉ KÓDY 29

Kraftova-McMillanova nerovnost’. Zavedieme čísla qk, k = 0, . . . ,m − 1 odvodené od
dĺžok kódových slov. Čísla qk definujeme nasledovne:

q0 = 0, qk =

k−1∑
i=0

2−li ; k = 1, . . . ,m− 1. (3.11)

Z Kraftovej-McMillanovej nerovnosti vyplýva, že čísla qk; k = 0, . . . ,m − 1 spĺňajú pod-
mienky 0 ≤ qk < 1. Zapíšeme teraz čísla qk v binárnom tvare. Zo spôsobu vytvárania qk
a zo skutočnosti, že l0 ≤ l1 ≤ · · · ≤ lm−1, vyplýva, že qk sa dá zapísat’ ako

qk = (0.bk,1 . . . bk,lk−1
)2,

kde bk,i ∈ {0, 1}. Kód V = {v0, . . . , vm−1} vytvoríme potom z binárnej reprezentácie čísel qk
nasledujúcim spôsobom:

vi = bi,1 . . . bi,li−1
0 . . . 0︸ ︷︷ ︸

li

;

t.j. kódové slovo vi pozostáva z prvých li binárnych číslic nasledujúcich po rádovej čiarke
v binárnom rozvoji čísla qi. Tvrdíme, že takto zostrojený kód je prefixový, a teda aj roz-
delitel’ný. Predpokladajme, že kód V nie je prefixový. Potom obsahuje kódové slová, z
ktorých jedno je prefixom druhého. Nech h je najmenšie také číslo, že pre slovo vh exis-
tuje kódové slovo (označme ho symbolom vi), ktoré je jeho prefixom. Ked’že vi je prefixom
vh, li < lh, a teda aj i < h. Z toho že vi je prefixom vh a zo spôsobu konštrukcie kódových
slov vyplýva, že vi je prefixom slov vi+1, . . . , vh−1, vh. Ked’že vh je prvé kódové slovo, ktoré
má prefix vi, h = i + 1. Pozrieme sa teraz na slová vi, vi+1 podrobnejšie, preskúmame
čísla qi, qi+1.

qi = 0.

li︷ ︸︸ ︷
bi,1 . . . bi,li−1︸ ︷︷ ︸

li−1

0 . . . 0

qi+1 = qi + 2
−li = 0. bi,1 . . . bi,li−1

0 . . . 10 . . . 0︸ ︷︷ ︸
li+1

Môžu nastat’ dve možnosti:

1. li < li+1; v tomto prípade má slovo vi na mieste li znak 0 a slovo vi+1 znak 1;

2. li = li+1. Pripočítaním hodnoty 2−li ku qi sa zmení niektorá z prvých li číslic čísla
qi, a teda slová vi a vi+1 sa odlišujú aspoň v jednom z prvých li znakov.

To znamená, že vi nemôže byt’ prefixom slova vi+1, a teda kód V je prefixový.

30 KAPITOLA 3. NEROVNOMERNÉ KÓDY

Dôsledok 1. Pre l’ubovol’ný rozdelitel’ný kód V = {v0, . . . , vm−1} existuje prefixový kód
W = {w0, . . . , wm−1}, taký, že l(vi) = l(vi), i = 0, . . . ,m− 1.

Z uvedeného dôsledku vyplýva, že ak nám nezáleží na konkrétnej podobe kódových
slov, môžeme rozdelitel’ný kód s dĺžkami kódových slov l0, . . . , lm−1 nahradit’ prefixo-
vým kódom s tými istými dĺžkami kódových slov; l0, . . . , lm−1. Túto možnost’ budeme
v d’alších úvahách využívat’ a budeme často predpokladat’, že rozdelitel’ný kód je záro-
veň aj prefixový kód. Skôr ako budeme pokračovat’ v skúmaní vlastností nerovnomer-
ných kódov, uvedieme príklad Shannonovho kódu, ktorý sme použili v dôkaze Kraftovej-
McMillanovej nerovnosti.

Príklad 3.3. Uvažujme nasledujúce dĺžky kódových slov: 2,3,3,4,5,5,6,6. Ked’že 2−2 +
2−3+2−3+2−4+2−5+2−5+2−6+2−6 = 0.65625 < 1, z vety 3.1.2 vyplýva, že existuje prefixový
kód s týmito dĺžkami kódových slov. Vypočítame hodnoty qi a vyjadríme príslušné kódové
slová.

q0 = 0.00 l0 = 2 v0 = 00
q1 = 0.01 l1 = 3 v1 = 010
q2 = 0.011 l2 = 3 v2 = 011
q3 = 0.1 l3 = 4 v3 = 1000
q4 = 0.1001 l4 = 5 v4 = 10010
q5 = 0.10011 l5 = 5 v5 = 10011
q6 = 0.101 l6 = 6 v6 = 101000
q7 = 0.101001 l7 = 6 v7 = 101001

3.1.3 Úplné kódy

Kód z príkladu 3.3 je síce prefixový, ale má jeden vážny nedostatok. Existujú binárne po-
stupnosti, ktoré sa nedajú rozbit’ na kódové slová. Okrem triviálnych postupností dĺžky
1 sú to napríklad postupnosti začínajúce dvojicou symbolov 11. Nemá však zmysel po-
žadovat’, aby platilo V∗ = B∗, pretože to je možné len v prípade, ak B ⊆ V . Intuitívnej
požiadavke, aby každá binárna postupnost’ predstavovala alebo sa dala doplnit’ na po-
stupnost’ kódových slov, vyhovujú tzv. úplné kódy.

Definícia 3.1.2. Binárny rozdelitel’ný kód V sa nazýva úplným kódom, ak pre l’ubovol’nú
binárnu postupnost’ β ∈ B∗ existuje také kódové slovo vi ∈ V , že bud’ postupnost’ β je
prefixom slova vi, alebo slovo vi je prefixom postupnosti β.

Príklad 3.4. Uvažujme blokový kód V = {00, 01, 10, 11}. Ked’že kód V obsahuje všetky
binárne slová dĺžky 2, spĺňa podmienky definície 3.1.2 a je úplný. Každú binárnu postup-
nost’ párnej dĺžky možno jednoznačne rozdelit’ na postupnost’ kódových slov.

Overovat’, či nejaký kód s vel’kým počtom kódových slov spĺňa podmienky definície
3.1.2, by nemuselo byt’ jednoduché. Našt’astie úplnost’ kódu úzko súvisí s Kraftovou-
McMillanovou nerovnost’ou a prefixovými kódmi.

Veta 3.1.3. Binárny rozdelitel’ný kód V = {v0, . . . , vm−1} je úplný práve vtedy, ak je prefi-
xový a platí

m−1∑
i=0

2−li = 1. (3.12)

3.1. ROZDELITEL’NÉ KÓDY 31

Dôkaz. Predpokladajme, že V = {v0, . . . , vm−1} je binárny prefixový kód, pre ktorý platí
rovnost’ (3.12), pritom však V nie je úplný. To znamená, že existuje binárna postupnost’
β ∈ B∗ taká, že žiadne kódové slovo vi ∈ V nie je prefixom postupnosti β a postupnost’
β nie je prefixom žiadneho kódového slova kódu V. Potom však môžeme zostrojit’ nový
binárny prefixový kód V ′ = V ∪ {β}, pre ktorý platí

m−1∑
i=0

2−li + 2−l(β) = 1+ 2−l(β) > 1. (3.13)

Ale nerovnost’ (3.13) je v spore s Kraftovou-McMillanovou nerovnost’ou (3.1). To zna-
mená, že postupnost’ β požadovaných vlastností nemôže existovat’, a teda kód V je úplný.

Dokážeme druhú čast’ tvrdenia sporom. Nech je V úplný rozdelitel’ný kód. Predpo-
kladajme, že V nie je prefixový, alebo pre V neplatí rovnost’ (3.12). Ked’že z rozdelitel’-
nosti kódu V vyplýva platnost’ Kraftovej-McMillanovej nerovnosti (3.1), znamená to, že
pre kód V platí

m−1∑
i=0

2−li < 1. (3.14)

Zhrnieme naše predpoklady: kód V je úplný a platí
∑m−1
i=0 2

−li < 1. Z úplnosti kódu V
vyplýva, že každá binárna postupnost’ dĺžky n > lmax, kde

lmax = max
vi∈V

{l(vi)}

musí mat’ ako prefix nejaké kódové slovo. Spočítame počet takýchto postupností:

m−1∑
i=0

2n−li ≥ 2n. (3.15)

Ak by kód V bol prefixový, potom je kódové slovo, ktoré je prefixom nejakej binárnej
postupnosti dĺžky n dané jednoznačne. Potom by však platilo

m−1∑
i=0

2n−li = 2n, (3.16)

a
m−1∑
i=0

2−li = 1, (3.17)

čo je v spore s predpokladom (3.14). To znamená, že platí
∑m−1
i=0 2

−li < 1, kód V je úplný
ale nie je prefixový. Potom však existujú kódové slová vi ̸= vj také, že (napr.) vi je pre-
fixom vj. Z úplnosti kódu V vyplýva, že každá binárna postupnost’ dĺžky n > lmax musí
začínat’ nejakým kódovým slovom kódu V . Potom

m−1∑
i=0

2n−li > 2n, (3.18)

32 KAPITOLA 3. NEROVNOMERNÉ KÓDY

lebo postupnosti začínajúce slovom vj sú už zarátané v sume (3.18) ako postupnosti za-
čínajúce slovom vi. Na druhej strane nemôže platit’ nerovnost’

m−1∑
k=0

2n−lk − 2n−l(vj) < 2n, (3.19)

pretože to by znamenalo, že odstránením slova vj z kódu V sa stratí úplnost’ kódu; t.j.
potom bude existovat’ binárna postupnost’ β dĺžky n > lmax, ktorej prefixom nie je žiad-
ne kódové slovo kódu V . Ale to znamená, že jej prefixom nemohlo byt’ odstránené slovo
vj, pretože v tom prípade by prefixom postupnosti β bolo slovo vi, a teda kód V by nebol
úplný. To znamená, že platí nerovnost’ (3.18). Platnost’ nerovnosti (3.18) je však v rozpore
s tvrdením vety 3.1.2. Dostávame spor, ktorý dokazuje platnost’ nášho tvrdenia.

3.1.4 Kódové stromy

Na skúmanie vlastností nie príliš rozsiahlych nerovnomerných kódov je možné výhodne
používat’ orientovaný ohodnotený graf, nazývaný kódovým stromom. Uvažujme oriento-
vaný binárny strom T hĺbky n s hranami a vrcholmi ohodnotenými nasledujúcim spô-
sobom: najprv ohodnotíme jeho hrany, pričom budeme postupovat’ od koreňa k listom;
ak z vrcholu vychádzajú dve (neohodnotené) hrany tak jednej z nich priradíme hodnotu
0 a druhej hodnotu 1. Ak z vrcholu vychádza jediná (neohodnotená) hrana, priradíme
jej jednu z hodnôt {0, 1}. Po ohodnotení hrán ohodnotíme vrcholy binárneho stromu T :
koreňu priradíme prázdne slovo ε a vrcholu v priradíme postupnost’ binárnych hodnôt,
ktoré boli priradené hranám ležiacim na ceste, spájajúcej koreň s vrcholom v.5 Ked’že
T je súvislý acyklický graf, medzi l’ubovol’nými dvoma vrcholmi v ňom existuje jediná
cesta, a teda binárna postupnost’ priradená vrcholu je určená jednoznačne. Binárny
kódový strom T (V) binárneho kódu V dostaneme tak, že z binárneho stromu T hĺbky
n ≥ lmax, kde lmax = maxvi∈V {l(vi)} a binárny strom T je ohodnotený spôsobom uve-
deným vyššie, odstránime všetky podstromy, ktoré neobsahujú vrchol s ohodnotením
zodpovedajúcim niektorému kódovému slovu kódu V . Na obr. 3.1 je zobrazený binárny
(ohodnotený) strom hĺbky 2.

Binárny kódový strom kódu V z príkladu 3.3 je zobrazený na obr. 3.2 Všimneme si, že
všetky vrcholy zodpovedajúce kódovým slovám, sú listy (vrcholy, z ktorých nevychádzajú
žiadne hrany). To nie je náhoda. Ak by nejaké slovo vi bolo prefixom iného slova vj, vrchol
vi by musel ležat’ na ceste spájajúcej koreň s vrcholom vj, a teda by musel byt’ vnútorným
vrcholom kódového stromu.

Veta 3.1.4. Nech je V prefixový kód. Potom v kódovom strome T (V) zodpovedajú kódovým
slovám listy.

Dôkaz. Prenechávame čitatel’ovi.

Pomocou kódového stromu je možné l’ahšie formulovat’ aj podmienku úplnosti kódu.
Ako sme už ukázali, kód V z príkladu 3.3 nie je úplný; problémy spôsobujú postupnosti

5V d’alšom budeme vrchol v označovat’ binárnym slovom, ktoré mu je priradené.

3.1. ROZDELITEL’NÉ KÓDY 33

s
s

s

s

s

ss�
�
�
��

@
@
@
@R

�
�
�

��

@
@
@

@R

Z
Z
Z

Z~

�
�
�

�>

ε

0

00

01

10

11

0

0

1

1 0

1

Obr. 3.1: Ohodnotený binárny strom

začínajúce dvojicou 11. Pri skúmaní kódového stromu kódu V zistíme, že z vrcholu 1

vychádza len jedna hrana, ktorej je priradená hodnota 0. Ak túto hranu odstránime a
vrchol 1 stotožníme s pôvodným vrcholom 10, dostaneme kódový strom T (V ′) prefixového
kódu V ′ = {00, 010, 011, 100, 1010, 1011, 11000, 11001}.

Kódový strom T (V ′) obsahuje ešte dva vnútorné vrcholy (11, 110) stupňa 1. Odstrá-
nením hrán vychádzajúcich z týchto vrcholov, vrcholu 110 a stotožnením vrcholov 11 a
1100 stromu T (V ′) dostávame kódový strom (Obr. 3.3) T (V ′′) prefixového kódu V ′′ =
{00, 010, 011, 100, 1010, 1011, 110, 111}. Pre kód V ′′ platí

∑
vi∈V ′′ 2l(vi) = 1. Kód V ′′ je úplný.

Každý binárny6 prefixový kód, ktorý nie je úplný, možno týmto spôsobom transformovat’
na úplný kód.

3.1.5 Automatové dekódovanie.

Vel’kou prednost’ou prefixových kódov je to, že okamžite po dočítaní posledného symbolu
kódového slova dokážeme určit’, o aké kódové slovo ide. (Pre porovnanie pripomíname
sufixový rozdelitel’ný kód z príkladu 3.1, pre ktorý existovali správy, ktoré bolo možné
dekódovat’ až po prijatí posledného symbolu správy.) Prefixové kódy sa vd’aka možnosti
priebežného dekódovania správy nazývajú aj okamžitými kódmi alebo automatovými
kódmi. Ten druhý názov získali vd’aka tomu, že na ich dekódovanie možno použit’ ko-
nečný automat.

Definícia 3.1.3. Konečný automat je usporiadaná šestica A = (Σi, Σo, Q,Φ,Ψ, q), kde
Σi je vstupná, Σo výstupná abeceda, Q je konečná množina stavov, Φ : Σi × Q → Q je

6Ako uvidíme neskôr, mnohé z vlastností nerovnomerných kódov nezávisia od počtu znakov kódovej abe-
cedy. Transformácia prefixového kódu na úplný prefixový kód, ktorú sme popísali vyššie, podstatne využíva
to, že kódová abeceda je binárna; a nedá sa priamo zovšeobecnit’ na prípad kódovej abecedy s väčším počtom
kódových symbolov.

34 KAPITOLA 3. NEROVNOMERNÉ KÓDY

s

sssssss
s
ss
s

s
s
s
s

s

s

s

s

s

�
�
�
�
�
�
�
�

A
A
A
A
A
A
A
A

@
@

@
@

�
�

�
�

�
�

�
�

����

HHHH

����

HHHH

����
XXXXXXXX

���� XXXX

Obr. 3.2: Kódový strom Shannonovho kódu

s
s

s

s
s
s
s

ss
ss
ss

ss
�

�
�
�

@
@
@
@

����

HHHH

����

HHHHXXXX

XXXX

XXXX

����

����

����

XXXX

Obr. 3.3: Kódový strom skráteného Shannonovho kódu

3.1. ROZDELITEL’NÉ KÓDY 35

prechodová funkcia, Ψ : Σi×Q→ Σo je výstupná funkcia a q je počiatočný stav konečného
automatu A.

Konečný automat si môžeme predstavit’ ako zariadenie so vstupnou a výstupnou pás-
kou, riadiacou jednotkou, čítacou a zapisovacou hlavou, obr. 3.4. Vstupná páska je roz-
delená na políčka, v každom políčku je zapísaný symbol vstupnej abecedy. Podobne je
výstupná páska rozdelená na políčka a v políčku je zapísaný jeden zo symbolov výstup-
nej abecedy, alebo je políčko prázdne. Čítacia hlava sa pohybuje po vstupnej páske zl’ava
doprava, v každom kroku číta jeden symbol z políčka vstupnej pásky a po prečítaní sa
presunie o jedno políčko doprava. Zapisovacia hlava v každom kroku zapisuje na políčko
výstupnej pásky jeden symbol výstupnej abecedy a posunie sa o jedno políčko doprava,
alebo nezapíše nič a zostáva na tom istom políčku aj v nasledujúcom kroku. Automat za-
čína pracovat’ v počiatočnom stave q a skončí, ked’ prečíta celý vstup zo vstupnej pásky.

Pri dekódovaní binárnych prefixových kódov pomocou konečného automatu bude
vstupná abeceda Σi = {0, 1}, výstupná abeceda sa bude zhodovat’ so zdrojovou abecedou;
Σo = ΣS a prechodovú a výstupnú funkciu definujeme pomocou tabul’ky. Ilustrujeme
dekódovanie binárnárneho prefixového kódu na príklade.

Príklad 3.5. Uvažujme kód V ′′ z predchádzajúceho príkladu. Predpokladáme, že kódové
slová slúžia na zápis prvých písmen anglickej abecedy:

a 00 e 1010
b 010 f 1011
c 011 g 110
d 100 h 111

Vstupná abeceda konečného (dekódovacieho) automatu A je binárna: Σi = {0, 1}, výstupná
abeceda Σo = {a, b, c, d, e, f, g, h, λ}, množina stavov Q = {q, q0, q1, q01, q10, q11, q101} a pre-
chodová a výstupná funkcia sú uvedené v tabul’ke. Počiatočným stavom je q.

stav vstup
0 1

q q0, λ q1, λ

q0 q, a q01, λ

q01 q, b q, c

q1 q10, λ q11, λ

q10 q, d q101, λ

q101 q, e q, f

q11 q, g q, h

Je daná binárne kódovaná správa 010011111. Ukážeme, ako ju automat A dekóduje.
Kvôli jednoduchosti budeme pozíciu čítacej hlavy na vstupnej páske a stav automatu A
zapisovat’ tak, že stav automatu zapíšeme pred symbol, ktorý v danom kroku automat A
číta. Symboly, ktoré by sa zapisovali na výstupnej páske budeme zapisovat’ pod dekódo-
vané slová binárnej správy.

36 KAPITOLA 3. NEROVNOMERNÉ KÓDY

a a a a a a a a

��
��
qi

6

?
| | | | | | | |

Obr. 3.4: Konečný automat

q010011111 7→ 0q010011111 7→ 01q010011111 7→ 010︸︷︷︸
b

q011111 7→
010︸︷︷︸
b

0q011111 7→ 010︸︷︷︸
b

01q011111 7→ 010︸︷︷︸
b

011︸︷︷︸
c

q111 7→ 010︸︷︷︸
b

011︸︷︷︸
c

1q111 7→
010︸︷︷︸
b

011︸︷︷︸
c

11q111 7→ 010︸︷︷︸
b

011︸︷︷︸
c

111︸︷︷︸
h

q

3.2 Cena kódu

Nerovnomerné rozdelitel’né kódy sa dajú výhodne použit’ v takých prípadoch, ked’ sa
slová (alebo znaky), ktoré sa kódujú, vyskytujú nerovnako často. Vtedy je možné často
sa vyskytujúcim slovám (znakom) priradit’ kratšie kódové slová a tak dosiahnut’, že kó-
dovaná správa bude v priemernom prípade kratšia, ako keby sa na kódovanie používali
napríklad blokové kódy. V d’alšom túto intuitívnu predstavu upresníme. Kvôli jednodu-
chosti budeme kódovat’ znaky zdrojovej abecedy ΣS = {a0, . . . , am−1}. Zavedieme prvý,
značne zjednodušený matematický model zdroja S. Budeme predpokladat’, že zdroj S je
náhodný generátor, ktorý generuje znaky zdrojovej abecedy náhodne a nezávisle na sebe.
Zdroj S je charakterizovaný rozdelením pravdepodobností P = {p0, . . . , pm−1}; pi ≥ 0, i =
0, . . . ,m−1;

∑m−1
i=0 pi = 1 výskytu jednotlivých symbolov zdrojovej abecedy. (Z matematic-

kého hl’adiska je zdroj S náhodná premenná, nadobúdajúca hodnotu ai s pravdepodob-
nost’ou pi, i = 0, . . . ,m − 1.) Je zrejmé, že existuje viacero spôsobov kódovania znakov
zdrojovej abecedy. Aby sme mohli porovnat’ efektívnost’ jednotlivých kódov, zavedieme
pojem ceny kódu.

Definícia 3.2.1. Nech P = {p0, . . . , pm−1} je rozdelenie pravdepodobností znakov zdrojo-
vej abecedy ΣS = {a0, . . . , am−1}; nech V = {v0, . . . , vm−1} je kód kódujúci znaky kódovej

3.3. KVÁZIOPTIMÁLNE KÓDY A OPTIMÁLNY KÓD 37

abecedy, ai → vi, i = 0, . . . ,m − 1 a nech li = l(vi) sú dĺžky kódových slov kódu V . Potom
cenou kódu V pri rozdelení pravdepodobností nazveme

L(P, V) =
m−1∑
i=0

lipi.

Cena kódu V pri rozdelení pravdepodobností P nie je z matematického hl’adiska nič
iné, než stredná hodnota dĺžky kódového slova, počet symbolov kódovej abecedy pripa-
dajúcich na zakódovanie jedného znaku zdrojovej abecedy. (V prípade kódovania slov z
nejakej množiny M by to bol počet symbolov kódovej abecedy pripadajúcich na zakódo-
vanie jedného slova z množiny M.)

Aká je minimálna hodnota L(P, V) pri danom rozdelení pravdepodobností? Existujú
kódy dosahujúce túto minimálnu hodnotu a ak áno, sú známe metódy ich zostrojovania?
Na tieto i d’alšie otázky dáme odpoved’ v nasledujúcich častiach tejto kapitoly.

3.3 Kvázioptimálne kódy a optimálny kód

Kód V = {v0, . . . , vm−1} s dĺžkami kódových slov l(vi) = li, i = 0, . . . ,m − 1 nazveme opti-
málnym kódom pre rozdelenie pravdepodobností P = {p0, . . . , pm−1}, ak pre l’ubovol’ný
kód W = {w0, . . . , wm−1} platí

L(P, V) ≤ L(P,W).

Cenu optimálneho kódu pri rozdelení pravdepodobností P označíme L(P). Prirodzená
otázka je, aká je cena optimálneho kódu.

Veta 3.3.1. Nech je P = {p0, . . . , pm−1} l’ubovol’né rozdelenie pravdepodobností, p0 ≥ p1 ≥
· · · ≥ pm−1 > 0. Potom platí

m−1∑
i=0

pi · lg
1

pi
≤ L(P) ≤

m−1∑
i=0

pi · lg
1

pi
+ 1.

Rovnost’
m−1∑
i=0

pi · lg
1

pi
= L(P) (3.20)

platí práve vtedy, ak pi = 2−li , li ∈ N, i = 0, . . . ,m− 1.

Dôkaz. Dolný odhad. Predpokladajme, že V = {v0, . . . , vm−1} je l’ubovol’ný prefixový kód
s dĺžkami kódových slov l(vi) = li, i = 0, . . . ,m − 1. Porovnáme cenu kódu V s entropiou
zdroja H2(P) =

∑m−1
i=0 pi · lg 1

pi
:

m−1∑
i=0

pi · lg
1

pi
−

m−1∑
i=0

lipi =

m−1∑
i=0

pi ·
[
lg
1

pi
− lg 2li

]
=

m−1∑
i=0

pi · lg
2−li

pi
.

38 KAPITOLA 3. NEROVNOMERNÉ KÓDY

Teraz prevedieme binárny logaritmus na prirodzený, využijeme nerovnost’ ln x ≤ x− 1 a
upravíme:

m−1∑
i=0

pi · lg
2−li

pi
=

1

ln 2

m−1∑
i=0

pi · ln
2−li

pi
≤ 1

ln 2

m−1∑
i=0

pi ·
[
2−li

pi
− 1

]
= (3.21)

=
1

ln 2

[
m−1∑
i=0

2−li −

m−1∑
i=0

pi

]
=

1

ln 2

[
m−1∑
i=0

2−li − 1

]
.

Kód V je prefixový a teda z Kraftovej-McMillanovej nerovnosti vyplýva, že
∑m−1
i=0 2

−li ≤ 1.
Ked’že 2 > 1, ln 2 > 0 platí

1

ln 2

[
m−1∑
i=0

2−li − 1

]
≤ 0.

To však znamená, že pre l’ubovol’ný prefixový kód V = {v0, . . . , vm−1} platí

H2(P) ≤ L(P, V).

Horný odhad. Dokážeme, že existuje (prefixový) kód, ktorý dosahuje cenu H2(P) + 1.
Položíme li = ⌈lg 1

pi
⌉. Potom platí7:

m−1∑
i=0

2−li =

m−1∑
i=0

2
−⌈lg 1

pi
⌉ ≤

m−1∑
i=0

2
− lg 1

pi =

m−1∑
i=0

pi = 1;

a teda existuje prefixový kód s dĺžkami kódových slov li = ⌈lg 1
pi
⌉, i = 0, . . . ,m− 1. Cena

tohto kódu je

L(P, V) =
m−1∑
i=0

pili =

m−1∑
i=0

pi⌈lg
1

pi
⌉ ≤

m−1∑
i=0

pi

[
lg
1

pi
+ 1

]
=

m−1∑
i=0

pi lg
1

pi
+ 1.

Vrát’me sa ešte k dôkazu rovnosti (3.20). Ak P = {pi = 2−li , li ∈ N, i = 0, . . . ,m − 1}
je rozdelenie pravdepodobností, potom podl’a vety 3.1.2 existuje prefixový kód s dĺžkami
kódových slov

⌈lg 1

pi
⌉ = ⌈lg 1

2−li
⌉ = ⌈lg 2li⌉ = ⌈li⌉ = li,

ktorý má cenu
m−1∑
i=0

pili =

m−1∑
i=0

pi lg
1

pi
.

Na druhej strane, ak
m−1∑
i=0

pili =

m−1∑
i=0

pi lg
1

pi

7Pripomíname, že výraz lg x označuje binárny logaritmus čísla x.

3.3. KVÁZIOPTIMÁLNE KÓDY A OPTIMÁLNY KÓD 39

to znamená, že v odvodení 3.21 nastala rovnost’. To však znamená, že 2−li

pi
= 1, resp.

pi = 2
−li (ln x = x− 1, pre x = 1).

Jeden kód, ktorého cena sa vel’mi nelíši od ceny optimálneho kódu už poznáme. Je to
Shannonov kód. Konštrukcia, ktorú sme použili v dôkaze Kraftovej-McMillanovej nerov-
nosti však vychádzala zo znalosti dĺžok kódových slov a nie z rozdelenia pravdepodob-
ností zdrojových symbolov. Ukážeme, ako možno zostrojit’ Shannonov prefixový kód pre
dané rozdelenie pravdepodobností zdrojových symbolov.

3.3.1 Shannonov kód

Veta 3.3.2 (Shannonov kód). Nech je P = {p0, . . . , pm−1} l’ubovol’né rozdelenie pravdepo-
dobností, p0 ≥ p1 ≥ · · · ≥ pm−1 > 0; čísla qk 0 ≤ qk < 1 sú definované nasledovne

q0 = 0,

qk =

k−1∑
j=0

pj, k = 1, . . . ,m− 1;

a nech pre prirodzené čísla (dĺžky kódových slov) platí

lk = ⌈lg 1/pk⌉ pre k = 0, . . . ,m− 1.

Ďalej, nech
qk = 0.b

(k)
1 . . . b

(k)
lk
. . .

je binárny zápis čísla qk, (k = 0, . . . ,m− 1). Pre k = 0, . . . ,m− 1 definujeme kódové slovo

wk = b
(k)
1 . . . b

(k)
lk
.

Potom kód W = {w0, . . . , wm−1} je prefixový kód, nazývaný Shannonovým kódom.

Dôkaz. Dokážeme, že kód W = {w0, . . . , wm−1} je prefixový. Pozrieme sa najprv na
dĺžky kódových slov. Zapíšeme pravdepodobnosti zdrojových symbolov binárne:

pk = a
(k)
1 . . . a

(k)
lk
. . . pre k = 0 . . .m− 1.

Pripomenieme, že pre dĺžky kódových slov platí lk = ⌈lg 1/pk⌉, k = 0, . . . ,m − 1. To
znamená, že

1

2
≤ pk < 1 lk = 1

1

4
≤ pk <

1

2
lk = 2

1

8
≤ pk <

1

4
lk = 3

.

40 KAPITOLA 3. NEROVNOMERNÉ KÓDY

t.j. hodnota lk je jednoznačne určená pozíciou prvej jednotky v binárnom zápise čísla pk;
ak

pk = 0. 0 . . . 01︸ ︷︷ ︸
s

. . .

tak potom 2−s ≤ pk < 2−s+1, 2s−1 < 1/pk ≤ 2s a teda lk = s. Predpokladajme teraz, že kód
W nie je prefixový. To znamená, že existujú kódové slová slová wr, wt; r < t také, že wr
je prefixom slova wt. Kódové slová wr, wt boli vytvorené z čísel

qr = 0.b
(r)
1 . . . b

(r)
lr
. . .

qt = 0.b
(t)
1 . . . b

(t)
lr
. . . b

(t)
lt
. . . ;

qt = qr + pr + · · ·+ pt−1.

Pre pravdepodobnost’ pr však platí 2−lr ≤ pr < 2−lr+1. To znamená, že

2−lr ≤ pr + · · ·+ pt−1.

Potom sa však qt odlišuje aspoň na jednom z prvých lr miest po rádovej čiarke od qr, lebo
už pre t = r+ 1 platí

qr = 0.b
(r)
1 . . . b

(r)
lr

. . .

+ pr = 0.0 . . . 1 . . .

= qr+1 ̸= 0.b
(r)
1 . . . b

(r)
lr

. . .

a teda wr nie je prefixom slova wt.

Skôr, ako ukážeme, ako sa konštruuje optimálny kód, uvedieme ešte jednu jednodu-
chú metódu konštrukcie kódu, ktorého cena je blízka k cene optimálneho kódu, Fanov
kód. (Shannonov a Fanov kód sa nazývajú kvázioptimálne kódy.)

3.3.2 Fanov kód

Fanova konštrukcia kvázioptimálneho kódu. Predpokladáme, že je dané rozdele-
nie pravdepodobností P = {p0, . . . , pm−1} symbolov zdrojovej abecedy,

1. usporiadame pravdepodobnosti zostupne (napríklad) p0 ≥ p1 ≥ · · · ≥ pm−1 > 0

a zapíšeme do 1. stĺpca tabul’ky. Jednotlivým pravdepodobnostiam (zastupujúcim
symboly zdrojovej abecedy) priradíme prázdne slová ε.

2. Ak tabul’ka obsahuje aspoň dva riadky, rozdelíme ju na 2 časti tak, aby sa súčet
pravdepodobností v hornej časti tabul’ky líšil čo najmenej od súčtu pravdepodob-
ností v dolnej časti tabul’ky a pokračujeme krokom 3. Ak tabul’ka obsahuje jediný
riadok, jej spracovanie ukončíme.

3. Slová vi priradené pravdepodobnostiam v hornej polovici tabul’ky zret’azíme sprava
so znakom 0, a slová z dolnej polovice tabul’ky zret’azíme sprava so znakom 1. Po-
kračujeme v spracovaní hornej a dolnej časti tabul’ky podl’a kroku 2.

Ked’že tabul’ka obsahuje m riadkov, krok 2 sa uplatní najviac m − 1-krát. Ilustrujeme
konštrukciu Fanovho a Shannonovho kódu na nasledujúcom príklade.

3.3. KVÁZIOPTIMÁLNE KÓDY A OPTIMÁLNY KÓD 41

Príklad 3.6.
p0 0.25 0 00

p1 0.20 0 01

p2 0.13 1 10 100

p3 0.12 1 10 101

p4 0.10 1 11 110 1100

p5 0.08 1 11 110 1101

p6 0.07 1 11 111 1110

p7 0.05 1 11 111 1111

Fanov kód

pi qi li vi
0.25 0.0 2 00

0.20 0.010 3 010

0.13 0.0111 4 0111

0.12 0.1001 4 1001

0.10 0.1011 4 1011

0.08 0.1100 4 1100

0.07 0.1110 4 1110

0.05 0.11110 5 11110

Shannonov kód

Fanov kód má cenu 2.85 a Shannonov 3.35 a entropia je 2.822. Shannonov kód ešte
možno upravit’ (skrátit’). Ked’že slovo 011 nie je prefixom iného kódového slova okrem
slova 0111, môžeme slovo 0111 nahradit’ jeho prefixom 011, podobne 100 je prefixom jedi-
ného kódového slova, a preto možno toto slovo 1001 nahradit’ slovom 100; rovnako možno
skrátit’ kódové slovo 1011 na 101; kódové slovo 1100 na 110 a napokon kódové slovo 11110
na 1111. Takto upravený (skrátený) Shannonov kód má cenu 2.87.

3.3.3 Huffmanov optimálny kód

Uvedieme teraz metódu konštrukcie optimálneho kódu. Podstata Huffmanovej metódy
spočíva v tom, že sa zostrojenie optimálneho kódu prem znakov redukuje na konštrukciu
optimálneho kódu pre m− 1 znakov. Pri dôkaze budeme potrebovat’ nasledujúcu vetu.

Veta 3.3.3. Nech je P = {p0, . . . , pm−1} l’ubovol’né rozdelenie pravdepodobností, p0 ≥ p1 ≥
· · · ≥ pm−1 > 0. Potom existuje prefixový kód V = {v0, . . . , vm−1} s dĺžkami kódových
slov li = l(vi), i = 0, . . . ,m − 1, optimálny pre rozdelenie pravdepodobností P, taký, že
minimálnym pravdepodobnostiam pm−2, pm−1 zodpovedajú slová vm−2, vm−1 maximálnej
dĺžky lm−1, ktoré majú spoločný prefix dĺžky lm−1 − 1.

42 KAPITOLA 3. NEROVNOMERNÉ KÓDY

Dôkaz. Ak by v kóde V neboli priradené slová maximálnej dĺžky minimálnym prav-
depodobnostiam, kód by nebol optimálny. To znamená, že minimálnym pravdepodobnos-
tiam pm−2, pm−1 musia byt’ priradené slová maximálnej dĺžky. Predpokladajme, že slová
vm−2, vm−1 nemajú spoločný prefix dĺžky lm−1 − 1. To znamená, že existuje slovo vj maxi-
málnej dĺžky lm−1, ktoré má spoločný prefix dĺžky lm−1 − 1 so slovom vm−1. V opačnom
prípade by slovo vm−1 bolo možné nahradit’ jeho prefixom dĺžky lm−1 − 1, čo je v spore s
optimálnost’ou kódu V. (Z podobných dôvodov musí existovat’ slovo vk maximálnej dĺžky
lm−1, ktoré má spoločný prefix dĺžky lm−1 − 1 so slovom vm−2.) „Zámenou“ slov vm−2 a vj
dostávame kód s rovnakou cenou, ako bola cena pôvodného kódu, spĺňajúci podmienky
vety.

Teraz už môžeme vyslovit’ a dokázat’ vetu, ktorá je teoretickým zdôvodnením Huff-
manovej konštrukcie optimálneho kódu.

Veta 3.3.4. Huffmanov kód. Nech V = {v0, . . . , vm−1}, m > 1 je optimálny prefixový kód
pre rozdelenie pravdepodobností P = {p0, . . . , pm−1}, pričom pj = q0 + q1 a p0 ≥ p1 ≥ · · · ≥
pm−1 ≥ q0 ≥ q1 > 0. Potom kód V ′ = {v0 . . . , vj−1, vj+1, . . . , vm−1, vj0, vj1} je optimálny kód
pre rozdelenie pravdepodobností P′ = {p0 . . . , pj−1, pj+1, . . . , pm−1, q0, q1}.

Dôkaz Kód V ′ je tiež prefixový a jeho cena je L(P′, V ′) = L(P, V) + pj. Aby sme ukázali,
že V ′ je optimálny kód, musíme dokázat’, že pre l’ubovol’ný kódW′ = {w0, . . . , wm} pre roz-
delenie pravdepodobností P′ platí L(P′,W′) ≥ L(P′, V ′) = L(P, V)+pj. Predpokladajme, že
W′ je optimálny kód pre rozdelenie pravdepodobností P′, ktorý naviac spĺňa podmienky
vety 3.3.3. To znamená, že minimálnym pravdepodobnostiam q0, q1 zodpovedajú slová
maximálnej dĺžky w1,w0. Uvažujme teraz kód W = {w0, . . . , wj−1, w,wj+1, . . . ,wm−1} pre
rozdelenie pravdepodobností P. Ked’že pre rozdelenie pravdepodobností P je optimálny
kód V , platí L(P, V) ≤ L(P,W). Ale potom

L(P′, V ′) = L(P, V) + pj ≤ L(P,W) + pj = L(P′,W′),

a teda kód V ′ je optimálny pre rozdelenie pravdepodobností P′.

Popíšeme metódu konštrukcie Huffmanovho kódu pre rozdelenie pravdepodobností
P = {p0, . . . , pm−1}.

Konštrukcia optimálneho kódu.

1. usporiadaj pravdepodobnosti p0, . . . , pm−1 do zoznamu zostupne. Akm > 1 pokračuj
krokom 2, ináč chod’ na krok 3.

2. Opakuj m− 2 krát nasledujúcu činnost’:

• sčítaj posledné dve (minimálne) pravdepodobnosti usporiadaného zoznamu;

• odstráň tieto dve pravdepodobnosti zo zoznamu a zarad’ do zoznamu ich súčet
tak, aby bol nový zoznam usporiadaný zostupne;

• zapamätaj si miesto v zozname, na ktoré bola zaradená nová hodnota.

3.3. KVÁZIOPTIMÁLNE KÓDY A OPTIMÁLNY KÓD 43

3. Zoznam obsahuje dve pravdepodobnosti; prirad’ (napríklad) väčšej z nich slovo 0 a
menšej slovo 1; ak m = 1 skonči, ináč pokračuj krokom 4.

4. Opakuj m− 2 krát nasledujúcu činnost’ a potom skonči:

• urči tú pravdepodobnost’ pj v aktuálnom usporiadanom zozname, ktorá bola
vytvorená ako posledná súčtom nejakých dvoch minimálnych pravdepodob-
ností q0, q1;

• odstráň pravdepodobnost’ pj zo zoznamu, doplň doň pravdepodobnosti q0, q1 a
usporiadaj ho;

• ak bolo pravdepodobnosti pj priradené slovo v, prirad’ pravdepodobnostiam
q0, q1 slová v0, v1.

Ilustrujeme Huffmanovu konštrukciu na príklade.

Príklad 3.7.
0.25 0.25 0.25 0.25 0.31∗ 0.44∗ 0.56∗ 0∗ 1∗ 00∗ 01 01 01 01

0.20 0.20 0.20 0.24∗ 0.25 0.31 0.44 1 00 01 10∗ 11 11 11

0.13 0.13 0.18∗ 0.20 0.24 0.25 01 10 11 000∗ 001 001

0.12 0.12 0.13 0.18 0.20 11 000 001 100 100

0.10 0.12∗ 0.12 0.13 001 100 101∗ 0000

0.08 0.10 0.12 101 0000 0001

0.07 0.08 0001 1010

0.05 1011

Huffmanov kód

Pravdepodobnosti, ktoré vznikli sčítaním minimálnych pravdepodobností v predchá-
dzajúcom kroku, sú označené hviezdičkou. Kvôli jednoduchosti sú hviezdičkou označené
aj slová prislúchajúce týmto pravdepodobnostiam.

Huffmanov kód má cenu 2.85. Je zaujímavé, že aj ked’ sú Fanov a Huffmanov kód
rôzne, majú rovnakú cenu. Vo všeobecnosti však Huffmanova metóda umožňuje získat’
lepšie kódy ako Fanova metóda vd’aka tomu, že „preusporiadavaním“ pravdepodobností
lepšie „vyvažuje“ tabul’ku pravdepodobností. Čo však v tom prípade, ked’ je tabul’ka
pravdepodobností nevyvážená už na samom začiatku; ak sa jeden symbol vyskutuje
vel’mi často a ostatné zriedkavo? Uvedieme extrémny prípad a ukážeme, ako sa dá riešit’.

3.3.4 Rozšírenie kódu

Uvažujeme nasledujúci prípad. Zdrojová abeceda pozostáva zo symbolov {a, b} a rozdele-
nie pravdepodobností je P = {0.9, 0.1}. Optimálny kód V = {0, 1} má cenu L = 1.0 a entro-
pia zdroja je 0.4689955936. Rozdiel medzi entropiou a cenou optimálneho kódu je príliš
vel’ký. Podstata problému je v tom, že zdrojová abeceda je príliš malá a nemáme možnost’
rozlíšit’ často (a) a zriedkavo (b) sa vyskytujúce symboly, ale obom sme priradili slová
rovnakej dĺžky. Pri kódovaní zdrojovej abecedy s takým extrémnym rozdelením prav-
depodobností uplatníme nasledujúci postup. Namiesto jednotlivých znakov kódovej abe-
cedy budeme kódovat’ n-tice znakov zdrojovej abecedy. Využijeme pritom predpoklady o

44 KAPITOLA 3. NEROVNOMERNÉ KÓDY

charaktere zdroja: znaky generuje nezávisle na sebe a s nemennými pravdepodobnos-
t’ami. „Abeceda“ Σ2s, jej rozdelenie pravdepodobností a príslušný Huffmanov kód V2 sú
uvedené v nasledujúcej tabul’ke.

aa 0.81 0

ab 0.09 11

ba 0.09 100

bb 0.01 101

Cena kódu V2 je 1.29. Treba si však uvedomit’, že to je počet binárnych symbolov pripa-
dajúcich na jedno zdrojové slovo, ktoré má dĺžku 2, a preto cena kódu, meraná počtom
kódových symbolov potrebných na zakódovanie jedného symbolu zdrojovej abecedy je
L(P′, V2) = 1.29/2 = 0.645. Táto hodnota je už podstatne bližšia k entropii zdroja, ako
cena pôvodného kódu. Ďalšie rozšírenie zdrojovej abecedy (kódovanie trojznakových slov
nad zdrojovou abecedou) už neprinesie takú podstatnú redukciu ceny kódu:

aaa 0.729 0

aab 0.081 100

aba 0.081 101

baa 0.081 110

abb 0.009 11100

bab 0.009 11101

bba 0.009 11110

bbb 0.001 11111

L(P′′, V3) = 1.599/3 = 0.533. Aby sme si spravili predstavu o to, ako rýchlo sa približuje
cena kódu pre narastajúcu hodnotu n k entropii, vypočítame cenu neskráteného Shan-
nonovho kódu pre rozličné hodnoty n:

n 3 4 5 10 20 30 50 100 200 1000 2000

L 0.6333 0.5509 0.5163 0.5070 0.5006 0.4863 0.4789 0.4741 0.4713 0.4695 0.4692

Upozorňujeme, že n-násobným rozšírením (dvojprvkovej) zdrojovej abecedy dostaneme
množinu slov mohutnosti 2n, a tak je použitie tejto metódy pre konštrukciu kódov s
cenou blízkou k dolnej hranici danej entropiou pre väčšie hodnoty n a/alebo rozsiahlejšie
abecedy zdroja prakticky nepoužitel’né.

Metóda konštrukcie Huffmanovho kódu nie je jednoznačná. Ak v zozname pravde-
podobností už existuje hodnota rovná tej, ktorú sme dostali v niektorom kroku súčtom
minimálnych pravdepodobností, máme možnost’ zaradit’ vypočítanú pravdepodobnost’
za alebo pred pravdepodobnost’ v pôvodnom usporiadanom zozname. Uplatnením rozlič-
ných stratégií zarad’ovania rovnakých pravdepodobností do zoznamu, dostaneme kódy,
ktoré majú rovnakú cenu, ale môžu mat’ rozličné dĺžky kódových slov.

3.3. KVÁZIOPTIMÁLNE KÓDY A OPTIMÁLNY KÓD 45

Príklad 3.8.

0.375 0.375 0.375 0.375 0.625∗ 0 1 1 1 1

0.250 0.250 0.250 0.375∗ 0.375 1 00 01 01 01

0.125 0.125 0.250∗ 0.25 01 000 001 001

0.125 0.125 0.125 001 0000 0000

0.0625 0.125∗ 0001 00010

0.0625 00011

Huffmanov kód V

0.375 0.375 0.375 0.375∗ 0.625∗ 0 1 00 00 00

0.250 0.250 0.250∗ 0.375 0.375 1 00 01 10 10

0.125 0.125∗ 0.250 0.25 01 10 11 010

0.125 0.125 0.125 11 010 011

0.0625 0.125 011 110

0.0625 111

Huffmanov kód V ′.

l’ahko sa pritom presvedčíme o tom, že L(V, P) = L(V ′, P) = 2.375.

Ktorý zo zostrojených kódov je lepší? Ak sa v nejakom texte vyskytujú zdrojové sym-
boly s pravdepodobnost’ami zodpovedajúcimi pravdepodobnostiam z rozdelenia pravde-
podobností P, oba kódy zakódujú daný text rovnako efektívne. Ak však kód zostrojujeme
na základe predpokladaného rozdelenia pravdepodobností, ktoré sa od skutočného líši,
môže sa cena skonštruovaného kódu viac alebo menej odlišovat’ od ceny optimálneho
kódu a rozdiel medzi skutočnou a minimálnou cenou bude závisiet’ aj od spôsobu kon-
štrukcie kódu.

3.3.5 Chyby v pravdepodobnostiach výskytu zdrojových symbolov

Predpokladajme, že je dané rozdelenie pravdepodobností P = {p0, . . . , pm−1}, na základe
ktorého sme zostrojili Huffmanov kód V = {v0, . . . , vm−1} s dĺžkami kódových slov {l0, . . . , lm−1}.
Nech je P′ = {p′0, . . . , p

′
m−1}, skutočné rozdelenie pravdepodobností zdrojových symbolov;

p′i = pi + ei, i = 0, . . . ,m − 1, kde ei je chyba v odhade pravdepodobnosti výskytu i-teho
symbolu. Ked’že P′, P sú rozdelenia pravdepodobností, platí:

∑m−1
i=0 p

′
i =
∑m−1
i=0 pi + ei =

1 +
∑m−1
i=0 ei; a teda

∑m−1
i=0 ei = 0. Zistíme, aký bude rozdiel cien kódu V pri rozdelení

pravdepodobností P′ a P:

L(V, P′) =
m−1∑
i=0

p′ili =

m−1∑
i=0

(pi + ei)li =

m−1∑
i=0

pili +

m−1∑
i=0

liei = L(V, P) +
m−1∑
i=0

liei

Zistíme, kedy nadobúda
∑m−1
i=0 liei extrémne hodnoty. Použijeme na to metódu Lagran-

geových neurčitých koeficientov [13]. Vyjadríme najprv podmienky, za ktorých budeme

46 KAPITOLA 3. NEROVNOMERNÉ KÓDY

hl’adat’ extrémy funkcie
∑m−1
i=0 liei. Odchýlky ei od pravdepodobností výskytu symbolov

budeme chápat’ ako výsledky náhodnej premennej e; pričom P(e = ei) =
1
m
, i = 0, . . . ,m−

1. Potom stredná hodnota chyby je

E(e) =

m−1∑
i=0

ei
1

m
=
1

m

m−1∑
i=0

ei = 0. (3.22)

Vyjadríme disperziu chýb:

Var(e) =

m−1∑
i=0

e2i
1

m
−

(
1

m

m−1∑
i=0

ei

)2
=
1

m

m−1∑
i=0

e2i − 0 =
1

m

m−1∑
i=0

e2i = σ
2. (3.23)

Využijeme (3.22) a (3.23) a zostrojíme Lagrangeovu funkciu pre veličinu
∑m−1
i=0 liei (λ, µ

sú Lagrangeove neurčité koeficienty):

F =
1

m

m−1∑
i=0

liei + λ

(
1

m

m−1∑
i=0

ei

)
+ µ

(
1

m

m−1∑
i=0

e2i − σ
2

)
. (3.24)

Vypočítame parciálne derivácie funkcie F podl’a ei, i = 0, . . . ,m − 1 a položíme ich rov-
nými nule:

∂F
∂ei

=
1

m
(li − λ− 2µei) = 0; i = 0, . . . ,m− 1. (3.25)

Sčítame rovnice (3.25) a vyjadríme koeficient λ.

m−1∑
i=0

1

m
(li − λ− 2µei) =

1

m

m−1∑
i=0

li − λ−
2µ

m

m−1∑
i=0

ei = 0;

a teda

λ =
1

m

m−1∑
i=0

li. (3.26)

Vrátime sa k sústave rovníc (3.25). Jednotlivé rovnice vynásobíme zodpovedajúcimi hod-
notami ei a výsledok spočítame cez všetky hodnoty i. Dostávame

1

m

m−1∑
i=0

(
liei − λei − 2µe

2
i

)
=
1

m

m−1∑
i=0

liei −
λ

m

m−1∑
i=0

ei −
2µ

m

m−1∑
i=0

e2i = 0.

Upravíme

1

m

m−1∑
i=0

liei =
2µ

m

m−1∑
i=0

e2i ,

a určíme koeficient µ:

µ =
1

2mσ2

m−1∑
i=0

liei. (3.27)

3.3. KVÁZIOPTIMÁLNE KÓDY A OPTIMÁLNY KÓD 47

Napokon vynásobíme jednotlivé rovnice sústavy (3.25) príslušnými hodnotami li a vý-
sledky násobenia sčítame cez všetky i:

1

m

m−1∑
i=0

(
l2i − λli − 2µliei

)
=
1

m

m−1∑
i=0

l2i −
λ

m

m−1∑
i=0

li −
2µ

m

m−1∑
i=0

liei = 0. (3.28)

Dosadíme hodnoty konštánt µ, λ do (3.28) a upravíme

1

m

m−1∑
i=0

l2i −

(
1

m

m−1∑
i=0

li

)2
−

1

σ2m2

(
m−1∑
i=0

liei

)2
= 0;

1

m

m−1∑
i=0

l2i −

(
1

m

m−1∑
i=0

li

)2
=
1

σ2

(
1

m

m−1∑
i=0

liei

)2
.

 1
m

m−1∑
i=0

l2i −

(
1

m

m−1∑
i=0

li

)2 · σ2 = Var(l)Var(e) =

(
1

m

m−1∑
i=0

liei

)2
.

To znamená, že pre fixovanú hodnotu disperzie chýb, σ2, sa extrémne odchýlky ceny
kódu (v kladnom alebo zápornom smere) dosahujú pre kódy, ktoré majú vel’kú disper-
ziu dĺžok kódových slov. Ináč povedané, čím väčšie sú rozdiely v dĺžkach kódových slov,
tým väčšiu ochýlku (zlepšenie alebo zhoršenie) ceny kódu môžu spôsobit’ chyby v prav-
depodobnostiach jednotlivých zdrojových symbolov. Príkladom kódu so stabilnou cenou
je blokový kód, pre ktorý sa žiadne odchýlky v pravdepodobnostiach neprejavia zmenou
ceny kódu. (Otázne však je, či pre skutočné rozdelenie pravdepodobností bude pôvodný
kód optimálny. Tento problém naše odvodenie nerieši.)

Príklad 3.9. Ilustrujeme predchádzajúce úvahy na Huffmanových kódoch z príkladu
3.8. Pripomíname, že sme zostrojili dva optimálne Huffmanove kódy pre rozdelenie prav-
depodobností P, pričom kód V mal kódové slová dĺžok {1, 2, 3, 4, 5, 5} a kód V ′ mal kódové
slová dĺžok {2, 2, 3, 3, 3, 3}. V prvom prípade bola disperzia dĺžok kódových slov Var(l) =
20
9

, v druhom Var(l′) = 2
9
. V nasledujúcej tabul’ke uvádzame príklad chýb v pravdepodob-

nostiach zdrojových symbolov, ktoré viedli k rozličným odchýlkam cien kódov.

pi li l′i ei △i △′
i

0.375 1 2 −0.1250 −0.1250 −0.250
0.250 2 2 0 0 0

0.125 3 3 0 0 0

0.125 4 3 0 0 0

0.0625 5 3 +0.0625 +0.3125 +0.1875
0.0625 5 3 +0.0625 +0.3125 +0.1875

0 +0.500 +0.125

Vplyv chýb v pravdepodobnostiach symbolov na cenu Huffmanovho kódu.

Huffmanov kód je pomerne odolný voči malým odchýlkam v pravdepodobnostiach
zdrojových symbolov. Ak chceme minimalizovat’ vplyv týchto odchýlok na cenu kódu,
pri konštrukcii Huffmanovho kódu budeme zarad’ovat’ vypočítanú pravdepodobnost’ do
zoznamu tak vysoko, ako sa len bude dat’.

48 KAPITOLA 3. NEROVNOMERNÉ KÓDY

3.4 Kódovanie Markovovského zdroja

Matematický model, ktorý sma používali až doteraz na popis zdroja informácie, bol
značne zjednodušený. V textoch zapísaných v prirodzenom jazyku sú medzi jednotlivými
znakmi závislosti, ktoré sme doteraz zanedbávali. Napríklad v slovenčine sa po mäk-
kých spoluhláskach takmer nikdy nepíše ypsilon, po tvrdých spoluhláskach zasa mäkké
i, v textoch sa nevyskytujú viac ako tri za sebou idúce samohlásky ani dlhé postupnosti
zložené zo samotných spoluhlások a pod. Popísat’ však dostatočne presne takéto záko-
nitosti prirodzeného jazyka by bolo dost’ náročné. Pre naše potreby vystačíme s omnoho
jednoduchším matematickým modelom a zdroj budeme popisovat’ pomocou Markovov-
ských ret’azcov. Budeme predpokladat’, že zdroj S v diskrétnych časovýcho okamihoch
(taktoch, krokoch) generuje symboly zo zdrojovej abecedy ΣS = {s0, . . . , sq−1}; činnost’
zdroja budeme popisovat’ pomocou postupnosti náhodných premenných St, t = 0, . . . ,8

ktorá spĺňa nasledujúcu podmienku: pre l’ubovol’né prirodzené číslo n a l’ubovol’né čísla
i0, . . . , in+1 ∈ {0, . . . , q− 1} platí

P(Sn+1 = sin+1
|S0 = si0 , . . . , Sn = sin) = P(Sn+1 = sin+1

|Sn = sin). (3.29)

Podmienka (3.29) vyjadruje skutočnost’, že pravdepodobnost’ výskytu symbolu v (n+ 1)-
vom kroku závisí len od toho, aký symbol bol na výstupe zdroja v predchádzajúcom kroku
n. Postupnost’ náhodných premenných ktorá spĺňa podmienku (3.29) sa nazýva Marko-
vovský ret’azec. Analogicky, zdroj S ktorý spĺňa podmienku (3.29), budeme nazývat’ Mar-
kovovským zdrojom. Podmienené pravdepodobnosti P(Sn+1 = sin+1

|Sn = sin) sa nazývajú
pravdepodobnost’ami prechodu. Pravdepodobnosti prechodu vo všeobecnosti závisia od
parametra n (znaky sa vyskytujú s inými pravdepodobnost’ami napríklad v hlavičkách
ako v textoch programov). Budeme však predpokladat’, že pravdepodobnosti prechodu
nezávisia od časového parametra n. Takýto Markovovský zdroj sa nazýva homogénny.
Zdroj S popíšeme pomocou matice pravdepodobností prechodu. Kvôli zjednodušeniu zá-
pisu budeme pravdepodobnost’ P(Sn+1 = sj|Sn = sk) označovat’ symbolom pj,k. Matica
pravdepodobností prechodu zdroja S bude mat’ nasledujúci tvar:

M =


p0,0 p1,0 . . . pq−1,0
p0,1 p1,1 . . . pq−1,1

p0,q−1 p1,q−1 . . . pq−1,q−1


Matica M má všetky prvky nezáporné a súčet prvkov v l’ubovol’nom riadku je rovný 1.
(Takáto matica sa nazýva stochastická.) Ak poznáme symbol, ktorý sa objavil na výstupe
zdroja, pomocou matice pravdepodobností prechoduM vieme určit’ pravdepodobnosti vý-
skytu symbolov na výstupe zdroja v nasledujúcom i v d’alších časových okamihoch. Nech
sa v 0-tom kroku objavil na výstupe zdroja symbol s0. Potom sa v nasledujúcom kroku
budú na výstupe zdroja objavovat’ symboly zo zdrojovej abecedy s pravdepodobnost’ami

(1, 0, . . . , 0)×M = (p0,0, p1,0, . . . , pq−1,0).

8rozdelenie pravdepodobností symbolov s0, . . . , sq−1 v t-tom kroku budeme označovat’ nasledovne:
{p

(t)
0 , . . . , p

(t)
q−1}.

3.4. KÓDOVANIE MARKOVOVSKÉHO ZDROJA 49

Rozdelenie pravdepodobností symbolov na výstupe zdroja v d’alšom kroku by sme vypo-
čítali ako súčin rozdelenia pravdepodobností v 1. kroku a matice M:

(p0,0, p1,0, . . . , pq−1,0)×M = (1, 0, . . . , 0)×M2.

(Namiesto toho, aby sme v každom kroku prácne počítali súčin vektora a matice M,
využijeme poznatok, že matica pravdepodobností prechodu po m krokoch sa rovná m-tej
mocnine matice pravdepodobností prechodu po jednom kroku [14].) Ilustrujeme uvedené
pojmy na príklade.

Príklad 3.10. Uvažujeme Markovovský zdroj S so štvorprvkovou abecedou ΣS = {a, b, c, d}.
Vzt’ahy medzi symbolmi sú popísané pomocou nasledujúcej matice pravdepodobností pre-
chodov:

M =


0.1 0.4 0.2 0.3

0.5 0.1 0.2 0.2

0.5 0.2 0.2 0.1

0.6 0.1 0.2 0.1


Nech p = (1, 0, 0, 0) je rozdelenie pravdepodobností symbolov v kroku 0. Potom rozdelenie
pravdepodobností symbolov v kroku 1 bude (0.1, 0.4, 0.2, 0.3). Vypočítame niekol’ko mocnín
matice M :

M2 =


0.49 0.15 0.20 0.16

0.32 0.27 0.20 0.21

0.31 0.27 0.20 0.22

0.27 0.30 0.20 0.23



M4 =


0.3933 0.2160 0.2000 0.1907

0.3619 0.2379 0.2000 0.2002

0.3597 0.2394 0.2000 0.2009

0.3524 0.2445 0.2000 0.2031



M8 =


0.37199797 0.23084535 0.20000000 0.19715668

0.37092176 0.23159571 0.20000000 0.19748253

0.37084603 0.23164851 0.20000000 0.19750546

0.37059591 0.23182290 0.20000000 0.19758119



M16 =


0.3712427184 0.2313719296 0.2000000000 0.1973853520

0.3712414540 0.2313728112 0.2000000000 0.1973857348

0.3712413650 0.2313728732 0.2000000000 0.1973857617

0.3712410712 0.2313730782 0.2000000000 0.1973858506


V postupnosti matíc je vidiet’ istú zákonitost’—ako keby matice konvergovali k nejakej

limitnej matici. Pozrieme sa na túto skutočnost’ z iného hl’adiska. Ako ovplyvní výskyt
konkrétneho symbolu v 0-tom kroku rozdelenie pravdepodobností výskytu symbolu v n-
tom kroku? V nasledujúcej tabul’ke je uvedené rozdelenie pravdepodobností (náhodnej
premennej) S16 za predpokladu, že S0 = a (b, c, d).

50 KAPITOLA 3. NEROVNOMERNÉ KÓDY

pa pb pc pd
S0 = a 0.3712427184 0.2313719296 0.2000000000 0.1973853520

S0 = b 0.3712414540 0.2313728112 0.2000000000 0.1973857348

S0 = c 0.3712413650 0.2313728732 0.2000000000 0.1973857617

S0 = d 0.3712410712 0.2313730782 0.2000000000 0.1973858506

Vidíme, že rozdelenie pravdepodobností symbolov v 16-tom kroku (a zrejme ani d’al-
ších krokoch) nezávisí od toho, aký symbol bol na výstupe zdroja v nultom kroku.

Markovovský zdroj popísaný v príklade 3.10 je zvláštnym prípadom tzv. ergodického
Markovovského zdroja. Definujeme ergodický Markovovský zdroj formálne.

Definícia 3.4.1. Nech rozdelenie pravdepodobností náhodnej premennej Sn konverguje k
limitnému rozdeleniu pravdepodobností; t.j.

lim
n→∞p(n)k = pk; k = 0, . . . , q− 1

a limitné rozdelenie pravdepodobností {p0, . . . , pq−1} nezávisí od počiatočného rozdelenia
pravdepodobností symbolov, potom sa Markovovský zdroj nazýva ergodickým Markovov-
ským zdrojom.

Z hl’adiska kódovania nás zaujíma predovšetkým spomínané limitné rozdelenie prav-
depodobností. Ak je zdroj S ergodický, tak takéto limitné rozdelenie pravdepodobností
existuje a musí spĺňat’ nasledujúci vzt’ah:

(p0, . . . , pq−1)×M = (p0, . . . , pq−1). (3.30)

Podmienku, ktorú musí spĺňat’ zdroj na to, aby bol ergodický, stanovuje nasledujúca
veta.

Veta 3.4.1. (Markovova, [14]) Nech je S Markovovský zdroj s abecedou ΣS = {s0, . . . , sq−1}

a p(m)
j,k je pravdepodobnost’ prechodu sk → sj po m krokoch. Ak existujú také prirodzené

čísla t > 0, k0 ≥ 0, že ∀j, j = 0, . . . , q − 1 platí p(t)j,k0 > 0; t.j. v matici Mt existuje aspoň
jeden stĺpec, ktorý má všetky prvky kladné, tak potom je Markovovský zdroj S ergodický,
a teda existujú limitné pravdepodobnosti

lim
n→∞p(n)j,k = pk, k = 0, . . . , q− 1,

nezávislé na indexe j. Postupnost’ p0, . . . , pq−1 je jediné nezáporné riešenie sústavy rovníc

pk =

q−1∑
j=0

pjpj,k, k = 0, . . . , q− 1,

ktoré vyhovuje podmienke
q−1∑
j=0

pj = 1.

To znamená, že limitné rozdelenie p0, . . . , pq−1 je stacionárnym rozdelením pravdepodob-
ností Markovovského zdroja.

3.4. KÓDOVANIE MARKOVOVSKÉHO ZDROJA 51

Poznámka. Stacionárne rozdelenie pravdepodobností je počiatočné rozdelenie pravde-
podobností, pri ktorom majú všetky (náhodné premenné) Sn, n = 0, . . . rovnaké rozdele-
nie pravdepodobností.

Ak teda v matici M alebo jej niektorej nenulovej mocnine existuje stĺpec, v ktorom
sú všetky prvky nenulové, potom je zdroj S ergodický a riešením sústavy (3.30) nájdeme
stacionárne limitné rozdelenie pravdepodobností. Pripomíname, že matica M nie je re-
gulárna, a preto sústavu (3.30) treba riešit’ za predpokladu

p0 + · · ·+ pq−1 = 1.

Príklad 3.11. Nájdeme stacionárne limitné rozdelenie pravdepodobností ergodického
Markovovského zdroja S z príkladu 3.10. (Ergodickost’ Markovovského zdroja S vyplýva
z toho, že už v samotnej matici M sú všetky prvky kladné.) Riešime sústavu rovníc

pa = 0.1 ∗ pa + 0.5 ∗ pb + 0.5 ∗ pc + 0.6 ∗ pd
pb = 0.4 ∗ pa + 0.1 ∗ pb + 0.2 ∗ pc + 0.1 ∗ pd
pc = 0.2 ∗ pa + 0.2 ∗ pb + 0.2 ∗ pc + 0.2 ∗ pd
pd = 0.3 ∗ pa + 0.2 ∗ pb + 0.1 ∗ pc + 0.1 ∗ pd
1 = pa + pb + pc + pd

Riešením tejto sústavy je vektor

P = (pa = 0.3712418301, pb = 0.2313725490, pc = 0.2000000000, pd = 0.1973856209).

Poznanie limitného rozdelenia pravdepodobností možno využit’ na zostrojenie Huff-
manovho kódu Markovovského zdroja S. V našom prípade by Huffmanov kód bol blo-
kový kód dĺžky 2 s cenou L(V, P) = 2. Huffmanov kód Markovovského zdroja S však
nevyužíval vzt’ahy medzi jednotlivými symbolmi. Navrhneme efektívnejšie kódovanie
Markovovského zdroja S . Najprv zostrojíme Huffmanove kódy Va, Vb, Vc, Vd pre rozdele-
nia pravdepodobností P(|a), P(|b), P(|c), P(|d). Jednotlivé kódy a ich ceny sú uvedené
v tabul’ke.

a b c d L(Vx, P)
Va 001 1 000 01 1.9

Vb 1 001 01 000 1.8

Vc 1 01 000 001 1.8

Vd 0 100 11 101 1.6

Postupnost’ symbolov si0si1 . . . vytvorenú Markovovským zdrojom S budeme kódovat’
nasledovne:

1. prvý symbol, si0 zakódujeme pomocou pevne stanoveného kódu, napríklad Vs0 ;

2. j-ty symbol postupnosti zakódujeme pomocou kódu Vsj−1
; j = 1, . . .m.

52 KAPITOLA 3. NEROVNOMERNÉ KÓDY

Pri dekódovaní najprv dekódujeme prvý symbol, si0 , zakódovaný pomocou kódu Vs0 ; na
základe poznania prvého symbolu (si0) určíme kód Vsi0 , ktorým je kódovaný druhý sym-
bol, si1 , atd’. Kód Markovovského zdroja budeme kvôli jednoduchosti nazývat’ Markovov-
ským kódom.

Príklad 3.12. Nech postupnost’ ababcadadca vytvoril Markovovský zdroj z príkladu
3.10. Jeho kódovanie je popísané v nasledujúcej tabul’ke.

znak a b a b c a d a d c a

použitý kód Va Va Vb Va Vb Vc Va Vd Va Vd Vc
kódové slovo 001 1 1 1 01 1 01 0 01 11 1

Na zakódovanie postupnosti dĺžky 11 (nad štvorprvkovou abecedou) sme potrebovali 17-
bitový ret’azec.

Cena kódu Markovovského zdroja závisí od cien čiastkových kódov Vsi , i = 0, . . . ,m−
1 a limitného rozdelenia pravdepodobností. Dá sa vypočítat’ na základe nasledujúceho
vzt’ahu:

L(M,V) =
q−1∑
i=0

pi · L(P(|si), Vsi).

Porovnáme na záver cenu Hufmannovho kódu (pre limitné rozdelenie pravdepodob-
ností), entropiu limitného rozdelenia pravdepodobností a cenu kódu Markovovského zdroja
z predchádzajúceho príkladu.

entropia limitného rozdelenia 1.945755388

cena Huffmanovho kódu 2.000000000

cena Markovovského kódu 1.797647058

Využitím závislostí medzi jednotlivými symbolmi sme dostali kód ktorého cena je výraz-
ne nižšia ako entropia limitného rozdelenia pravdepodobností.9

3.5 Kódovanie pomocou orákula

Huffmanov kód využíval to, že sme poznali rozdelenie pravdepodobností symbolov v
zdrojovom texte; Markovovský kód zasa vychádzal z poznania štatistických zákonitostí
medzi symbolmi, ktoré nasledovali bezprostredne za sebou. Bolo by možné zostrojit’ aj
iné kódy, ktoré by využívali iné zákonitosti v zdrojových textoch. Uvedieme jednu vše-
obecnú teoretickú konštrukciu, ktorá nám umožní určit’, ako dokážeme zdrojový text
stlačit’, ak poznáme akúkol’vek využitel’nú zákonitost’ medzi znakmi v zdrojovom texte.
Nebudeme sa snažit’ túto zákonitost’ bližšie špecifikovat’, budeme ju charakterizovat’
tým, ako dobre nám umožní odhadovat’, aký symbol sa objaví v nasledujúcom takte na
výstupe zdoja. Podstata tejto metódy (budeme ju nazývat’ kódovanie s predpoved’ou),

9ktorá závislosti medzi jednotlivými symbolmi nezohl’adňuje.

3.5. KÓDOVANIE POMOCOU ORÁKULA 53

����
��������

kóder dekóder ����
����S

O1

+ +

O2

- - - -

6 6

-

Obr. 3.5: Kódovanie s predpoved’ou

spočíva vo využití dvojice orákul10, ktoré budú hádat’, aký symbol zdroj v danom takte
vytvoril. Schéma kódovania s predpoved’ou je uvedená na obr. 3.5: Zdroj S generuje bi-
nárnu postupnost’ α = a0a1 . . . , orákulum O1 sa pokúša „uhádnut’“ výstup zdroja S a
generuje binárnu postupnost’ β = b0b1 Obe postupnosti sa následne sčítavajú bit
po bite modulo 2 a výsledná postupnost’ {ai ⊕ bi}i≥0 vstupuje do kódera. Ak sa orákulu
podarí „uhádnut’“ správne hodnotu symbolu ai generovaného zdrojom, ai ⊕ bi = 0. Po-
stupnost’ α⊕β vstupujúca do kódera pozostáva zo súvislých postupností pozostávajúcich
zo samých núl, ktoré sú oddelené jednotkami. Kóder zakóduje pozície jednotiek a pošle
ich po prenosovom kanáli príjemcovi. Dekóder príjemcu transformuje kódovanú správu
opät’ do tvaru postupností núl oddelených jednotkami; {ai⊕bi}i≥0. Táto postupnost’ vstu-
puje do člena realizujúceho sčítanie modulo 2, v ktorom sa sčítava s výstupom orákula
O2 generujúceho tú istú binárnu postupnost’ β = b0b1 . . . ako orákulum O1. Výsledkom
je postupnost’ {(ai⊕bi)⊕bi}i≥0 = {ai}i≥0; t.j postupnost’ generovaná zdrojom S. Doplníme
niektoré predpoklady a ukážeme, aké výsledky sa dajú dosiahnut’ pomocou kódovania s
predpoved’ou. Predpokladáme, že orákulump O1 „uhádne“ správny výsledok (jeden bit
generovaný zdrojom S) s pravdepodobnost’ou p a generuje opačnú hodnotu s pravdepo-
dobnost’ou q = 1− p. Ďalej predpokladáme, že výsledok hádania symbolu v i-tom kroku
neovplyvní výsledok hádania v d’alších krokoch.

Pozrime sa teraz na kódovanie postupnosti {ai⊕bi}i≥0. V závislosti od kvality orákula
(vyjadrenej pravdepodobnost’ou p) budú sa v binárnej postupnosti vyskytovat’ kratšie
alebo dlhšie postupnosti núl ukončené jednotkami:

α⊕ β = 000001001100000000000010000100000010010010100011...

Takúto postupnost’ možno jednoznačne určit’ postupnost’ou prirodzených čísel, n0, n1, . . .
vyjadrujúcich dĺžky nulových podpostupností. Pre vyššie uvedenú binárnu postupnost’
α⊕ β bude postupnost’ prirodzených čísel vyzerat’ nasledovne:

5, 2, 0, 12, 4, 6, 2, 2, 1, 3, 0,

Existuje viacero možností kódovania postupnosti n0, n1, Kvôli jednoduchosti použi-
jeme na začiatok blokový kód dĺžky k. Ked’že binárne slovo dĺžky k dokáže rozlíšit’ 2k

hodnôt, postupnosti 0n1 kde n ≥ 2k sa už pomocou jedného kódového slova nedajú za-
kódovat’. Označíme symbolom C kódovú transformáciu realizovanú kóderom, potom C

10Je zrejmé, že táto konštrukcia je čisto teoretická, pretože orákulum nie je prakticky realizovatel’né.

54 KAPITOLA 3. NEROVNOMERNÉ KÓDY

možno definovat’ nasledovne:

C(0n1) =

{
n ak n < 2k − 1,
2k − 1, C(0n−2

k+11) ak n ≥ 2k − 1.

Binárna postupnost’
0 . . . 0︸ ︷︷ ︸
2k−1

0 . . . 0︸ ︷︷ ︸
2k−1

0 . . . 0︸ ︷︷ ︸
2k−2

1

bude kódovaná binárne zapísanou trojicou čísel 2k − 1, 2k − 1, 2k − 2 dĺžky 3k. Už z tohto
jednoduchého príkladu je zrejmé, že efektívnost’ kódovania s predpoved’ou bude závisiet’
od výberu parametra k. Ukážeme, ako na základe p vybrat’ optimálnu hodnotu dĺžky
bloku k. Postupnosti 0j1 sa vyskytujú s pravdepodobnost’ami pjq j = 0, 1, Ked’že∑

j≥0
pjq = q

∑
j≥0
pj =

q

1− p
= 1,

množina postupností {0j1}j≥0 s pravdepodobnost’ami P(0j1) = pjq tvorí pravdepodob-
nostný priestor. Vypočítame dĺžky kódov jednotlivých postupností a potom určíme strednú
hodnotu dĺžky kódovej postupnosti potrebnej na zakódovanie jednej postupnosti 0j1. V
nasledujúcej tabul’ke sú uvedené dĺžky kódov postupností 0j1 pre jednotlivé hodnoty j
(označme kvôli zjednodušeniu zápisu symbolom m hodnotu 2k − 1):

dĺžka postupnosti dĺžka kódu
0 . . .m− 1 k

m . . . 2m− 1 2k

2m . . . 3m− 1 3k

Stredná hodnotu dĺžky kódovej postupnosti potrebnej na zakódovanie jednej postup-
nosti 0j1 je

k
[
q+ pq+ · · ·+ pm−1q

]
+ 2k

[
pmq+ pm+1q+ · · ·+ p2m−1q

]
+

+3k
[
p2mq+ p2m+1q+ · · ·+ p3m−1q

]
+ · · · = kq1− p

m

1− p

[
1+ 2pm + 3p2m + . . .

]
=

=
k

1− pm
.

Stredná hodnota dĺžky postupnosti núl je∑
k≥0

pk · q · k = q ·
∑
k≥0

k · pk = p/(1− p).

Pripočítame ešte 1 a dostávame 1/(1− p). Teraz spočítame kompresný pomer,

κ =
k · (1− p)
1− pm

a nájdeme optimálnu hodnotu dĺžky bloku k. Ked’že analytický výpočet kodnoty k, ktorá
minimalizuje kompresný pomer by bol zložitý, pre známe p je jednoduchšie výpočítat’
hodnoty κ pre rôzne hodnoty k.

3.5. KÓDOVANIE POMOCOU ORÁKULA 55

Pre zaujímavost’ sme skúsili použit’ namiesto blokových kódov nerovnomerný prefi-
xový kód (neskrátený Shannonov kód) a odhadli kompresný pomer. Výsledky sú uvedené
v predposlednom riadku tabul’ky 3.1. Výsledky boli zrejme výrazne ovplyvnené spôso-
bom výpočtu dĺžky kódového slova (hornou celou čast’ou z prevrátenej hodnoty pravde-
podobnosti výskytu postupnosti danej dĺžky). Pri konštrukcii Shannonovho kódu pre ko-
nečné rozdelenia pravdepodobností sme neraz výrazne redukovali cenu kódu skrátením
niektorých slov. V nekonečnom kóde sa to z pochopitel’ných dôvodov spravit’ nedá. Aby
sme odhadli výsledky úprav nekonečného Shannonovho kódu, v poslednom riadku ta-
bul’ky 3.1 sme uviedli odhady kompresného pomeru, pričom dĺžky kódových slov boli vy-
jadrené len ako prevrátené hodnoty pravdepodobnosti výskytu postupnosti danej dĺžky.

p 0.5 0.6 0.7 0.8 0.9 0.95 0.99 0.999

k = 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

k = 2 1.14 1.02 0.913 0.820 0.738 0.699 0.667 0.667

k = 3 1.51 1.23 0.980 0.759 0.575 0.497 0.441 0.429

k = 4 2.00 1.60 1.21 0.829 0.504 0.372 0.286 0.267

k = 5 2.50 2.00 1.50 1.00 0.520 0.314 0.187 0.161

k = 6 3.00 2.40 1.80 1.20 0.601 0.312 0.128 0.0984

k = 7 3.50 2.80 2.10 1.40 0.70 0.350 0.0971 0.0588

k = 8 4.00 3.20 2.40 1.60 0.80 0.400 0.0867 0.0356

k = 9 4.50 3.60 2.70 1.80 0.90 0.45 0.0905 0.0225

k = 10 5.00 4.00 3.00 2.00 1.00 0.5 0.100 0.0156

k = 11 0.0126

k = 12 0.0122
Shannon 1.1002 0.82858 0.33974 0.070041

Shannon 0.96300 0.74377 0.32288 0.067632

Tabul’ka 3.1: Kompresný pomer pri kódovaní s predpoved’ou

56 KAPITOLA 3. NEROVNOMERNÉ KÓDY

Kapitola 4

Metódy kompresie údajov

4.1 Slovníkové metódy kompresie dát

V tejto kapitole uvedieme niektoré slovníkové metódy kompresie dát. Tieto metódy sa
snažia využit’ na kompresiu skutočnost’, že v dátach sa častokrát opakujú rovnaké po-
stupnosti znakov.

4.2 LZ77

Autormi tohto algoritmu sú Lempel a Ziv (v roku 1977). Mnohé d’alšie slovníkové algo-
ritmy boli inšpirované práve LZ77. Pri popise algoritmu budeme používat’ nasledujúce
pojmy:

• Pozícia – aktuálna pozícia, na ktorej sa pri kódovaní/dekódovaní nachádzame. Začí-
name na prvom znaku a postupne pokračujeme až k poslednému znaku vstupného
textu.

• Okno – posledných w spracovaných znakov (pri kompresii). Znak na pozícii sa do
okna už nepočíta.

• Buffer – postupnost’ znakov vo vstupnom texte začínajúca pozíciou.

4.2.1 Kompresia (kódovanie)

Označme vstupný (komprimovaný) text T a nech jeho dĺžka je n. Nech p ∈ {0, . . . , n − 1}
označuje pozíciu. To znamená, že okno je postupnost’ (podret’azec) T [p − w, . . . , p − 1]
a buffer T [p, . . . , n − 1]. Ak p < w, tak je okno, prirodzene, kratšie. Hlavná myšlienka
algoritmu spočíva v tom, že hl’adáme najdlhší ret’azec v okne, ktorý je zároveň prefixom
buffra. Teda hl’adáme maximálne k ≤ n− p také, že existuje i ∈ {p−w, . . . , p− k}:

T [i, . . . , i+ k− 1] = T [p, . . . , p+ k− 1]. (4.1)

57

58 KAPITOLA 4. METÓDY KOMPRESIE ÚDAJOV

p

buffer

… ……

okno

ip-w

… …

Postup pri kompresii je nasledujúci:

1. p = 1

2. pokial’ je p < n opakujeme:

(a) nájdeme i a k podl’a (4.1)

(b) výstupom je trojica
⟨i− (p−w) + 1, k, T [p+ k]⟩

(c) p← p+ k+ 1

Prvý člen vo výstupnej trojici označuje index v okne, číslovaný pre aktuálne okno od
1, kde začína nájdený najdlhší zhodný ret’azec. Tento spôsob zaručuje, že index je vždy
prvok z {1, . . . , w}. Uvedený postup nerieši niektoré situácie, ktoré pri kompresii môžu
nastat’. Prípad k = 0 nastane, ak sa v okne nenachádza znak T [p]. Vtedy dáme na výstup
trojicu ⟨0, 0, T [p]⟩. Ak najdlhší podret’azec „vyčerpá“ všetky znaky z buffra, t.j. k = n− p,
tak zhodu skrátime o 1 a na výstup dáme trojicu ⟨i− (p−w) + 1, k− 1, T [n− 1]⟩.

Príklad: Nech T = aababbcbababcb (n = 14). Tabul’ka ukazuje priebeh činnosti algo-
ritmu, pričom zhoda udáva najdlhší nájdený ret’azec v okne. Vzhl’adom na malý rozsah
príkladu nie je vel’kost’ okna obmedzená.

p T [p] zhoda výstup
0 a − ⟨0, 0, a⟩
1 a a ⟨1, 1, b⟩
3 a ab ⟨2, 2, b⟩
6 c − ⟨0, 0, c⟩
7 b bab ⟨3, 3, a⟩
11 b bcb ⟨6, 2, b⟩

4.2.2 Dekompresia (dekódovanie)

Dekóvanie je jednoduché. Podobne ako pri kódovaní si budujeme a udržiavame okno, v
tomto prípade to bude posledných w znakov daných na výstup. Na začiatku je, priro-
dzene, prázdne. Postupne čítame trojice zo vstupu a na výstup dáme príslušný ret’azec z
okna (určený indexom a dĺžkou) doplnený znakom z trojice. Ak má vstupná trojica tvar
⟨0, 0, x⟩, tak je výstupom samotný znak x.

4.2. LZ77 59

4.2.3 Poznámky

LZ77 je relatívne rýchly algoritmus, pričom dekódovanie je ovel’a rýchlejšie ako kódova-
nie, ked’že nie je potrebné vyhl’adávat’ najdlhší zhodný podret’azec a len sa „vypisuje“.
Podstatnou z hl’adiska rýchlosti kódovania a dosiahnutého kompresného pomeru je vol’ba
vel’kosti okna. Dlhé okno umožňuje nachádzat’ lepšie zhody, ale zároveň podstatne zvy-
šuje časovú zložitost’ kódovania. Navyše, dlhšie okno zvyšuje počet bitov potrebných na
zápis indexu a dĺžky vo výstupe (prvý a druhý prvok výstupnej trojice). Krátke okno
naopak „zahadzuje“ potenciálne cenné informácie o prechádzajúcej podobe textu skoro,
čím obmedzuje možnost’ nájst’ dlhšie ret’azce zhody a predlžuje výstupný text. Na druhej
strane krátke okno znižuje časovú zložitost’ a dovol’uje použit’ na zápis indexu a dĺžky
menší počet bitov.

Použitie okna v LZ77 zabezpečuje, že algoritmus je orientovaný na využitie posledne
videných znakov. Teda charakteristiky zo začiatku textu neberieme do úvahy. To môže
byt’ pri niektorých typoch dát podstatnou výhodou.

LZ77 je možné rôzne modifikovat’ – použit’ cyklické okno, variabilne menit’ vel’kost’
okna a podobne. Medzi významnejšie úpravy patrí spracovanie výstupu d’alšími algorit-
mami. Dá sa očakávat’, že žiadna z troch súradníc výstupnej trojice nie je rovnomerne
distribuovanou náhodnou premennou. Preto môžeme použit’ štatistické kódovanie (napr.
Huffmanovo, aritmetické) na následnú transformáciu jednotlivých „stôp“ výstupu.

4.2.4 LZSS

Dôležitým algoritmom odvodeným z LZ77 je LZSS. LZSS rieši problém znakov, ktoré sa
nevyskytujú v okne inak ako LZ77. LZSS si stanoví, akú minimálnu dĺžku musí mat’
ret’azec zhody. Ak je nájdený ret’azec kratší, tak na výstup ide samotný znak (T [p]) a
posunieme pozíciu d’alej. Ak má ret’azec dostatočnú dĺžku, dáva na výstup dvojicu ⟨i −
(p −w), k⟩ (bez d’alšieho znaku, preto aj posun p je iný: p ← p + k). Teda LZSS dáva na
výstup dva typy informácií. Aby ich bolo možné rozlíšit’ pri dekódovaní, pridáme pred
oba typy identifikačný bit.

Uved’me príklad činnosti LZSS pre vstupný text T = aababbcbababcb (rovnaký ako
v príklade pre LZ77). Minimálna požadovaná vel’kost’ zhody je 2.

p T [p] zhoda výstup
0 a − 0, a

1 a a 0, a

2 b − 0, b

3 a ab 1, ⟨1, 2⟩
5 b b 0, b

6 c − 0, c

7 b bab 1, ⟨2, 3⟩
10 a ab 1, ⟨1, 2⟩
12 c cb 1, ⟨6, 2⟩

LZSS vo všeobecnosti dosahuje lepšie kompresné pomery ako LZ77, s porovnatel’-

60 KAPITOLA 4. METÓDY KOMPRESIE ÚDAJOV

nými pamät’ovými a časovými nárokmi. Dekódovanie je vel’mi jednoduché a rýchle. Preto
slúži ako základ pre d’alšie známe algoritmy – ARJ (kombinácia LZSS s Huffmanovým
kódovaním), PKZip a pod. Odlišnosti iných algoritmov môžu spočívat’ vo vel’kosti okna,
v spracovaní výstupov (pozícií) a znakov štatistickým kódovaním (napr. Huffmanovým),
v spôsobe posunu okna a jeho premenlivej vel’kosti, v spôsobe určenia minimálnej dĺžky
ret’azca zhody a pod.

4.3 LZW

Autorom algoritmu je Welch (1984). LZW je v podstate vylepšením algoritmu LZ78. Špe-
ciálna implementácia LZW sa používa na kompresiu v grafickom formáte GIF. Iný va-
riant používa utilita compress v UNIXových systémoch. Algorimus si počas spracová-
vania vstupu buduje slovník, ktorý využíva na kódovanie. Pri popise algoritmu budeme
používat’ nasledujúce pojmy:

• Slovník – postupnost’ ret’azcov

• Kódové slovo – index (pozícia) konkrétneho ret’azca v slovníku

4.3.1 Kompresia (kódovanie)

Symbolom + označíme zret’azenie dvoch ret’azcov, teda x+ y označuje zret’azenie ret’az-
cov x a y. Nech D je slovník kódových slov a nech D(x) označuje kódové slovo ret’azca x
v slovníku D. Postup pri kódovaní je nasledujúci:

1. zaradíme všetky znaky abecedy do D

2. p← (inicializujeme p ako prázdny ret’azec)

3. pokial’ nie sme na konci vstupu:

(a) c← d’alší znak zo vstupu

(b) ak je p+ c v D:
p← p+ c

(c) inak:
dáme na výstup D(p)
pridáme p+ c do D
p← c

4. dáme na výstup D(p)

Poznamenajme, že uvedený postup nepočíta s prázdnym vstupom. Demonštrujme si
postup kódovania LZW na príklade.

4.3. LZW 61

Príklad: Nech T = aababbcbababcb je vstupný text. Tabul’ka ukazuje priebeh činnosti
algoritmu, pričom stĺpec „slovník“ uvádza kódové slovo a prislúchajúci ret’azec pridaný
do slovníka v danom kroku výpočtu. Na začiatku obsahuje slovník tri znaky. Stĺpec pre
hodnotu p udáva túto hodnotu na konci spracovania vstupného znaku v premennej c.

c slovník p výstup
0, a

1, b

2, c

a − a

a 3, aa a 0

b 4, ab b 0

a 5, ba a 1

b − ab

b 6, abb b 4

c 7, bc c 1

b 8, cb b 2

a − ba

b 9, bab b 5

a − ba

b − bab

c 10, babc c 9

b − cb

− 8

4.3.2 Dekompresia (dekódovanie)

Dekódovanie prebieha analogicky ako kódovanie. Konštruujeme slovník, ktorý následne
používame na dekódovanie a ret’azce zodpovedajúce kódovým slovám dávame na výstup.
Na začiatku je opät’ slovník naplnený všetkými znakmi abecedy.

Pri dekódovaní môžu nastat’ dva prípady: kódové slovo sa v slovníku nachádza alebo
nie. Ak je vstupné kódové slovo už v slovníku, vieme dat’ na výstup príslušný ret’azec. Zá-
roveň vieme, že pred kódovaním tohto ret’azca sme do slovníka zaradili ret’azec, ktorý aj
teraz potrebujeme do D dostat’. Tento ret’azec pozostáva z ret’azca určeného prechádza-
júcim kódovým slovom a prvým znakom ret’azca určeného aktuálnym kódovým slovom.

Druhý prípad (vstupné kódové slovo nie je v slovníku) môže nastat’, lebo budovanie
slovníka je pri dekódovaní oneskorené. Nastane však len v tom prípade, ked’ pri kó-
dovaní dáme na výstup kódové slovo, ktoré bolo do slovníka pridané ako posledné. To
však znamená, že v texte sa vyskytoval za sebou dvakrát rovnaký ret’azec. Preto je prvý
znak ret’azca prislúchajúceho vstupnému kódovému slovu zhodný s prvým znakom re-
t’azca určeného predchádzajúcim kódovým slovom. Teda vieme, aký ret’azec potrebujeme
pridat’ do slovníka a následne aj vypísat’ na výstup. Nasledujúce obrázky ilustrujú oba
uvedené prípady (označenia sú prebrané z nižšie uvedeného popisu algoritmu).

62 KAPITOLA 4. METÓDY KOMPRESIE ÚDAJOV

…

p’
…

c

c’

do slovníka

…

p’
…

c

c’
…

p’
…

c

c’= p’

do slovníka

Pre zjednodušenie zápisu označme D(x′) ret’azec prislúchajúci kódovému slovu x′,
teda opačné zobrazenie ako pri kódovaní. Postup pri dekódovaní je nasledujúci (pre-
menné s čiarkou označujú kódové slová, bez čiarky sú to ret’azce):

1. zaradíme všetky znaky abecedy do D

2. c′ ← prvé kódové slovo zo vstupu

3. dáme na výstup D(c′)

4. pokial’ nie sme na konci vstupu:

(a) p′ ← c′

(b) c′ ← d’alšie kódové slovo zo vstupu

(c) ak je D(c′) v D:
dáme na výstup D(c′)
p← D(p′)
c← prvý znak z D(c′)
pridáme p+ c do D

(d) inak:
p← D(p′)
c← prvý znak z D(p′)
dáme na výstup p+ c (zhodné s D(c′))
pridáme p+ c do D

Príklad: Nech abeceda je {a, b, c} a nech postupnost’ kódových slov (0, 0, 1, 4, 1, 2, 8, 9, 3)
je vstupný text. Poznamenajme, že postupnost’ je na začiatku zhodná s výstupom pred-
chádzajúceho príkladu (pre kontrolu) a na záver sa odlišuje (pre lepšiu demonštráciu
postupu). Tabul’ka ukazuje priebeh činnosti algoritmu pri dekódovaní. Stĺpce p, p′ a c
zobrazujú hodnoty premenných na konci spracovania vstupného kódového slova.

4.4. ARITMETICKÉ KÓDOVANIE 63

vstup p′ p c slovník výstup
0, a

1, b

2, c

0 − a

0 0 a a 3, aa a

1 0 a b 4, ab b

4 1 b a 5, ba ab

1 4 ab b 6, abb b

2 1 b c 7, bc c

8 2 c c 8, cc cc

9 8 cc c 9, ccc ccc

3 9 ccc a 10, ccca aa

4.3.3 Poznámky

Výhoda LZW oproti LZ77 spočíva najmä v rýchlosti kódovania, pretože sa porovnáva
menší počet ret’azcov. Modifikácie LZW môžu zahŕňat’ premenlivú dĺžku zápisu kódo-
vých slov (v závislosti na aktuálnej vel’kosti D), odstraňovanie starých ret’azcov zo slov-
níka a podobne.

4.4 Aritmetické kódovanie

Aritmetické kódovanie je alternatívou k Huffmanovmu kódovaniu. Odstraňuje niektoré
jeho nedostatky – oddel’uje pravdepodobnostný model zdroja od procesu kódovania (preto
sa dá l’ahšie upravit’ na adaptívnu verziu) a nevyžaduje celý počet bitov na kódovanie
každého znaku (preto je v situáciach ako pa = 1

10
, pb = 9

10
výhodnejšie). Spoločnou črtou

aritmetického a Huffmanovho kódovania je rovnaký model zdroja – pravdepodobnosti
výskytov znakov zdrojovej abecedy (nezávislé). Ked’že pri kódovaní nevyužívajú žiadne
kontextové informácie (pozičné závislosti znakov), zvyknú sa označovat’ ako „zero-order
coders“. Do tejto skupiny patrí aj Shannonov-Fanov kód.

4.4.1 Kompresia (kódovanie)

Pri kompresii najskôr určíme pravdepodobnosti výskytu jednotlivých znakov zdrojovej
abecedy. Nech {c1, c2, . . . cn} je zdrojová abeceda a nech p1, p2, . . . pn sú príslušné pravde-
podobnosti. Proporčne, podl’a pravdepodobností rozdelíme interval ⟨0, 1) na n častí:

I1 = ⟨0, p1)
I2 = ⟨p1, p1 + p2)
I3 = ⟨p1 + p2, p1 + p2 + p3)

...
In = ⟨p1 + p2 + · · ·+ pn−1, 1).

64 KAPITOLA 4. METÓDY KOMPRESIE ÚDAJOV

Označme p′k =
∑k
i=1 pi, pričom p′0 = 0. Zároveň symbolom |⟨d, h)| označíme dĺžku

intervalu, t.j. hodnotu h − d. Algoritmus na začiatku vychádza z intervalu I = ⟨0, 1). Po
prečítaní prvého znaku sa interval zúži na príslušnú čast’, podl’a tohto znaku. Teda ak
je znak na vstupe ck, zúžime interval na Ik. Čítaním d’alších znakov nad’alej interval
zužujeme:

I = ⟨d, h) ck7−→ ⟨d+ p′k−1|I|, d+ p′k|I|). (4.2)

Výstupom je l’ubovol’né číslo z výsledného intervalu (najlepšie to, ktoré má najkratší
zápis). Hlavná myšlienka spočíva v tom, že znaky, ktoré majú vysokú pravdepodobnost’,
zužujú interval najmenej. Čím je interval menší, tým viac bitov potrebujeme na zápis
niektorého z čísel, ktoré doň patria (očakávaný počet potrebných bitov je log2

1
|I|

).

1. I← ⟨0, 1)

2. pokial’ nie sme na konci vstupu

(a) načítame d’alší znak – ck
(b) upravíme interval I podl’a (4.2)

3. dáme na výstup l’ubovol’né číslo z intervalu I

Príklad: Nech vstupným textom je ret’azec aababbcbababcb. Potom pravdepodobnosti
výskytu jednotlivých znakov zdrojovej abecedy {a, b, c} sú pa = 5

14
, pb = 7

14
a c = 2

14
. Na-

sledujúca tabul’ka ukazuje zmenu intervalu I počas spracúvania vstupu. Dolné a horné
hranice sú počítané na 14 desatinných miest.

c I

⟨0 , 1)
a ⟨0, 00000000000000 , 0, 35714285714286)
a ⟨0, 00000000000000 , 0, 12755102040816)
b ⟨0, 04555393586006 , 0, 10932944606414)
a ⟨0, 04555393586006 , 0, 06833090379009)
b ⟨0, 05368856726364 , 0, 06507705122865)
b ⟨0, 05775588296543 , 0, 06345012494794)
c ⟨0, 06263666180758 , 0, 06345012494794)
b ⟨0, 06292718435771 , 0, 06333391592789)
a ⟨0, 06292718435771 , 0, 06307244563277)
b ⟨0, 06297906338452 , 0, 06305169402205)
a ⟨0, 06297906338452 , 0, 06300500289792)
b ⟨0, 06298832749645 , 0, 06300129725315)
c ⟨0, 06299944443076 , 0, 06300129725315)
b ⟨0, 06300010615304 , 0, 06300103256424)

Potom napríklad číslo 0, 063000679016 . . . je z výsledného intervalu a jeho binárny rozvoj
je 0, 00010000001000001101. Teda výsledkom kódovania je uvedený dvadstat’bitový ret’a-
zec (bez 0 pred desatinnou čiarkou). Len pre porovnanie, Huffmanov kód potrebuje 21
bitov (a = 10, b = 0, c = 11).

4.4. ARITMETICKÉ KÓDOVANIE 65

Spracovanie vstupu bca ilustruje aj nasledujúci obrázok:

h

d

c

b

a

b c a

4.4.2 Dekompresia (dekódovanie)

Pri dekódovaní postupujeme analogicky, ako pri kódovaní. Na začiatku nastavíme in-
terval I = ⟨0, 1). Na vstupe máme číslo x ∈ I. Pre zistenie prvého znaku je potrebné
určit’, v ktorom z potenciálnych n intervalov I1, . . . , In sa x nachádza. Príslušný interval
(povedzme Ik) určuje znak (ck) a zároveň umožní zúžit’ I (I 7→ Ik).

Podobne postupujeme d’alej. Pre aktuálny interval I určujeme k také, že x je prvkom
intervalu, ktorý toto k „vyrobí“ z intervalu I podl’a (4.2). Na výstup dáme ck a zúžime I.

Otázkou je, ako zistit’, že sme už dekódovali posledný znak. Možné sú dve riešenia:

1. Pridáme do abecedy špeciálny znak „EOF“ (koniec súboru) a pri dekódovaní postu-
pujeme až dovtedy, kým tento znak nedekódujeme.

2. Spolu s výsledným číslom dáme pri kódovaní na výstup aj dĺžku kódovaného re-
t’azca. Teda dekóder skončí po vypísaní daného počtu znakov.

4.4.3 Implementačné poznámky

Aritmetické kódovanie môžeme efektívne realizovat’ pomocou celočíselnej aritmetiky. In-
terval ⟨0, 1) nahradíme intervalom celých čísel, napríklad ⟨0x0000,0xffff) (vyjadrené he-
xadecimálne, teda ⟨0, 65535). Základné pozorovanie, ktoré umožní ostat’ počas celého vý-
počtu len v tomto intervale: ak sa začiatočné čísla (napr. bity) dolnej a hornej hranice
aktuálneho intervalu zhodujú, už ostanú rovnaké. Dôvod je prostý: interval sa počas
kódovania zužuje, preto zhody na začiatku sa už nezmenia. To znamená, že ak takúto
zhodu zaznamenáme, môžme ju z oboch hraníc intervalu odstránit’ (a dat’ na výstup).
Napríklad, ak po úprave intervalu dostaneme h = 0x6807 a d = 0x4af1, tieto sa zho-
dujú na prvých dvoch bitoch (01), ktoré dáme na výstup a následne upravíme hranice –
h = 0xa01f, d = 0x2bc4. Hornú hranicu dopĺňame jednotkami a dolnú nulami. Priro-
dzene, dekóder musí pri práci s intervalmi aplikovat’ rovnaký postup.

Problém môže nastat’, ak pri zužovaní intervalu dostávame (binárne) h = 1000zzz a
d = 0111www. V takomto prípade nielen nevieme čo dat’ na výstup (kam sa nakoniec
„preklopí“ najvyšší bit), ale aj strácame presnost’ (dĺžku intervalu). Riešenie spočíva v
tom, že v týchto situáciach odstránime úvodné nulové bity z h a úvodné jednotkové z d:

66 KAPITOLA 4. METÓDY KOMPRESIE ÚDAJOV

h = 1zzz a d = 0www. Popritom si zapamätáme počet takto odstránených bitov a ked’
sa najbližšie zhodnú najvyššie bity hraníc, budeme vediet’, kol’ko a akých bitov dat’ na
výstup.

4.4.4 Poznámky

Aritmetické kódovanie, podobne ako Huffmanovo sa zvyčajne nepoužíva samostatne, ale
vystupuje ako súčast’ zložitejších kompresných algoritmov (najčastejšie ako záverečná
fáza). Môžeme ho kombinovat’ so slovníkovými metódami (napr. LZARI je kombinácia
LZSS a aritmetického kódovania), v štatistických metódach vyšších rádov (napr. PPM)
aj v iných metódach (pozri napr. čast’ 4.5).

Problémom aritmetického kódovania je rýchlost’ – ktorá nie je príliš vel’ká. Kom-
presný pomer je zvyčajne o čosi lepší ako pri Huffmanovom kódovaní (ale nie o vel’a).
Jednoduché je modifikovat’ aritmetické kódovanie na adaptívnu verziu. Jednoducho za-
čneme s rovnomerne distribuovanými pravdepodobnost’ami a každý načítaný znak zo
vstupu najskôr spracujeme (zúžime interval), a potom príslušne upravíme pravdepodob-
nosti (teda zväčšíme početnost’ tohto znaku). Samozrejme, aj Huffmanovo kódovanie je
možné upravit’ na adaptívne, avšak nie tak priamočiaro.

Adaptívne verzie aritmetického alebo Huffmanovho kódovania majú výhodu v tom,
že nie je potrebné prenášat’ frekvenčnú tabul’ku znakov a pri kódovaní nemusíme čítat’
vstup dvakrát (najskôr na zistenie frekvenčnej tabul’ky a potom na samotné kódovanie).

4.5 BWT

BWT (Burrows-Wheeler Transformation) v podstate nie je algoritmus na kompresiu dát.
Je to invertovatel’ná transformácia, ktorá ret’azec znakov transformuje na iný ret’azec
znakov. Výstupný ret’azec je potom vhodnejší na kompresiu ako pôvodný ret’azec. Me-
tóda kompresie dát využíva BWT ako úvodnú transformáciu, nasledovanú napríklad
MTF (pozri čast’ 4.5.3) a štatistickým kóderom nultého rádu tak, ako je to zobrazené na
obrázku. Prirodzene, možné sú aj d’alšie modifikácie.

BWT MTF
ARI

HUFv
st

u
p

v
ý
st

u
p

4.5.1 Kódovanie

Transformácia pracuje nad blokom dát (ret’azcom znakov) dĺžky n. Vytvoríme z ret’azca
n ret’azcov dĺžky n tak, že vstupný ret’azec rotujeme. Získané ret’azce utriedime. Výstu-
pom transformácie je ret’azec pozostávajúci z posledných znakov v ret’azcoch (teda ak

4.5. BWT 67

prejdeme v poradí utriedenia po ret’azcoch a vypíšeme ich posledné znaky) a z pozície
pôvodného vstupného ret’azca medzi utriedenými ret’azcami.

Hlavná myšlienka BWT spočíva v tom, že rovnaké kontexty (podret’azce vstupu) sú
zvyčajne uvádzané rovnakými znakmi (je to podobná úvaha ako pri znakoch za kontex-
tami). Rovnaké kontexty dáme k sebe triedením. Znaky, ktoré sú pred týmito kontextami
sú na konci ret’azcov. Teda na konci ret’azcov môžeme očakávat’ častý výskyt rovnakých
znakov vedl’a seba.

Príklad: Nech vstupným textom je ret’azec aababbcbababcb. Potom utriedenie jednot-
livých rotácií dopadne takto (i označuje pozíciu začínajúceho znaku v pôvodnom ret’azci):

i ret’azec
0 aababbcbababcb
1 ababbcbababcba
8 ababcbaababbcb
3 abbcbababcbaab
10 abcbaababbcbab
13 baababbcbababc
7 bababcbaababbc
2 babbcbababcbaa
9 babcbaababbcba
4 bbcbababcbaaba
11 bcbaababbcbaba
5 bcbababcbaabab
12 cbaababbcbabab
6 cbababcbaababb

Výstupom z BWT je v tomto prípade ret’azec babbbccaaaabbb a pozícia, na ktorej sa
nechádza pôvodný ret’azec, teda 0.

4.5.2 Dekódovanie

Pri dekódovaní máme k dispozícii ret’azec zložený z posledných znakov utriedených re-
t’azcov a index, kde treba hl’adat’ pôvodný ret’azec. Modelujme dekódovanie na tabul’ke,
akú sme použili v príklade kódovania. Teda poznáme posledný stĺpec znakov. Poznáme
aj prvý stĺpec, stačí znaky len utriedit’.

Pozrime sa na posledný znak v prvom riadku (inými slovami prvý znak v poslednom
stĺpci). Nech je to x. Vieme, že toto x je ten istý znak, ktorý sa ako prvé x vyskytne v
prvom stĺpci. Dôvod je ten, že za ním v ret’azci nasleduje lexikograficky najmenší ret’azec
(inak by nebol v prvom riadku) a najmenší ret’azec spomedzi ostatných začínajúcich x
musí nasledovat’ aj za znakom, ktorý je prvým výskytom x v prvom stĺpci (inak by to
nebol prvý výskyt). Túto pozíciu x v prvom stĺpci si označme ako obsadenú.

Zoberieme druhý znak v poslednom stĺpci, nech je to y. Opät’ hl’adáme v prvom stĺpci
prvý neobsadený výskyt znaku y. Postupujeme takto d’alej, až kým neurčíme pre všetky

68 KAPITOLA 4. METÓDY KOMPRESIE ÚDAJOV

znaky z posledného stĺpca, ktorým znakom z prvého stĺpca zodpovedajú.

Teraz rekonštruujeme ret’azec v prvom riadku. Ked’že vieme, že posledný znak v
riadku je v ret’azci pred prvým znakom v riadku, dokážeme spätne prejst’ a odzadu
rekonštruovat’ požadovaný ret’azec. Potom ho stačí len zrotovat’, utriedit’ a vybrat’ vý-
stupný ret’azec zo správnej pozície.

Drobný problém v prezentovanej rekonštrukcii by mohol nastat’, ak sú prvý znak
a posledný v prvom riadku zhodné. Potom ale celý ret’azec obsahuje len tento znak a
môžeme sa podl’a toho zariadit’.

Poznamenajme, že v praktickej implementácii BWT sa dekódovanie dá robit’ na jeden
prechod v lineárnom čase O(n).

Príklad: Ilustrujme dekódovanie na výstupe príkladu kódovania, teda máme na vstupe
ret’azec babbbccaaaabbb a pozíciu 0. Rekonštruujeme prvý stĺpec a potom dekódovanie
prebieha naznačeným spôsobom podl’a šípiek (šípky označujú zodpovedajúcim si zna-
kom). Čísla pri znakoch hovoria o poradí znakov pri spätnej rekonštrukcii.

b

a

b

b

b

c

c

a

a

a

a

b

b

b

a

a

a

a

a

b

b

b

b

b

b

b

c

c

1

21

2 3

3 4

4 5

5 6

6 7

7 8

8 9

9 10

10 11

11 12

12 13

13 14

14

4.5.3 MTF

MTF (Move to front) je heuristika, ktorou sa snažíme pozičnú blízkost’ rovnakých zna-
kov pretransformovat’ do štatistickej významnosti znakov. MTF nekomprimuje text, ale
vytvára predpoklady na úspešnú aplikáciu štatistických kóderov nultého rádu tým, že
sa snaží znižovat’ entropiu.

MTF má pole, v ktorom sú usporiadané znaky. Po prečítaní znaku dá na výstup index
(pozíciu) tohto znaku v poli a zároveň znak presunie v poli na začiatok. Takto pokračuje,
až kým nevyčerpá celý vstup.

Príklad: Demonštrujme si MTF na príklade výstupu z BWT, teda na ret’azci aababbcbababcb.
Stĺpec „pole“ ukazuje poradie prvkov v poli po spracovaní príslušného znaku.

4.5. BWT 69

pole výstup
abc

b bac 1

a abc 1

b bac 1

b bac 0

b bac 0

c cba 2

c cba 0

pokr.
pole výstup

a acb 2

a acb 0

a acb 0

a acb 0

b bac 2

b bac 0

b bac 0

Hoci náš príklad nie je ideálnym na demonštráciu výhod MTF, porovnajme entropie pô-
vodného a nového ret’azca:

H

(
5

14
,
7

14
,
2

14

)
≈ 0, 4371

H

(
8

14
,
3

14
,
3

14

)
≈ 0, 4318

Teda MTF sa snaží posúvat’ aktuálne spracúvané znaky na začiatok pol’a a zabezpe-
čit’ častý výskyt nízkych indexov vo výstupe. Ked’ vo vstupe prejdeme na iný blok rovna-
kých znakov, až na prvý index opät’ dostávame na výstup nízke hodnoty. Výsledkom je
zníženie entropie a môže nasledovat’ úspešná aplikácia štatistického kódovania.

Dekódovanie MTF prebieha podobne ako kódovanie. Začneme s utriedeným pol’om
znakov. Prečítame index zo vstupu. Príslušný znak z pol’a dáme na výstup. Zároveň
presunieme znak na začiatok pol’a a načítame d’alší index zo vstupu. Toto opakujeme, až
kým neprečítame celý vstup.

4.5.4 Poznámky

Iná možnost’ pri spracovaní výstupu BWT (namiesto MTF, prípadne navyše k MTF) je
použit’ RLE. RLE (Run Length Encoding) je jednoduchý spôsob kódovania, ked’ namiesto
ret’azca rovnakých znakov dávame na výstup len jeden znak a dĺžku ret’azca.

Časovo najnáročnejšou operáciou v BWT je triedenie pri kódovaní. Dá sa napríklad
použit’ kombinácia radix-sortu (napr. na prvé dva znaky) s následným quicksortom (na
utriedenie vnútri skupín). Prirodzene, pri kódovaní nie je ani potrebné vytvárat’ d’alšie
ret’azce – stačí správne indexovat’ do pôvodného ret’azca.

Príkladom praktického použitia BWT je program Bzip2, ktorý je kombináciou BWT,
MTF a Huffmanovho kódovania.

70 KAPITOLA 4. METÓDY KOMPRESIE ÚDAJOV

Kapitola 5

Kódovanie zvuku a obrazu

V tejto kapitole budeme hovorit’ o efektívnych metódach kódovania obrazovej informácie
a zvuku (hudby).

71

72 KAPITOLA 5. KÓDOVANIE ZVUKU A OBRAZU

Kapitola 6

Kolmogorovská zložitost’ a
hranice kompresie údajov

Pozrieme sa, ako to vyzerá so stlačitel’nost’ou informácie vo všeobecnosti a ukážeme, že
väčšina údajov je nestlačitel’ná.

73

74KAPITOLA 6. KOLMOGOROVSKÁ ZLOŽITOSŤ A HRANICE KOMPRESIE ÚDAJOV

Čast’ II

Samoopravné kódy

75

Kapitola 7

Základné princípy
samoopravných kódov

Pri konštrukcii nerovnomerných kódov v predchádzajúcej kapitole sme predpokladali, že
prenosový kanál realizuje identickú transformáciu; t.j. že sa správa pri prenose nemení.
Tento optimistický predpoklad nebýva v reálnom živote naplnený. Preto sa budeme za-
oberat’ takým zápisom informácie, ktorý umožní kontrolovat’ zmeny, ku ktorým došlo v
priebehu prenosu informácie.1 Najprv zavedieme model prenosového kanála, ktorý nám
umožní matematicky popísat’ výskyt chýb pri prenose správ. Potom ukážeme, ako možno
pridaním doplnkovej informácie (zväčšením redundancie správ) zvýšit’ jej odolnost’ voči
chybám. Na geometrickom modeli kódu ukážeme, aké podmienky musí spĺňat’ kód, ktorý
má odhal’ovat’/opravovat’ istý počet chýb a uvedieme základný vzt’ah medzi redundan-
ciou a opravnou schopnost’ou kódu. Potom budeme konštruovat’ jednoduché rovnomerné
(blokové) kódy, ktoré budú schopné odhal’ovat’ chyby (t.j. príjemca bude schopný zistit’,
či v prijatom slove vznikli určité chyby alebo nie) alebo ich dokonca opravovat’ (príjemca
bude pri dekódovaní schopný rekonštruovat’ pôvodne odvysielané kódové slovo) a popí-
šeme efektívne metódy kódovania a dekódovanie informácie pomocou takýchto kódov.

7.1 Binárny symetrický kanál bez pamäte

Na rozdiel od nerovnomerných kódov nebudeme skúmat’ zdroj informácie, ale prenosový
kanál. Na popis prenosového kanála, na ktorý pôsobí šum spôsobujúci chyby v prenáša-
ných správach zavedieme model, ktorý budeme nazývat’ q-nárnym symetrickým preno-
sovým kanálom bez pamäte. Špeciálnym a najčastejšie používaným q-nárnym symetric-
kým prenosovým kanálom bez pamäte je binárny (q = 2) symetrický kanál bez pamäte,
ktorý je zobrazený na obrázku 7.1. Upresníme teraz predstavu o tom, aké chyby môžu
vznikat’ pri prenose správ q-nárnym symetrickým prenosovým kanálom bez pamäte.
Budeme predpokladat’, že pri prenose správ

1Pripomíname, že z hl’adiska kódovania nie je principiálny rozdiel, či ide o prenos informácie v čase alebo
v priestore. Aj preto sa v tejto kapitole budeme zaoberat’ kódovaním informácie pre prenášanie v priestore,
ale riešenia, ktoré navrhneme budú rovnako dobré aj pre ochranu informácie prenášanú v čase.

77

78 KAPITOLA 7. ZÁKLADNÉ PRINCÍPY SAMOOPRAVNÝCH KÓDOV

d d-

d d-

HHHHHHHHHHHHHHj��������������*

p

p

1-p

1-p

1 1

0 0

Obr. 7.1: Binárny symetrický kanál bez pamäte

• dochádza k zámene jedného prenášaného symbolu kódovej abecedy na iný symbol
kódovej abecedy,

• žiaden symbol nie je odolnejší voči chybe ako iný symbol; symbol sa prenáša správ-
ne s pravdepodobnost’ou p a transformuje sa pri prenose na ktorýkol’vek iný symbol
s pravdepodobnost’ou 1−p

q−1 ;

• výsledok prenosu jedného symbolu neovplyvňuje to, či bude nasledujúci symbol
prenesený správne alebo nie.

Kódy opravujúce chyby predstavujú rozličné algebraické štruktúry ako vektorové
priestory, okruhy polynómov, ideály a podobne. Aby mohli kódové slová bez problémov
tvorit’ takéto algebraické štruktúry, budeme predpokladat’, že kódová abeceda je pod-
množinou prirodzených čísel; Σ = {0, . . . , q − 1}. Aj ked’ teoretické konštrukcie budeme
robit’ pre všeobecný prípad, v d’alšom výklade sa budeme najčastejšie zaoberat’ binár-
nymi kódmi, ktoré sa v súčasnosti najčastejšie používajú.

V čom je podstata kódov odhal’ujúcich, resp. opravujúcich chyby? Ak by sme na kó-
dovanie správ používali úplné kódy, pri prenose správ by sa jedno kódové slovo mohlo
v dôsledku šumu nahradit’ iným kódovým slovom a príjemca by mal problém určit’, či
prijal odvysielané kódové slovo, alebo došlo k chybe pri prenose. Preto nie je možné pri
komunikácii prostredníctvom kanála so šumom používat’ úplné kódy. Podstata kódov
odhal’ujúcich a opravujúcich chyby je v tom, že množina kódových slov tvorí len pod-
množinu všetkých možných slov a tak, ked’ dôjde počas prenosu správy ku chybe, prijaté
slovo s vel’kou pravdepodobnost’ou nie je kódovým slovom. Zdôrazňujeme slová s vel’-
kou pravdepodobnost’ou, pretože nie je vylúčené, že počas prenosu vznikne chyba, ktorá
prenášané kódové slovo transformuje na iné kódové slovo. Pri konštrukcii samooprav-
ných kódov sa snažíme minimalizovat’ pravdepodobnost’ takejto možnosti. Vychádzame
z toho, že pre (binárny) prenosový kanál platí p >> 1 − p 2; t.j. je pravdepodobnejšie, že
pri prenose kódového slova vznikne menej chýb. Ilustrujeme to na príklade.

Príklad. Uvažujme binárny symetrický kanál bez pamäte s parametrami p = 0.99, 1 −
p = 0.01, binárny blokový kód dĺžky 15 opravujúci tri chyby. V nasledujúcej tabul’ke sú
uvedené pravdepodobnosti chýb

2V podstate však stačí, aby p ̸= 1 − p.

7.2. GEOMETRICKÁ INTERPRETÁCIA SAMOOPRAVNÉHO KÓDU 79

počet chýb pravdepodobnost’
0 (0.99)15 0.860058354641289

1 15 · (0.99)14 · (0.01) 0.130311871915347

2
(
15
2

)
· (0.99)13 · (0.01)2 0.009213970741489

3
(
15
3

)
· (0.99)12 · (0.01)3 0.000403305116631

> 3
∑
j>3

(
15
j

)
· (0.99)15−j · (0.01)j 0.000012497585244

Pravdepodobnost’ toho, že v prenášanom slove vzniknú 4 a viac chýb je síce nenulová
0.000012497585244 ale podstatne menšia ako to, že v slove budú najviac 3 chyby, ktoré sa
pri dekódovaní dajú opravit’.

7.2 Geometrická interpretácia samoopravného kódu

Skôr ako pristúpime k popisu a konštrukcii samoopravných kódov, využijeme geome-
trickú interpretáciu kódu a vysvetlíme princíp kódov opravujúcich a odhal’ujúcich chyby.
Predpokladáme, že máme zostrojit’ kód dĺžky n opravujúci t chýb. (Na začiatku kvôli
zjednodušeniu popíšeme konštrukciu binárneho kódu opravujúceho 1 chybu a potom
konštrukciu zovšeobecníme.) Zavedieme najprv dva dôležité pojmy, ktoré budeme pri
koštrukcii samoopravného kódu potrebovat’.

Definícia 7.2.1. Nech sú u,v dva vektory vektorového priestoru V; nech u = (u1, . . . un);
v = (v1, . . . vn). Hammingovou váhou vektora u nazveme prirodzené číslo wt(u), defino-
vané nasledovne:

wt(u) =
n∑
i

(ui ̸= 0)

Hammingovou vzdialenost’ou vektorov u,v nazveme prirodzené číslo d(u,v);

d(u,v) = wt(u − v) =
n∑
j=1

(aj ̸= bj).

Hammingova váha vektora je počet jeho nenulových zložiek a Hammingova vzdia-
lenost’ dvoch vektorov udáva, v kol’kých zložkách sa tieto dva vektory odlišujú. Vrát’me
sa teraz ku konštrukcii binárneho samoopravného kódu opravujúceho 1 chybu3. Zostro-
jíme ho tak, že budeme postupne vyberat’ kódové slová. Ako prvé kódové slovo v0 mô-
žeme vybrat’ l’ubovol’ný binárny vektor z množiny {0, 1}n. Bez ujmy na všeobecnosti mô-
žeme vybrat’ v0 = (0, . . . , 0); t.j. nulový vektor. Vyberieme teraz druhé kódové slovo v1.
Predpokladajme, že d(v0,v1) = 1 a položme v1 = (1, 0, . . . , 0). Potom však existuje chyba
(ktorú budeme reprezentovat’ binárnym vektorom) váhy 1 ktorá transformuje kódové
slovo v1 na kódové slovo v0:

3Vzhl’adom na typ chýb, ktorými sa budeme zaoberat’, budeme pojmy „t chýb“ a „chyba váhy t“ používat’
ako synonymá.

80 KAPITOLA 7. ZÁKLADNÉ PRINCÍPY SAMOOPRAVNÝCH KÓDOV

v0 000 . . . 0

v1 100 . . . 0

e1 100 . . . 0

v1 ⊕ e1 000 . . . 0 = v0

To znamená, že ak kód opravuje jednu chybu, tak potom d(v0,v1) > 1. Nech d(v0,v1) = 2
a vyberme ako druhé kódové slovo napríklad v1 = (1, 1, 0, . . . , 0). Žiadna chyba váhy
1 nemôže transformovat’ slovo v1 na slovo v0. Čo sa však stane, ak sme prijali slovo
0100 . . . 0? Existujú dve rovnako pravdepodobné možnosti (a množstvo menej pravdepo-
dobných iných):

v0 000 . . . 0

v1 110 . . . 0

e1 100 . . . 0

e2 010 . . . 0

v0 ⊕ e1 = 100 . . . 0 = v1 ⊕ e2.

Ak sme teda prijali slovo 0100 . . . 0, je zrejmé, že to nie je kódové slovo a odhalili sme
chybu, ale nevieme ju opravit’ a určit’ odvysielané kódové slovo. Ak stačí, aby kód odha-
l’oval chyby váhy 1, vektor v1 = (110 . . . 0) môže byt’ kódovým slovom. Ak požadujeme,
aby kód opravoval chyby váhy t ≥ 1, vektor v1 = (110 . . . 0) a žiaden vektor váhy 2 ne-
môže byt’ kódovým slovom. Nech teda d(v0,v1) = 3 a v1 = (1, 1, 1, 0, . . . , 0). Chybou váhy
1 sa slovo v1 transformuje v najhoršom prípade na slovo váhy 2, ale chybou váhy 1 sa zo
slova v0 stane vektor váhy 1:

v0 0000 . . . 0

v1 1110 . . . 0

e1 1000 . . . 0

e2 0100 . . . 0

e3 0010 . . . 0

v0 ⊕ e1 = 1000 . . . 0 wt(v0 ⊕ e1) = 1
v0 ⊕ e2 = 0100 . . . 0 wt(v0 ⊕ e1) = 1
v0 ⊕ e3 = 0010 . . . 0 wt(v0 ⊕ e1) = 1
v1 ⊕ e1 = 0110 . . . 0 wt(v1 ⊕ e1) = 2
v1 ⊕ e2 = 1010 . . . 0 wt(v1 ⊕ e2) = 2
v1 ⊕ e3 = 1100 . . . 0 wt(v1 ⊕ e3) = 2.

Ak sme prijali slovo 1000 . . . 0, dekódujeme ho na základe toho, že

P(1000 . . . 0|v0) > P(1000 . . . 0|v1),

ako v0. (Ak použijeme hodnoty n = 15, p = 0.99 z predchádzajúceho príkladu, tak

P(1000 . . . 0|v0) = 0.00868745812768978 > 0.0000877521022998968 = P(1000 . . . 0|v1),

a teda pravdepodobnost’ toho, že bolo odvysielané slovo v0 je podstatne väčšia.) Zovšeo-
becníme teraz našu konštrukciu na prípad, ked’ má kód opravovat’ chyby váhy t > 1.
Ukázalo sa, že rozhodujúcim parametrom, od ktorého závisí opravná schopnost’ kódu je

7.2. GEOMETRICKÁ INTERPRETÁCIA SAMOOPRAVNÉHO KÓDU 81

minimálna vzdialenost’ kódových slov. Zavedieme pre tento pojem špeciálne označenie:
minimálnou vzdialenost’ou kódu C nazveme prirodzené číslo

d∗ = min
u,v∈C

d(u,v).

Ak by bola minimálna vzdialenost’ kódu C d∗ ≤ t tak potom chybou váhy menšej
alebo rovnej t by sa mohlo transformovat’ jedno kódové slovo na iné kódové slovo. Ak
d∗ = t+ 1, kód C dokáže odhal’ovat’ chyby váhy t. Na to, aby kód C opravoval chyby váhy
t musí byt’ d∗ ≥ 2t+ 1.

Popri samoopravnej schopnosti (danej minimálnou vzdialenost’ou kódu) je zaujíma-
vou kvantitatívnou charakteristikou kódu, ktorá vyjadruje jeho efektívnost’, počet kódo-
vých slov. Extrémnym prípadom je kód dĺžky 2n + 1 ktorý má dve kódové slová (napr.
0 . . . 0 a 1 . . . 1). Tento kód má síce maximálnu opravnú schopnost’ (je schopný opravovat’
n chýb), ale na prenos jedného bitu správy potrebuje 2n+ 1 kódových symbolov. Pri kon-
štrukcii samoopravných kódov sa snažíme o kompromis medzi opravnou schopnost’ou
a mohutnost’ou kódu. Kol’ko kódových slov môže vlastne obsahovat’ samoopravný kód
dĺžky n opravujúci t chýb? Pozrieme sa najprv na binárny prípad. Množina binárnych
vektorov (neskôr ukážeme, že sa jedná o vektorový priestor), z ktorej vyberáme kódové
slová, má 2n prvkov. Označíme symbolom Br(v) množinu vektorov;

Br(v) = {u|u ∈ {0, 1}n& d(u,v) ≤ r},

ktorú budeme nazývat’ gul’ou s polomerom r a stredom v. Je zrejmé, že pre 0 ≤ r ≤ t

platí
∀u,v ∈ C; (u ̸= v)⇒ Br(u)

∩
Br(v) = ∅

a mohutnost’ Br(v) je

|Br(v)| =
r∑
j=0

(
n

j

)
.

Ak by kód C mal maximálny počet kódových slov (pre dĺžku kódu n a opravnú schopnost’
t), potom by množina vektorov {0, 1}n musela byt’ pokrytá disjunktnými gul’ami polomeru
t so stredami v kódových slovách. Mohutnost’ kódu C by v takomto prípade bola

|C| = 2n∑t
j=0

(
n
j

) .
Je zrejmé, že je len málo takých hodnôt n, t pre ktoré by bol podiel 2n

|S(v,r)| celočíselný.
Ak by sme sa však aj uspokojili s kódom menšej mohutnosti, zostáva otázkou, ako ho
zostrojit’. Úplné preberanie neprichádza do úvahy, nakol’ko jeho zložitost’ je odvodená od
čísla (

2n

⌊ 2n∑t
j=0 (

n
j)
⌋

)
,

ktoré je už pre relatívne malé hodnoty n, t vel’ké (pozri nasledujúcu tabul’ku). V tejto ka-
pitole sa budeme zaoberat’ metódami systematického vytvárania samoopravných kódov.

82 KAPITOLA 7. ZÁKLADNÉ PRINCÍPY SAMOOPRAVNÝCH KÓDOV

n t mohutnost’ počet
kódu možných kódov

7 1 16 93343021201262177400

7 2 4 10668000

7 3 2 8128

15 5 6 1718574240691455027134464

15 4 16 84137321239748052363790529051765801371652428817494731388928

15 3 56 0.9837970552× 10178
15 2 270 0.7332302377× 10678
15 1 2048 0.1094851418× 103326

Poznámka. Aká bude mohutnost’ samoopravných kódov nad inou ako binárnou abe-
cedou? Mohutnost’ gule s polomerom t vo vektorovom priestore {0, . . . , q− 1} je

t∑
j=0

(
n

j

)
(q− 1)j.

Ak q > 2 nestačí len vybrat’ j zložiek vektora (
(
n
j

)
), ktoré treba zmenit’, ale je potrebné aj

určit’ ktorým z ostatných q−1 symbolov sa má pôvodný symbol nahradit’. Pre mohutnost’
q-kódu V dĺžky n, opravujúceho t chýb platí

|V | ≤ qn∑t
j=0

(
n
j

)
(q− 1)j

.

Vrát’me sa ešte ku geometrickému modelu samoopravných kódov, aby sme zaviedli
niekol’ko dôležitých pojmov, ktoré majú názornú geometrickú interpretáciu. Predstavme
si, že je daný q-nárny samoopravný kód V dĺžky n opravujúci t chýb. Kódu V zodpo-
vedá množina bodov-vektorov vektorového priestoru GF(q)n. Vytvoríme gule polomeru
1 so stredmi v kódových slovách („kódové“ gule). Postupne budeme zväčšovat’ polomery
„kódových“ gulí: r = 2, 3, . . . , t− 1. Prvá dôležitá hodnota polomeru je t. To je maximálna
hodnota, pri ktorej sú sféry so stredmi v kódových slovách ešte disjunktné. Hodnota t
sa nazýva aj hranicou sférického uloženia kódu (sphere packing bound). Pri dekódovaní
sa všetky vektory z gule Bt(u) zobrazia na vektor u. Vo väčšine kódov gule polomeru t
so stredmi v kódových slovách nepokryjú všetky vektory vektorového priestoru GF(q)n.
To znamená, že budú existovat’ slová-vektory, ktoré nepatria do žiadnej gule a pri dekó-
dovaní sa nezobrazia na žiadne kódové slovo. Ak by sme d’alej zväčšovali polomer gulí
(r = t+1, . . . , T), po konečnom počte krokov dospejeme do štádia, ked’ každý vektor vekto-
rového priestoru GF(q)n patrí aspoň do jednej gule BT (u). Minimálna hodnota polomeru,
pri ktorej sa dosahuje, že

GF(q)n =
∪

u∈V
BT (u)

sa nazýva hranicou pokrytia kódu V . Teraz môžeme formalizovat’ aj intuitívne predstavy
o efektívnosti kódovania.

7.3. JEDNODUCHÉ KÓDY ODHAL’UJÚCE/OPRAVUJÚCE CHYBY 83

Definícia 7.2.2. Kód V sa nazýva dokonalý, ak sa hranica sférického uloženia rovná
hranici pokrytia kódu V .

Ináč povedané, kód V je dokonalý, ak každý vektor vektorového priestoru GF(q)n sa
nachádza vo vzdialenosti nanajvýš t od práve jedného kódového slova. Ako sa ukáže
neskôr, dokonalých kódov je málo.

Skôr ako sa budeme zaoberat’ systematicky metódami konštrukcie rozličných samo-
opravných kódov, uvedieme niekol’ko jednoduchších príkladov kódov opravujúcich alebo
odhal’ujúcich chyby a ilustrujeme na nich už zavedené, resp. zavedieme niektoré nové
pojmy. Odteraz sa až do odvolania budeme opät’ zaoberat’ binárnymi kódmi.

7.3 Jednoduché kódy odhal’ujúce/opravujúce chyby

7.3.1 Testovanie parity

Nech je daná množina binárnych vektorov dĺžky n. Pridáme ku každému vektoru (n+1)-
vý bit tak aby počet jednotkových bitov vo vektore (dĺžky n + 1) bol párny. Kódové slová
budú potom vyzerat’ nasledovne (doplnený bit je oddelený medzerou):

01000011100001010 0

01011010010101011 1

. . .

Doplnený bit sa nazýva paritným bitom. Ak v kódovom slove vznikne pri prenose chyba
nepárnej váhy (1, 3, 5, . . .) počet jednotkových bitov v prijatom slove bude nepárny a prí-
jemca bude vediet’, že nastala chyba (aj ked’ nedokáže určit’, kde.) Ak by však pri prenose
nastala chyba párnej váhy (2, 4, . . .), v prijatom slove bude párny počet jednotkových
bitov a príjemca bude prijaté slovo považovat’ za kódové slovo. Ak sa vrátime k pred-
chádzajúcemu príkladu (p = 0.99, n = 15), tak pravdepodobnost’ neodhalenej chyby je
0.009226196681.

7.3.2 Obdĺžnikové kódy.

Uvažujme opät’ binárne zapísanú informáciu, ktorú chceme upravit’ do formy umožňu-
júcej opravit’ aspoň jednu chybu (chybu váhy 1). Zapíšeme informáciu do obdĺžnikovej
matice typu m× n a pridáme k nej jeden kontrolný riadok a jeden kontrolný stĺpec.

0110101010 1

1110000111 0

1010101010 1

0010000111 0

Na i-tom mieste kontrolného stĺpca sa bude nachádzat’ paritný bit i-teho riadku (ai,10 =
ai,0⊕· · ·⊕ai,9), na j-tom mieste kontrolného riadku sa bude nachádzat’ paritný bit j-teho

84 KAPITOLA 7. ZÁKLADNÉ PRINCÍPY SAMOOPRAVNÝCH KÓDOV

stĺpca (a3,j = a0,j ⊕ · · · ⊕ a2,j). Predpokladajme, že nastala chyba váhy 1 napríklad na
mieste (0, 4). Príjemca vyčísli kontrolné sumy pre riadky aj stĺpce prijatej matice a zistí
pozíciu chyby:

0110001010 1 1

1110000111 0 0

1010101010 1 0

0010000111 0 0

0000100000 0

Všimneme si, že ak vznikne chyba váhy 1 v kontrolnom riadku alebo v kontrolnom stĺpci,
pozícia chyby sa určí úplne rovnako, ako v prípade chyby v „informačnom“ symbole:

0110101010 1 0

1110000111 0 0

1010101010 1 0

0010000110 0 1

0000000001 0

Obdĺžnikový kód je schopný opravovat’ chyby váhy 1. Čo sa stane, ak v kódovom slove
vznikne chyba väčšj váhy? Predpokladajme, že vznikla chyba váhy 2:

0110101010 1 1

1110000111 0 0

1010101010 1 0

0010000110 0 1

1000000001 0

Vyčíslením kontrolných súm príjemca zistí, že vznikla chyba väčšej váhy. Ak by aj uhá-
dol, že ide o chybu váhy 2, nevie či chyby vznikli v symboloch a0,0, a3,9 alebo a3,0, a0,9.
Ak by chyba váhy 2 vznikla v tom istom riadku (stĺpci), na kontrolnej sume príslušného
riadku (stĺpca) by sa to neprejavilo, a príjemca by vedel akurát povedat’, že v niektorých
stĺcoch (riadkoch) vznikla chyba väčšej váhy.

1110101011 1 0

1110000111 0 0

1010101010 1 0

0010000111 0 0

1000000001 0

Samoopravné kódy sa zakladajú na tom, že

• nie každé možné slovo je kódovým slovom;

• kódové slová sú „dost’ d’aleko od seba“.

Minimálna vzdialenost’ kódu vyjadrená pomocou Hammingovej vzdialenosti kódových
slov nám umožnila precizovat’ význam slov „dost’ d’aleko od seba“. Pomocou obdĺžniko-
vých kódov ilustrujeme pojem „redundancie (nadbytočnosti)“, ktorý upresňuje prvú po-
žiadavku kladenú na samoopravné kódy. V kódovom slove obdĺžnikového kódu rozli-
šujeme dva druhy symbolov: informačné (pomocou nich sa zapisuje informácia, ktorú

7.4. HAMMINGOV KÓD 85

má kódové slovo preniest’) a kontrolné symboly (zaznamenávajúce štruktúru kódového
slova.) Dĺžka kódového slova sa zvykne označovat’ symbolom n, počet informačných sym-
bolov k a počet kontrolných symbolov je potom n− k. Samoopravný kód, ktorý má dĺžku
n a počet informačných symbolov k sa označuje aj ako (n, k)-kód. Počet kontrolných sym-
bolov sa nazýva absolútnou redundanciou kódu. Kódy s rozličnými dĺžkami môžu mat’
rozličné počty kontrolných symbolov. Aby ich bolo možné porovnávat’ z hl’adiska redun-
dancie, zavádzame pojem relatívnej redundancie kódu, definovanej ako podiel počtu
kontrolných symbolov k celkovej dĺžke kódového slova; n−k

n
= 1 − k

n
. Určíme absolútnu

a relatívnu nadbytočnost’ obdĺžnikových kódov. Predpokladajme kvôli jednoduchosti, že
kódové slovo obdĺžnikového kódu má tvar štvorcovej matice4 typu m ×m. Táto matica
obsahuje štvorcovú podmaticu (m−1)×(m−1) informačných symbolov a 2m−1 kontrol-
ných symbolov. Relatívna nadbytočnost’ štvorcového kódu je 2m−1

m2 = 2
m

− 1
m2 . Pre vel’ké

m je relatívna nadbytočnost’ štvorcového kódu zanedbatel’ná.

V prípade obdĺžnikového kódu bolo možné rozlíšit’ informačné a kontrolné symboly.
Existujú samoopravné kódy, pre ktoré takéto rozdelenie symbolov kódového slova ne-
existuje. Aby bolo možné vyjadrit’ redundanciu aj pre tieto kódy, zovšeobecníme pojem
redundancie nasledujúcim spôsobom.

Definícia 7.3.1. Nech V je kód dĺžky n nad abecedou {0, . . . , q − 1}. (Relatívnou) redun-
danciou kódu V je

R(V) =
logq |V |
n

.

Redundancia kódu úzko súvisí s d’alším dôležitým pojmom, pomocou ktorého sa vy-
jadruje efektívnost’ kódu; s prenosovou rýchlost’ou. Prenosová rýchlost’ kódu je číslo z
intervalu < 0, 1 >, ktoré je definované ako

počet prenesených informačných symbolov
celkový počet prenesených symbolov

= 1− R.

V d’alšom sa budeme zaoberat’ kódmi, ktoré majú vysoké prenosové rýchlosti a záro-
veň dobré opravné schopnosti. Začneme zaujímavým kódom opravujúcim jednu chybu.

7.4 Hammingov kód

Hammingove kódy sú binárne (n, k)-kódy, s parametrami n = 2m − 1, m ≥ 3, m ∈
N, k = 2m − 1 −m opravujúce chyby váhy 1. Princíp vytvárania Hammingových kódov,
kódovanie a dekódovanie ilustrujeme na Hammingovom (15, 11)-kóde.

Predpokladajme, že sme už vytvorili kódové slovo v = (v1, . . . , v15). Z jednotlivých
komponentov kódového slova vytvoríme 4 kontrolné sumy s0, s1, s2, s3, pomocou ktorých
budeme schopní rozlišovat’ 16 rozličných udalostí: pri prenose nenastala žiadna chyba,
nastala chyba váhy 1 v 1., . . . , 15. komponente kódového slova. Zavedieme dva potrebné
pojmy a potom vytvoríme kontrolné sumy. Symbolom σ(i, n) budeme označovat’ n-bitový

4v takomto prípade hovoríme o štvorcovom kóde

86 KAPITOLA 7. ZÁKLADNÉ PRINCÍPY SAMOOPRAVNÝCH KÓDOV

vektor, ktorý je binárnou reprezentáciou čísla i. Nech sú u = (u1, . . . , un),v = (v1, . . . , vn)
dva binárne vektory, symbolom u&v budeme označovat’ vektor u&v = (u1v1, . . . , unvn).
Pre j = 0, 1, 2, 3 platí:

sj =
⊕

σ(i,4)&σ(2j,4)=σ(2j,4)

vi,

t.j.

s0 = v1 ⊕ v3 ⊕ v5 ⊕ v7 ⊕ v9 ⊕ v11 ⊕ v13 ⊕ v15
s1 = v2 ⊕ v3 ⊕ v6 ⊕ v7 ⊕ v10 ⊕ v11 ⊕ v14 ⊕ v15
s2 = v4 ⊕ v5 ⊕ v6 ⊕ v7 ⊕ v12 ⊕ v13 ⊕ v14 ⊕ v15
s3 = v8 ⊕ v9 ⊕ v10 ⊕ v11 ⊕ v12 ⊕ v13 ⊕ v14 ⊕ v15.

Všimnime si, že komponent vi sa vyskytuje práve vo wt(σ(i, 4)) kontrolných sumách.
Ked’že existujú práve štyri binárne vektory dĺžky 4 s Hammingovou váhou 1 reprezentu-
júce čísla 1, 2, 4, 8, každý z komponentov v1, v2, v4, v8 vystupuje v jednej kontrolnej sume.
To znamená, že ak zvolíme hodnoty komponentov v3, v5, v6, v7, v9, v10, v11, v12, v13, v14, v15
kódového slova l’ubovol’ne, vhodnou vol’bou komponentov v1, v2, v4, v8 dosiahneme, že
kontrolné sumy budú pre kódové slovo nulové: s0 = s1 = s2 = s3 = 0. Stačí položit’:

v1 = v3 ⊕ v5 ⊕ v7 ⊕ v9 ⊕ v11 ⊕ v13 ⊕ v15
v2 = v3 ⊕ v6 ⊕ v7 ⊕ v10 ⊕ v11 ⊕ v14 ⊕ v15
v4 = v5 ⊕ v6 ⊕ v7 ⊕ v12 ⊕ v13 ⊕ v14 ⊕ v15
v8 = v9 ⊕ v10 ⊕ v11 ⊕ v12 ⊕ v13 ⊕ v14 ⊕ v15.

Kódovanie správ pomocou Hammingovho (15, 11)-kódu prebieha tak, že sa správa
najprv rozdelí na bloky dĺžky 11 a tie sa doplnia 4 kontrolnými symbolmi na kódové slovo:

1 1 1 1 0 0 0 0 1 1 1 informačný vektor
1 1 1 1 0 0 0 0 1 1 1 informačný vektor

1 1 0 1 kontrolný vektor
1 1 1 0 1 1 1 1 0 0 0 0 1 1 1 kódové slovo

Dekódovanie Hammingovho (15, 11)-kódu. Predpokladajme, že pri prenose kódo-
vého slova vznikla chyba váhy 1 v i-tom komponente kódového slova; t.j. bolo prijaté
slovo

v0, . . . , vi−1, vi ⊕ 1, vi+1, . . . , v15.
Chyba spôsobí, že všetky kontrolné sumy, ktoré obsahujú komponent vi nadobudnú hod-
notu 1. To sú však práve tie sumy sj, pre ktoré σ(i, 4)&σ(2j, 4) = σ(2j, 4); t.j. binárny
vektor s = (s3, s2, s1, s0) predstavuje číslo σ(i, 4). Vektor hodnôt jednotlivých kontrolných
súm sa nazýva syndróm chyby. V našom prípade syndróm chyby predstavuje pozíciu,
na ktorej chyba váhy 1 v kódovom slove vznikla, resp. nulová hodnota syndrómu chyby
znamená, že bolo prijaté kódové slovo.

Príklad. Predpokladajme, že chyba vznikla v 13. komponente kódového slova. Potom
bolo prijaté slovo:

v1, . . . , v12, v13 ⊕ 1, v14, v15.

7.4. HAMMINGOV KÓD 87

Kontrolné sumy nadobúdajú hodnoty:

s0 = v1 ⊕ v3 ⊕ v5 ⊕ v7 ⊕ v9 ⊕ v11 ⊕ (v13 ⊕ 1)⊕ v15 = 1

s1 = v2 ⊕ v3 ⊕ v6 ⊕ v7 ⊕ v10 ⊕ v11 ⊕ v14 ⊕ v15 = 0

s2 = v4 ⊕ v5 ⊕ v6 ⊕ v7 ⊕ v12 ⊕ (v13 ⊕ 1)⊕ v14 ⊕ v15 = 1

s3 = v8 ⊕ v9 ⊕ v10 ⊕ v11 ⊕ v12 ⊕ (v13 ⊕ 1)⊕ v14 ⊕ v15 = 1

Hammingov kód nie je schopný opravovat’ chyby váhy ≥ 2. Pri dekódovaní sa takéto
chyby bud’ vôbec neodhalia alebo sa interpretujú ako chyby váhy 1:

1 1 1 0 1 1 1 1 0 0 0 0 1 1 1 kódové slovo
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 chybový vektor
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 prijaté slovo
0 0 0 0 syndróm chyby
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 predpokladaná chyba
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 dekódované slovo
1 1 1 0 1 1 1 1 0 0 0 0 1 1 1 kódové slovo
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 chybový vektor
0 0 1 0 1 1 1 1 0 0 0 0 1 1 1 prijaté slovo
0 0 1 1 syndróm chyby
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 predpokladaná chyba
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 dekódované slovo

Porovnáme ešte redundanciu Hammingových RH a obdĺžnikových kódov RO.

n a× b (n− k)H (n− k)O RH RO

7(∗) 2× 4 3 5 0.4285 0.6250

15 3× 5 4 7 0.2666 0.4666

31(∗) 4× 8 5 10 0.1612 0.3125

63 7× 9 6 15 0.0952 0.2380

127(∗) 8× 16 7 23 0.0551 0.1796

255 15× 17 8 31 0.0313 0.1215

511 16× 32 9 72 0.0176 0.1409

1023 31× 33 10 63 0.0097 0.0615

V prípadoch označených hviezdičkou neexistujú obdĺžnikové kódy potrebnej dĺžky (n je
prvočíslo), a preto sme Hammingove kódy dĺžky n porovnávali s obdĺžnikovými kódmi
dĺžky n + 1. Aj pre n = 511 má obdĺžnikový kód dĺžky 512 rozmerov 16 × 32 menšiu
redundanciu (0.0917) ako obdĺžnikový kód dĺžky 511 rozmerov 7× 73.

Poznámka. Pre Hammingove kódy platí (n = 2m − 1, m ≥ 3)[(
n

0

)
+

(
n

1

)]
| 2n,

a teda Hammingove kódy sú dokonalé binárne kódy.

88 KAPITOLA 7. ZÁKLADNÉ PRINCÍPY SAMOOPRAVNÝCH KÓDOV

Kapitola 8

Lineárne kódy

Predchádzajúce konštrukcie samoopravných kódov (obdĺžnikové kódy, Hammingove kó-
dy) nám umožnili zostrojit’ samoopravné kódy opravujúce chyby váhy 1. Ak je však
pravdepodobnost’ chyby pri prenose znaku dostatočne vysoká, budeme na zaistenie spo-
l’ahlivého prenosu správ takýmto prenosovým kanálom potrebovat’ samoopravné kódy s
vyššou opravnou schopnost’ou. Vychádzajúc z geometrickej predstavy o samoopravných
kódoch by sme teoreticky mohli skonštruovat’ potrebný samoopravný kód, ale je otázne
jednak to, či by sa táto konštrukcia dala spravit’ v rozumnom čase a či by pre takto zo-
strojený kód existovali efektívne metódy kódovania a dekódovania. Schodnejšou cestou
pre konštrukciu samoopravného kódu je nájst’ vhodnú algebraickú štruktúru a jej prvky
použit’ ako kódové slová. Asi prvé čo nám napadne, je zobrat’ konečnú grupu a ako kód
použit’ nejakú jej vhodnú podgrupu. Kódy, ktorých slová s nejakou binárnou operáciou
tvoria grupu, skutočne existujú a nazývajú sa grupové kódy.

Príklad. Nech je (G,+) konečná grupa s (napríklad) aditívnou operáciou. Množina (Gn,⊕)
je grupa, ktorej prvkami sú usporiadané n-tice prvkov grupy G a operácia ⊕ je odvodená
z aditívnej operácie grupy G nasledovne: nech u = (u1, . . . , un a v = (v1, . . . , vn) sú prvky
Gn, potom u ⊕ v = (u1 + v1 . . . un + vn). Je zrejmé, že operácia ⊕ je asociatívna, množina
Gn je uzavretá vzhl’adom na operáciu ⊕, neutrálnym prvkom v Gn vzhl’adom na opráciu
⊕ je vektor (0, . . . , 0), kde 0 je neutrálny prvok grupy G a napokon,k l’ubovol’nému prvku
(u1, . . . , un) ∈ Gn existuje opačný prvok (−u1, . . . ,−un) ∈ Gn, kde −ui je opačný prvok k
prvku ui, i = 1, . . . , n.1

Aby sme dosiahli požadovanú efektívnost’ kódovania a dekódovania, budeme na kon-
štrukciu samoopravných kódov používat’ o niečo zložitejšie štruktúry, ako sú grupy. Pred-
pokladáme, že je dané konečné pole GF(q), kde q je mocnina nejakého prvočísla p. (Naj-
častejšie budeme pracovat’ s q = p = 2.) Množina GF(q)n n-tíc (vektorov) nad pol’om
GF(q) s aditívnou operáciou " + " (sčítanie po zložkách) a multiplikatívnou operáciou
" · " (násobenie zložiek vektora prvkom pol’a GF(q)) tvorí vektorový priestor.2 Lineárnym
kódom nad abecedou GF(q) je l’ubovol’ný vektorový (lineárny) podpriestor vektorového

1Tam, kde to nepovedie k nedorozumeniu, budeme v dalšom aditívnu operáciu nad vektormi označovat’
symbolom "+"

2Podrobnejšie informácie o vektorových priestoroch, konečných poliach a d’alších algebraických štruktú-
rach nájde čitatel’ v ??.

89

90 KAPITOLA 8. LINEÁRNE KÓDY

priestoru GF(q)n. Ak je dimenzia vektorového podpriestoru C rovná k, lineárny kód C sa
nazýva lineárnym (n, k)-kódom.

Príklad. Nech q = 2, n = 8. Pozrieme sa najprv na dva extrémne prípady. Ak k = 8,
kód C má 28 = 256 kódových slov. Tento kód pozostáva zo všetkých možných binárnych
vektorov/slov dĺžky 8, má prenosovú rýchlost’ 1 ale jeho opravná schopnost’ je nulová.
Druhým extrémnym prípadom je lineárny (8, 0) kód, ktorý má dimenziu 0, jediné kó-
dové slovo (napríklad v0 = (00000000)), ale je na prenos informácie prakticky bezcenný,
lebo nedokáže preniest’ jediný bit informácie3. Prakticky použitel’ný kód s najmenším
počtom kódových slov je lineárny (8, 1)-kód, s mohutnost’ou 2. Tento kód obsahuje dve
kódové slová: nulové slovo v0 = (00000000) a nenulové slovo v1. Slovo v1 môžeme vybrat’
l’ubovol’ne, pretože v1 + v1 = (00000000) a tak konštruovat’ kódy s rozličnými opravnými
schopnost’ami. Položíme v1 = (11111111) a dostávame kód s maximálnou vzdialenost’ou
d = 8 rozpoznávajúci chyby váhy ≤ 7 a opravujúci chyby váhy ≤ 3. Prenosová rýchlost’
tohto kódu je 1/8 a redundancia 7/8.

8.1 Základné vlastnosti lineárnych kódov

Lineárny kód je teda l’ubovol’ná neprázdna množina vektorov (n-tíc) C taká, že pre l’ubo-
vol’né v1, . . . ,vm ∈ C, a1, . . . , am ∈ GF(q) patrí aj lineárna kombinácia a1v1 + · · ·+amvm
do množiny C. To znamená, že pre l’ubovol’né kódové slovo u a prvok a ∈ GF(q) patrí do
kódu C aj slovo au a pre l’ubovol’né dve kódové slová u,v je potom aj u + v a u − v kódové
slovo kódu C. Ked’že pre l’ubovol’né u ∈ C platí u − u = 0, nulové slovo patrí vždy do
kódu C. Vzhl’adom na tieto skutočnosti sa štúdium viacerých vlastností lineárnych kódov
redukuje na skúmanie vzt’ahov medzi nulovým kódovým slovom a ostatnými kódovým
slovami lineárneho kódu C.

Veta 8.1.1. Nech je C lineárny kód. Potom pre minimálnu vzdialenost’ d∗ kódu C platí
nasledujúci vzt’ah

d∗ = min
u,v∈C

d(u,v) = min
u ̸=0∈C

wt(u).

Dôkaz. Nech sú u,v dve slová, ktorých vzdialenost’ sa rovná minimálnej vzdialenosti
kódu C: d(u,v) = d∗. Slovo u − v je tiež kódové slovo a pre jeho váhu platí wt(u − v) =
d(u,v) = d∗. Na druhej strane, ak by v kódeC existovalo nenulové kódové slovo x s váhou
wt(x) < d∗, potom by aj d(x,0) < d∗ čo je v spore s definíciou minimálnej vzdialenosti.

Ak si dáme do súvislosti geometrickú interpretáciu samoopravných kódov s tvrdením
vety, tak vidíme, že na zostrojenie samoopravného kódu opravujúceho chyby váhy t stačí
zostrojit’ lineárny kód s minimálnou váhou w∗ ≥ 2t+ 1.

Budeme pokračovat’ v skúmaní lineárnych kódov. Pripomenieme, že skalárny súčin
dvoch vektorov u = (u1, . . . , un) a v = (v1, . . . , vn) je definovaný ako

⟨u,v⟩ = u1v1 + · · ·+ unvn.
3Aj takto kód sa však dá použit’ v špeciálnych prípadoch, napríklad pri testovaní prenosového kanála.

8.1. ZÁKLADNÉ VLASTNOSTI LINEÁRNYCH KÓDOV 91

Nech C je lineárny podpriestor vektorového priestoru GF(q)n. Dá sa l’ahko overit’, že
množina C⊥, definovaná nasledovne

C⊥ = {u ∈ GF(q)n; ∀ v ∈ C ⟨u,v⟩ = 0}

tvorí lineárny podpriestor vektorového priestoru GF(q)n. (Podpriestor C⊥ sa nazýva or-
togonálny doplnok podpriestoru C.) Kedže C⊥ je lineárny podpriestor vektorového pries-
toru GF(q)n, predstavuje podl’a definície lineárneho kódu taktiež lineárny kód, ktorý
budeme nazývat’ duálnym kódom kódu C.

Poznámka. To, že je C⊥ ortogonálnym doplnkom lineárneho podpriestoru C nezna-
mená, že sú tieto podpriestory disjunktné. Zrejme 0 ∈ C⊥∩C a existujú dokonca line-
árne kódy, pre ktoré platí C⊥ = C (samoduálne lineárne kódy.)

Vd’aka tomu, že lineárny kód C predstavuje lineárny podpriestor vektorového prie-
storu GF(q)n, možno ho popísat’ efektívnejšie, ako tie blokové kódy, ktoré nemali žiadnu
rozumnú štruktúru a bolo ich potrebné popísat’ vymenovaním všetkých kódových slov.
Lineárny podpriestor je jednoznačne zadaný pomocou množiny vektorov, ktorá ho gene-
ruje. Spomedzi všetkých množín vektorov, generujúcich daný lineárny podpriestor (line-
árny kód) C vyberieme množinu s minimálnym počtom prvkov4, bázu a vektory-prvky
bázy zapíšeme ako riadky matice G. Matica G sa nazýva generujúcou maticou lineárneho
kódu C, pretože l’ubovol’ný vektor-kódové slovo kódu C možno zapísat’ pomocou lineár-
nej kombinácie vektorov-riadkov matice G. Ak je C lineárnym podpriestorom dimenzie
k vektorového priestoru dimenzie n, tak jeho generujúca matica G má k (lineárne ne-
závislých) riadkov a n stĺpcov. Pripomíname, že samotný kód C má potom qk kódových
slov.

Generujúca matica umožňuje efektívne vytváranie kódových slov. L’ubovol’ný vektor
i ∈ GF(q)k; i = (i1, . . . , ik) môžeme chápat’ ako k-ticu informačných symbolov (infor-
mačný vektor) a transformovat’ ho na kódové slovo nasledujúcim spôsobom

u = iG,

kdeG je generujúca matica lineárneho (n, k) kódu. Pripomíname, že existuje viacero spô-
sobov výberu generujúcej matice G lineárneho kódu a tak sa informačnému vektoru i v
závislosti od výberu G vo všeobecnosti priradia rozličné slová. V časti ?? sa budeme pod-
robnejšie zaoberat’ vplyvom výberu generujúcej matice na vlastnosti lineárneho kódu.

Ako vyzerá kódovanie správy5 pomocou lineárneho (n, k) kódu? Postupnost’ znakov
správy sa rozdelí na bloky dĺžky k a tie sa postupne vynásobia generujúcou maticou G a
tak sa transformujú na postupnost’ kódových slov, obr. 8.1

Ilustrujeme kódovanie správy pomocou lineárneho kódu na nasledujúcom jednodu-
chom príklade.

Príklad 8.1. Hammingove kódy opravujúce chyby váhy 1 sú lineárne kódy. Kvôli zjed-
nodušeniu výpočtov zoberieme kratší Hammingov kód, ako sme skonštruovali v časti 7.4;

4pripomíname, že takýchto množín je viac a tak vyberieme l’ubovol’nú z nich.
5predpokladáme, že správa je zapísaná ako postupnost’ znakov - prvkov GF(q)

92 KAPITOLA 8. LINEÁRNE KÓDY

i1 . . . ik ik+1 . . . i2k i2k+1 . . . i3k i3k+1 . . .↓ ↓ ↓ ↓
iG iG iG . . .↓ ↓ ↓ ↓

u1 . . . un un+1 . . . u2n u2n+1 . . . u3n u3n+1 . . .

Obr. 8.1: Kódovanie správy pomocou lineárneho kódu s generujúcou maticou G

Hammingov (7, 4) kód C. Kód C je binárny kód dĺžky 7 s minimálnou vzdialenost’ou d∗ =
3; kódové slovo má 4 informačné a 3 kontrolné symboly. Nech sú i1, i2, i3, i4 informačné
symboly kódového slova u = (u1, . . . , u7). Položíme u3 = i1, u5 = i2, u6 = i3, u7 = i4. Hod-
noty kontrolných symbolov u1, u2, u4 vypočítame pomocou troch kontrolných súm (znak
”+” označuje súčet modulo 2):

u1 + u3 + u5 + u7 = 0 u1 = i1 + i2 + i4

u2 + u3 + u6 + u7 = 0 u2 = i1 + i3 + i4

u4 + u5 + u6 + u7 = 0 u4 = i2 + i3 + i4

Nulový vektor spĺňa vyššie uvedené vzt’ahy a teda nulové slovo je kódovým slovom Ham-
mingovho (7, 4) kódu. Nech sú u,v dve kódové slová Hammingovho (7, 4) kódu; t.j.

u = (u3 + u5 + u7, u3 + u6 + u7, u3, u5 + u6 + u7, u5, u6, u7),

v = (v3 + v5 + v7, v3 + v6 + v7, v3, v5 + v6 + v7, v5, v6, v7).

Potom súčet vektorov

u + v = (u3 + u5 + u7 + v3 + v5 + v7, u3 + u6 + u7 + v3 + v6 + v7, u3 + v3,

u5 + u6 + u7 + v5 + v6 + v7, u5 + v5, u6 + v6, u7 + v7) =

(u3 + v3 + u5 + v5 + u7 + v7, u3 + v3 + u6 + v6 + u7 + v7, u3 + v3,

u5 + v5 + u6 + v6 + u7 + v7, u5 + v5, u6 + v6, u7 + v7)

tiež spĺňa kontrolné sumy a teda patrí do kódu C. Tým sme dokázali, že l’ubovol’ná li-
neárna kombinácia vektorov-slov kódu C je kódovým slovom (pripomíname, že GF(2)7 s
operáciami modulárneho sčítania po zložkách je vektorový priestor a koeficienty v lineár-
nej kombinácii sú prvky pol’a GF(2), t.j. prvky množiny {0, 1}, a teda aj to, že Hammingov
kód je lineárny kód. (Hammingov (7,4) kód je uvedený v nasledujúcej tabul’ke).

0000000 1110000 1001100 0101010

1101001 0111100 1011010 0011001

1100110 0100101 1000011 0010110

1010101 0110011 0001111 1111111

Generujúca matica Hammingovho (7,4)-kódu vyzerá nasledovne:

8.1. ZÁKLADNÉ VLASTNOSTI LINEÁRNYCH KÓDOV 93

G =


1110000

1001100

0101010

1101001


Vytvoríme kódové slovo pre informačný vektor i = (1111):

(1111)


1110000

1001100

0101010

1101001

 = (1111111).

Pri dekódovaní správ zakódovaných pomocou lineárneho kódu Cmožno výhodne pou-
žit’ generujúcu maticu duálneho kódu C⊥, ktorú označíme symbolom H. Ak je C lineárny
(n, k)-kód, C⊥ je lineárny (n,n−k)-kód a generujúca matica kódu C⊥ má n−k riadkov a n
stĺpcov, pričom riadky matice H tvoria vektory bázy lineárneho podpriestoru C⊥. Ked’že
C je ortogonálny doplnok lineárneho podpriestoru C⊥, každý vektor (kódové slovo) u ∈ C
je ortogonálny na l’ubovol’ný vektor v ∈ C⊥ a špeciálne, na l’ubovol’ný vektor-riadok ma-
tice H. To znamená, že u je kódové slovo práve vtedy, ak

uH⊤ = 0

kde 0 je v tomto prípade nulový vektor dĺžky n − k Ked’že matica H umožňuje overit’, či
je nejaké slovo kódovým slovom kódu C, nazýva sa kontrolnou maticou kódu C. Pripo-
míname ešte, že generujúca matica G kódu C je kontrolnou maticou jeho duálneho kódu
C⊥.

Príklad 8.2. Kontrolná matica Hammingovho (7, 4) kódu z príkladu 8.1 má tvar

H =

 10101010110011

0001111


Na základe kontrolnej matice je možné určit’ minimálnu vzdialenost’ príslušného li-

neárneho kódu.

Veta 8.1.2. Lineárny kód C nad pol’om GF(q) obsahuje nenulové kódové slovo váhy men-
šej alebo rovnej w práve vtedy, ak jeho kontrolná matica H obsahuje w lineárne závislých
stĺpcov.

Dôkaz Označme vektory-stĺpce kontrolnej matice H symbolmi h1, . . . ,hn;

H = [h1
⊤, . . . ,hn

⊤].

Nech v množine vektorov {h1, . . . ,hn} existuje w lineárne závislých vektorov hi1 , . . . ,hiw ;
t.j. existujú také konštanty ai1 , . . . , aiw ∈ GF(q), že

ai1hi1 + . . . , aiwhiw = 0

94 KAPITOLA 8. LINEÁRNE KÓDY

Medzi konštantami ai1 , . . . , aiw ∈ GF(q) je aspoň jedna nenulová, a teda vektor a ktorého
komponenty na pozíciách i1, . . . , iw nadobúdajú v poradí hodnoty ai1 , . . . , aiw a ostatné
komponenty sú nulové, predstavuje nenulové kódové slovo váhy ≤ w, nakol’ko

aH⊤ = ai1hi1 + . . . , aiwhiw = 0.

Na druhej strane, nech v kóde C existuje kódové slovo a váhy w s nenulovými kom-
ponentami ai1 , . . . , aiw . Ked’že a je kódové slovo, platí preň

aH⊤ = ai1hi1 + . . . , aiwhiw = 0;

t.j. vektory-stĺpce kontrolnej matice hi1 , . . . ,hiw sú lineárne závislé.

Dôsledok. Lineárny kódC s kontrolnou maticouHmá minimálnu vzdialenost’w práve
vtedy, ak je v matici H l’ubovol’ných w − 1 stĺpcov lineárne nezávislých a v H existuje w
lineárne závislých stĺpcov.

To znamená, že ak chceme zostrojit’ lineárny (n, k)-kód C opravujúci chyby váhy as-
poň t, musíme skonštruovat’ maticu H typu (n−k)×n, v ktorej je l’ubovol’ných 2t stĺpcov
lineárne nezávislých a použit’ ju ako kontrolnú maticu kódu C. Ked’že medzi vektormi
dĺžky n − k môže byt’ nanajvýš n − k lineárne nezávislých vektorov, v matici H môžu
byt’ nezávislé nanajvýš všetky (n− k)-tice stĺpcov, ale l’ubovol’ná (n− k+ 1)-tica stĺpcov
matice H je lineárne závislá. Tým sme dokázali nasledujúcu vetu.

Veta 8.1.3 (Singeltonova hranica). Pre minimálnu vzdialenost’ (minimálnu váhu) line-
árneho (n, k)-kódu platí nasledujúca nerovnost’

d∗ ≤ 1+ n− k.

L’ubovol’ný lineárny kód s minimálnou vzdialenost’ou, ktorá spĺňa rovnost’

d∗ = 1+ n− k

sa nazýva lineárnym kódom s maximálnou vzdialenost’ou. Zo Singeltonovej hranice vy-
plýva, že na to, aby kód bol schopný opravovat’ chyby váhy t musí v kódovom slove byt’
aspoň 2t kontrolných symbolov; t.j aspoň dva kontrolné symboly na chybu v jednom kom-
ponente kódového slova. Väčšina samoopravných kódov má viac kontrolných symbolov.

Aj ked’ je l’ubovol’ná n× k matica, ktorej riadky tvoria bázu lineárneho podpriestoru
dimenzie k generujúcou maticou lineárneho (n, k)-kódu, kvôli zjednodušeniu výpočtov

upravíme generujúcu maticu na nasledujúci štandardný tvar; G = [Ik
...P], kde Ik je jed-

notková matica rádu k a P je matica typu k × (n − k). (Výhodou štandardného tvaru
generujúcej matice je o.i. aj to že sa z nej dá jednoducho odvodit’ kontrolná matica.) Uká-
žeme, že pre l’ubovol’ný lineárny (n, k)-kód generovaný generujúcou maticou G existuje
lineárny (n, k)-kód generovaný generujúcou maticou v štandardnom tvare s rovnakými
parametrami.

Nech je G generujúca matica lineárneho (n, k)-kódu C. Riadky matice G tvoria bázu
lineárneho podpriestoru C. Z lineárnej algebry je známe (pozri napr. [4]), že ak vektory
bázy transformujeme pomocou nasledujúcich transformácií

8.1. ZÁKLADNÉ VLASTNOSTI LINEÁRNYCH KÓDOV 95

• vektor nahradíme jeho nenulovým násobkom;

• k vektoru bázy pripočítame l’ubovol’nú lineárnu kombináciu ostatných vektorov,

výsledná množina vektorov bude tvorit’ bázu pôvodného lineárneho priestoru. To zna-
mená, že l’ubovol’ná matica G′, ktorú dostaneme z generujúcej matice G pomocou vyš-
šie uvedených elementárnych operácií nad riadkami, je generujúcou maticou pôvodného
kódu C.

Ďalšou transformáciou generujúcej matice je výmena jej stĺpcov. Nech je G = [g1g2
. . .gn] generujúca matica kódu C. Predpokladajme kvôli jednoduchosti, že v generujú-
cej matici G vymeníme prvý a druhý stĺpec, t.j. dostávame maticu G′′ = [g2g1 . . .gn].
Je zrejmé, že riadky matice G′′ sú lineárne nezávislé, a teda matica G′′ je generujúcou
maticou lineárneho (n, k)-kódu, ktorý označíme symbolom C′′. Nech je i = (i1 . . . ik) l’u-
bovol’ný informačný vektor. Pre vektor i zostrojíme kódové slová tak v kóde C ako aj v
C′′:

iG = (⟨i,g1⟩, ⟨i,g2⟩, . . . , ⟨i,gn⟩) = u = (u1, u2, . . . , un);

iG′′ = (⟨i,g2⟩, ⟨i,g1⟩, . . . , ⟨i,gn⟩) = u′′ = (u2, u1, . . . , un).

Z vyššie uvedeného vyplýva, že výmena i-teho a j-teho stĺpca generujúcej matice kódu
C zodpovedá s výmenou i-teho a j-teho komponentu v kódových slovách kódu C. Nech
je π l’ubovol’ná permutácia množiny 1 . . . n a nech sú u,v l’ubovol’né kódové slová kódu
C, resp. u′′,v′′ im prislúchajúce kódové slová kódu C′′, ktorý dostaneme permutáciou
komponentov kódových slov permutáciou π potom

d(u,v) =
∑
1≤i≤n

(ui ̸= vi) =
∑

π(i),1≤i≤n

(uπ(i) ̸= vπ(i)) = d(u′′,v′′)

To znamená, že kódy, ktoré dostaneme z kódu C pomocou elementárnych operácií nad
riadkami a permutácii stĺpcov generujúcej matice G majú rovnaké parametre (počet kó-
dových slov, minimálnu vzdialenost’) ako kód C a preto ich budeme nazývat’ ekvivalent-
nými kódmi. Pomocou vyššie popísaných transformácií nad riadkami a stĺpcami generu-
júcej matice možno l’ubovol’nú generujúcu maticu transformovat’ na tvar

G = [Ik
...P],

kde Ik je jednotková matica rádu k a P je matica typu k × (n − k). Generujúca matica

v tvare G = [Ik
...P] sa nazýva generujúcou maticou v systematickom tvare. Ak G = [Ik

...P],
príslušná kontrolná matica má tvar

H = [−P⊤
...In−k],

nakol’ko GH⊤ = −P+ P = 0. Ak má kód generujúcu maticu v systematickom tvare, tak v
jeho kódových slovách nasledujú kontrolné symboly až za informačnými. Takýto kód sa
niekedy nazýva systematickým kódom [2, 1].

96 KAPITOLA 8. LINEÁRNE KÓDY

Poznámka. Jacobus van Lint [15] definuje systematický kód odlišne: kód C je syste-
matický v k komponentoch, ak |C| = qk a pre l’ubovol’ný výber hodnôt v daných k kompo-
nentoch existuje práve jedno kódové slovo. Ked’že lineárny systematický (n, k)-kód podl’a
našej definície je systematickým kódom aj podl’a van Linta (ale nie naopak), budeme sa
pridržiavat’ zavedenej definície systematického kódu.

Veta 8.1.4. Ku každému lineárnemu kódu existuje ekvivalentný systematický lineárny
kód.

Dôkaz. Nech je C l’ubovol’ný lineárny (n, k)-kód s generujúcou maticou G. Potom ge-
nerujúcu maticu G možno transformovat’ na maticu G′′ v systematickom tvare, ktorá je
generujúcou maticou kódu ekvivalentnému kódu C. Ked’že G′′ je systematickom tvare,
kód ktorý generuje je systematický.

Poznámka. Z predchádzajúcej vety vyplýva, že ak to bude potrebné, môžeme bez ujmy
na všeobecnosti predpokladat’, že lineárny kód je systematický.

8.2 Dekódovanie lineárnych kódov

Nech je daný lineárny kód C a nech u ∈ C je odvysielané kódové slovo. Predpokladajme,
že pri prenose slova u vznikla chyba e v jej dôsledku bolo prijaté slovo w = u + e. Ako
tabul’ku dekódovania budeme na dekódovanie lineárnych kódov budeme používat’ tzv.
maticu štandardného rozkladu, ktorú vytvoríme tak, že faktorizujeme aditívnu grupu
(GF(q)n,+) podl’a C a za reprezentantov jednotlivých tried rozkladu vyberieme vektory
minimálnej váhy, ktoré sa v daných triedach rozkladu nachádzajú. Rozklad potom zapí-
šeme v podobe matice, kde v prvom stĺpci sú uvedení reprezentanti tried rozkladu a v
prvom riadku kódové slová kódu C:

v0 v1 v2 . . . vqk−1
e1 v1 + e1 v2 + e1 . . . vqk−1 + e1
e2 v1 + e2 v2 + e2 . . . vqk−1 + e2
...

...
...

...
...

eqn−k−1 v1 + eqn−k−1 v2 + eqn−k−1 . . . vqk−1 + eqn−k−1

Dekódovanie pomocou tabul’ky dekódovania vyzerá nasledovne: nájdeme v tabul’ke
prijaté slovo w. Ak sa w nachádza v stĺpci j dekódujeme ho ako kódové slovo vj; t.j. ako
kódové slovo, ktoré sa nachádza v prvom riadku a j-tom stĺpci tabul’ky dekódovania. Je
zrejmé, že dekódovanie pomocou tabul’ky dekódovania naráža na niekol’ko problémov.
Prvým je možnost’ nesprávneho dekódovania prijatého slova. Ak pri prenose kódového
slova u vznikne chyba v + e, kde v je kódové slovo, tak sa prijaté slovo w = u + (v + e)
dekóduje nesprávne na kódové slovo u + v. Kritériá správneho dekódovania lineárneho6

kódu pomocou tabul’ky dekódovania uvádza nasledujúca veta.
6tvrdenie vety platí pre blokový kód nad GF(q)

8.2. DEKÓDOVANIE LINEÁRNYCH KÓDOV 97

Veta 8.2.1. Ak sa matica štandardného rozkladu používa ako matica dekódovania lineár-
neho kódu, tak sa prijatý wektor w dekóduje na odvysielaný vektor (kódové slovo) u práve
vtedy, ak chyba w − u, ktorá vznikla pri prenose je reprezentantom niektorej triedy roz-
kladu.

Dôkaz. Nech je ei = w − u reprezentantom niektorej triedy rozkladu. Potom prijatý
vektor w patrí do triedy [ei] a v tabul’ke dekódovania sa nachádza v stĺpci určenom vek-
torom u = w − ei, a teda bude dekódovaný správne.
Nech na druhej strane ei = w − u nie je reprezentantom niektorej triedy rozkladu; t.j.
prijaté slovo w patrí do triedy [ej], i ̸= j. Potom sa však w nachádza v stĺpci zodpoveda-
júcom kódovému slovu w − ej, a teda sa dekóduje nesprávne.

Z vety 8.2.1 vyplýva, že nie je možné vylúčit’ možnost’ nesprávneho dekódovania li-
neárneho kódu. Predpokladajme, že prenosový kanál je q-nárny symetrický kanál7 a
potom vhodnou vol’bou reprezentantov tried rozkladu môžeme minimalizovat’ pravde-
podobnost’ nesprávneho dekódovania. Využijeme nasledujúci dôsledok predchádzajúcej
vety.

Dôsledok vety 8.2.1 (Lineárny) kód opravuje chyby váhy ≤ t práve vtedy, ak sú re-
prezentantami tried rozkladu všetky vektory váhy t a menšej.

Kód, definujúci rozklad, v ktorom sú reprezentantmi tried rozkladu všetky vektory
váhy t a menšej, sa nazýva dokonalým kódom. Ak sa dekódovanie prijatého slova robí
na základe maximálnej pravdepodobnosti (t.j. prijaté slovo sa dekóduje na kódové slovo,
ktoré bolo s najvyššou pravdepodobnost’ou odvysielané), tak pravdepodobnost’ nespráv-
neho dekódovania dokonalého kódu je minimálna. Problém je v tom, že dokonalý line-
árny (n, k)-kód nad GF(q) opravujúci chyby váhy ≤ t, musí spĺňat’ nasledujúcu pod-
mienku:

t∑
j=0

(
n

j

)
(q− 1)j = qn−k

a kódov, ktorých parametre túto podmienku spĺňajú takmer niet (ako sme už spomínali,
jedinými známymi dokonalými kódmi sú Hammingove kódy a Golayov kód). Preto sa
podmienka o reprezentantoch tried rozkladu mierne oslabuje a zavádza sa pojem kvá-
zidokonalého kódu ako kódu definujúceho rozklad, v ktorom sú reprezentantmi tried
rozkladu všetky vektory váhy t a menšej a niekol’ko vektorov váhy t + 1. Ilustrujeme
zavedené pojmy na nasledujúcom príklade.

Príklad 8.3. [2] Lineárny (5,2)-kód C s generujúcou maticou

G =

[
10111

01101

]
a kontrolnou maticou

H =

 1110010010

11001


7Pripomíname, že pri prenose slova q-nárnym symetrickým kanálom je pravdepodobnost’ toho, že

vznikne chyba menšej váhy väčšia, ako pravdepodobnost’ toho, že vznikne chyba väčšej váhy.

98 KAPITOLA 8. LINEÁRNE KÓDY

má minimálnu vzdialenost’ 3 a umožňuje opravovat’ chyby váhy 1. Matica štandardného
rozdelenia kódu C vyzerat’ nasledovne:

00000 10111 01101 11010

00001 10110 01100 11011

00010 10101 01111 11000

00100 10011 01001 11110

01000 11111 00101 10010

10000 00111 11101 01010

00011 10100 01110 11001

00110 10001 01011 11100

Kód C je kvázidokonalý kód, pretože okrem nulového vektora a piatich vektorov váhy
1 sú reprezentantami tried rozkladu aj dva vektory váhy 2. Kód opravuje všetky chyby
váhy 1 a dve z desiatich možných chýb váhy 2. Pravdepodobnost’ nesprávneho dekódova-
nia kódového slova preneseného binárnym symetrickým kanálom (s pravdepodobnost’ou
správneho prenosu znaku p = 0.99) je 0.0007860898.

Matica štandardného rozkladu môže byt’ pre praktické používanie príliš vel’ká. Vy-
užijeme teraz to, že dekódujeme lineárny kód a na jeho dekódovanie zostrojíme pod-
statne menšiu tabul’ku dekódovania. Predpokladajme znova, že bolo odvysielané kódové
slovo u a že pri prenose nastala chyba e, v dôsledku ktorej bolo prijaté slovo w = u + e.
Vynásobíme prijaté slovo kontrolnou maticou a dostávame

(u + e)H⊤ = uH⊤ + eH⊤ = 0 + eH⊤ = s,

kde s je vektor dĺžky n − k, nazvaný syndrómom chyby. Ako sme videli, syndróm chyby
nezávisí od odvysielaného kódového slova, ale len od samotného chybového vektora e.
Pozrime sa teraz na triedu rozkladu s reprezentantom ei:

[ei] = v0 + ei, . . . ,vqk−1 + ei.

Pre l’ubovol’ný vektor w = vj + ei z triedy [ei] platí

(w)H⊤ = vjH
⊤ + eiH

⊤ = 0 + eiH
⊤ = si;

t.j. všetky vektory z triedy [ei] majú rovnaký syndróm, si. Ak budeme používat’ metódu
dekódovania na základe maximálnej pravdepodobnosti (prijaté slovo w dekódovat’ na to
kódové slovo, ktoré bolo odvysielané s najväčšou pravdepodobnost’ou) tak:

1. vypočítame syndróm (w)H⊤ = si,

2. v tabul’ke dekódovania nájdeme reprezentanta triedy rozkladu, ktorej zodpovedá
syndróm si; ei,

3. vypočítame kódové slovo: w − ei.

Tabul’ka dekódovania, ktorú sme použili v druhom kroku má qn−k riadkov a dva stĺpce;
v prvom sú uvedené syndrómy chýb a v druhom im prislúchajúci reprezentanti tried
rozkladu.

8.3. REEDOVE-MULLEROVE KÓDY 99

Príklad 8.4. [2] Lineárny (5,2)-kód C z predchádzajúceho príkladu má tabul’ku syndró-
mov

predstavitel’ triedy syndróm
rozkladu
00000 000

00001 001

00010 010

00100 100

01000 101

10000 111

00011 011

00110 110

8.3 Reedove-Mullerove kódy

V tejto časti uvedieme podrobnejšie jeden špeciálny prípad lineárnych kódov, Reedove-
Mullerove kódy, ktoré majú jednoduchý popis a jednoduché dekódovanie. Reedove-Mullerove
kódy sú charakterizované dvoma základnými parametrami - rádom r a hodnotou m; 0 ≤
r < m určujúcou dĺžku kódového slova. Existujú Reedove-Mullerove kódy s rozličnými
dĺžkami kódových slov a rôznymi opravnými schopnost’mi. Reedov-Mullerov kód s para-
metrami r,m budeme označovat’ symbolom R(r,m). V nasledujúcej tabul’ke sú uvedené
základné parametre kódu R(r,m).

n = 2m dĺžka kódu (kódového slova)
k =
∑
0≤j≤r

(
m
j

)
počet informačných symbolov

n− k =
∑
r<j≤m

(
m
j

)
počet kontrolných symbolov

d = 2m−r minimálna váha/vzdialenost’ kódu

Tabul’ka 8.1: Základné parametre Reedových-Mullerových kódov

Ked’že Reedove-Mullerove kódy sú lineárne kódy, možno ich zadat’ pomocou generu-
júcej matice. Generujúca matica pre Reedov-Mullerov kód R(r,m) má zvláštny tvar:

G =


G0
G1
...
Gr


Aby sme mohli popísat’ konštrukciu generujúcej matice G kódu R(r,m), zavedieme

operáciu súčinu vektorov. Nech sú u = (a1, . . . , an) a v = (b1, . . . , bn) dva vektory vek-
torového priestoru V . Súčinom (pozor, nejedná sa ani o vektorový ani o skalárny súčin
vektorov) vektorov u, v nazveme vektor uv = (a1b1, . . . , anbn). (Ide o súčin vektorov po

100 KAPITOLA 8. LINEÁRNE KÓDY

zložkách; v binárnom prípade môžeme pomocou konvencie jazyka C zapísat’ súčin vekto-
rov u, v nasledovne uv = u&v.) Podmatice G0, . . . , Gr generujúcej matice G sú definované
nasledovne:

1. G0 je jednotkový vektor dĺžky 2m;

2. G1 je matica typu m × 2m, ktorej stĺpcami sú všetky možné binárne vektory dĺžky
m;

3. Gl, 1 ≤ l ≤ r je binárna matica typu
(
m
l

)
× 2m; riadkami podmatice Gl sú všetky

vektory, ktoré sú výsledkom súčinu l vektorov z matice G1.

Ilustrujeme konštrukcie generujúcej matice Reedových-Mullerových kódov na príklade
R(3, 4).

Príklad 8.5.

G =



G0 =
[
1111111111111111

]
G1 =


0000000011111111

0000111100001111

0011001100110011

0101010101010101



G2 =



0000000000001111

0000000000110011

0000000001010101

0000001100000011

0000010100000101

0001000100010001


G3 =


0000000000000011

0000000000000101

0000000000010001

0000000100000001




Generujúca matica kódu R(3, 4) je matica typu (15, 16). To znamená, že kód R(3, 4)

má 15 informačných a 1 kontrolný symbol. (Kód R(3, 4) je triviálny kód s testom parity,
schopným odhal’ovat’ chyby nepárnej váhy.) Neskôr zostrojíme aj netriviálny Reedov-
Mullerov kód a na ňom ilustrujeme metódy kódovania a dekódovanie informácie. Skon-
štruujeme R(2, 4), Reedov-Mullerov kód rádu 2 dĺžky 16 s generujúcou maticou typu
(11, 16) :

G =

 G0G1
G2


Z konštrukcie generujúcej matice Reedovho-Mullerovho kódu vyplýva, že R(r− 1,m)

je možné zostrojit’ z R(r,m) tak, že sa z generujúcej matice G kódu R(r,m) vynechá pod-
matica Gr. To ale znamená, že R(r − 1,m) ⊂ R(r,m), a teda minimálna vzdialenost’ d∗

kódu R(r,m) nemôže byt’ väčšia ako je minimálna vzdialenost’ kódu R(r − 1,m). Uká-
žeme, že

d∗ = 2m−r.

8.3. REEDOVE-MULLEROVE KÓDY 101

Každý riadok podmatice Gs generujúcej matice G kódu R(r,m) má váhu 2m−s, 0 ≤ s ≤
r < m. Ked’že aj riadky generujúcej matice predstavujú kódové slová kódu R(r,m),

d∗ ≤ 2m−r.

Ukážeme, že kód R(r,m) opravuje chyby váhy 2m−r−1 − 1 a teda jeho minimálna vzdia-
lenost’ nie je menšia ako 2m−r − 1. Vzhl’adom na to, že kód R(r,m) obsahuje len slová
párnej váhy, z vyššie uvedeného potom vyplýva, že d∗ = 2m−r. Ked’že Reedove-Mullerove
kódy sú lineárne kódy, mohli by sme pre kód R(r,m) zostrojit’ kontrolnú maticu a na
dekódovanie prijatých slov použit’ klasickú metódu dekódovania lineárnych kódov. Reed
navrhol zvláštnu metódu dekódovania Reedových-Mullerových kódov, ktorá umožňuje
rekonštruovat’ informačné symboly na základe prijatého slova priamo, bez toho, aby bolo
potrebné vypočítat’ syndróm chyby a určovat’ vektor chýb. Popíšeme teraz Reedovu me-
tódu dekódovania.

Nech je daný informačný vektor i = (i0, . . . , ik−1). Vzhl’adom na štruktúru generujúcej
matice kódu R(r,m), rozdelíme aj informačný vektor na bloky vel’kost’ou zodpovedajúce
podmaticiam Gj generujúcej matice: i = (i0, i1, . . . , ir). Pripomíname, že blok il bude
mat’ dĺžku

(
m
l

)
. Kódové slovo u zodpovedajúce informačnému vektoru i zostrojíme tak,

že vynásobíme informačný vektor generujúcou maticou kódu:

u = iG = (i0, i1, . . . , ir)×


G0
G1
...
Gr


Predpokladajme, že pri prenose kódového slova došlo ku chybám, v dôsledku ktorých
bolo prijaté slovo v = u + e, wt(e) < 2m−r−1. Podstata Reedovho algoritmu spočíva v
tom, že sa pomocou kontrolných súm, ktorých argumentami sú symboly prijatého slova
v určia informačné symboly bloku ir a potom sa vypočíta slovo

v(1) = v − irGr = (i0, . . . , ir−1)×


G0
G1
...

Gr−1

+ e,

ktoré je „pokazeným“ kódovým slovom kódu R(r− 1,m). Podobným spôsobom postupne
určíme hodnoty informačných symbolov z blokov ir−1, . . . , i1. Hodnotu posledného infor-
mačného bitu, i0 = i0 určíme zo slova

v(r) = v(r−1) − i1G1 = i0 ×G0 + e.

Ak i0 = 0, v(r) = e, v opačnom prípade v(r) = e. To znamená, že ak wt(v(r)) < 2m−1, i0 = 0;
v opačnom prípade i0 = 1. Otvorenou otázkou zostáva, ako zostavit’ kontrolné sumy
na výpočet informačných symbolov i1, . . . , ik−1. Riešenie tohto problému ilustrujeme na
avizovanom príklade dekódovania kódu R(2, 4).

Príklad 8.6. Nech je C Reedov-Mullerov kód rádu 2, dĺžky 16. Generujúca matica kódu
C, doplnená kvôli názornosti o riadok obsahujúci kódové slovo a stĺpec obsahujúci infor-
mačný vektor, je uvedená v tabul’ke 8.2.

102 KAPITOLA 8. LINEÁRNE KÓDY

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15

i0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

i1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

i2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

i3 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

i4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

i5 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

i6 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1

i7 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1

i8 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1

i9 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1

i10 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

Tabul’ka 8.2: Generujúca matica kódu R(2, 4)

Nech je
i = (1 0011 100001)

informačný vektor, potom kódové slovo prislúchajúce vektoru i je

u = (1000 1000 1000 0111).

Predpokladajme, že pri prenose vznikla chyba e váhy 1;

e = (0001 0000 0000 0000),

a bolo prijaté slovo
v = u + e = (1001 1000 1000 0111).

Pri konštrukcii kontrolných súm, budeme vychádzat’ zo vzt’ahu u = iG; t.j. zo vzt’ahov
medzi informačnými symbolmi a symbolmi kódového slova u:

u0 = i0

u1 = i0 + i4

u2 = i0 + i3

u3 = i0 + i3 + i4 + i10

. . .

u15 = i0 + i1 + · · ·+ i10

Vyjadríme neznáme hodnoty informačných symbolov i5, . . . , i10 pomocou známych symbo-
lov prijatého slova v:

i10 = v0 + v1 + v2 + v3

i10 = v4 + v5 + v6 + v7

i10 = v8 + v9 + v10 + v11

i10 = v12 + v13 + v14 + v15

8.3. REEDOVE-MULLEROVE KÓDY 103

Všimneme si, že každý symbol prijatého slova vystupuje práve v jednej kontrolnej sume.
To znamená, že ak pri prenose vznikla chyba váhy 1, chyba ovplyvní výsledok práve jed-
nej kontrolnej sumy. Hodnotu i10 určíme „hlasovaním“; v našom prípade sú hodnoty kon-
trolných súm 0, 1, 1, 1 a teda i10 = 1. Podobne zostavíme kontrolné sumy pre informačné
symboly i9, i8, i7, i6, i5 a určíme hodnoty uvedených informačných symbolov

i9 = v0 + v1 + v4 + v5 = 0

i9 = v2 + v3 + v6 + v7 = 1

i9 = v8 + v9 + v12 + v13 = 0

i9 = v10 + v11 + v14 + v15 = 0

i9 = 0

i8 = v0 + v2 + v4 + v6 = 0

i8 = v1 + v3 + v5 + v7 = 1

i8 = v8 + v10 + v12 + v14 = 0

i8 = v9 + v11 + v13 + v15 = 0

i8 = 0

i7 = v0 + v1 + v8 + v9 = 0

i7 = v2 + v3 + v10 + v11 = 1

i7 = v4 + v5 + v12 + v13 = 0

i7 = v6 + v7 + v14 + v15 = 0

i7 = 0

i6 = v0 + v2 + v8 + v10 = 0

i6 = v1 + v3 + v9 + v11 = 1

i6 = v4 + v6 + v10 + v12 = 0

i6 = v5 + v7 + v13 + v15 = 0

i6 = 0

i5 = v0 + v4 + v8 + v12 = 1

i5 = v1 + v5 + v9 + v13 = 1

i5 = v2 + v6 + v10 + v14 = 1

i5 = v3 + v7 + v11 + v15 = 0

i5 = 1

Blok i2 = (100001) informačných symbolov vynásobíme podmaticou G2 generujúcej ma-
tice G a výsledok odpočítame od prijatého slova v:

v = 1001 1000 1000 0111

i2G2 = 0001 0001 0001 1110

v(1) = v − i2G2 = 1000 1001 1001 1001

Pripomíname, že slovo v(1) je kódové slovo kódu R(1, 4) „pokazené“ chybou e. Zostavíme

104 KAPITOLA 8. LINEÁRNE KÓDY

kontrolné sumy na výpočet informačných symbolov i1, . . . , i4:

i4 = 1

v0 + v1 = 1 v2 + v3 = 0

v4 + v5 = 1 v6 + v7 = 1

v8 + v9 = 1 v10 + v11 = 1

v12 + v13 = 1 v14 + v15 = 1

i3 = 1

v0 + v2 = 1 v1 + v3 = 0

v4 + v6 = 1 v5 + v7 = 1

v8 + v10 = 1 v9 + v11 = 1

v12 + v14 = 1 v13 + v15 = 1

i2 = 0

v0 + v4 = 0 v1 + v5 = 0

v2 + v6 = 0 v3 + v7 = 1

v8 + v12 = 0 v9 + v13 = 0

v10 + v14 = 0 v11 + v15 = 0

i1 = 0

v0 + v8 = 0 v1 + v9 = 0

v2 + v10 = 0 v3 + v11 = 1

v4 + v12 = 0 v5 + v13 = 0

v6 + v14 = 0 v7 + v15 = 0

Vynásobíme blok i1 = (0011) informačných symbolov podmaticou G1 generujúcej matice
kódu C a výsledok odčítame od vektora v(1):

v(1) = 1000 1001 1001 1001

i1G1 = 0110 0110 0110 0110

v(2) = v(1) − i1G1 = 1110 1111 1111 1111

Napokon určíme i0. Váha wt(v(2)) = 15 > 8, a to znamená, že i0 = 1.

Kapitola 9

Cyklické kódy

Lineárne kódy, ktoré sme študovali v predchádzajúcej časti, boli príkladom samooprav-
ných kódov, ktoré sa dali efektívne konštruovat’ a pre ktoré existovali efektívne metódy
kódovania a (aspoň principiálne efektívne metódy) dekódovania. Pri štúdiu lineárnych
kódov sme zaviedli základné parametre samoopravných kódov (opravná schopnost’, mi-
nimálna vzdialenost’, prenosová rýchlost’ a i.) a určili vzt’ahy medzi nimi. Z praktického
hl’adiska je však najmä dekódovanie dlhších lineárnych kódov priestorovo náročné. Preto
je potrebné hl’adat’ iné triedy samoopravných kódov, ktoré by zachovávali dobré vlast-
nosti lineárnych kódov a vyznačovali sa aj výpočtovo efektívnymi metódami dekódova-
nia. Cyklické kódy, ktoré sú podtriedou lineárnych kódov, vd’aka silnejšej algebraickej
štruktúre čiastočne spĺňajú uvedené požiadavky.

Definícia 9.0.1. Lineárny kód C nazveme cyklickým kódom, ak pre l’ubovol’né kódové
slovo u = (u0, u1, . . . , un−1) ∈ C platí u′ = (un−1, u0, u1, . . . , un−2) ∈ C.

Názov cyklický kód vyplýva z toho, že operácia na slovách

(u0, u1, . . . , un−1)→ (un−1, u0, u1, . . . , un−2)

predstavuje cyklický posun kódového slova. Na cyklické kódy sa môžeme teda dívat’ ako
na lineárne podpriestory vektorového priestoru GF(q)n spĺňajúce dodatočnú podmienku
na uzavretost’ vzhl’adom na cyklickú posun kódových slov. Z hl’adiska konštrukcie, kódo-
vania ale najmä dekódovania bude efektívnejšia polynomická reprezentácia cyklických
kódov; t.j. reprezentácia kódových slov z C ⊂ GF(q)n pomocou polynómov z faktorového
okruhu GF(q)[x]/xn − 1.

Príklad. Uvažujme Hammingov (15, 11) kód, ktorý sme zaviedli v časti 7.4 s kontrolnou
maticou

H =


1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1


Permutáciou stĺpcov kontrolnej maticeH dostaneme kontrolnú maticuH′ kódu, ktorý

105

106 KAPITOLA 9. CYKLICKÉ KÓDY

je ekvivalentný pôvodnému Hammingovmu (15, 11) kódu:

H′ = H =


1 0 0 0 1 0 0 1 1 0 1 0 1 1 1

0 1 0 0 1 1 0 1 0 1 1 1 1 0 0

0 0 1 0 0 1 1 0 1 0 1 1 1 1 0

0 0 0 1 0 0 1 1 0 1 0 1 1 1 1

 .
Stĺpce kontrolnej matice H′ môžeme chápat’ dvojako: bud’ ako vektory dĺžky 4 nad pol’om
GF(2), alebo ako prvky pol’a GF(24). Nech je α primitívny prvok pol’a GF(24), potom stĺpce
kontrolnej matice H′ môžeme vyjadrit’ pomocou mocnín prvku α nasledovne:

H′ =
[
α0, α1, α2, α3, α4, α5, α6, α7, α8, α9, α10, α11, α12, α13, α14

]
.

Ako bude vyzerat’ dekódovanie? Nech u = (u0, u1, . . . , u14) ∈ C je kódové slovo. Potom

uH′⊤ = 0.

Posledný vzt’ah môžeme rozpísat’ nasledovne:

uH′⊤ = u0α
0 + u1α

1 + u2α
2 + u3α

3 + u4α
4 + u5α

5 + u6α
6 + u7α

7 + u+ 8α8 + u9α
9 +

+ u10α
10 + u11α

11 + u12α
12α13 + u14α

14 = 0.

Zavedieme teraz prirodzenú korešpondenciu medzi kódovými slovami Hammingovho
(15, 11) kódu a polynómami z okruhu polynómov GF(2)[x]/x15 − 1:

(u0, u1, . . . , u14)↔ u0 + u1x+ u2x
2 + · · ·+ u14x14,

resp. vo všeobecnom prípade vektor v = v0, . . . , vn−1 nad pol’om GF(q) budeme reprezen-
tovat’ polynómom v0 + v1x+ · · ·+ vn−1xn−1 z okruhu polynómov GF(q)[x]/xn − 1. Vrát’me
sa ku príkladu. Násobenie vektora v kontrolnou maticou H′ predstavuje vyčíslenie hod-
noty polynómu v(x) v prvku α ∈ GF(24). Je zrejmé, že prijaté slovo v je kódovým slovom
Hammingovho (15, 11) kódu práve vtedy, ak v(α) = 0. Polynómy zodpovedajúce kódovým
slovám, budeme nazývat’ kódovými polynómami.

V predchádzajúcom prípade sme od kontrolnej matice nad pol’om GF(q) prešli k takej
reprezentácii kontrolnej matice, v ktorej celému vektoru-stĺpcu zodpovedal jeden prvok
nejakého rozšírenia pôvodného pol’a (prvok pol’a GF(qm)). Toto však nie je jediná mož-
nost’, ako vyjadrit’ kontrolnú maticu ako maticu nad rozšírením pôvodného pol’a. Pred-
pokladajme, že je daná kontrolná matica H typu (n − k) × n nad pol’om GF(q) a číslo
(n − k) je delitel’né m; t.j. (n − k) = mr. Vektor-stĺpec dĺžky (n − k) môžeme rozbit’ na r
blokov dĺžky m a každý blok reprezentovat’ prvkom pol’a GF(qm):

Kontrolná matica H sa potom transformuje na nasledujúcu maticu:

H =


β11 β12 . . . β1n
β21 β22 . . . β2n

...
... . . .

...
βr1 βr2 . . . βrn

 ;

107

kde βij ∈ GF(qm), i = 1 . . . , r; j = 1, . . . , n. Namiesto pôvodnej kontrolnej matice typu
(n− k)×n nad pol’om GF(q) dostávame kontrolnú maticu typu r×n nad pol’om GF(qm);
kde r = (n − k)/m. Aby sme pri dekódovaní mohli nahradit’ násobenie prijatého slova
u kontrolnou maticou dosadzovaním prvkov pol’a GF(qm) do polynómu u(x), budeme
kontrolnú maticu H zapisovat’ v tvare

H =


γ01 γ11 . . . γn−11

γ02 γ12 . . . γn−12
...

... . . .
...

γ0r γ1r . . . γn−1r

 ;

kde γ1, . . . , γr ∈ GF(qm). Parametre n, q,m nie sú celkom nezávislé. Na začiatok budeme
predpokladat’, že n = qm − 1, neskôr ukážeme, aké d’alšie hodnoty môže dĺžka kódu
nadobúdat’.

Dekódovanie prijatého slova u = (u0, u1, . . . , un−1) možno realizovat’ dvojako: prijaté
slovo vynásobíme kontrolnou maticou H v ktorej prvky γji nahradíme príslušnými vek-
tormi dĺžky m nad pol’om GF(q) a vypočítame syndróm s;

s = uH⊤.

V druhom prípade násobeniu prijatého vektora (slova) u kontrolnou maticou H nad po-
l’om GF(qm) zodpovedá dosadzovanie prvkov γ1, . . . , γr ∈ GF(qm) do polynómu u(x):

uH⊤ =

u0γ
0
1 + u1γ

1
1 + · · ·+ un−1γn−11 = u(γ1),

u0γ
0
2 + u1γ

1
2 + · · ·+ un−1γn−12 = u(γ2),

...
...

u0γ
0
r + u1γ

1
r + · · ·+ un−1γn−1r = u(γ2r).

Podmienka uH⊤ = 0 je ekvivalentná tomu, že prvky γ1, . . . , γr ∈ GF(qm) sú korene poly-
nómu u(x). Ilustrujeme uvedenú konštrukciu na príklade.

Príklad 9.1. Nech je α primitívny prvok pol’a GF(24), nech n = 15. Položíme γ1 = α, γ2 =
α3 a zostrojíme kontrolnú maticu H (15, 7)-kódu:

H =

[
α0 α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12 α13 α14

α0 α3 α6 α9 α12 α15 α18 α21 α24 α27 α30 α33 α36 α39 α42

]

Prvky pol’a GF(24) môžeme reprezentovat’ pomocou binárnych vektorov dĺžky 4 (pozri
tabul’ku 15.4). Kontrolná matica bude potom binárnou maticou typy 8× 15:

H =



1 0 0 0 1 0 0 1 1 0 1 0 1 1 1

0 1 0 0 1 1 0 1 0 1 1 1 1 0 0

0 0 1 0 0 1 1 0 1 0 1 1 1 1 0

0 0 0 1 0 0 1 1 0 1 0 1 1 1 1

1 0 0 0 1 1 0 0 0 1 1 0 0 0 1

0 0 0 1 1 0 0 0 1 1 0 0 0 1 1

0 0 1 0 1 0 0 1 0 1 0 0 1 0 1

0 1 1 1 1 0 1 1 1 1 0 1 1 1 1



108 KAPITOLA 9. CYKLICKÉ KÓDY

Pri štúdiu Bose-Chandhury-Hocquenghemových (BCH) kódov v nasledujúcej podka-
pitole ukážeme, že kód z predchádzajúceho príkladu je BCH kód (15, 7) opravujúci chyby
váhy 2.

9.1 Polynomický popis cyklických kódov

V tejto časti popíšeme najprv algebraickú štruktúru cyklických kódov a potom ukážeme,
ako na základe týchto poznatkov možno konštruovat’ cyklické kódy. Budeme uvažovat’
cyklický kód C dĺžky n nad pol’om GF(q). Pripomenieme, že cyklický kód C je lineárnym
podpriestorom vektorového priestoru dimenzie n nad pol’om GF(q) a že C je uzavretý na
cyklický posun svojich prvkov. Vektorový priestor GF(q)n možno prirodzeným spôsobom
zobrazit’ na faktorový okruh polynómov GF(q)[x]/xn − 1:

∀u ∈ GF(q)n; u = (u0, u1, . . . , un−1)↔ u0 + u1x+ u2x
2 + · · ·+ un−1xn−1

Dá sa l’ahko overit’, že faktorový okruh polynómov GF(q)[x]/xn−1má vlastnosti vektoro-
vého priestoru. Naviac, vo faktorovom okruhu GF(q)[x]/xn− 1 je definované (modulárne)
násobenie polynómov:

∀a(x), b(x) ∈ GF(q)[x]/xn − 1 : a(x) · b(x) = a(x) · b(x) (mod xn − 1).

Zostáva nájst’ vyjadrenie cyklického posunu pomocou operácií nad polynómami v okruhu
GF(q)[x]/xn−1. Cyklický posun vektora u zodpovedá súčinu polynómov x·u(x). Skutočne,

x · u(x) = un−1x
n + un−2x

n−1 + · · ·+ u1x2 + u0x (mod xn − 1),

pričom

un−1x
n +un−2x

n−1+ . . . +u1x
2 + u0x : (xn − 1) = un−1

− un−1x
n +un−1

un−2x
n−1+ . . . +u1x

2 + u0x+ un−1

Cyklický kód môžeme teraz charakterizovat’ nasledujúcim spôsobom:

Veta 9.1.1. Nech GF(q)[x]/xn − 1 je faktorový okruh polynómov nad pol’om GF(q). Pod-
množina polynómov C ⊂ GF(q)[x]/xn − 1 tvorí cyklický kód práve vtedy, ak

1. C je aditívna podgrupa okruhu GF(q)[x]/xn − 1,

2. ak u(x) ∈ C a a(x) ∈ GF(q)[x]/xn − 1, tak

a(x) · u(x) (mod xn − 1) ∈ C.

9.1. POLYNOMICKÝ POPIS CYKLICKÝCH KÓDOV 109

Dôkaz. Cyklický kód je zároveň lineárnym kódom. To znamená, že C tvorí aditívnu
podgrupu okruhu GF(q)[x]/xn − 1. Z lineárnosti kódu C vyplýva, že aj súčin l’ubovol’ného
prvku a ∈ GF(q) a polynómu u(x) ∈ C patrí do C. Z cyklickosti C vyplýva, že pre u(x) ∈ C
aj xk · u(x) ∈ C. To znamená, že pre l’ubovol’ný polynóm a(x) ∈ GF(q)[x]/xn − 1;a(x) =
a0 + a1x+ · · ·+ an−1xn−1 patria aj polynómy a0 ·u(x), a1x ·u(x), . . . , an−1xn−1 ·u(x) do C a
z toho, že C je aditívna grupa vyplýva, že aj

a0 · u(x) + a1x · u(x) + · · ·+ an−1xn−1 · u(x) = a(x) · u(x) ∈ C.

Opačne, nech C spĺňa uvedené dve podmienky. Z prvej vyplýva, že C je uzavretá na
sčítanie a z druhej, že C je uzavretá na násobenie skalárom (ostatné vlastnosti násobenia
a sčítania sa do C prenášajú z okruhu GF(q)[x]/xn − 1). To znamená, že C tvorí lineárny
podpriestor (lineárny kód). Z druhej podmienky naviac vyplýva, že C je uzavretá na cyk-
lický posun; t.j. C je cyklický kód.

Poznámka. Množina C tvorí ideál okruhu GF(q)[x]/xn − 1. Neskôr dokážeme, že C je
hlavný ideál.

Preskúmame teraz množinu C podrobnejšie. Budeme v nej hl’adat’ polynóm g(x),
ktorý je nenulový, normovaný a má spomedzi všetkých (nenulových) prvkov-polynómov
množiny C minimálny stupeň. Ked’že C je neprázdna množina, nenulový normovaný po-
lynóm g(x) minimálneho stupňa existuje. Ukážeme, že je daný jednoznačne. Predpokla-
dajme opak, t.j. že v C existujú dva rôzne polynómy g1(x) a g2(x) požadovaných vlast-
ností. Potom aj ich rozdiel, polynóm g1(x) − g2(x) patrí do C. Ale polynómy g1(x) a g2(x)
majú ten istý stupeň a sú normované. To znamená, že ich rozdiel je nenulový polynóm
nižšieho stupňa, z ktorého po vydelení koeficientom pri najvyššej mocnine možno vytvo-
rit’ normovaný nenulový polynóm nižšieho stupňa ako je stupeň polynómov g1(x) a g2(x).
Spor. Polynóm g(x) je teda daný jednoznačne a z dôvodu, ktorý zakrátko uvedieme, na-
zýva sa generujúcim polynómom kódu C Preskúmame vzt’ah polynómu g(x) a ostatných
prvkov (polynómov) kódu C. Nech je u(x) nenulový kódový polynóm kódu C. Potom exis-
tujú polynómy q(x) a r(x) také, že

u(x) = q(x)g(x) + r(x) mod xn − 1,

pričom deg(r(x) < deg(g(x)). Ked’že g(x) ∈ C, tak potom podl’a vety 9.1.1 aj q(x)g(x) ∈ C.
To však znamená, že aj

u(x) − q(x)g(x) ∈ C,

nakol’ko ide o rozdiel dvoch kódových slov a C je cyklický a teda aj lineárny kód. Ale

u(x) − q(x)g(x) = r(x)

a deg(r(x) < deg(g(x)). To by znamenalo, že v kóde C existuje polynóm nižšieho stupňa
ako je stupeň generujúceho polynómu. To však je možné len v prípade, ked’ r(x) = 0.

Potom však pre l’ubovol’ný kódový polynóm u(x) z C platí

u(x) = q(x)g(x).

Tým sme dokázali nasledujúcu vetu

110 KAPITOLA 9. CYKLICKÉ KÓDY

Veta 9.1.2. Nech C ⊆ GF(q)[x]/xn − 1 je cyklický kód dĺžky n. Potom v kóde C existuje
jediný nenulový normovaný polynóm g(x) stupňa n− k taký, že

C = {a(x)g(x); a(x) ∈ GF(q)[x], deg(g(x)) < k}.

Ked’že cyklický kód je jednoznačne zadaný svojím generujúcim polynómom, ponú-
kajú sa prirodzené otázky, či sa tento vzt’ah nedá využit’ pri konstrukcii, kódovaní i
dekódovaní cyklických kódov a ak áno, ako. Odpoved’ na tieto otázky budeme hl’adat’ v
nasledujúcej časti tejto kapitoly. Začneme základnou otázkou: aké vlastnosti musí mat’
polynóm, aby bol generujúcim polynómom cyklického kódu? Odpoved’ na táto otázku
dáva nasledujúca veta.

Veta 9.1.3. Cyklický kód C dĺžky n s generujúcim polynómom g(x) existuje práve vtedy,
ak g(x)|xn − 1.

Dôkaz. Predpokladajme, že C ⊆ GF(q)[x]/xn − 1 je cyklický kód dĺžky n s generujúcim
polynómom g(x). Platí

xn − 1 = q(x)g(x) + r(x),

kde q(x), r(x) ∈ GF(q)[x]/xn − 1 a deg(r(x)) < deg(g(x)). Ked’že platí

xn − 1 = 0 mod xn − 1

a deg(r(x)) < n, tak potom

0 = (q(x)g(x) + r(x)) mod xn − 1 = (q(x)g(x)) mod (xn − 1) + r(x).

Kód C je cyklický a g(x) je jeho generujúci polynóm, preto aj (q(x)g(x)) mod xn − 1 je
kódový polynóm kódu C. Ked’že 0 je tiež kódový polynóm, potom aj r(x) = 0 − q(x)g(x)
musí byt’ kódovým polynómom kódu C. To je však možné len v prípade, ked’ r(x) = 0, a
teda

xn − 1 = q(x)g(x).

Nech opačne g(x) ∈ GF(q)[x], g(x)|xn − 1, deg(g(x)) = n − k. Množina polynómov C =
{a(x)g(x); a(x) ∈ GF(q)[x], deg(g(x)) < k} je podl’a vety 9.1.1 cyklickým kódom.

To, že polynóm g(x) delí polynóm xn − 1 znamená, že existuje polynóm, označíme ho
ako h(x), taký, že xm− 1 = g(x)h(x). Ak je g(x) generujúcim polynómom cyklického kódu
C, tak potom sa polynóm h(x) nazýva kontrolným polynómom cyklického kódu C. Podobne
ako generujúci polynóm, zohráva aj kontrolný polynóm v teórii lineárnych kódov dôležitú
úlohu.

Pozrime sa teraz na polynóm xn − 1 nad pol’om GF(q). Vyjadríme xn − 1 ako súčin
ireducibilných polynómov nad pol’om GF(q):

xn − 1 = f1(x) · f2(x) · · · · · fl(x).

Generujúci polynóm g(x) cyklického kódu dĺžky n nad pol’om GF(q) sa dá potom vyjadrit’
ako súčin vybraných ireducibilných polynómov z rozkladu xn − 1:

g(x) = fi1(x) · fi2(x) . . . fij(x).

9.2. MATICOVÝ POPIS CYKLICKÝCH KÓDOV 111

Ked’že polynóm xn − 1 má l ireducibilných faktorov nad pol’om GF(q), existuje 2l roz-
ličných generujúcich polynómov a práve tol’ko cyklických kódov dĺžky n nad pol’omGF(q).
Cyklický kód však tvoria kódové polynómy, ktoré sú násobkami generujúceho polynómu;
u(x) = a(x)g(x). Kódový polynóm má stupeň nanajvýš n − 1. Ak bude mat’ generujúci
polynóm stupeň n − k, tak potom kód bude obsahovat’ 2k kódových slov. Z toho vyplýva,
že niektoré polynómy nebudú generovat’ použitel’né kódy. Ilustrujeme vytváranie cyklic-
kých kódov pomocou generujúcich polynómov na príklade [1].

Príklad. Uvedieme všetky binárne cyklické kódy dĺžky 7. Polynóm x7 − 11 má tri iredu-
cibilné faktory2

x7 − 1 = (x+ 1)(x3 + x+ 1)(x3 + x2 + 1).

To znamená, že teoreticky existuje 8 binárnych cyklických kódov dĺžky 7.

generujúci polynóm kontrolný polynóm kód

1 x7 − 1 C1
x+ 1 (x3 + x+ 1)(x3 + x2 + 1) C2
(x3 + x+ 1) (x+ 1)(x3 + x2 + 1) C3
(x3 + x2 + 1) (x+ 1)(x3 + x+ 1) C4
(x+ 1)(x3 + x+ 1) (x3 + x2 + 1) C5
(x+ 1)(x3 + x2 + 1) (x3 + x+ 1) C6
(x3 + x+ 1)(x3 + x2 + 1) (x+ 1) C7
x7 − 1 1 C8

• kód C1 pozostáva zo všetkých binárnych vektorov dĺžky 7, jeho opravná schopnost’
je nulová.

• kód C2 je kód s testom na paritu a má 64 kódových slov dĺžky 7 (párnej váhy)

• kódy C3 a C4 sú Hammingove (7,4) kód opravujúce jednu chybu. Majú 16 kódových
slov

• kódy C5 a C6 sú duálne kódy k Hamingovému (7,4) kódu, majú 8 kódových slov

• kód C7 má dve kódové slová 0000000, 1111111, opravuje 3 chyby a nazýva sa kód s
opakovaním (repetition code).

• kód C8 má jediné kódové slovo 0000000 a je prakticky nepoužitel’ný.

9.2 Maticový popis cyklických kódov

Cyklické kódy sú podmnožinou lineárnych kódov. Lineárne kódy je možné zadat’ pomo-
cou generujúcej, resp. kontrolnej matice. Jeden typ kontrolnej matice pre cyklické kódy

1pripomíname, že nad pol’om GF(2) x7 − 1 = x7 + 1
2o ireducibilite polynómov (x3 + x + 1), (x3 + x2 + 1) sa presvedčíme l’ahko; ak by totiž boli reducibilné,

museli by mat’ aspoň jeden faktor stupňa 1, a teda ako koreň prvok z pol’a GF(2).

112 KAPITOLA 9. CYKLICKÉ KÓDY

sme už uviedli v úvode tejto kapitoly. Medzitým sme zistili, že cyklické kódy je možné
popísat’ pomocou generujúcich a kontrolných polynómov. Ukážeme teraz, aký je vzt’ah
medzi generujúcim plonómom agenerujúcou maticou a kontrolným polynómom a kon-
trolnou maticou cyklického kódu. Uvažujme cyklický kód C dĺžky n nad pol’om GF(q) s
generujúcim polynómom g(x) stupňa n − k a kontrolným polynómom h(x). Ked’že cyk-
lický kód C pozostáva zo všetkých násobkov generujúceho polynómu g(x), kódovými po-
lynómami budú aj polynómy g(x), x · g(x), . . . , xk−1 · g(x). Ukážeme, že polynómy g(x), x ·
g(x), . . . , xk−1 ·g(x), resp. vektory ich koeficientov sú lineárne nezávislé. Predpokladajme
opak, potom by musela existovat’ k-tica prvkov a0, . . . , ak−1 ∈ GF(q), s aspoň jedným
nenulovým prvkom taká, že (v polynomickom vyjadrení)

a0 · g(x) + a1 · x · g(x) + · · ·+ ak−1 · xk−1 · g(x) = 0 (9.1)

Zo vzt’ahu 9.1 však vyplýva, že

(a0 + a1 · x+ · · ·+ ak−1 · xk−1) · g(x) = 0,

resp.

(a0 + a1 · x+ · · ·+ ak−1 · xk−1) = 0,

čo je však v spore s nenulovost’ou vektora prvkov a0, . . . , ak−1. To znamená, že vektory ko-
eficientov polynómov g(x), x·g(x), . . . , xk−1 ·g(x) sú nezávislé a ked’že cyklický kód C je zá-
roveň lineárny kód dimenzie k, vektory koeficientov polynómov g(x), x·g(x), . . . , xk−1 ·g(x)
tvoria jeho bázu. Táto báza zapísaná v podobe matice predstavuje generujúcu maticu
cyklického kódu C:

G =


0 . . . 0 0 gn−k gn−k−1 . . . g2 g1 g0
0 . . . 0 gn−k gn−k−1 gn−k−2 . . . g1 g0 0

0 . . . gn−k gn−k−1 gn−k−2 gn−k−3 . . . g0 0 0
...

...
gn−k 0 0 0

 (9.2)

Teraz zostrojíme kontrolnú maticu cyklického kódu C pomocou jeho kontrolného poly-
nómu h(x). Ked’že h(x)|xn − 1 existuje lineárny kód C′ s generujúcim polynómom h(x).
Generujúcu maticu H′ kódu C′ možno taktiež vyjadrit’ v tvare 9.2. Kód C′ však nie je
duálnym kódom kódu C, pretože G ·H′⊤ ̸= 0, a teda matica H′ nie je kontrolnou maticou
kódu C. Ukážeme, že kontrolná matica cyklického kódu C odvodená z jeho kontrolného
polynómu h(x) existuje a má tvar

H =


0 . . . 0 0 hk hk−1 . . . h2 h1 h0
0 . . . 0 hk hk−1 hk−2 . . . h1 h0 0

0 . . . hk hk−1 hk−2 hk−3 . . . h0 0 0
...

...
hk 0 0 0

 (9.3)

9.3. KÓDOVANIE POMOCOU CYKLICKÝCH KÓDOV 113

Potrebujeme dokázat’, že G ·H⊤ = 0. Využijeme skutočnost’, že h(x) ·g(x) = 0 mod xn−1.
To znamená, že

g0h0 = 1,

(g0h1 + g1h0) = 0,

(g0h2 + g1h1 + g2h0) = 0,

. . .

(gn−k−1hk + gn−khk−1) = 0,

gn−khk = 1.

(9.4)

Súčinom matíc G ·H⊤ je matica typu (n− k)× (n− k) ktorú možno zapísat’ v tvare

G ·H⊤ =


an−1 an−2 . . . ak
an−2 an−3 . . . ak−1

...
...

an−k an−k−1 . . . a1

 (9.5)

kde

am =

m∑
i=0

gm−ihi, 0 < m < n.

Zo vzt’ahov 9.4 vyplýva, že am = 0 pre m = 1, . . . , n − 1 a teda matica 9.3 je kontrolnou
maticou kódu C. Ukážeme, že lineárny kód C⊥, duálny ku kódu C je zároveň cyklický
kód s generujúcim polynómom xk · hx−1. Stačí ukázat’, že polynóm xk · hx−1 delí polynóm
xn−1. Vyjadríme polynóm xn−1 v podobe súčinu generujúceho a kontrolného polynómu
xn − 1 = g(x) · h(x), dosadíme x := x−1 a výslednú rovnost’ vynásobíme polynómom xn.
Dostávame rovnost’

xn · g(x−1) · h(x−1) = xn−kg(x−1) · ck · h(x−1) = 1− xn.

Z poslednej rovnosti vyplýva, že polynómom xk · h(x−1) delí polynóm xn − 1.

Poznámka. Kód C′ zadaný generujúcou maticou H′ sa niekedy tiež nazýva duálnym
kódom kódu C. V skutočnosti sa však nejedná o duálny kód (pretože G · H′⊤ ̸= 0) ale ide
len o kód ekvivalentný s duálnym kódom C⊥.

9.3 Kódovanie pomocou cyklických kódov

Správu, ktorú potrebujeme zakódovat’ pomocou cyklického (n, k)-kódu C (s generujúcim
polynómom g(x) stupňa n − k rozdelíme na postupnost’ disjunktných blokov dĺžky k
(informačné vektory). Každému informačnému vektoru i = (i0, . . . , ik−1) priradíme infor-
mačný polynóm i(x) = i0 + i1 · x + · · · + ik−1 · xk−1 stupňa nanajvýš k − 1.Ked’že kódové
slová (polynómy) cyklického kódu C sú násobkami generujúceho polynómu g(x), stačí
informačný polynóm vynásobit’ generujúcim polynómom a dostaneme kódový polynóm
kódu C

u(x) = i(x) · g(x).

114 KAPITOLA 9. CYKLICKÉ KÓDY

Takýto spôsob kódovania je korektný, ale je nesystematický, pretože z kódového poly-
nómu u(x) sa nedá bezprostredne určit’ informačný polynóm i(x). Existuje aj systema-
tický spôsob kódovania, ktorého podstata je nasledovná:

• Informačný polynóm i(x) vynásobíme polynómom xn−k.

• Vypočítame xn−k · i(x) mod g(x)

• Od polynómu xn−k · i(x) odčítame xn−k · i(x) mod g(x) a dostávame hl’adané kódové
slovo xn−k · i(x) − xn−k · i(x) mod g(x).

Ked’že stupeň polynómu xn−k · i(x) mod g(x)je nanajvýš n− k− 1 a prvky informač-
ného vektora tvoria v kódovom slove koeficienty pri mocninách xn−k, . . . , xn−1, v kódovom
slove sú jednoznačne oddelené informačné a „kontrolné“ symboly tak, ako sme požado-
vali, obr. 9.1.

i(x) −xn−k · i(x) mod g(x)

Obr. 9.1: Kódové slovo systematického cyklického kódu

9.4 Dekódovanie cyklických kódov

Ked’že cyklické kódy sú podmožinou lineárnych kódov, možno na ich dekódovanie použit’
tie isté metódy ako na dekódovanie lineárnych kódov. Pri dekódovaní lineárnych kódov
s väčšou opravnou schopnost’ou sme narážali na to, že si bolo potrebné pamätat’ roz-
siahlu dekódovaciu tabul’ku (obsahujúcu zoznam syndrómov chýb a im prislúchajúcich
chybových vektorov). Využijeme algebraickú štruktúru cyklických kódova na zostrojenie
efektívnejšieho algoritmu dekódovania. Predpokladajme, že informácia, ktorú spraco-
vávame, je zapísaná vo forme polynómov. Do popisu spracovania zahrnieme aj kódovanie
správ:

1. informačný vektor i transformujeme na informačný polynóm i(x),

2. informačný polynóm (napríklad nesystematicky) transformujeme na kódový poly-
nóm: u(x) = i(x) · g(x) s vektorom koeficientov u,

3. koeficienty kódového polynómu sa prenášajú prenosovým kanálom. Počas prenosu
vznikne chyba e, ktorá transformuje prenášané kódové slovo na slovo v = u + e. V
polynomickom vyjadrení v(x) = u(x) + e(x).

4. Príjemca interpretuje prijaté slovo v ako polynóm v(x), vydelí prijatý polynóm ge-
nerujúcim polynómom a vypočíta zvyšok po delení:

v(x) mod g(x) = (u(x) + e(x)) mod g(x) = u(x) mod g(x) + e(x) mod g(x) =
= e(x) mod g(x) = s(x).

9.4. DEKÓDOVANIE CYKLICKÝCH KÓDOV 115

Výsledkom delenia je polynóm s(x), ktorý sa nazýva syndrómový polynóm. Je zrej-
mé, že deg(s(x)) < deg(g(x)). Ked’že l’ubovol’né kódové slovo u(x) je násobkom gene-
rujúceho polynómu g(x), u(x) mod g(x) = 0 a teda syndrómový polynóm nezávisí
od odvysielaného kódového polynómu, ale len od polynómu chýb.

Skôr ako budeme pokračovat’ vo výklade, uvedieme kvôli prehl’adnosti zoznam poly-
nómov, ktoré sa používajú pri popise, kódovaní a dekódovaní cyklického (n, k)-kódu.

názov označenie stupeň
generujúci polynóm g(x) n− k
kontrolný polynóm h(x) k

informačný polynóm i(x) k− 1
kódový polynóm u(x) n− 1
chybový polynóm e(x) n− 1
prijatý polynóm v(x) n− 1
syndrómový polynóm s(x) n− k− 1

Tabul’ka 9.1: Polynómy cyklických kódov

Aby bolo možné používat’ syndrómový polynóm s(x) na určenie chyby e(x), potrebu-
jeme mat’ záruku, že syndróm chyby určuje chybu3 jednoznačne; t.j. že neexistujú dve
rôzne chyby váhy menšej alebo rovnej opravnej schopnosti kódu s tým istým syndrómom.
Túto dôležitú vlastnost’ cyklických kódov sformulujeme a dokážeme v nasledujúcej vete.

Veta 9.4.1. Nech je d minimálna vzdialenost’ cyklického kódu C, potom každému poly-
nómu chýb váhy menšej ako d/2 zodpovedá práve jeden syndrómový polynóm.

Dôkaz. Každému chybovému polynómu e(x) zodpovedá nejaký syndrómový polynóm
s(x) = e(x) mod g(x). Predpokladajme, že existujú dva rozličné chybové polynómy váhy
menšej ako d/2; e1(x) ̸= e2(x) s tým istým syndrómovým polynómom s(x). To znamená,
že

e1(x) = q1(x) · g(x) + s(x)
e2(x) = q2(x) · g(x) + s(x)

ale potom je rozdiel chybových polynómov

e1(x) − e2(x) = (q1(x) − q2(x)) · g(x) (9.6)

násobkom generujúceho polynómu, a teda kódovým slovom. Ale polynóm e1(x) − e2(x)
má váhu < d, čo je v spore s minimálnou váhou kódu C. To znamená, že e1(x)−e2(x) = 0,
resp. e1(x) = e2(x).

Príklad. Uvažujeme (7, 4) Hammingov cyklický kód s generujúcim polynómom g(x) =
x3 + x + 1. Tento kód má minimálnu vzdialenost’ 3, a opravuje chyby váhy 1. Všetky

3podobne ako pri lineárnych kódoch, aj tu sa rozumie chyba váhy menšej alebo rovnej opravnej schop-
nosti kódu

116 KAPITOLA 9. CYKLICKÉ KÓDY

chybové polynómy váhy nanajvýš 1 a im prislúchajúce syndrómové polynómy sú uvedené
v tabul’ke

chybový polynóm e(x) syndrómový polynóm s(x)

0 0

1 1

x x

x2 x2

x3 x+ 1
x4 x2 + x
x5 x2 + x+ 1
x6 x2 + 1

Príklad spracovania (kódovanie, prenos a dekódovanie) správ pomocou Hammingovho
kódu je uvedený v tabul’ke

vektor/polynóm označenie vektor polynóm spôsob výpočtu
informačný i(x) 1011 x3 + x+ 1
kódový u(x) 1000101 x6 + x2 + 1 u(x) = i(x) · g(x)
odvysielaný u(x) 1000101 x6 + x2 + 1
chybový e(x) 0010000 x4

prijatý v(x) 1010101 x6 ++x4 + x2 + 1 v(x) = u(x) + e(x)

syndrómový s(x) 110 x2 + x v(x) mod g(x)
chybový e(x) 0010000 x4 s(x)↔ e(x)
opravený u(x) 1000101 x6 + x2 + 1 u(x) = v(x) − e(x)
informačný i(x) 1011 x3 + x+ 1 i(x) = u(x)÷ g(x)

Použitie polynomickej reprezentácie kódu umožnilo nahradit’ maticové oprácie (ná-
sobenie vektorov generujúcou, resp. kontrolnou maticou) jednoduchšie realizovatel’ným
násobením a resp. delením generujúcim polynómom, ale základný problém dekódova-
nia lineárnych kódov—potrebu rozsiahlej dekódovacej tabul’ky—nevyriešilo. Využijeme
teraz silnejšiu algebraickú štruktúru cyklických kódov na návrh efektívnejšej metódy
dekódovania.

Predpokladajme, že kódové slovo u(x) bolo pri prenose modifikované chybou e(x) a
v dôsledku toho bolo prijaté slovo v(x) = u(x) + e(x). Základná myšlienka dekódovania
spočíva v tom, že pri cyklickom posune prijatého slova sa súčasne posúva kódové slovo
aj chyba:

x · v(x) = x · u(x) + x · e(x) mod xn − 1.

To znamená, že po istom počte cyklických posunov prijatého slova dostaneme slovo, ktoré
bude predstavovat’ kódové slovo (kódový polynóm), v ktorom bude chybou modifikovaný
koeficient pri mocnine xn−1 (a možno aj niektoré iné koeficienty). Ak by sme túto chybu
dokázali odhalit’ a opravit’, potom by stačilo cyklicky posunút’ opravené slovo o patričný
počet miest, aby sme dostali pôvodne odvysielané kódové slovo u(x). Čo potrebujeme na
to, aby sme dokázali odhalit’ chybu v koeficiente pri najvyššej mocnine prijatého poly-
nómu? Stačilo by na to mat’ zoznam syndrómov chýb zodpovedajúcich všetkým (daným
kódom opravitel’ným) kódovým slovám e(x), en−1 ̸= 0. Potom bude stačit’ posúvat’ prijaté

9.4. DEKÓDOVANIE CYKLICKÝCH KÓDOV 117

slovo, vyčísl’ovat’ v každom kroku syndróm chyby a porovnávat’ ho s redukovanou tabul’-
kou syndrómov. Na tejto myšlienke je postavený Meggitov algoritmus dekódovania cyk-
lických kódov, ktorý bol publikovaný v roku 1960. Meggitov algoritmus naviac využíva tú
skutočnost’, že na výpočet postupnosti syndrómov polynómov v(x), x · v(x), . . . , xn−1 · v(x)
nie je potrebné počítat’ ((xj ·v(x) mod xn−1) mod g(x), j = 0, . . . , n−1, ale stačí počítat’
(xj · s(x) mod g(x). Toto zjednodušenie sa zakladá na tvrdení nasledujúcej vety.

Veta 9.4.2. Nech je daný cyklický kód C s generujúcim polynómom g(x) a nech je v(x) po-
lynóm prijatý po odvysielaní (nejakého) kódového slova kódu C. Nech je s(x) syndrómový
polynóm polynómu v(x), potom má polynóm x · v(x) mod xn− 1 (cyklický posun prijatého
slova) syndrómový polynóm x · s(x) mod g(x).

Dôkaz Nech je v(x) = v0 + v1 · x+ · · ·+ vn−1 · xn−1 prijatý polynóm. Platí

v(x) = q(x) · g(x) + s(x).

Cyklický posun prijatého slova je (v polynomickom vyjadrení):

x · v(x) mod xn − 1 = vn−1 + v0 · x+ v1 · x2 + · · ·+ vn−2 · xn−1 =
= x · v(x) − vn−1 · (xn − 1) = x · v(x) − vn−1 · g(x)h(x) =
= x · (q(x) · g(x) + s(x)) − vn−1 · g(x)h(x) = x · s(x) + x · q(x) · g(x) − vn−1 · g(x)h(x) =
= x · s(x) + g(x) · (x · q(x) − vn−1 · h(x)) = x · s(x) mod g(x).

Uvedieme teraz Meggitov algoritmus dekódovania cyklických kódov. Kvôli jednodu-
chosti výkladu sa obmedzíme na binárne cyklické kódy; zovšeobecnenie Meggitovho al-
goritmu na q-árne cyklické kódy ponecháme na čitatel’a. Predpokladáme, že

• C je cyklický (n,k)-kód nad pol’om GF(2) s generujúcim polynómom g(x)

• bol odvysielaný kódový polynóm u(x),

• pri prenose vznikla (kódom C korigovatel’ná) chyba e(x), v dôsledku čoho bol prijatý
polynóm v(x).

Meggittov algoritmus dekódovania binárnych cyklických kódov [1]

1. Vytvor dekódovaciu tabul’ku T obsahujúcu všetky syndrómy, zodpovedajúce pred-
stavitel’om tried rozkladu faktorového okruhu GF(2)[x]/xn − 1, podl’a cyklického
kódu C; chybovým polynómom stupňa n− 1. (To sú chybové polynómy, v ktorých je
koeficient pri najvyššej mocnine x nenulový.)

2. Vydel’ prijatý polynóm v(x) generujúcim polynómom g(x) a vypočítaj syndrómový
polynóm: s(x) = v(x) mod g(x).

118 KAPITOLA 9. CYKLICKÉ KÓDY

3. Porovnaj syndróm s(x) so syndrómami v dekódovacej tabul’ke T ; ak sa s(x) nachá-
dza v dekódovacej tabul’ke T , oprav (aktuálne) najvyšší koeficient prijatého poly-
nómu v(x):

v(x)← v(x) + xn−1.

4. Vykonaj cyklický posun prijatého polynómu:

v(x)← x · v(x) mod xn − 1.

Ak sa krok 4 vykonal n − 1-krát, vykonaj posledný cyklický posun polynómu v(x)
a skonči. (Dekódované slovo predstavujú koeficienty polynómu v(x).) V opačnom
prípade pokračuj krokom 2.

Poznámka 1. Meggittov algoritmus možno zefektívnit’ využitím výsledku vety 9.4.2 a
namiesto cyklického posunu prijatého slova a výpočtu syndrómu na základe posunutého
slova len „prepočítavame“ syndróm podl’a vzt’ahu s(x) ← x · s(x) mod g(x). Problém
je v tom, že v tých krokoch, ked’ opravujeme chybu v prijatom slove, mení sa samotné
prijaté slovo a treba vypočítat’ nový syndróm. Označme kvôli jednoduchosti polynóm xn−1

mod g(x) symbolom σ(x), potom syndróm chyby prijatého slova po korekcii najvyššieho
bitu bude

(v(x) + xn−1) mod g(x) = v(x) mod g(x) + xn−1 mod g(x) = s(x) + σ(x).

Meggittov algoritmus sa potom dá zapísat’ nasledovne:

1. Vytvor dekódovaciu tabul’ku T obsahujúcu všetky syndrómy, zodpovedajúce pred-
stavitel’om tried rozkladu faktorového okruhu GF(2)[x]/xn − 1, podl’a cyklického
kódu C; chybovým polynómom stupňa n − 1. (Predstavitelia tried rozkladu sú chy-
bové polynómy, v ktorých je koeficient pri najvyššej mocnine x nenulový.) σ(x) ←
xn−1 mod g(x), s(x)← v(x) mod g(x), PocetPosunov← 0.

2. Ak s(x) = 0 pokračuj krokom 6, ináč pokračuj krokom 3.

3. Zisti, či sa s(x) nachádza v tabul’ke T . Ak áno pokračuj krokom 4, ak nie, pokračuj
krokom 5.

4. v(x)← (v(x) + xn−1), s(x)← s(x) + σ(x), pokračuj krokom 5.

5. v(x) ← x · v(x) mod xn, s(x) ← x · s(x) mod g(x), + + PocetPosunov pokračuj
krokom 2.

6. v(x)← xn−PocetPosunov·v(x) mod xn−1 (cyklicky posuň prijaté slovo o n−PocetPosunov
miest.

9.4. DEKÓDOVANIE CYKLICKÝCH KÓDOV 119

Poznámka 2. Meggittov algoritmus sa dá vel’mi efektívne realizovat’ pomocou deko-
déra založeného na posuvných registroch s lineárnou spätnou väzbou (linear feedback
shift register, LFSR), pomocou ktorých sa vykonávajú cyklické posuny, modulárne náso-
benie a delenie polynómov. Nie je problém v prípade potreby modifikovat’ najvyšší bit,
ktorý LFSR obsahuje, ale konštrukcia LFSR by sa skomplikovala, ak by bolo potrebné
zabezpečit’, aby bolo možné v každom kroku menit’ l’ubovol’né bity LFSR. Preto sa v 3.
kroku koriguje len aktuálne najvyšší bit slova, ktoré register obsahuje, hoci syndrómový
polynóm jednoznačne určuje aj prípadné d’alšie chyby. Na druhej strane, ked’že sa v 3.
kroku opravuje len najvyšší bit spracovávaného slova, dekódovacia tabul’ka nemusí ob-
sahovat’ chybové polynómy.

Ilustrujeme teraz Meggittov algoritmus na príklade [1].

Príklad. Uvažujme binárny cyklický (15,7)-kód C s generujúcim polynómom g(x) =
x8 + x7 + x6 + x4 + 1, opravujúci chyby váhy 2. Dekódovacia tabul’ka obsahuje 15 syn-
drómových polynómov. Kvôli názornosti v nej uvádzame aj syndrómom prislúchajúce
chybové polynómy, ktoré však v d’alšom pri dekódovaní nebudeme používat’.

chybový polynóm syndrómový polynóm syndróm
x14 x7 + x6 + x5 + x3 1110 1000

x14 + 1 x7 + x6 + x5 + x3 + 1 1110 1001

x14 + x x7 + x6 + x5 + x3 + x 1110 1010

x14 + x2 x7 + x6 + x5 + x3 + x2 1110 1100

x14 + x3 x7 + x6 + x5 1110 0000

x14 + x4 x7 + x6 + x5 + x4 + x3 1111 1000

x14 + x5 x7 + x6 + x3 1100 1000

x14 + x6 x7 + x5 + x3 1010 1000

x14 + x7 x6 + x5 + x3 0110 1000

x14 + x8 x5 + x4 + x3 + 1 0011 1001

x14 + x9 x7 + x4 + x3 + x+ 1 1001 1011

x14 + x10 x3 + x2 + x 0000 1110

x14 + x11 x7 + x6 + x5 + x4 + x2 + 1 1111 0101

x14 + x12 x7 + x6 + x4 + x 1101 0010

x14 + x13 x7 + x4 + x3 + x2 1001 1100

Tabul’ka 9.2: Dekódovacia tabul’ka binárneho (15,7)-kódu

Predpokladáme, že bolo odvysielané slovo u(x), počas prenosu vznikla chyba e(x) a
bolo prijaté slovo v(x):

u(x) 011 1011 1111 0001 x13 + x12 + x11 + x9 + x8 + x7 + x6 + x5 + x4 + 1
e(x) 000 0010 0001 0000 x9 + x4

v(x) 011 1001 1110 0001 x13 + x12 + x11 + x8 + x7 + x6 + x5 + 1

V nasledujúcej tabul’ke sú uvedené hodnoty koeficientov spracovávaného polynómu
v(x) a syndrómu s(x) v jednotlivých krokoch algoritmu. Kvôli stručnosti uvádzame len

120 KAPITOLA 9. CYKLICKÉ KÓDY

vektory koeficientov príslušných polynómov, pričom koeficienty pri najvyšších mocni-
nách sú vl’avo.

krok v(x) s(x) s(x) ∈ DT ?
0. 011 1001 1110 0001 0110 0011 −
1. 111 0011 1100 0010 1100 0110 −
2. 110 0111 1000 0101 0101 1101 −
3. 100 1111 0000 1011 1011 1010 −
4. 001 1110 0001 0111 1010 0101 −
5. 011 1100 0010 1110 1001 1011 X
6. 111 1000 0101 1101 1110 0110 −
7. 111 0000 1011 1011 0001 1101 −
8. 110 0001 0111 0111 0011 1010 −
9. 100 0010 1110 1111 0111 0100 −
10. 000 0101 1101 1111 1110 1000 X
11. 000 1011 1011 1111 0000 0000 −

011 1011 1111 0001 0000 0000 ∗

Tabul’ka 9.3: Dekódovanie (15,7)-kódu pomocou Meggittovej metódy

Poznámka. Vrát’me sa ešte k predchádzajúcemu príkladu. Z porovnania zložitosti de-
kódovania uvedeného (15,7)-kódu pomocou štandardnej metódy dekódovania lineárnych
kódov a Meggittovej metódy, jednoznačne vychádza lepšie Meggittova metóda. Štan-
dardná tabul’ka dekódovania obsahuje 256 dvojíc (syndróm, chyba), zatial’ čo Meggit-
tov dekóder pracuje s tabul’kou pozostávajúcou z 15 položiek (syndrómov). Meggittova
metóda umožňuje opravit’ všetky chyby váhy najviac 2; t.j. 121 rozličných chýb. Chyby
váhy väčšej ako 2 Meggittov dekóder neopravuje. Ak sa na (15,7)-kódu pozeráme ako
na lineárny kód, tak zostávajúcich 135 tried štandardného rozkladu vektorového pries-
toru GF(2)15 podl’a kódu má ako predstavitel’ov vektory-chyby váhy väčšej ako 2. Ked’že
binárnych vektorov dĺžky 15 váhy 3 je 455, v ideálnom prípade (ak by predstavitel’mi
ostávajúcich tried rozkladu boli chybové vektory váhy 3), by dekóder lineárneho kódu
umožnil popri chybách váhy 0,1 a 2 opravit’ asi 30% chýb váhy 3.

Cyklický posun prijatých slov kódovaných pomocou cyklických kódov možno využit’
na ešte efektívnejšie dekódovanie, ako poskytuje Meggittov dekóder v prípade, ak sa
chyby v prijatom slove nenachádzajú príliš d’aleko od seba. V takomto prípade je možné
použit’ metódu nazývanú error trapping , ktorú podrobnejšie popíšeme v nasledujúcej
časti.

9.5 Error trapping dekódovanie

Error trapping dekódovanie („chytanie/lapanie“ chýb) je metóda dekódovania cyklických
kódov. Vhodná je pri kódoch opravujúcich jednu, prípadne dve chyby a v situáciach, ked’
očakávame výskyt chýb na blízkych pozíciach v kódovom slove (tzv. burst chyby).

9.5. ERROR TRAPPING DEKÓDOVANIE 121

Budeme predpokladat’, že C je cyklický (n, k) kód nad GF(2) opravujúci t chýb. Teda
kódové slová v C majú dĺžku n a k informačných symbolov. Nech g(x) je generujúci po-
lynóm kódu C . Metóda error trapping funguje správne vtedy, ak je najviac t chýb roz-
miestnených na najviac n− k susedných pozíciach.

n

n – k

x xxx x x

Nech f(x) = a0+a1x+a2x2+· · ·+anxn je polynóm nadGF(2). Označme wt(f(x)) =
∑
i ai

jeho váhu. Nech w je slovo s najviac t chybami. Potom platia nasledujúce tvrdenia.

Lema 1. Ak je váha syndrómu slova w najviac t, tak chybový polynóm je rovný syn-
drómu.

Dôkaz. Označme s(x) syndróm a e(x) príslušný chybový polynóm slova w. Potom platí:

s(x) = e(x) mod g(x).

Inak povedané, e(x) = q(x)g(x) + s(x). Z predpokladu o počte chýb vo w vyplýva, že
wt(e(x)) ≤ t. Navyše vieme, že wt(s(x)) ≤ t (predpoklad lemy). Teda váha e(x) − s(x)
je najviac 2t. Kód C opravuje t chýb, teda minimálna vzdialenost’ l’ubovol’ných dvoch
kódových slov je aspoň 2t+1. Ked’že e(x)−s(x) je kódové slovo (je to násobok generujúceho
polynómu) s váhou najviac 2t a 0 je tiež kódové slovo, dostávame:

e(x) − s(x) = 0.

Odtial’ bezprostredne vyplýva tvrdenie lemy.

Lema 2. Ak sú chyby na najviac n − k susedných pozíciach, tak existuje cyklický posun
w, ktorý má syndróm váhy najviac t.

Dôkaz. Vezmime taký cyklický posun w, pre ktorý sú chyby „najviac vpravo“ (formálne,
stupeň chybového polynómu pre príslušný cyklický posun je minimálny). Označme ta-
kýto posunw′ a prislúchajúci chybový polynóm e′(x). Podl’a predpokladu lemy je deg(e′(x)) ≤
n− k− 1, kde symbolom deg označujeme stupeň polynómu. Pre syndróm s′(x) máme:

s′(x) = e′(x) mod g′(x).

Ked’že g(x) je generujúcim polynómom kódu C , deg(g(x)) = n− k. Preto s′(x) = e′(x). Po
zohl’adnení predpokladu o počte chýb vo w dostávame wt(s′(x))) ≤ t.

Predchádzajúce dve lemy poskytujú teoretické zdôvodnenie pre error trapping dekó-
dovanie cyklických kódov (samozrejme, pri splnení predpokladov o umiestnení chýb v
dekódovanom slove w). Postupne skušame pre všetky rotácie w′ slova w:

122 KAPITOLA 9. CYKLICKÉ KÓDY

1. s′(x)← w′(x) mod g(x)

2. ak wt(s′(x)) ≤ t (podl’a lemy 2):

(a) oprav w′: w′(x)← w′(x) + s′(x) (lema 1)

(b) w← aplikuj „inverznú“ rotáciu na w′

(c) koniec

Pod pojmom inverzná rotácia máme na mysli to, že ak sme w′ dostali z w cyklickým po-
sunom o p pozícií dol’ava, tak teraz opravené w′ posunieme cyklicky o p pozícií doprava.
Na konci dostaneme vo w opravené slovo.

Príklad. Uvažujme binárny cyklický kód (15, 7) opravujúci 2 chyby, s generujúcim poly-
nómom

g(x) = x8 + x7 + x6 + x4 + 1.

V tomto prípade bude error trapping metóda dekódovania úspešná pre tie dvojice chýb,
ktoré sú od seba vzdialené (cyklicky) o najviac 15− 7 = 8 pozícií. A to sú všetky

Samozrejme, slová s jednou (alebo dokonca žiadnou) chybou dokáže error trapping
dekódovat’ vždy.

Príklad. Uvažujme binárny cyklický kód (15, 5) opravujúci 3 chyby, s generujúcim poly-
nómom

g(x) = x10 + x8 + x5 + x4 + x2 + x+ 1.

Vzdialenost’ chýb musí byt’ v tomto prípade najviac 15 − 5 = 10. Pre chyby váhy menšej
ako 3 je podmienka triviálne splnená. Demonštrujme si príklad dokódovania na slove
w = 100000100010110. Poznamenajme, že pri výpočtoch budeme polynómy reprezento-
vat’ ako vektory ich koeficientov (pre prehl’adnejší zápis). Postupne rotujeme w dol’ava,
počítame syndróm a hl’adáme taký, ktorý má váhu najviac 3:

posun: 0
100000100010110
10100110111
1001001100110
10100110111

11010111010
10100110111
1110001101

posun: 1
000001000101101

1000101101

posun: 2
000010001011010

10100110111
101101101

posun: 3
000100010110100

10100110111
1011011010

9.6. GOLAYOV KÓD 123

posun: 4
001000101101000
10100110111

10110110100
10100110111

10000011

Váha syndrómu pre posun 4 je rovná 3. Takže môžeme opravit’ slovow′ = 001000101101000⊕
10000011 = 001000111101011 a posunút’ ho naspät’ (o 4 pozície doprava). Teda opravené
slovo w je:

101100100011110.

Urobme ešte skúšku správnosti, ked’ skúsime vydelit’ toto slovo generujúcim polynómom
(pre kódové slovo očakávame zvyšok 0):

101100100011110
10100110111

101001101110
10100110111

0

V prípade binárneho cyklického (15, 5) kódu môže nastat’ práve pät’ rozmiestnení 3
chýb, ked’ tieto neležia v úseku dĺžky 10. Jedno rozmiestnenie je nakreslené na nasledu-
júcom obrázku, ostatné sú jeho cyklickými posunmi.

x x x

Pravdepodobnost’, že takáto situácia nastane pri náhodnej vol’be práve 3 chýb je
5/
(
15
3

)
∼ 0, 011.

9.6 Golayov kód

V časti 7.2 sme zaviedli pojem dokonalého kódu a následne sme ukázali, že Hammin-
gove kódy sú dokonalé binárne kódy. Okrem triviálnych kódov nepárnej dĺžky pozostá-
vajúcich z dvoch kódových slov s maximálnou možnou vzdialenost’ou slov sa nám iné
dokonalé kódy nepodarilo nájst’. To naznačuje, že dokonalých kódov nemusí byt’ vel’a,
resp. že iné dokonalé kódy ani nemusia existovat’. V tejto časti najprv popíšeme netri-
viálny binárny cyklický dokonalý kód opravujúci 3 chyby a potom v nasledujúcej časti
uvedieme výsledky o (ne-)existencii dokonalých kódov.

Nutnou podmienkou existencie dokonalého q-árneho kódu opravujúceho t chýb je
splnenie rovnosti

qn−k =

t∑
j=0

(
n

j

)
(q− 1)j,

124 KAPITOLA 9. CYKLICKÉ KÓDY

t.j. mohutnost’ „kódovej gule“ musí byt’ mocninou q. Táto podmienka je splnená pre n =
23, q = 2 a t = 3, nakol’ko (

23

0

)
+

(
23

1

)
+

(
23

2

)
+

(
23

3

)
= 211.

Ukážeme, že kód s uvedenými parametrami skutočne existuje. Ide o Golayov binárny
cyklický (23,12)-kód opravujúci tri chyby.

Najprv nájdeme generujúci polynóm daného kódu. (Pripomíname, že by to mal byt’
polynóm stupňa 11 nad pol’om GF(2), ktorý delí polynóm x23 − 1). Rozložíme polynóm
x23 − 1 na vhodné činitele:

x23 − 1 = (x− 1) · g(x) · g̃(x),

kde

g(x) = 1+ x2 + x4 + x5 + x6 + x10 + x11 (9.7)
g̃(x) = 1+ x+ x5 + x6 + x7 + x8 + x11 (9.8)

Vyberieme ako generujúci polynóm cyklického kódu C a ukážeme, že že tento kód sku-
točne opravuje 3 chyby. Kedže generujúci polynóm g(x) má 7 nenulových koeficientov,
mainimálna vzdialenost’ kódu C nemôže presiahnut’ hodnotu 7. Ukážeme, že minimálna
vzdialenost’ kódu C je skutočne 7. Kód C je lineárny, a preto by stačilo zostrojit’ jeho kon-
trolnú maticu a ukázat’, že jej l’ubovol’ných 6 stĺpcov je lineárne nezávislých. To by však
znamenalo preverit’

(
23
6

)
= 100947možností čo by sa pomocou počítača dalo spravit’. Uve-

dieme iný, rafinovanejší kombinatorický dôkaz [2]), ktorého podstata spočíva v tom, že
vylúčime existenciu kódových slov váhy menšej ako 7 v kóde C.4 Dôkaz rozdelíme na tri
časti, v ktorých postupne ukážeme, že kód C neobsahuje slová

1. váhy menšej alebo rovnej 4;

2. váhy 2,6,10,14,18,22;

3. váhy 1,5,9,13,17,21.

Najprv ukážene, že g(x) a g̃(x) sú ireducibilné polynómy nad pol’om GF(2), potom sa
pozrieme na korene týchto polynómov v rozšírenom poli GF(211). Nech je α generátor
cyklickej grupy pol’a GF(211). To znamená, že rád prvku α je 211− 1 = 2047. Číslo 2047 sa
dá rozložit’ na súčin prvočísel 23 · 89. Potom prvok β = α89 aj inverzný prvok k prvku β,
prvok β−1 = α1958 pol’a GF(211) majú rád 23. Označme minimálne polynómy prvkov β a
β−1 symbolmi mβ(x), resp. mβ−1(x). Koreňmi minimálneho polynómu mβ(x) sú prvky

β2, β4, β8, β16, β32) = β9, β64 = β18, β128 = β13, β256 = β3, β512 = β6, β1024 = β12, β2048 = β,

a koreňmi minimálneho polynómumβ−1(x) sú všetky prvky pol’aGF(211) tvaru (β−1)2
j
j =

1, 2, . . . ; t.j. prvky
β22, β19, β15, β7, β14, β5, β10, β20, β17, β11.

4Idea dôkazu sa nikde inde nevyužíva, a preto dôkaz možno pri prvom čítaní preskočit’.

9.6. GOLAYOV KÓD 125

Oba minimálne polynómymβ(x),mβ−1(x) majú po 11 koreňov; t.j. majú stupeň 11 a dajú
sa vyjadrit’ ako súčin lineaárnych činitel’ov:

mβ(x) = (x− β) · (x− β2) · · · · · (x− β12)
mβ−1(x) = (x− β22) · (x− β19) · · · · · (x− β11)

Ked’že multiplikatívna podgrupa pol’a GF(211) generovaná prvkom β má prvočíselný rád
(23), každý z prvkov β,β2, . . . , β22 má rád 23, a teda polynóm x−βj delí polynóm (x−β23),
j = 1, . . . , 22 a, samozrejme, aj polynóm x − 1 delí polynóm (x − β23). To znamená, že
polynóm (x− β23) môžeme vyjadrit’ v tvare súčinu

(x− β23) = mβ(x) ·mβ−1(x)(x− 1).

Rozklad polynómu na súčin ireducibilných polynómov (nad daným pol’om) je jednoznačný,
a to znamená, že

mβ(x) ·mβ−1(x) = g(x) · g̃(x),

resp. (napríklad)
mβ(x) = g(x) g̃(x) = mβ−1(x),

t.j. generujúce polynómy g(x) a g̃(x) sú zároveň minimálnymi polynómami prvkov β a
β−1 pol’aGF(211). Teraz vylúčime existenciu nenulových kódových slov váhy menšej alebo
rovnej 4 v kóde C.

Lema 3. Cyklický kód C s generujúcim polynómom g(x) neobsahuje nenulové kódové
slová váhy menšej alebo rovnej 4.

Dôkaz. Ked’že prvky β,β2, β3, β4 sú koreňmi generujúceho polynómu g(x) a každý kó-
dový polynóm je násobkom generujúceho polynómu, musia byt’ uvedené prvky koreňmi
každého kódovéhom polynómu kódu C. V maticovom vyjadrení to vyzerá nasledovne: ak
je u(x) kódový polynóm kódu C, tak u · H⊤ = 0, kde u je vektor koeficientov kódového
polynómu u(x) a H je matica tvaru

H =


1 β β2 . . . β22

1 β2 β4 . . . β21

1 β3 β6 . . . β20

1 β4 β8 . . . β19


Matica H je zrejme kontrolnou maticou kódu C. Ak vyberieme l’ubovol’né 4 stĺpce matice
H, dostávame štvorcovú podmaticu, ktorej determinant sa dá vyjadrit’ v tvare∣∣∣∣∣∣∣∣

βi1 βi2 βi3 βi4

β2i1 β2i2 β2i3 β2i4

β3i1 β3i2 β3i3 β3i4

β4i1 β4i2 β4i3 β4i4

∣∣∣∣∣∣∣∣ = β4(i1+i2+i3+i4) ·

∣∣∣∣∣∣∣∣
1 1 1 1

βi1 βi2 βi3 βi4

β2i1 β2i2 β2i3 β2i4

β3i1 β3i2 β3i3 β3i4

∣∣∣∣∣∣∣∣ .
Determinant na pravej strane je Vandermondov determinant, ktorého hodnota∏

j>l

(βij − βil)

126 KAPITOLA 9. CYKLICKÉ KÓDY

je nenulová, nakol’ko βij ̸= βil ak j ̸= l. To znamená, že l’ubovol’ná štvorcová podmatica
4 × 4 kontrolnej matice H je regulárna, resp. minimálna vzdialenost’ kódu C je aspoň
5.

Teraz vylúčime existenciu kódových slov váhy 2,6,10,14,18,22.

Lema 4. Nech C je cyklický (23,12) kód s generujúcim polynómom g(x) a nech je u(x)
kódový polynóm párnej váhy. Potom je váha kódového polynómu u(x) delitel’ná 4.

Dôkaz. Nech je u(x) = u0 + u1x + . . . u22x
22 kódový polynóm kódu C. V dôkaze bu-

deme využívat’ obe interpretácie kódových slov - aj polynomickú, aj vektorovú. Ozna-
číme preto symbolom u = (u0, u1, . . . , u22) kódové slovo–vektor koeficientov–kódového
polynómu u(x). Ked’že C je cyklický kód, kódový polynóm u(x) sa dá vyjadrit’ v podobe
súčinu

u(x) = g(x) · a(x),

kde a(x)je polynóm nad GF(2). Ak je váha kódového slova u párna, tak je hodnota
∑
i ui

párna, resp. ∑
i

ui = 0 mod 2. (9.9)

Dosadíme do kódového polynómu u(x) hodnotu 1 a na základe 9.9 dostávame

u(1) = u0 + u1 + · · ·+ u22 = 0 mod 2.

To znamená, že 1 je koreňom kódového polynómu u(x), resp., že

u(1) = g(1) · a(1) = 0 (9.10)

Ked’že prvok 1 nie je koreňom generujúceho polynómu g(x), zo vzt’ahu 9.10 vyplýva, že
prvok 1 je koreňom polynómu a(x), a kódový polynóm možno rozložit’ na súčin nasledu-
júcich činitel’ov:

u(x) = g(x) · b(x) · (x− 1). (9.11)

Uvažujeme teraz zrkadlový obraz kódového slova u, slovo uR = u22 . . . u1u0. Slovu uR
priradíme polynóm

ũ(x) = ũ0 + ũ1x+ · · ·+ ũ21x21 + ũ22x22 = (9.12)
= u22 + u21x+ · · ·+ u1x21 + u0x22. (9.13)

Dá sa l’ahko overit’, že pre koeficienty polynómov ũ(x) a u(x) platí

ũi = u22−i, i = 0, . . . , 22; (9.14)

a samotné polynómy sú spojené vzt’ahom

ũ(x) = x22 · u(x−1). (9.15)

V d’alšom budeme kombinovat’ polynómy ũ(x) a u(x). Prvok β−1 (= β22) je koreňom
polynómu ũ(x), pretože podl’a 9.15

ũ(β−1) = β−22 · u(β) = 0.

9.6. GOLAYOV KÓD 127

Minimálnym polynómom prvku β−1 je polynóm g̃(x). Ak β−1 je koreňom polynómu ũ(x),
tak g̃(x) delí ũ(x); t.j. existuje polynóm ã(x) taký, že

ũ(x) = g̃(x) · ã(x). (9.16)

Teraz vynásobíme polynómy ũ(x) a u(x):

ũ(x) · u(x) = g̃(x) · ã(x) · g(x) · b(x) · (x− 1) = g̃(x) · g(x) · (x− 1) · b(x) · ã(x) =
= (x23 − 1) · b(x) · ã(x). (9.17)

Vyjaríme súčin polynómov ũ(x) a u(x) explicitne, aby sme mohli kombinovat’ ich koefi-
cienty

ũ(x) · u(x) = ũ0 · u0 + (ũ0 · u1 + ũ1 · u0) · x+ (ũ0 · u2 + ũ1 · u1 + ũ2 · u0) · x2 +
+ (ũ0 · u3 + ũ1 · u2 + ũ2 · u1 + ũ3 · u0) · x3 + · · ·+ ũ22 · u22 · x44.

Využijeme vzt’ah 9.14, v súčine polynómov ũ(x) a u(x) nahradíme koeficienty ũi „obyčajnými“
koeficientami a vyjadríme ho v tvare konvolúcie postupností koefiecientov.

ũ(x) · u(x) =
44∑
j=0

22∑
i=0

ui · u22+i−j · xj.

Kvôli zjednodušeniu úprav položíme ui = 0 pre (i < 0) ∨ (i > 22). Rozšírime teraz
sumačný rozsah premennej i v poslednej sume

ũ(x) · u(x) =
44∑
j=0

∞∑
i=−∞ui · u22+i−j · x

j (9.18)

a rozdelíme sumačný rozsah premennej j na tri disjunktné intervaly: (0 ≤ j ≤ 44) = (0 ≤
j < 22)∨ (j = 22)∨ (23 ≤ j ≤ 44). Potom sa súčin polynómov ũ(x) a u(x) rozpadáva na tri
sumy:

ũ(x) · u(x) =
21∑
j=0

∞∑
i=−∞ui · u22+i−j · x

j +

∞∑
i=−∞u

2
i · x22 +

44∑
j=23

∞∑
i=−∞ui · u22+i−j · x

j (9.19)

Koeficienty ui sú prvky pol’a GF(2), a preto u2i = ui. Kódové slovo u má párnu váhu a
teda druhá suma v súčine 9.19 je nulová5

∞∑
i=−∞u

2
i · x22 = x22 ·

∞∑
i=−∞ui = 0.

Teraz upravíme 1. a 3. sumu v súčine 9.19. Posunieme hranice sumácie v prvej z uvede-
ných súm substitúciou j := j− 1, resp. j := j+ 22 v druhej sume:

ũ(x) · u(x) =
22∑
j=1

∞∑
i=−∞ui · u23+i−j · x

j−1 +

22∑
j=1

∞∑
i=−∞ui · ui−j · x

j+22 (9.20)

5v modulárnej aritmetike nad pol’om GF(2).

128 KAPITOLA 9. CYKLICKÉ KÓDY

Teraz zavedieme substitúciu i := i+ j v druhej sume 9.20

ũ(x) · u(x) =
22∑
j=1

∞∑
i=−∞ui · u23+i−j · x

j−1 +

22∑
j=1

∞∑
i=−∞ui · ui+j · x

j+22 (9.21)

a upravíme

ũ(x) · u(x) =

22∑
j=1

∞∑
i=−∞ui · u23+i−j · x

j−1 +

22∑
j=1

∞∑
i=−∞ui · ui+j · x

j−1 −

−

22∑
j=1

∞∑
i=−∞ui · ui+j · x

j−1 +

22∑
j=1

∞∑
i=−∞ui · ui+j · x

j+22 =

=

22∑
j=1

[∞∑
i=−∞ui · u23+i−j + ui · ui+j

]
· xj−1 +

 22∑
j=1

∞∑
i=−∞ui · ui+j · x

j−1

 · (x23 − 1) (9.22)

Súčin polynómov ũ(x)·u(x) je podl’a vzt’ahu 9.17 delitel’ný polynómom (x23−1) Z rovnosti
9.22 vyplýva, že aj polynóm

22∑
j=1

[∞∑
i=−∞ui · u23+i−j + ui · ui+j

]
· xj−1 (9.23)

musí byt’ násobkom polynómu (x23 − 1). Polynóm 9.23 má však stupeň menší ako 23, a
ak má byt’ násobkom polynómu (x23 − 1), musí byt’ nulový. To znamená, že

∞∑
i=−∞ui · u23+i−j + ui · ui+j = 0 mod 2, j = 1, . . . , 22. (9.24)

Ak v sústave 9.24 prejdeme od modulárnej k celočíselnej aritmetike, sústavu rovníc 9.24
možno zapísat’ nasledovne

∞∑
i=−∞ui · u23+i−j + ui · ui+j = 2dj; dj ∈ Z, j = 1, . . . , 22. (9.25)

Ak vo vzt’ahu 9.25 zavedieme substitúciu j := 23− j, dostávame

2dj−23 =

∞∑
i=−∞ui · ui+j + ui · u23+i−j = 2dj; dj ∈ Z, j = 1, . . . , 22. (9.26)

To znamená, že dj = dj−23 pre j = 1, . . . , 22. Spočítame teraz hodnotu súčtu súm z 9.25 v
celočíselnom obore

22∑
j=1

∞∑
i=−∞ui · (u23+i−j + ui+j) = 2

22∑
j=1

dj = 4

11∑
j=1

dj = 4d, (9.27)

9.6. GOLAYOV KÓD 129

kde d je nejaké celé číslo. Rozdelíme sumu 9.27 na dve sumy. Vzhl’adom na to, že každý
zo sumandov obsahuje faktor u0, môžeme zúžit’ sumačný rozsah premennej i na interval
0 ≤ i ≤ 22. Potom v prvej sume použijeme substitúciu j := 23− j

22∑
j=1

∞∑
i=−∞ui · (u23+i−j + ui+j) =

22∑
j=1

22∑
i=0

ui · ui+j +
22∑
j=1

22∑
i=0

ui · ui+j. (9.28)

Všimneme si, že sumy v pravej časti rovnosti (9.27) obsahujú všetky dvojice ui · uj také,
že i ̸= j; t.j.

22∑
j=1

∞∑
i=−∞ui · (u23+i−j + ui+j) =

22∑
i=0

∑
j ̸=i
ui · uj = 4d. (9.29)

Nech je wt([)u] = w. Sumu (9.29) rozložíme na dve sumy podl’a toho, akú hodnotu nado-
búda ui: a upravíme:

22∑
i=0

∑
j ̸=i
ui · uj =

∑
i

∑
j̸=i

ui · uj · (ui = 0) +
∑
i

∑
j ̸=i
ui · uj · (ui = 1) =

= 0+
∑
i

(ui = 1)
∑
j ̸=i
uj =

∑
i

(ui = 1) · (w− 1) = w · (w− 1).

Z posledného vzt’ahu a z (9.29) dostávame, že

w · (w− 1) = 4d.

Ked’že Hammingova váha slova u je párna, hodnota w−1 je nepárna, a teda wmusí byt’
delitel’né 4.

Golayov kód teda neobsahuje slová párnej váhy, ktorá nie je delitel’ná 4. To znamená,
že spomedzi kandidátov na kódové slová vypadávajú slová váh 2, 6, 10, 14, 18, 22. Poten-
ciálne váhy kódových slov sú teda 5, 7, 8, 9, 11, 12, 13, 15, 16, 19, 20, 21, 23. Problematické sú
slová váhy 5, pretože ak by Golayov kód obsahoval také kódové slová, znamenalo by to,
že jeho minimálna vzdialenost’ je 5. Existenciu kódových slov váhy 5 (a d’alších) vylúčime
v nasledujúcej leme.

Lema 5. Golayov kód neobsahuje kódové slová váh 1, 5, 9, 13, 17, 19, 20, 21.

Dôkaz. Pripomenieme, že polynóm x23 − 1 sa dá vyjadrit’ v podobe súčinu

x23 − 1 = (x− 1) · g(x) · g̃(x).

To znamená, že polynóm

f(x) = x23 − 1/(x− 1) = 1+ x+ x2 + x3 + · · · ∗ x22

je kódovým slovom Golayovho kódu, nakol’ko

x23 − 1/(x− 1) = g(x) · g̃(x).

130 KAPITOLA 9. CYKLICKÉ KÓDY

Golayov kód je zároveň lineárnym kódom, a to znamená, že súčet dvoch kódových slov
(kódových polynómov)je opät’ kódovým slovom (polynómom). To znamená, že pre l’ubo-
vol’ný kódový polynóm u(x) je aj polynóm u(x) + f(x) kódovým polynómom. Kódový poly-
nóm f(x) má Hammingovu váhu 23; Hammingova váha kódového polynómu u(x)+f(x) je
23 − wt(u). Ak teda Golayov kód neobsahuje slová váhy w, nemôže obsahovat’ ani slová
váhy 23−w. Z tohto faktu a z liem 3 a 4 vyplýva tvrdenie našej lemy. Teraz môžeme
sformulovat’ základné tvrdenie o Golayovom kóde.

Veta 9.6.1. Binárny Golayov (23, 12) kód je dokonalý kód opravujúci 3 chyby.

Dôkaz. Vyplýva priamo z tvrdení liem 3, 4 a 5.

Blahut [2] pomocou počítača analyzoval váhy slov Golayovho kódu. Výsledky jeho
skúmania sú uvedené v nasledujúcej tabul’ke

váha počet slov
0 1

7 253

8 506

11 1288

12 1288

15 506

16 253

23 1

spolu 4096

Tabul’ka 9.4: Váhy slov Golayovho (23,12)-kódu

9.7 Dokonalé a kvázidokonalé kódy

Kapitola 10

Boseove-Chandhuryove-
Hocquenghemove
kódy

Boseove-Chandhuryove-Hocquenghemove (BCH) kódy1 tvoria pomerne rozsiahlu pod-
triedu cyklických kódov, ktoré sa vd’aka svojim dobrým vlastnostiam často používajú v
praxi a sú predmetom intenzívneho teoretického štúdia. Záujem o BCH kódy vyplýva
podl’a [2] najmä z toho, že

1. BCH kódy existujú pre pomerne rozsiahlu množinu parametrov (dĺžka, minimálna
vzdialenost’ a i.); a už pre malé dĺžky (kódu) existujú dobré BCH kódy,

2. pre BCH kódy existujú jednoduché metódy kódovania a dekódovania,

3. podtriedou BCH kódov sú známe Reedove-Solomonove kódy, ktoré sú pre niektoré
parametre optimálne samoopravné kódy a

4. štúdium BCH kódov je dobrým základom pre pochopenie zložitejších kódov.

Výklad BCH kódov začneme konštrukciou binárnych BCH kódov opravujúcich 2 chyby.
Potom formálne zavedieme BCH kódy a dokážeme vetu o minimálnej vzdialenosti BCH
kódu. V d’alšom sa budeme zaoberat’ rozličnými metódami dekódovania BCH kódov a
kapitolu zavŕšime čast’ou venovanou spomínaným Reedovým-Solomonovým kódom.

10.1 Binárne BCH kódy opravujúce 2 chyby

BCH kódy sú zovšeobecnením Hammingových kódov. Kým však Hammingove kódy majú
dĺžky qm − 1 a opravujú jednu chybu2, BCH kódy sú podstatne rozmanitejšie: existujú

1BCH kódy objavil v roku 1959 A. Hocquenghem a nezávisle od neho v roku 1960 R.C.Bose a D.K.Ray-
Chaunhuri.

2my sme sa zaoberali binárnymi Hammingovými kódmi; t.j. prípadom q = 2

131

132 KAPITOLA 10. BOSEOVE-CHANDHURYOVE-HOCQUENGHEMOVE KÓDY

BCH kódy rôznych dĺžok nad pol’om GF(q), q ̸= 2, ktoré opravujú t chýb, t > 1. Skôr,
ako sa budeme konštrukciou, vlastnost’ami a dekódovaním BCH kódov zaoberat’ vo vše-
obecnosti, pozrieme sa na zvláštny prípad BCH kódov—binárne BCH kódy opravujúce 2
chyby a ilustrujeme na nich konštrukcie, ktoré budeme v d’alších častiach tejto kapitoly
používat’.

Vrát’me sa k Hammingovmu (15, 11) kódu zo začiatku kapitoly 9. Tento kód sme za-
dali pomocou kontrolnej matice H′, ktorá sa dala interpretovat’ dvojako: bud’ ako matica
typu (4, 15) nad pol’om GF(2), alebo ako matica typu (1, 15) nad pol’om GF(24). V druhom
prípade sa kontrolná matica redukovala na 1 riadok, obsahujúci postupnost’ mocnín pri-
mitívneho prvku α pol’a GF(24):

H′ = [1 α α2 . . . α14]

a dekódovanie prijatého slova v = (v0, v1, . . . , v14) = u + e; t.j. výpočet

v ·H′⊤ = u ·H′⊤ + e ·H′⊤,

sa dalo interpretovat’ ako vyčíslenie hodnoty polynómu v(x) = v0 + v1 · x + v2 · x2 +
· · · + v14 · x14 v prvku α; t.j. výpočet hodnoty v(α). Ak počas prenosu kódového slova
nevznikla chyba (resp. vznikla chyba, ktorá odvysielané kódové slovo u transformovala
na iné kódové slovo v) tak v(α) = 0. Predpokladajme, že počas prenosu vznikla chyba
váhy 1; t.j. chybový polynóm bude mat’ tvar e(x) = xi. Potom po dosadení prvku α do
prijatého polynómu v(x) dostávame hodnotu syndrómu

v(α) = u(α) + e(α) = e(α) = αi.

Poznámka. V d’alšom budeme kvôli jednoduchosti hodnoty jednotlivých zložiek syn-
drómu označovat’ symbolmi Si; v(αi) = Si, i = 1, 2, Pripomíname, že hodnoty Si nie
sú koeficientami syndrómového polynómu s(x), ale tak syndróm S1, . . . ako aj syndró-
mový polynóm s(x) nesú tú istú informáciu.

V prípade Hammingovho kódu informácia, ktorú obsahuje syndróm S1 postačuje na
určenie chyby. Stačí určit’ hodnotu exponentu (S1 = αi) čo sa dá spravit’ napríklad po-
mocou tabul’ky a potom negovat’ i-ty bit prijatého slova. Prejdeme teraz od konkrétneho
Hammingovmu (15, 11) kódu k všeobecnému Hammingovmu kódu dĺžky n = 2m − 1 s
kontrolnou maticou

H = [1 α α2 . . . αn−1]

a pozrieme sa na to, čo by sa stalo, keby počas prenosu vznikli v odvysielanom kódovom
slove dve chyby. Nech

e(x) = xi1 + xi2 .

Dosadením prvku α do prijatého polynómu dostávame hodnotu

v(α) = e(α) = αi1 + αi2 .

Táto hodnota na určenie pozícií chýb nestačí a preto potrebujeme nájst’ d’alšie vzt’ahy
medzi αi1 , αi2 . Skúsime rozšírit’ kontrolnú maticu H pridaním d’alšieho riadku tak, aby
násobenie prijatého vektora kontrolnou maticou viedlo k sústave rovníc s neznámymi

10.1. BINÁRNE BCH KÓDY OPRAVUJÚCE 2 CHYBY 133

αi1 , αi2 . Nový riadok kontrolnej matice bude mat’ rovnaký tvar ako riadok pôvodnej kon-
trolnej matice; t.j. 1 β β2 . . . βn−1. Ak β = αj, (α je primitívny prvok pol’a GF(qm)) tak
súčin v ·H⊤ možno zapísat’ v podobe sústavy dvoch rovníc

v(α) = S1, v(β) = v(αj) = Sj

Ako vybrat’ prvok β? Je zrejmé, že β ̸= α, pretože v opačnom prípade by kontrolná matica
H obsahovala dva rovnaké riadky a súčin v ·H⊤ by viedol k „sústave“ dvoch identických
rovníc. Ako sa ukáže neskôr β nemôže patrit’ do množiny (cyklu) α,α2, α4, . . . α2j , . . . ,
pretože v tomto prípade by rovnice v sústave zadanej súčinom v · H⊤ boli závislé. To
znamená, že spomedzi kandidátov na prvok β vypadli α,α2 a prvým prirodzeným kan-
didátom je α3. Kontrolná matica bude po rozšírení vyzerat’ nasledovne:3

H =

[
1 α α2 . . . αn−1

1 α3 α6 . . . α3(n−1)

]
.

Kontrolná matica H určuje cyklický kód C, ktorý sa vyznačuje tým, že všetky kódové
polynómy majú korene α,α3, pretože[

u ∈ C ↔ u ·H⊤ = 0
]↔ [

u(α) = u(α3) = 0
]
.

To znamená, že generujúcim polynómom kódu C bude

g(x) = lcm(mα(x),mα3(x)),

resp. kedže minimálne polynómy prvkov α,α3 sú rôzne, nemôžu mat’ spoločný faktor, a
teda

g(x) = mα(x) ·mα3(x).

Ak pri prenose kódového slova vznikli 2 chyby; e(x) = xi1 + xi2 , tak pri dekódovaní
vyčíslime hodnotu prijatého polynómu v(x) v prvkoch α,α3 a dostávame sústavu

v(α) = e(α) = αi1 + αi2

v(α3) = e(α3) = α3i1 + α3i2 . (10.1)

Aby sme trocha zjednodušili zápis, zavedieme označenie

X1 = α
i1 , X2 = α

i2

a prepíšeme sústavu (10.1) do prehl’adnejšej podoby:

X1 + X2 = S1

X31 + X
3
2 = S3. (10.2)

Hodnoty X1, X2 ∈ GF(2m) sa nazývajú lokátory chýb. Ak sa nám totiž podarí na zá-
klade hodnôt syndrómu vypočítat’ hodnoty lokátorov chýb X1, X2, tak potom vypočítame
logα(X1) = i1 a logα(X2) = i2 a tak určíme pozície i1, i2 na ktorých vznikli chyby. Sústavu

3Kontrolná matica H zapísaná v binárnej podobe nad pol’om GF(2) má 2m riadkov.

134 KAPITOLA 10. BOSEOVE-CHANDHURYOVE-HOCQUENGHEMOVE KÓDY

(10.2) nebudeme riešit’ priamo, ale spravíme trochu umelý krok. Zavedieme pomocný po-
lynóm Λ(x) nad pol’om GF(2m), ktorého koreňmi budú práve lokátory chýb a ukážeme,
že pomocou hodnôt syndrómu dokážeme vyjadrit’ koeficienty uvedeného polynómu:

Λ(x) = (x− X1)(x− X2) = x
2 + (X1 + X2) · x+ X1 · X2. (10.3)

Potrebujeme nájst’ explicitné vyjadrenie súčinu X1 ·X2 z (10.3) pomocou známych hodnôt
syndrómu. Spočítame

S3

S1
=
X31 + X

3
2

X1 + X2
= X21 + X1 · X2 + X22 = (X1 + X2)

2 + X1 · X2 = S21 + X1 · X2.

Teraz vyjadríme súčin lokátorov

X1 · X2 =
S3

S1
+ S21 =

S3 + S
3
1

S1
.

Nakoniec vyjadríme explicitne pomocou syndrómu koeficienty polynómu lokátorov chýb:

Λ(x) = x2 + S1 · x+
S3 + S

3
1

S1
. (10.4)

Ked’že koeficienty polynómu Λ(x) dokážeme vyjadrit’ pomocou hodnôt syndrómu, po-
lynóm lokátorov chýb na základe prijatého slova dokážeme zostrojit’ a nájdením jeho
koreňov určit’ aj pozície, na ktorých sú v prijatom slove chyby. Korene polynómu Λ(x)
možno v prípade malého m nájst’ úplným preberaním. Existujú však aj efektívne me-
tódy faktorizácie kvadratických polynómov nad pol’om GF(2m), pomocou ktorých možno
nájst’ korene polynómu Λ(x) rýchlejšie ako úplným preberaním. Zostrojený kód opravuje
2 chyby. Pozrime sa ešte na to, čo sa stane, ak pri prenose vzniknú chyby inej váhy ako
2.

Chyba váhy 0 V tomto prípade je chybový polynóm e(x) nulový, v(x) = u(x) a

S1 = v(α) = v(α
3) = S3 = 0.

Chyba váhy 1 Chybový polynóm e(x) = xi a syndróm bude vyzerat’ nasledovne:

S1 = v(α) = αi;

S3 = v(α3) = α3i = S31.

Chyba váhy > 2 Uvedený BCH kód opravuje chyby váhy 2. To znamená, že jeho mini-
málna vzdialenost’ je 5. Chyby váhy 3 a väčšej môže kód odhalit’, ale nedokáže ich
správne opravit’.

Zhrnieme teraz získané poznatky a uvedieme dekóder binárneho BCH kódu opravu-
júceho 2 chyby [16].

1. Vypočítaj hodnoty syndrómu

v(α) = S1 v(α3) = S3

10.1. BINÁRNE BCH KÓDY OPRAVUJÚCE 2 CHYBY 135

2. Ak S1 = S3 = 0, bolo prijaté kódové slovo. (Predpokladáme, že pri prenose nevznikla
chyba).

3. Ak S1 ̸= 0 a S3 = S31, predpokladáme, že pri prenose vznikla chyba váhy 1. Lokátor
chyby je S1 = X1 a hodnota logα S1 = i určuje miesto, na ktorom v prijatom slove
vznikla chyba.

4. Ak S1 ̸= 0 a S3 ̸= S31, predpokladáme, že pri prenose vznikla chyba váhy 2. Zostro-
jíme polynóm lokátorov chýb Λ(x) a nájdeme jeho korene. Ak má Λ(x) dva rozličné
korene X1 ̸= X2, tak chyby nastali na pozíciách i1, i2;X1 = αi1 , X2 = αi2 . V opačnom
prípade (polynóm lokátorov chýb Λ(x) nemá dva rozličné korene) nastala počas
prenosu neopravitel’ná (ale odhalitel’ná) chyba.

5. Ak S1 = 0, S3 ̸= 0, počas prenosu došlo ku chybe váhy ≥ 3. Túto sme síce pri dekó-
dovaní odhalili, ale nedokážeme ju opravit’.

Ilustrujeme popísanú metódu na príklade.

Príklad 10.1. Zostrojíme binárny BCH (15,7)-kód opravujúci 2 chyby a ukážeme, ako
sa dekódujú prijaté slová, zat’ažené chybami váhy 0, 1, 2 a 3. Budeme potrebovat’ ko-
nečné pole GF(24). Jeho konštrukcia je podrobne popísaná časti 15.4 a preto len pripome-
nieme, že stačí faktorizovat’ okruh polynómov GF(2)[x] vhodným ireducibilným polynó-
mom stupňa 4 nad pol’om GF(2). Vyberieme polynóm 1+ x+ x4 a faktorový okruh polynó-
mov GF(2)[x]/1+x+x4 predstavuje hl’adané pole. Označíme symbolom α primitívny prvok
pol’a GF(24). Prvky pol’a GF(24) vyjadrené v binárnom tvare a pomocou mocnín primitív-
neho prvku sú uvedené v tabul’ke 15.4. Zostrojíme generujúci polynóm BCH (15,7)-kódu.
Minimálne polynómy prvkov α,α3 sú

mα(x) = 1+ x+ x4,

mα3(x) = 1+ x+ x2 + x3 + x4

a generujúci polynóm bude mat’ tvar

g(x) = lcm (mα(x),mα3(x)) = mα(x) ·mα3(x) =

= 1+ x4 + x6 + x7 + x8.

Potrebujeme ešte nejaké kódové slovo. Vynásobíme generujúci polynóm vhodným infor-
mačným polynómom a dostávame

u(x) = (1+ x+ x5) · g(x) = 1+ x+ x4 + x6 + x11 + x12 + x13.

Budeme predpokladat’, že pri prenose kódového slova u(x) vznikla chyba e(x) a bolo
prijaté slovo v(x) = u(x) + e(x).

Chyba váhy 0 e(x) = 0, v(x) = u(x). Využijeme binárnu reprezentáciu prvkov pol’a
GF(24) (tabul’ka 15.4) a vypočítame syndróm chyby. (Pri výpočtoch budeme využí-
vat’, že pole GF(24) má charakteristiku 2, t.j. pre l’ubovol’ný prvok β ∈ GF(24) platí

136 KAPITOLA 10. BOSEOVE-CHANDHURYOVE-HOCQUENGHEMOVE KÓDY

β+β = 0 a že αj = αj mod 15.) Výpočet kvôli stručnosti uvádzame v tabul’kovej forme.

v(x) v(α) v(α3)

1 1 0001 1 0001

x α 0010 α3 1000

x4 α4 0011 α12 1111

x6 α6 1100 α3 1000

x11 α11 1110 α3 1000

x12 α12 1111 α6 1100

x13 α13 1101 α9 1010

S1 = 0000 S3 = 0000

Ked’že syndróm chyby je nulový, predpokladáme, že bolo prijaté odvysielané kódové
slovo (polynóm) u(x) = 1+ x + x4 + x6 + x11 + x12 + x13. Informačný polynóm potom
dostaneme vydelením prijatého polynómu generujúcim polynómom:

i(x) = u(x) : g(x) = 1+ x+ x5.

Chyba váhy 1 e(x) = x11, bolo prijaté slovo (polynóm)

v(x) = 1+ x+ x4 + x6 + x12 + x13.

Vypočítame syndróm
v(x) v(α) v(α3)

1 1 0001 1 0001

x α 0010 α3 1000

x4 α4 0011 α12 1111

x6 α6 1100 α3 1000

x12 α12 1111 α6 1100

x13 α13 1101 α9 1010

S1 = 1110 S3 = 1000

Syndróm chyby nadobúda v tomto prípade hodnoty S1 = α11, S3 = α3. Obe zložky
syndrómu sú nenulové, ale ((α)11)3 = α33 = α3, a teda S3 = S31. To znamená že
v prijatom slove je chyba váhy 1. Ked’že S1 = α11, chybový vektor je e(x) = x11.

Opravíme prijaté slovo:

v(x) + e(x) = u(x) = 1+ x+ x4 + x6 + x11 + x12 + x13.

Chyba váhy 2 e(x) = x7 + x12, bolo prijaté slovo (polynóm)

v(x) + e(x) = u(x) + e(x) = 1+ x+ x4 + x6 + x7 + x11 + x13.

Vypočítame syndróm

v(x) v(α) v(α3)

1 1 0001 1 0001

x α 0010 α3 1000

x4 α4 0011 α12 1111

x6 α6 1100 α3 1000

x7 α7 1011 α6 1100

x11 α11 1110 α3 1000

x13 α13 11101 α9 1010

S1 = 0100 S3 = 0000

10.1. BINÁRNE BCH KÓDY OPRAVUJÚCE 2 CHYBY 137

t.j. S1 = α2, S3 = 0. Ked’že S1 ̸= 0 a S3 ̸= S31, predpokladáme, že v slove v(x) je chyba
váhy 2. Zostrojíme polynóm lokátorov chýb (10.4)

Λ(x) = α4 + α2 · x+ x2

a postupným prehl’adávaním pol’a GF(24) nájdeme jeho korene.

v(0) = α4 α4 ̸= 0
v(1) = α4 + α2 + 1 = α5 ̸= 0
v(α) = α4 + α3 + α2 = α12 ̸= 0
v(α2) = α4 + α4 + α4 = α4 ̸= 0
v(α3) = α4 + α5 + α6 = α14 ̸= 0
v(α4) = α4 + α6 + α8 = α9 ̸= 0
v(α5) = α4 + α7 + α10 = α12 ̸= 0
v(α6) = α4 + α8 + α12 = α14 ̸= 0
v(α7) = α4 + α9 + α14 = 0 X

Našli sme prvý koreň, α7. Ušetríme si d’alšie prehl’adávanie a vydelíme polynóm
lokátorov chýb polynómom x+ α7. Dostávame

Λ(x) = (x+ α7) · (x+ α12),

t.j. koreňmi polynómu Λ(x) sú α7, α12. Z toho vyplýva, že e(x) = x7 + x12. Opravíme
prijaté slovo

v(x) + e(x) = u(x) = 1+ x+ x4 + x6 + x11 + x12 + x13.

Chyba váhy 3 Nech e(x) = x11 + x12 + x13 a bolo prijaté slovo v(x) = 1 + x + x4 + x6.
Syndróm chyby v tomto prípade bude

v(x) v(α) v(α3)

1 1 0001 1 0001

x α 0010 α3 1000

x4 α4 0011 α12 1111

x6 α6 1100 α3 1000

S1 = 1100 S3 = 1110

t.j. S1 = α6, S3 = α11 a S3 ̸= S31. Usúdime, že pri prenose nastala chyba váhy 2.
Zostrojíme polynóm lokátorov chýb

Λ(x) = α14 + α6 · x+ x2

a určíme jeho korene. Tými sú prvky α5, α9, ktoré určujú chybový polynóm e′(x) =
x5 + x9. Prijaté slovo upravíme na kódové slovo

v(x) + e′(x) = 1+ x+ x4 + x5 + x6 + x9,

ktorý sa však nezhoduje s odvysielaným kódovým slovom u(x).

Tým istým spôsobom, ako sme zostrojili binárny kód opravujúci 2 chyby, možno zo-
strojit’ aj BCH kód opravujúci tri chyby (kontrolná matica sa rozšíri o 3. riadok: 1, α5,
α10, . . . , α5(n−1)). My sa touto konštrukciou nebudeme zaoberat’, prípadných záujemcov
odkazujeme na [16] a prikročíme k zovšeobecneniu a formalizácii definície BCH kódov.

138 KAPITOLA 10. BOSEOVE-CHANDHURYOVE-HOCQUENGHEMOVE KÓDY

10.2 Definícia BCH kódov

BCH kódy sú cyklické kódy nad pol’om GF(q), ktoré sú definované pomocou prvkov z
rozšírenia pôvodného pol’a, GF(qm).

Definícia 10.2.1. Nech β ∈ GF(qm) je prvok rádu n; t je l’ubovol’né prirodzené a l l’ubo-
vol’né celé číslo. Potom cyklický kód C s generujúcim polynómom

g(x) = lcm
{
mβl+1(x),mβl+2(x) . . . ,mβl+2t(x)

}
,

kde mβj(x) je minimálny polynóm prvku βj, sa nazýva BCH kódom.

Ak n = qm−1; t.j. β je primitívny prvok pol’a GF(qm), BCH kód dĺžky n sa nazýva pri-
mitívnym BCH kódom. Parameter l sa často kladie rovným nule (v mnohých ale nie všet-
kých prípadoch to vedie ku konštrukcii generujúceho polynómu minimálneho stupňa).
BCH kódy s hodnotou parametra l = 0 sa nazývajú BCH kódmi v úzkom zmysle. Uve-
dieme niekol’ko príkladov rôznych BCH kódov. Začneme binárnym kódom dĺžky 15, na
ktorom budeme neskôr demonštrovat’ metódy dekódovania BCH kódov.

Príklad 10.2. Nech q = 2, l = 0, t = 3,m = 4. BCH kód s danými parametrami existuje,
je to binárny (15,5) kód opravujúci 3 chyby. Zadáme ho pomocou jeho generujúceho poly-
nómu. Ked’že ide o primitívny BCH kód, budeme potrebovat’ prvok rádu 15, t.j. primitívny
prvok pol’a GF(24). Nech je α daný primitívny prvok. Koreňmi generujúceho polynómu
budú prvky α,α2, α3, α4, α5, α6; t.j. generujúci polynóm bude

g(x) = lcm {mα(x),mα2(x), . . . ,mα6(x)} .

Prvky α,α2, α4 však majú ten istý minimálny polynóm, podobne prvky α3, α6;

α,α2, α4 ↔ mα(x) = 1+ x+ x
4,

α3, α6 ↔ mα3(x) = 1+ x+ x2 + x3 + x4,

α5 ↔ mα5(x) = 1+ x+ x2.

To znamená, že

g(x) = (1+ x+ x4) · (1+ x+ x2 + x3 + x4) · (1+ x+ x2) =
= 1+ x+ x2 + x4 + x5 + x8 + x10. (10.5)

10.3 Hranica BCH kódov

Využijeme skutočnost’, že cyklické kódy sú zároveň lineárne kódy, určíme rang kontrol-
nej matice BCH kódu a potom na základe vety 8.1.2 a jej dôsledku určíme minimálnu
vzdialenost’ BCH kódov, resp. jej dolný odhad.

Veta 10.3.1. Nech je g(x) generujúci polynóm BCH kódu C dĺžky n, s koreňmi βl+1, . . . ,
βl+2t, kde β je prvok rádu n pol’a GF(qm). Potom minimálna vzdialenost’ d kódu C je
aspoň 2t+ 1.

10.3. HRANICA BCH KÓDOV 139

Dôkaz. Kontrolnú maticu BCH kódu C možno zapísat’ v tvare

H =


1 β(l+1) β2(l+1) . . . β(n−1)(l+1)

1 β(l+2) β2(l+2) . . . β(n−1)(l+2)

...
...

1 β(l+2t) β2(l+2t) . . . β(n−1)(l+2t)


Ukážeme, že l’ubovol’ná štvorcová podmatica typu (2t, 2t) kontrolnej matice H je regu-
lárna; t.j. že l’ubovol’ných 2t stĺpcov kontrolnej matice je lineárne nezávislých (a teda
minimálna váha kódu C je aspoň 2t + 1). Určíme hodnotu determinantu štvorcovej pod-
matice tvorenej vybranými stĺpcami j1, j2, . . . , j2t kontrolnej matice H:

det


βj1(l+1) βj2(l+1) . . . βj2t(l+1)

βj1(l+2) βj2(l+2) . . . βj2t(l+2)

...
...

βj1(l+2t) βj2(l+2t) . . . βj2t(l+2t)

 =

= β(j1+j2+···+j2t)·(l+1) det


1 1 . . . 1

βj1 βj2 . . . βj2t

...
...

...
βj1(2t−1) βj2(2t−1) . . . βj2t(2t−1)

 .
Druhá matica je Vandermondova matica, ktorej determinant má tvar∏

i>k

(
βji − βjk

)
. (10.6)

Ked’že β je prvok rádu n, prvky βj1 , . . . , βj2t sú navzájom rôzne, a teda determinant (10.6)
je rôzny od nuly.

Poznámka. Hodnota 2t + 1 garantovaná predchádzajúcou vetou sa nazýva konštruk-
čnou vzdialenost’ou BCH kódu. Je daná dĺžkou súvislej postupnosti mocnín prvku β

(βl+1, . . . , βl+2t), ktoré sú koreňmi generujúceho polynómu kódu. Ale ked’že generujúci
polynóm g(x) je definovaný ako najmenší spoločný násobok minimálnych polynómov
svojich koreňov a minimálne polynómy prvkov βl+1, . . . , βl+2t nie sú vo všeobecnosti
lineárne, môžu mat’ aj iné korene, ktoré „predĺžia“ postupnost’ βl+1, . . . , βl+2t. Potom
bude skutočná minimálna vzdialenost’ kódu väčšia ako jeho konštrukčná vzdialenost’.
Existujú odhady skutočnej minimálnej vzdialenosti BCH kódov. Skôr, ako sa nimi bude-
me zaoberat’, uvedieme niekol’ko príkladov, na ktorých ilustrujeme rozdiel medzi kon-
štrukčnou a minimálnou vzdialenost’ou BCH kódu.

Príklad 10.3. Uvažujme binárny BCH kód C dĺžky 31 (v úzkom zmysle) opravujúci 4
chyby, Nech α je primitívny prvok pol’a GF(25). Koreňmi generujúceho polynómu g(x)
kódu C musia byt’ prvky α,α2, . . . , α8 pol’a GF(25); resp. generujúci polynóm g(x) možno
definovat’ ako

g(x) = lcmm{α(x),mα2(x), . . . ,mα8(x)},

kde mαj(x) je minimálny polynóm prvku αj. Bez toho, aby sme zostrojili generujúci poly-
nóm g(x), ukážeme, že minimálna vzdialenost’ kódu C prevyšuje konštrukčnú vzdialenost’.

140 KAPITOLA 10. BOSEOVE-CHANDHURYOVE-HOCQUENGHEMOVE KÓDY

Využijeme na to skutočnost’, že ak má v poli charakteristiky 2 polynóm f(x) koreň β, tak
potom má aj korene β2, β4, . . . , β2j , Rozdelíme prvky pol’a GF(25) do tried (cyklov); do
jednej triedy dáme všetky prvky β,β2, β4, . . . , β2j , kde β ∈ GF(25). Je zrejmé, že každej
triede rozkladu zodpovedá jeden (minimálny) polynóm, ktorého koreňmi sú práve prvky
z danej triedy.

trieda minimálny
polynóm

0 m0(x)
1 m1(x)
α α2 α4 α8 α16 mα(x)
α3 α6 α12 α24 α17 mα3(x)
α5 α10 α20 α9 α18 mα5(x)
α7 α14 α28 α25 α19 mα7(x)
α11 α22 α13 α26 α21 mα11(x)
α15 α30 α29 α27 α23 mα15(x)

Z uvedenej tabul’ky rozkladu pol’a GF(25) vyplýva, že

g(x) = mα(x) ·mα3(x) ·mα5(x) ·mα7(x)

a polynóm g(x) má teda okrem požadovaných koreňov α,α2, . . . , α8 aj korene α9 a α10. To
však znamená, že minimálna vzdialenost’ BCH kódu C je 11. Pre zaujímavost’ dopočítame
aj hodnoty jeho ostatných parametrov: stupeň generujúceho polynómu je 20, a teda počet
informačných symbolov v kódovom slove je 11. Kód C je teda binárny (31,11) BCH kód (v
úzkom zmysle) opravujúci 5 chýb.

Rozdiel medzi konštrukčnou a minimálnou vzdialenost’ou BCH kódu môže byt’ vel’ký.
Berlekamp uvádza príklad binárneho BCH kódu v úzkom zmysle dĺžky 212−1 s konštruk-
čnou vzdialenost’ou 768, ktorého skutočná minimálna vzdialenost’ je 819 (citované podl’a
[7]). Uvedené príklady môžu vzbudit’ pochybnosti o tom, aká je výpovedná hodnota dol-
nej hranice BCH pre opravnú schopnost’ BCH kódu. V práci [12] je uvedená rozsiahla
tabul’ka, ktorú zostavil Chen, obsahujúca všetky binárne cyklické kódy nepárnej dĺžky
(n ≤ 65) spolu s ich najdôležitejšími parametrami, vrátane dolnej hranice BCH a sku-
točnej minimálnej vzdialenosti. Hranica BCH sa od skutočnej minimálnej vzdialenosti
odlišuje pomerne často a v niektorých prípadoch aj dost’ výrazne. Vzt’ah medzi hranicou
BCH a skutočnou minimálnou vzdialenost’ou pre pomerne širokú podtriedu BCH kódov
vyjadruje nasledujúca veta [12].

Veta 10.3.2. Nech je dBCH konštrukčná vzdialenost’ primitívneho BCH kódu nad pol’om
GF(q). Potom pre minimálnu vzdialenost’ d tohto kódu platí

d ≤ q · dBCH + q− 2.

Dôkaz. Neuvádzame, čitatel’ ho môže nájst’ v práci [12].

Poznámka. V binárnom prípade skutočná minimálna vzdialenost’ (primitívneho) BCH
kódu neprevyšuje dvojnásobok konštrukčnej vzdialenosti.

10.4. PGZ ALGORITMUS DEKÓDOVANIA BCH KÓDOV 141

10.4 PGZ algoritmus dekódovania BCH kódov

BCH kódy sú cyklické kódy, a preto na ich dekódovanie je možné použit’ l’ubovol’nú me-
tódu dekódovania cyklických kódov. Existujú však efektívnejšie metódy dekódovania,
navrhnuté špeciálne pre BCH kódy. V tejto časti popíšeme Petersonov-Gorensteinov-
Zierlerov algoritmus dekódovania.

Predpokladáme, že je daný BCH kód C dĺžky n opravujúci t chýb nad pol’om GF(q), s
generujúcim polynómom g(x). Kvôli zjednodušeniu výkladu budeme tiež predpokladat’,
že C je BCH kód v úzkom zmysle, t.j. že koreňmi g(x) sú prvky β,β2, . . . , β2t. (Prvok β
nemusí byt’ primitívnym prvkom pol’a GF(qm); zrejme stačí, aby jeho rád n delil qm − 1.)
Nech bolo odvysielané slovo u(x) a počas prenosu nastala chyba váhy ν, 0 ≤ ν ≤ t, ktorú
zapíšeme v podobe chybového polynómu:

e(x) = e0 + e1x+ e2x
2 + · · ·+ en−1xn−1.

Chybový polynóm má práve ν koeficientov nenulových. Označme tieto koeficienty
ei1 , . . . , eiν a vynechajme v e(x) nulové členy. Chybový polynóm bude po redukcii vyzerat’
nasledovne

e(x) = ei1x
i1 + ei2x

i2 + · · ·+ eiνxiν . (10.7)

Prijali sme polynóm (slovo) v(x) = u(x)+e(x). Pre prijaté slovo v(x) možno vypočítat’ dva
rozličné syndrómy:

• syndrómový polynóm s(x) = v(x) mod g(x) a

• syndróm (S1, S2, . . . , S2t), ktorého zložky (parciálne syndrómy) sa dajú vypočítat’ zo
vzt’ahu Sj = v(βj) = e(βj). Pripomenieme, že pre tento syndróm platí aj

[S1, S2, . . . , S2t] = [v0, v1, . . . , vn−1] ·H⊤,

kde H je kontrolná matica kódu C a (v0, v1, . . . , vn−1) prijaté slovo (koeficienty prija-
tého polynómu).

Vypočítame parciálne syndrómy dosadením koreňov generujúceho polynómu do prija-
tého polynómu v(x):

Sj = v(β
j) = ei1β

j·i1 + ei2β
j·i2 + · · ·+ eiνβj·iν , j = 1, . . . , 2t.

Aby sme zjednodušili zápis, zavedieme podobne ako v prípade binárnych BCH kódov
nové označenie:

• hodnoty βi1 , . . . , βiν označíme symbolmi X1, . . . , Xν; Xk = βik a nazveme lokátormi
chýb;

• hodnoty chýb označíme symbolmi Yk; ei1 = Y1, . . . , eiν = Yν.

142 KAPITOLA 10. BOSEOVE-CHANDHURYOVE-HOCQUENGHEMOVE KÓDY

Pripomíname, že lokátory chýb sú prvky pol’a GF(qm) a hodnoty chýb sú prvky pol’a
GF(q). Parciálne syndrómy môžeme potom vyjadrit’ pomocou sústavy rovníc:

S1 = Y1X1 + . . . + YνXν
S2 = Y1X

2
1 + . . . + YνX

2
ν

...
...

...
S2t = Y1X

2t
1 + . . . + YνX

2t
ν

(10.8)

Našou úlohou je nájst’ na základe známych hodnôt syndrómu S1, . . . , S2t neznáme hod-
noty lokátorov chýb a hodnôt chýb: X1, . . . , Xν; Y1, . . . , Yν. Ukážeme, že systém rovníc
(10.8) má práve jedno riešenie. Vzhl’adom na nelineárnost’ systému (10.8) by jeho priame
riešenie bolo náročné. Preto podobne ako v predchádzjúcej časti zavedieme pomocný po-
lynóm Λ(x) lokátorov chýb; tentoraz však v mierne modifikovanej podobe: jeho koreňmi
nebudú lokátory chýb, ale prevrátené hodnoty lokátorov chýb.

Λ(x) = (1− xX1)(1− xX2) . . . (1− xXν) = 1+ λ1x+ λ2x
2 + · · ·+ λνxν. (10.9)

Ak by sme poznali koeficienty λ1, . . . , λν, dokázali by sme zostrojit’ polynóm Λ(x) a (na-
príklad úplným preberaním) nájst’ jeho korene X−1

1 , . . . , X
−1
ν . Problém je v tom, že ne-

poznáme ani len stupeň ν polynómu Λ(x), t.j. váhu chyby ktorá vznikla pri prenose.
Ukážeme, ako sa dajú určit’ koeficienty polynómu Λ(x) na základe známych hodnôt par-
ciálnych syndrómov S1, . . . , S2t pomocou riešenia systému lineárnych rovníc. Ked’že ko-
reňmi polynómu Λ(x) sú prevrátené hodnoty lokátorov chýb, platí

Λ(X−1
i) = 1+ λ1X

−1
i + λ2X

−2
i + · · ·+ λνX−ν

i = 0, i = 1, . . . , ν (10.10)

Zbavme sa záporných mocnín lokátorov chýb tým, že vynásobíme rovnice sústavy (10.10)
členmi YiX

j+ν
i , kde 1 ≤ j ≤ ν:

YiX
j+ν
i + λ1YiX

j+ν−1
i + λ2YiX

j+ν−2
i + · · ·+ λνYiXji = 0, i = 1, . . . , ν (10.11)

Teraz sčítame (10.12) cez i = 1, . . . ν :

ν∑
i=1

YiX
j+ν
i + λ1

ν∑
i=1

YiX
j+ν−1
i + λ2

ν∑
i=1

YiX
j+ν−2
i + · · ·+ λν

ν∑
i=1

YiX
j
i = 0 (10.12)

Ale (pozri (10.8)) posledná rovnost’ predstavuje

Sj+ν + λ1Sj+ν−1 + λ2Sj+ν−2 + · · ·+ λνSj = 0,

resp. po presunutí člena Sj+ν na pravú stranu a preusporiadaní ostatných členov na l’avej
strane rovnice dostávame

Sjλν + Sj+1λν−1 + · · ·+ λ1Sj+ν−1 = −Sj+v. (10.13)

ked’že λ ≤ ν, pre 1 ≤ j ≤ ν, indexy zložiek syndrómu zo sústavy (10.13) sú z intervalu
⟨1, 2t⟩ a teda v sústave (10.13) sa vyskytujú len známe hodnoty syndrómu S1, . . . , S2t.

10.4. PGZ ALGORITMUS DEKÓDOVANIA BCH KÓDOV 143

Sústavu (10.13) možno prehl’adnejšie zapísat’ v maticovej forme:
S1 S2 . . . Sν−1 Sν
S2 S3 . . . Sν Sν+1
S3 S4 . . . Sν+1 Sν+2
...

...
Sν Sν+1 . . . S2ν−2 S2ν−1

 ·


λν
λν−1
λν−2

...
λ1

 =


−Sν+1
−Sν+2
−Sν+3

...
−S2ν

 . (10.14)

Kvôli zjednodušeniu zápisu v d’alšom texte zavedieme nasledujúce označenie
S1 S2 . . . Sν−1 Sν
S2 S3 . . . Sν Sν+1
S3 S4 . . . Sν+1 Sν+2
...

...
Sν Sν+1 . . . S2ν−2 S2ν−1

 =Mν. (10.15)

Ak by matica Mν bola regulárna, tak by bolo možné riešit’ sústavu (10.14). V nasledujú-
cej leme dokážeme, za akých podmienok je Mν regulárna.

Lema 6. Nech pri prenose kódového slova došlo k chybe váhy ν ≤ t. Potom je matica Mν

regulárna a matica Mµ, kde µ > ν singulárna.

Dôkaz Maticu Mµ, 0 ≤ ν ≤ µ ≤ t možno rozložit’ na súčin troch matíc;

Mµ = A · B ·A⊤,

kde

A =


1 1 1 . . . 1

X1 X2 X3 . . . xµ
X21 X22 X23 . . . x2µ
...

...
X
µ−1
1 X

µ−1
2 X

µ−1
3 . . . x

µ−1
µ


a B je diagonálna matica

B =


X1Y1 0 0 . . . 0

0 X2Y2 0 . . . 0

0 0 X3Y3 . . . 0
...

...
0 0 0 . . . XνYν


Zrejme

det(Mµ) = det(A) · det(B) · det(A⊤).

Ak µ > ν, medzi hodnotami chýb Y1, . . . , Yµ je aspoň jedna nulová. To znamená, že v
matici B sa na diagonále vyskytuje aspoň jedna nulová hodnota a jej determinant je
nulový. Na druhej strane, ak µ = ν, det(B) ̸= 0 a ked’že A je Vandermondova matica a
lokátory chýb X1, . . . , Xµ sú rôzne, det(A) = det(A⊤) ̸= 0.

Získané poznatky využijeme pri návrhu dekódera BCH kódov.

Petersonov-Gorensteinov-Zierlerov dekóder

144 KAPITOLA 10. BOSEOVE-CHANDHURYOVE-HOCQUENGHEMOVE KÓDY

1. Na základe prijatého slova v(x) vypočítaj syndróm S1, . . . , S2t; Sj = v(β
j).

2. Nájdi najväčšie prirodzené ν také, že matica Mν je regulárna.

3. Vyrieš systém lineárnych rovníc (10.14) a urči koeficienty λ1, . . . , λν. Zostroj polynóm
lokátorov chýb Λ(x).

4. Nájdi korene polynómu lokátorov chýbΛ(x) (úplným preberaním, alebo faktorizáciou)
a urči pozície chýb. Ak je daný BCH kód binárny, tak invertuj bity na pozíciách
určených lokátormi chýb a skonči, ináč pokračuj krokom 5.

5. Vyrieš systém lineárnych rovníc pre hodnoty chýb

Y1X1 + Y2X2 + . . . + YνXν = S1
Y1X

2
1 + Y2X

2
2 + . . . + YνX

2
ν = S2

...
...

Y1X
ν
1 + Y2X

ν
2 + . . . + YνX

ν
ν = Sν

(10.16)

K úplnosti popísanej metódy zostáva ešte ukázat’, že systém (10.16) má jediné riešenie.

Lema 7. Ak sú X1, . . . , Xν rozličné lokátory chýb, tak potom má systém (10.16) jediné
riešenie.

Dôkaz Determinant sústavy (10.16) sa dá upravit’ na Vandermondov determinant

det


X1 X2 . . . Xν
X21 X22 . . . X2ν
...

...
Xν1 Xν2 . . . Xνν

 = (X1X2 . . . Xν)det


1 1 . . . 1

X1 X2 . . . Xν
...

...
Xν−11 Xν−12 . . . Xν−1ν


Ked’že lokátory chýb sú nenulové a rôzne, determinant sústavy (10.16) je nenulový, a
teda sústava (10.16) má riešenie.

Ilustrujeme použitie PGZ dekódera na niekol’kých príkladoch.

Príklad 10.4. Uvažujeme binárny (15,5) BCH kód z predchádzajúceho príkladu. Nech
bolo odvysielané kódové slovo

u(x) = 1+ x3 + x5 + x10 + x11 + x12 + x14

a pri prenose vznikla chyba e(x) v dôsledku čoho bolo prijaté slovo v(x) = u(x) + e(x).

1. Chyba váhy 0. Syndróm chyby je

S1 = S2 = S3 = S4 = S5 = S6 = 0.

Ked’že syndróm chyby je rovný nule, predpokladáme, že pri prenose nedošlo k chybe
a prijaté kódové slovo je zhodné s odvysielaným.

10.4. PGZ ALGORITMUS DEKÓDOVANIA BCH KÓDOV 145

2. Chyba váhy 1; napr. e(x) = x14, bolo prijaté slovo v(x) = 1+ x3 + x5 + x10 + x11 + x12.

S1 = α
14 S2 = α

13 S3 = α
12 S4 = α

11 S5 = α
10 S6 = α

9

Určíme počet chýb, ν.

M3 =

 α14 α13 α12

α13 α12 α11

α12 α11 α10

 .
Ale detM3 = 0. Vytvoríme maticu M2 a vypočítame determinant tejto matice:

M2 =

[
α14 α13

α13 α12

]
.

Ked’že detM2 = 0 v prijatom slove je najviac jedna chyba. Ale M1 = α14 ̸= 0, a
teda predpokladáme, že v prijatom slove je chyba váhy 1, S1 = X14, t.j. e(x) = x14 a
odvysielané slovo bolo u(x) = 1+ x3 + x5 + x10 + x11 + x12 + x14.

3. Chyba váhy 2. Chybový polynóm je (napr.) e(x) = x3 + x7; bolo prijaté slovo

v(x) = 1+ x5 + x7 + x10 + x11 + x12 + x14.

Syndróm chyby je

S1 = α
4 S2 = α

8 S3 = α
5 S4 = α S5 = α

10 S6 = α
10

Určíme počet chýb, ν.

M3 =

 α4 α8 α5

α8 α5 α

α5 α α10

 .
Ked’že detM3 = 0, vytvoríme maticu M2 a vypočítame jej determinant:

M2 =

[
α4 α8

α8 α5

]
; detM2 = α

3 ̸= 0.

V prijatom slove je pravdepodobne chyba váhy 2. Určíme koeficienty polynómu lo-
kátorov chýb:

λ2 =

det
[
α5 α8

α α5

]
detM2

=
α13

α3
= α10.

Podobne

λ1 =

det
[
α4 α5

α8 α

]
detM2

=
α7

α3
= α4.

Vyjadríme polynóm lokátorov chýb a nájdeme jeho korene:

Λ(x) = 1+ α4x+ α10x2.

Korene polynómu Λ(x) sme našli úplným preberaním (a faktorizáciou polynómu);
na tomto mieste uvedieme len jeho výsledok:

Λ(α12) = 1+ α+ α4 = 0, Λ(α8) = 1+ α12 + α11 = 0;

t.j. hl’adané korene sú α12, α8 a chyby vznikli na pozíciách 3 (α12 = α−3) a 7 (α7 =
α−8).

146 KAPITOLA 10. BOSEOVE-CHANDHURYOVE-HOCQUENGHEMOVE KÓDY

4. Chyba váhy 3. Predpokladajme kvôli jednoduchosti, že e(x) = x5 + x10 + x13 a bolo
prijaté slovo

v(x) = 1+ x3 + x11 + x12 + x13 + x14.

Syndróm chyby je

S1 = α
6 S2 = α

12 S3 = α
9 S4 = α

9 S5 = α
10 S6 = α

3.

Ked’že detM3 = 1, predpokladáme, že počas prenosu vznikla chyba váhy 3. Vypočí-
tame koeficienty polynómu lokátorov chýb a zostavíme Λ(x):

Λ(x) = 1+ α6x+ α6x2 + α13x3.

Koreňmi polynómu Λ(x) sú α10, α5, α2, ktoré určujú polynóm chýb e(x) = x5 + x10 +
x13. Odčítame chybový polynóm od prijatého slova a dostaneme kódové slovo, o kto-
rom predpokladáme, že sa zhoduje s odvysielaným kódovým slovom.

Na záver uvedieme ešte príklad konštrukcie a dekódovania ternárneho BCH kódu.
(Tento príklad ešte doplníme a upravíme)

Príklad 10.5. 4 Skonštruujeme ternárny BCH kód dĺžky 26 opravujúci tri chyby. Najprv
zostrojíme pole GF(33) tak, že faktorizujeme okruh polynómov nad pol’om GF(3) iredu-
cibilným polynómom tretieho stupňa x3 + 2x + 1. Tento polynóm je zároveň primitív-
nym polynómom a jeho koreň, ktorý označíme symbolom α, je primitívnym prvkom pol’a
GF(33) = GF(3)[x]/x3+ 2x+ 1. Na získanie lepšej predstavy o poli GF(33) vyjadríme všetky
jeho nenulové prvky pomocou mocnín primitívneho prvku, lídra triedy rozkladu faktoro-
vého okruhu-pol’a GF(3)[x]/x3+2x+1, lineárnej kombinácie mocnín primitívneho prvku a
vektora koeficientov tejto lineárnej kombinácie. (Vo výpočtoch budeme však využívat’ prvú
a poslednú reprezentáciu prvkov pol’a.)

Nájdeme vhodný generujúci polynóm BCH kódu. V tabul’ke sú uvedené minimálne
polynómy jednotlivých prvkov konečného pol’a GF(33) (vrátane nulového):

0 x

α0 x+ 2
α1 α3 α9 x3 + 2x+ 1
α2 α6 α18 x3 + x2 + x+ 2
α4 α12 α10 x3 + x2 + 2
α5 α15 α19 x3 + 2x2 + x+ 1
α7 α21 α11 x3 + x2 + 2x+ 1
α8 α24 α20 2x3 + x2 + x+ 1
α13 x+ 1
α14 α16 α22 2x3 + x+ 1
α17 α25 α23 x3 + 2x2 + 1

Ked’že kód, ktorý konštruujeme, má opravovat’ 3 chyby, koreňmi generujúceho poly-
nómu musí byt’ postupnost’ šiestich za sebou nasledujúcich mocnín primitívneho prvku

4Tento príklad je upravenou verziou domácej úlohy, ktorú vypracovala Monika Steinová

10.4. PGZ ALGORITMUS DEKÓDOVANIA BCH KÓDOV 147

0 0 0 000

α0 1 1 001

α1 x α 010

α2 x2 α2 100

α3 x +2 α +2 012

α4 x2 +2x α2 +2α 120

α5 2x2 +x +2 2α2 +α +2 212

α6 x2 +x +1 α2 +α +1 111

α7 x2 +2x +2 α2 +2α +2 122

α8 2x2 +2 2α2 +2 202

α9 +x +1 +α +1 011

α10 x2 +x α2 +α 110

α11 x2 +x +2 α2 +α +2 112

α12 x2 +2 α2 +2 102

α13 2 2 002

α14 2x 2α 020

α15 2x2 2α2 200

α16 2x +1 2α +1 021

α17 2x2 +x 2α2 +α 210

α18 x2 +2x +1 α2 +2α +1 121

α19 2x2 +2x +2 2α2 +2α +2 222

α20 2x2 +x +1 2α2 +α +1 211

α21 x2 +1 α2 +1 101

α22 2x +2 2α +2 022

α23 2x2 +2x 2α2 +2α 220

α24 2x2 +2x +2 2α2 +2α +1 221

α25 2x2 +2 2α2 +1 201

α26 1 1 001

Tabul’ka 10.1: Pole GF(33).

148 KAPITOLA 10. BOSEOVE-CHANDHURYOVE-HOCQUENGHEMOVE KÓDY

α. Nech sú to napríklad prvky α,α2, . . . , α6. Potom je podl’a definície BCH kódu generu-
júcim polynómom kódu polynóm

g′(x) = lcm (mα(x), . . . ,mα6(x)) = (x3+2x+1)(x3+x2+x+2)(x3+x2+2)(x3+2x2+x+1).

Ak pridáme ku koreňom generujúceho polynómu aj prvok α0 (ktorého minimálny polynóm
je lineárny) minimálnu vzdialenost’ konštruovaného BCH kódu rozšírime na 8 za cenu
pridania jedného kontrolného symbolu. Generujúcim polynómom tohto kódu bude

g(x) = g′(x) · (x+ 2) = x13 + 2x11 + 2x7 + x6 + x4 + x3 + 2x+ 2.

Kód zadaný generujúcim polynómom g(x) je ternárny (26,13) BCH kód v úzkom zmysle
opravujúci chyby do váhy 3 a odhal’ujúci chyby váhy 4.

Teraz ukážeme ako vyzerá kódovanie a dekódovanie ternárnej informácie pomocou
ternárneho (26,13) BCH kódu. Nech je i(x) = x11 + 2x10 + 2x9 + x8 + x5 + 2x4 + 2x3 + x2

informačný polynóm. Pri systematickom kódovaní najprv vypočítame polynóm r(x):

r(x) = (x11 + 2x10 + 2x9 + x8 + x5 + 2x4 + 2x3 + x2) ∗ x13) mod g(x) =
= x24 + 2x23 + 2x22 + x21 + x18 + 2x17 + 2x16 + x15 mod g(x) =
= 2x12 + 2x11 + x10 + 2x9 + 2x6 + 2x4 + x3 + 2x2 + 1

a potom kódové slovo c(x) vyjadríme ako

c(x) = i(x) ∗ x13 − r(x) = x24 + 2x23 + 2x22 + x21 + x18 + 2x17 + 2x16 + x15 +
+ x12 + x11 + 2x10 + x9 + x6 + x4 + 2x3 + x2 + 2

Nech pri prenose vznikla chyba váhy 3 zadaná chybovým polynómom e(x) = x14+2x12+x9

a bol prijatý polynóm

v(x) = x24+2x23+2x22+x21+x18+2x17+2x16+x15+2x14+x11+2x10+2x9+x6+x4+2x3+x2+2.

Zistíme či nastala chyba a ak áno, opravime ju. Vypočítame hodnoty syndrómu S1, . . . S6;Si =
v(αi), i = 1, . . . , 6.

S1 = α
19 S2 = α

2 S3 = α
5

S4 = α
0 S5 = α

8 S6 = α
6

Teraz zostrojíme maticu M3 a vypočítame jej determinant:

detM3 = det

 S1 S2 S3
S2 S3 S4
S3 S4 S5

 = det

 α19 α2 α5

α2 α5 α0

α5 α0 α8

 = α11

Determinant maticeM3 nie je nulový a na základe toho predpokladáme, že pri prenose
vznikli tri chyby. Hladáme teraz kubický polynóm lokátorov chyb

Λ(z) = 1+ λ1z+ λ2z
2 + λ3z

3 = (1− x1z)(1− x2z)(1− x3z)

10.4. PGZ ALGORITMUS DEKÓDOVANIA BCH KÓDOV 149

Pre hladané koeficienty platí nasledujúca sústava rovníc:

S1λ3 + S2λ2 + S3λ1 + S4λ0 = 0

S2λ3 + S3λ2 + S4λ1 + S5λ0 = 0

S3λ3 + S4λ2 + S5λ1 + S6λ0 = 0

resp.
α19λ3 + α2λ2 + α5λ1 + α0 = 0

α2λ3 + α5λ2 + α0λ1 + α8 = 0

α5λ3 + α0λ2 + α8λ1 + α6 = 0

Riešením tejto sústavy dostávame:

λ3 = α
22 λ2 = α

22 λ1 = α
15 λ0 = α

0

a polynóm lokátorov chýb bude

Λ(z) = 1+ α15z+ α22z2 + α22z3.

Koreňmi polynómu Λ(z) sú prvky α12, α14, α17 a teda chyby vznikli pri x26−12, x26−14, a
x26−17. Pri binárnom kóde by sme v tomto momente skončili, pretože odhalenie pozície
chyby stačí aj na opravenie tejto chyby. V ternárnom prípade však ešte treba zistit’, aká
chyba nastala. Označme si teda Y1, Y2, Y3 koeficienty, ktoré boli v chybovom polynóme po-
stupne pri členoch X1, X2, X3. Tieto sú viazané vzt’ahmi, vyjadrenými v nasledujúcej sú-
stave (10.16):

α12Y1 + α14Y2 + α9Y3 = α19

α24Y1 + α2Y2 + α18Y3 = α2

α10Y1 + α16Y2 + α1Y3 = α5

Riešením tejto sústavy rovníc je: Y1 = 2, Y2 = 2 a Y3 = 1 a teda chyba, ktorá nastala je
e(x) = X1Y1 + X2Y2 + X3Y3 = 2x

14 + 2x12 + x9.

Prijatý polynóm v(x) upravíme na kódový polynóm u(x) = v(x) − e(x) a vypočítame
informačný polynóm u(x) div x(26−13) = i(x) = x11 + 2x10 + 2x9 + x8 + x5 + 2x4 + 2x3 + x2.

Informačný polynóm i(x) = x11 + 2x10 + 2x9 + x8 + x5 + 2x4 + 2x3 + x2 budeme tento-
raz kódovat’ nesystematicky, vynásobením generujúcim polynómom: c(x) = g(x) · i(x). V
našom prípade dostávame kódové slovo

c(x) = x24 + 2x23 + x22 + 2x21 + x20 + 2x19 + x17 + x16 + x15 + 2x14 + x12 +

+ 2x10 + 2x9 + x7 + 2x6 + x5 + 2x4 + 2x2.

Nech pri prenose vznikla chyba e(x) = 2x7 + x. Potom bolo prijaté slovo

v(x) = x24 + 2x23 + x22 + 2x21 + x20 + 2x19 + x17 + x16 + x15 + 2x14 +

+ x12 + 2x10 + 2x9 + 2x6 + x5 + 2x4 + 2x2 + x.

Zistíme či v prijatom slove nastala chyba. Syndróm chyby slova v(x) je

S1 = α
24, S2 = α

10, S3 = α
20, S4 = α

14, S5 = α
25, S6 = α

4.

150 KAPITOLA 10. BOSEOVE-CHANDHURYOVE-HOCQUENGHEMOVE KÓDY

Ked’že syndróm je nenulový, prijaté slovo je zat’ažené nejakou chybou. Určíme váhu chyby,
ν. Zostavíme maticu M3 a vypočítame jej determinant:

detM3 = det

 α24 α10 α20

α10 α20 α14

α20 α14 α25

 = 0.

Yo znamená, že váha chyby je menšia než 3. Zostavíme teda maticu M2 a vypočítame jej
determinant:

detM2 =

[
α24 α10

α10 α20

]
= α17 ̸= 0.

Z toho, že je maticaM3 singulárna a maticaM2 regulárna, vyplýva, že pri prenose vznikli
pravdepodobne dve chyby. Na ich určenie potrebujeme zostrojit’ polynóm lokátorov chýb

Λ(x) = 1+ λ1x+ λ2x
2.

Riešením sústavy rovníc

α24λ2 + α10λ1 + α20 = 0

α10λ2 + α20λ1 + α14 = 0

určíme koeficienty polynómu Λ(x)

λ2 = α
8, λ1 = α

25, λ0 = 1.

Dostávame polynóm
λ(x) = 1+ α25x+ α8x2

ktorého korene sú X1 = α1 a X2 = α7.

Potrebujeme už len zistit’ aké chyby nastali. Znova budeme riešit’ sústavu rovníc (10.16)

α1Y1 + α7Y2 = α24

α7Y1 + α14Y2 = α10

Riešením tejto sústavy rovníc je Y1 = 1 a Y2 = 2. Chybový polynóm je e(x) = 2x7 + 1x
a kódové slovo c(x) = v(x) − e(x). Nakoniec určíme informačné slovo. Kedže bolo použité
nesystematické kódovanie informačné slovo (polynóm) dostaneme vynásobením kódového
slova c(x) kontrolným polynómom h(x). V našom prípade h(x) = x13 + x11 + x9 + 2x7 +
2x6 + x2 + 2x+ 1 a informačný polynóm je

h(x)u(x) = x11 + 2x10 + 2x9 + x8 + x5 + 2x4 + 2x3 + x2.

10.5. INÉ METÓDY DEKÓDOVANIA BCH KÓDOV 151

10.5 Iné metódy dekódovania BCH kódov

Výpočtovo najnáročnejšou čast’ou Peterson-Gorenstein-Zierlerovho algoritmu je riešenie
sústavy lineárnych rovníc (10.14). Ak túto sústavu riešime výpočtom inverznej matice
syndrómov, zložitost’ výpočtu je O(ν3), čo pre vel’ké hodnoty ν môže byt’ príliš vel’a.
Všimnime si však štruktúru matice syndrómov zo sústavy (10.14). Nech S1, S2, . . . , S2ν
je postupnost’ hodnôt syndrómov a

Λ(x) = 1+ λ1x+ λ2x
2 + · · ·+ λνxν

je polynóm lokátorov chýb. Riadky matice syndrómov tvoria súvislé podpostupnosti dĺžky
ν postupnosti hodnôt syndrómu: prvý riadok matice syndrómov tvorí podpostupnost’
S1, . . . , Sν, druhý podpostupnost’ S2, . . . , Sν+1, až napokon posledný riadok matice syn-
drómov tvorí podpostupnost’ Sν, . . . , S2ν−1. Naviac, hodnoty Sν+1, . . . , S2ν možno vyjadrit’
pomocou predchádzajúcich ν hodnôt syndrómu jednotným spôsobom:

Sj = −

ν∑
i=1

λiSj−i; j = ν+ 1, . . . , 2ν. (10.17)

Berlekamp využil štruktúru matice syndrómov a navrhol efektívny algoritmus na rie-
šenie sústavy (10.14). Massey preformuloval pôvodné Berlekampove riešenie do zrozu-
mitel’nejšej podoby, v ktorej ho budeme prezentovat’ aj my. Budeme postupovat’ nasle-
dovne: najprv uvedieme princíp algoritmu, potom ilustrujeme na príklade aké problémy
algoritmus rieši. Napokon popíšeme algoritmus formálne a dokážeme jeho korektnost’ a
optimálnost’.

Ak zrušíme obmedzenie na j, rekurentný vzt’ah (10.17) popisuje nekonečnú postup-
nost’ S1, S2, . . . generovanú posuvným registrom s lineárnou spätnou väzbou (linear fe-
edback shift register, LFSR), ktorá je zadaná polynómom lokátorov chýb Λ(x), obr. 10.1.
Na to, aby sme určili polynóm lokátorov chýb Λ(x), potrebujeme nájst’ najkratší LFSR,
ktorý generuje postupnost’ S1, S2, . . . , S2ν.

6
��
��6
����

+�

6
��
��6
����

+�

?-

−λ1

Sj−1

−λ2

Sj−2

� �

6
��
��6
����

+�

6
��
��6

�

−λν−1

Sj−ν+1

−λν

Sj−ν - Sj−ν−1 . . . S2S1

Obr. 10.1: LFSR so spätnou väzbou zadanou Λ(x)

Podstata Berlekampovho-Masseyovho algoritmu spočíva v iteratívnej konštrukcii re-
gistra (LFSR) generujúceho postupnost’ hodnôt syndrómov S1, S2, . . . , S2ν;Sj ∈ GF(q). Ak
sú známe registre R(j) generujúce počiatočné podpostupnosti S1, S2, . . . , Sj; j = 1, . . . ,

152 KAPITOLA 10. BOSEOVE-CHANDHURYOVE-HOCQUENGHEMOVE KÓDY

0- - Λ(1)(x) = 1+ x

Obr. 10.2: LFSR R(1)

r − 1, tak register R(r) generujúci podpostupnost’ S1, S2, . . . , Sr−1, Sr sa bud’ zhoduje s re-
gistrom R(r−1), alebo sa dá zostrojit’ úpravou registra R(r−1) pomocou niektorého z pred-
chádzajúcich registrov. Modifikácia registra R(r−1) musí zaručit’, aby nový register, R(r)

spĺňal nasledujúce dve požiadavky:

1. aby správne generoval prvých r členov postupnosti,

2. aby sa dĺžka registra R(r) zväčšila oproti registru R(r−1) minimálne.

Tento postup budeme opakovat’ dovtedy, kým nezostrojíme register R(2ν) minimálnej
dĺžky, ktorý generuje postupnost’ S1, S2, . . . , S2ν.

Skôr ako formálne popíšeme Berlekamp-Masseyov algoritmus a dokážeme jeho ko-
rektnost’, ilustrujeme jeho činnost’ na príklade. Kvôli jednoduchosti budeme pracovat’ s
pol’om GF(2).

Príklad. Nech je daná postupnost’ 0, 0, 1, 0, 1, 1, 0, 1, 0, 1. Nájdeme register R(10), ktorý ju
bude generovat’. Register R(1) dĺžky 1 so spätnou väzbou 1 + x a počiatočným stavom 0,
obr. 10.2 generuje postupnost’ {0}k≥1. (Ten istý register by z počiatočného stavu 1 genero-
val postupnost’ {1}k≥1.) To znamená, že R(1) generuje správne prvé dva členy postupnosti,
ale chybne generuje tretí (R(2) = R(1)). Musíme zväčšit’ dĺžku registra R(2)a prípadne
modifikovat’ jeho spätnú väzbu tak, aby sme zostrojili register R(3). Najprv ukážeme,
že žiaden register dĺžky 2 nemôže generovat’ podpostupnost’ 001. Predpokladajme opak.
Nech je R LFSR dĺžky 2 so spätnou väzbou Λ(x) = 1 + λ1x + λ2x

2. Aby R správne ge-
neroval prvé dva členy postupnosti, jeho počiatočný stav musí byt’ 00, ale potom tretí
prvok postupnosti má hodnotu 0λ1+0λ2 a to je pri l’ubovol’nom výbere hodnôt λ1, λ2 vždy
0. To znamená, že register R(3) musí mat’ dĺžku aspoň 3 a na to, aby úspešne generoval
postupnost’ 0, 0, 1, musí mat’ počiatočný stav (zapísané sprava dol’ava) 100. Spätná väzba
v prvých troch taktoch neovplyvní výstup registra R(3), a teda pre l’ubovol’ný polynóm
spätnej väzby

Λ(x) = 1+ λ1x+ λ2x
2 + λ3x

3

bude register R(3) s počiatočným stavom 100 generovat’ postupnost’ 001.5 Vyberieme R(3)

so spätnou väzbou zadanou polynómom 1 + x3. Tento register bude správne generovat’
aj štvrtý prvok postupnosti, 0, ale v piatom takte dôjde ku chybe a je potrebná korek-
cia spätnej väzby a možno aj predĺženie registra. Ukážeme, čo znamená modifikácia
spätnej väzby registra. Register R(3), obr. 10.3 generuje postupnost’ 0, 0, 1, 0, 0, 1, 0, 0, 1,
Jedným z možných riešení je predĺžit’ register na dĺžku 5 a nastavit’ ako jeho počiatočný

5Ešte raz pripomenieme, že stav registra sa zapisuje sprava dol’ava a postupnost’ ktorú generuje v opač-
nom poradí, t.j. zl’ava doprava.

10.5. INÉ METÓDY DEKÓDOVANIA BCH KÓDOV 153

- -1 0 0 0, 0, 1, 0, 0, . . .

Obr. 10.3: LFSR R(3)

stav postupnost’, ktorú má generovat’. Tento register by (bez ohl’adu na to, ako by sme
zvolili spätnú väzbu) generoval požadovanú postupnost’. Skúsime teraz nájst’ kratší re-
gister, generujúci postupnost’ 0, 0, 1, 0, 1. Výstup registra R(4) = R(3) spĺňa nasledujúci
rekurentný vzt’ah:

Sj+3 = Sj, j = 1, 2,

V prvých 3 taktoch sa na výstupe registra R(4) objavujú jednotlivé bity jeho počiatoč-
ného stavu, v 4. takte je výstupom (správna) hodnota, ktorá bola vypočítaná v 1. takte
(S4 = S1), problematická hodnota 0, ktorá sa na výstupe registra objaví v 5. takte, bola
vypočítaná v 2. takte. Ak nejako zmeníme spätnú väzbu registra a zachováme jeho dĺžku
a počiatočný stav, výstup registra v prvých troch taktoch sa nezmení ale môže sa zmenit’
aj výstup v 4. a 5. takte (výstup registra v d’alších taktoch nás v tomto momente nezau-
jíma). K spätnej väzbe registra môžeme pridat’ členy x, x2, x3 alebo nejakú ich kombiná-
ciu. Potrebujeme dosiahnut’, aby príspevok pridaných členov spätnej väzby bol v prvých
2 taktoch 0, 1. Pozrieme sa na to, aké hodnoty budú generovat’ možné členy spätnej väzby
v prvých 2 taktoch, ak bol počiatočný stav registra R(4) 001.

x 1, 0

x2 0, 1

x3 0, 0

Požadovanú postupnost’ nachádzame v druhom riadku; ak pridáme do polynómu spätnej
väzby člen x2, hodnota generovaná spätnou väzbou v prvých dvoch taktoch bude S1 +
S2, S2+S3, resp. 0, 1 čo zabezpečí správne generovanie 4. a 5. člena postupnosti. Výsledný
register R(5) je na obrázku 10.4. Register R(5) správne generuje aj 6. prvok postupnosti,

- -

+����
1 0 0 0, 0, 1, 0, 1, 1, 1, . . .

Obr. 10.4: LFSR R(5)

ale chyba nastáva v 7. takte. Opät’ je potrebná korekcia spätnej väzby. Problém však je
v tom, že žiaden LFSR dĺžky 3 postupnost’ 0010110 nedokáže generovat’. Ak by existoval
register R dĺžky 3 s polynómom spätnej väzby

Λ(x) = 1+ λ1x+ λ2x
2 + λ3x

3

a počiatočným stavom 1, 0, 0 a generoval správne 4., 5., 6. a 7, prvok postupnosti, jeho

154 KAPITOLA 10. BOSEOVE-CHANDHURYOVE-HOCQUENGHEMOVE KÓDY

spätná väzba by musela spĺňat’ nasledujúce podmienky

λ1 = 0,

λ2 = 1,

λ1 + λ3 = 1,

λ1 + λ2 = 0

Z prvej, druhej a štvrtej podmienky vyplýva spor. Skúsme teraz predĺžit’ register o 1;
nech je R LFSR dĺžky 4, so spätnou väzbou 1+x2+x3 a počiatočným stavom 0100. Register
R generuje postupnost’ 0, 0, 1, 0, 1, 1, 1, . . . ; chyba, ktorá sa objavila na výstupe v 7. takte
vznikla v 3. takte. Aby sme ju opravili, potrebujeme k spätnej väzbe pridat’ členy, ktoré
by z počiatočného stavu 0100 generovali postupnost’ 0, 0, 1. V nasledujúcej tabul’ke sú
uvedené postupnosti generované potenciálnymi členmi spätnej väzby:

x 0, 1, 1

x2 1, 0, 1

x3 0, 1, 0

x4 0, 0, 1

Do úvahy prichádza bud’ člen x4, alebo kombinácia x + x3 - obe riešenia zabezpečujú
korekciu 7. generovaného prvku postupnosti. Vyberieme „opticky“ jednoduchšie riešenie
a ako polynóm spätnej väzby registra R(5) vyberieme Λ(x) = 1+ x2 + x3 + x4, obr. 10.5.

6
����

+
6

����
+

6

- -1 0 00 0, 0, 1, 0, 1, 1, 0 . . .

Obr. 10.5: LFSR R(7)

Register R(7) sa v 8. takte dopúšt’a chyby. Chybná hodnota bola vytvorená v 4. takte.
Do spätnej väzby registra R(7) potrebujeme doplnit’ členy, ktoré by z počiatočného stavu
0100 generovali postupnost’ 0, 0, 0, 1. Príspevky potenciálnych prvkov spätnej väzby uvá-
dzame v nasledujúcej tabul’ke

x 0, 1, 1, 0

x2 1, 0, 1, 1

x3 0, 1, 0, 1

x4 0, 0, 1, 0

Požadovanú korekciu 0, 0, 0, 1 generuje kombinácia x + x3 + x4. Register R(8) má dĺžku
4, spätnú väzbu Λ(x) = 1 + x + x2 a z počiatočného stavu 0100 generuje postupnost’
0, 0, 1, 0, 1, 1, 0, 1. Chyba však nastáva už v nasledujúcom 9. takte. Žiaden register dĺžky
4 nebude generovat’ postupnost’ 0, 0, 1, 0, 1, 1, 0, 1, 0. Zoberieme register R dĺžky 5 so spät-
nou väzbouΛ(x) = 1+x+x2, ktorý bude z počiatočného stavu 10100 generovat’ postupnost’
0, 0, 1, 0, 1, 1, 0, 1, 1. Hodnota, ktorá sa na výstupe registra R objavila v 9. takte, bola ge-
nerovaná v 4. takte. Na jej korigovanie potrebujeme do spätnej väzby pridat’ členy, ktoré

10.5. INÉ METÓDY DEKÓDOVANIA BCH KÓDOV 155

by generovali postupnost’ 0, 0, 0, 1. Pomocou nasledujúcej tabul’ky

x 1, 1, 0, 1

x2 0, 1, 1, 0

x3 1, 0, 1, 1

x4 0, 1, 0, 1

x5 0, 0, 1, 0

nájdeme potrebnú korekciu: x2 + x4 + x5. Register R(9) dĺžky 5 so spätnou väzbou Λ(x) =
1 + x + x4 + x5 generuje prvých 9 prvkov postupnosti, ale chyba nastáva v poslednom,
10. prvku postupnosti. Chybná hodnota bola vytvorená v 5. kroku, a to znamená, že po-
trebujeme korigovat’ spätnú väzbu registra R(9)tak, aby korekcia generovala postupnost’
0, 0, 0, 0, 1. Z tabul’ky

x 1, 1, 0, 1, 0

x2 0, 1, 1, 0, 1

x3 1, 0, 1, 1, 0

x4 0, 1, 0, 1, 1

x5 0, 0, 1, 0, 1

vyplýva, že požadovaná korekcia pozostáva z členov x + x2 + x3. Register (obr. 10.6) má
dĺžku 5, spätnú väzbu Λ(x) = 1+x+x2+x3+x4+x5 a z počiatočného stavu 10100 generuje
postupnost’ 0, 0, 1, 0, 1, 1, 0, 1, 0, 1.

6
����

+
6

����
+

6
����

+
6

����
+

6

- -1 1 0 00 . . . 1010110100

Obr. 10.6: LFSR R(10)

Ako sme videli v predchádzajúcom príklade, najväčším problémom pri konštrukcii
registra bolo jednak rozhodnút’, či je potrebné a ak, tak o kol’ko predĺžit’ register a
nájst’ vhodnú modifikáciu spätnej väzby. V príklade sme tento problém zakaždým ne-
jako vyriešili, ale jednak to nebolo systematické riešenie a jednak sme nemali záruku, či
získané riešenie (LFSR) bolo optimálne. Berlekampov-Masseyov algoritmus umožňuje
jednoznačne stanovit’ či treba, a ak áno, tak ako je potrebné v jednotlivých taktoch mo-
difikovat’ aktuálnu spätnú väzbu registra, aby sme našli optimálne riešenie. Zavedieme
niekol’ko formálnych označení a popíšeme kl’účový krok Berlekampovho-Masseyovho al-
goritmu presnejšie. LFSR R dĺžky L so spätnou väzbou zadanou polynómomΛ(x) budeme
označovat’ R : (L,Λ(x)) a skutočnost’, že LFSR R generuje postupnost’ S1, . . . , Sk označíme
R : (L,Λ(x))

gen↔ S1, . . . , Sk Nech je daná postupnost’ S1, . . . prvkov pol’a GF(q). Predpokla-
dáme, že pre k = 1, . . . , r− 1 sú už známe registre (LFSR)

156 KAPITOLA 10. BOSEOVE-CHANDHURYOVE-HOCQUENGHEMOVE KÓDY

R(1) : (L1, Λ
(1)(x))

gen↔ S1

R(2) : (L2, Λ
(2)(x))

gen↔ S1, S2

. . .

R(r−1) : (Lr−1, Λ
(r−1)(x))

gen↔ S1, S2, . . . Sr−1

a pomocou nich zostrojíme register

R(r) : (Lr, Λ
(r)(x))

gen↔ S1, S2, . . . , Sr.

Necháme najprv register R(r−1) vypočítat’ ešte jeden (r-tý) prvok. Jeho hodnota bude

S′r = −

r−1∑
i=1

λ
(r−1)
i Sr−i.

Teraz porovnáme vypočítanú hodnotu S′r so skutočnou hodnotou Sr. Rozdiel medzi týmito
hodnotami označíme symbolom ∆r:

∆r = Sr − S
′
r = Sr +

r−1∑
i=1

λ
(r−1)
i Sr−i =

r−1∑
i=0

λ
(r−1)
i Sr−i,

pri poslednej úprave sme využili to, že λ0 = 1. Ak ∆r = 0, register R(r−1) správne ge-
neroval aj r-tý prvok postupnosti, a teda

R(r) = R(r−1) : (Lr−1, Λ
(r−1)(x))

gen↔ S1, S2, . . . Sr.

Ak ∆r ̸= 0, musíme spravit’ korekciu spätnej väzby registra R(r−1) a prípadne zväčšit’ jeho
dĺžku. Nová spätná väzba je zadaná polynómom

Λ(r)(x) = Λ(r−1)(x) +A · xl ·Λ(m−1)(x). (10.18)

V definícii polynómuΛ(r)(x) v (10.18) vystupuje niekol’ko záhadných parametrov, ktorých
význam a hodnoty zakrátko určíme. Zatial’ prezradíme, že A ∈ GF(q), l je prirodzené
číslo a Λ(m−1)(x) je jeden z polynómov spätnej väzby, ktorý bol zostrojený pri predchá-
dzajúcich iteráciách. Vypočítame rozdiel medzi hodnotou Sr a hodnotou r-tého prvku
generovaného registrom so spätnou väzbou zadanou polynómom (10.18):

∆′
r =

r−1∑
i=0

λ(r)Sr−i =

r−1∑
i=0

λ(r−1)Sr−i +A ·
r−1∑
i=0

λ(m−1)Sr−i−l (10.19)

Teraz potrebuje zvolit’ parametre m,A, l tak, aby ∆′
r = 0. Vyberieme m < r také, že

∆m ̸= 0. Položíme l = r−m a nakoniec A = −∆r/∆m. Upravíme 10.19 a dostávame

∆′
r = ∆r −

∆r

∆m
· ∆m = 0.

10.5. INÉ METÓDY DEKÓDOVANIA BCH KÓDOV 157

Zostrojený register R(r) : (Lr, Λ
(r)(x)) je teda generátorom postupnosti S1, S2, . . . , Sr. Os-

tala ešte otvorená jedna otázka, a to výber m, na ktorý sme zatial’ nekládli žiadne pod-
mienky. Ako dokážeme neskôr, ak vyberieme najväčšie m také, že r > m a Lm > Lm−1,
dostávame generátor R(r) minimálnej dĺžky.

Teraz, ked’ už máme dostatočnú predstavu o činnosti Berlekamp-Masseyovho algo-
ritmu, môžeme ho popísat’ formálne a dokázat’ jeho korektnost’ a optimálnost’. Formulá-
cia vety a jej dôkazu je s malými modifikáciami prebratá z [2].

Veta 10.5.1. (Berlekampova-Masseyova) Nech je daná postupnost’ S1, . . . , S2t prvkov pol’a
GF(q), nech pre počiatočné podmienky λ(0)(x) = 1, B(0)(x) = 1 a L0 = 0 pre r = 1, . . . , 2t

∆r =

r−1∑
i=0

λ
(r−1)
i Sr−i; (10.20)

Lr = δr(r− Lr−1) + (1− δr)Lr−1; (10.21)
Λ(r)(x) = Λ(r−1)(x) − ∆r · x · B(r−1)(x); (10.22)
B(r)(x) = ∆−1

r · δr ·Λ(r−1)(x) + (1− δr) · x · B(r−1)(x); (10.23)

pričom

δr =

{
1 ak∆r ̸= 0 & 2Lr−1 ≤ r− 1,
0 ináč.

Potom Λ(2t)(x) je polynóm minimálneho stupňa, ktorého koeficienty spĺňajú nasledujúce
podmienky

λ
(2t)
0 = 1, Sr +

r−1∑
i=1

λ
(2t)
i Sr−i, r = L2t + 1, . . . , 2t.

Formulácia vety je na prvý pohl’ad zložitá. V podstate však ide o iteratívnu kon-
štrukciu polynómu spätnej väzby generátora postupnosti S1, . . . , S2t popísanú vzt’ahom
(10.18). Veličina δr indikuje, kedy dochádza k predĺženiu registra a zložito vyzerajúci
polynóm B(r)(x) vyjadruje aktuálnu korekciu polynómu spätnej väzby (ak je korekcia
potrebná). Pripomíname, že ∆r = 0 len v tom prípade, ked’ δr = 0. To nám umožňuje
definovat’ hodnotu δr/∆r = 0 v prípade, ked’ δr = 0.

Samotný dôkaz vety rozdelíme na dôkazy dvoch pomocných tvrdení. V prvej leme
odhadneme zdola dĺžku Lr registra R(r) pomocou dĺžky Lr−1 jeho bezprostredného pred-
chodcu, registra R(r−1). V druhej leme zostrojíme pomocou Berlekampovho-Masseyovho
algoritmu generátor postupnosti S1, . . . , Sr, a dokážeme, že jeho dĺžka Lr bude dosahovat’
dolný odhad z prvej lemy, čím zavŕšime dôkaz optimálnosti Berlekampovho-Masseyovho
algoritmu.

Lema 8. Nech R(r−1) : (Lr−1, Λ
(r−1)(x)) je LFSR minimálnej dĺžky, ktorý generuje po-

stupnost’ S1, . . . , Sr−1 a nech R(r) : (Lr, Λ(r)(x)) je LFSR minimálnej dĺžky, ktorý generuje
postupnost’ S1, . . . , Sr, pričom Λ(r−1)(x)) ̸= Λ(r)(x)). Potom

Lr ≥ max (Lr−1, r− Lr−1) . (10.24)

158 KAPITOLA 10. BOSEOVE-CHANDHURYOVE-HOCQUENGHEMOVE KÓDY

Dôkaz. Musíme dokázat’ dve nerovnosti

1. Lr ≥ Lr−1,

2. Lr ≥ r− Lr−1.

Prvá nerovnost’ je zrejmá, pretože ak register generuje nejakú postupnost’, tak potom
generuje aj jej počiatočnú podpostupnost’. Ostáva dokázat’ druhú nerovnost’. Ak by

Lr−1 ≥ r,

potom by Lr ≥ r− r = 0, čo je triviálne. Preto budeme predpokladat’, že

Lr−1 < r.

Druhú nerovnost’ teraz dokážeme sporom; budeme predpokladat’, že druhá nerovnost’
neplatí; t.j. že

Lr < r− Lr−1,

resp.
Lr ≤ r− 1− Lr−1.

Pozrieme sa teraz na postupnost’ generovanú registrom R(r−1). Z predpokladov lemy vy-
plýva, že register R(r−1) generuje prvých r− 1 prvkov postupnosti

Sj = −

Lr−1∑
i=1

λ
(r−1)
i Sj−i, j = Lr−1 + 1, . . . , r− 1; (10.25)

ale negeneruje r-tý:

Sr ̸= −

Lr−1∑
i=1

λ
(r−1)
i Sr−i. (10.26)

Register R(r) generuje prvých r členov postupnosti:

Sj = −

Lr∑
i=1

λ
(r)
i Sj−i, j = Lr + 1, . . . , r.

Vyjadríme Sr

Sr = −

Lr∑
i=1

λ
(r)
i Sr−i (10.27)

V sume (10.27) vystupujú členy Sr−Lr , . . . , Sr−1. Ale podl’a predpokladu

r− Lr ≥ r− (r− 1− Lr−1) = Lr−1 + 1,

a to znamená, že každý z členov Sr−Lr , . . . , Sr−1 môžeme vyjadrit’ pomocou (10.25). Dostá-
vame

Sr = −

Lr∑
k=1

λ
(r)
k Sr−k =

Lr∑
k=1

λ
(r)
k

Lr−1∑
i=1

λ
(r−1)
i Sr−k−i.

10.5. INÉ METÓDY DEKÓDOVANIA BCH KÓDOV 159

Zmeníme poradie sumácie, upravíme vnútornú sumu a dostávame

Sr =

Lr−1∑
i=1

λ
(r−1)
i

Lr∑
k=1

λ
(r)
k Sr−k−i = −

Lr−1∑
i=1

λ
(r−1)
i Sr−i.

Dostali sme spor s (10.26), čím je tvrdenie lemy dokázané.

Z predchádzajúcej lemy vyplýva, že ak pri konštrukcii LFSR generujúceho postup-
nost’ S1, . . . , Sr zostrojíme v r-tom kroku register dĺžky Lr = max(Lr−1, r − Lr−1), r =
1, 2, . . . , tak je tento register optimálny. Ostáva dokázat’, že LFSR konštruované pomo-
cou Berlekampovho-Masseyovho algoritmu túto podmienku spĺňajú.

Lema 9. Nech
R(j) : (Lj, Λ

(j)(x))
gen↔ S1, S2, . . . , Sj, j = 1, 2 . . .

je postupnost’ registrov generujúcich počiatočné podpostupnosti postupnosti {Sk}k≥1. Ak
v registri R(r) tejto postupnosti došlo k zmene spätnej väzby v porovnaní s predchádzajú-
cim registrom;

Λ(r)(x) ̸= Λ(r−1)(x),

tak pre dĺžku registra R(r) platí

Lr = max(Lr−1, r− Lr−1)

a l’ubovol’ný LFSR dĺžky Lr generujúci postupnost’ S1, S2, . . . , Sr je registrom-generátorom
minimálnej dĺžky.

LFSR R(r) zostrojený podl’a Berlekampovho-Masseyovho algoritmu je generátorom mi-
nimálnej dĺžky postupnosti S1, S2, . . . , Sr.

Dôkaz. Z predchádzajúcej lemy vyplýva, že dĺžka registra R(r) nemôže byt’ menšia než
max(Lr−1, r − Lr−1). Ak sa preto podarí ukázat’, že Lr = max(Lr−1, r − Lr−1), bude to zna-
menat’, že register R(r) je generátorom (postupnosti S1, S2, . . . , Sr) minimálnej dĺžky. Uká-
žeme, že pre r = 1, 2, . . . sa dá zostrojit’ generátor minimálnej dĺžky. Dôkaz budeme viest’
matematickou indukciou vzhl’adom na dĺžku generovanej postupnosti.

Pre k = 1 tvrdenie platí, lebo L0 = 0, L1 = 1.

Predpokladajme, že pre k = 1, . . . , r− 1 sú už zostrojené registre

R(k) : (Lk, Λ
(jk)(x))

gen↔ S1, S2, . . . , Sk

a zakaždým, ked’ došlo k zmene spätnej väzby; t.j. ak Λ(k)(x) ̸= Λ(k−1)(x) platí

Lk = max(Lk−1, k− Lk−1).

Teraz vyjadríme rozdiel medzi hodnotami, ktoré generuje register R(r−1) v jednotlivých
taktoch a príslušnými členmi postupnosti {Sj}j≥1.

Sj +

Lr−1∑
i=1

λ
(r−1)
i Sj−i =

Lr−1∑
i=0

λ
(r−1)
i Sj−i =

{
0 j = Lr−1 + 1, . . . , r− 1;

∆r j = r.

160 KAPITOLA 10. BOSEOVE-CHANDHURYOVE-HOCQUENGHEMOVE KÓDY

Register R(r−1) správne generuje prvých r − 1 členov postupnosti {Sj}j≥1. Ak ∆r = 0, tak
R(r−1) správne generuje aj r-tý člen postupnosti a

Lr = Lr−1; Λ(r) = Λ(r−1).

Ak ∆r = ̸= 0 musíme spravit’ korekciu spätnej väzby a zostrojit’ nový register. Posledná
zmena dĺžky registra nastala v kroku m. Potom

Sj +

Lm−1∑
i=1

λ
(m−1)
i Sj−i =

{
0 j = Lm−1 + 1, . . . ,m− 1

∆m ̸= 0 j = m.

Využijeme indukčný predpoklad a vyjadríme Lr−1 pomocou Lm−1:

Lr−1 = Lm = max(Lm−1,m− Lm−1) = m− Lm−1.

Zostrojíme nový polynóm spätnej väzby

Λ(r)(x) = Λ(r−1)(x) −
∆r

∆m
· xr−mΛ(m−1)(x).

Džka registra R(r) je Lr = degΛ(r)(x). Ked’že

degΛ(r−1)(x) ≤ Lr−1
a

deg(xr−mΛ(m−1)(x)) ≤ r−m+ Lm−1,

pre dĺžku registra R(r) dostávame nasledujúci horný odhad

Lr ≤ max(Lr−1, r−m+ Lm−1) ≤ max(Lr−1, r− Lr−1).

Ukážeme, že register R(r) generuje postupnost’ S1, S2, . . . , Sr. Vyjadríme rozdiel medzi
hodnotami generovanými registrom R(r) v jednotlivých taktoch a príslušnými členmi po-
stupnosti S1, S2, . . . , Sr.

Sj −

(
−

Lr∑
i=1

λ
(r)
i Sj−i

)
= Sj +

Lr∑
i=1

λ
(r−1)
i Sj−i −

∆r

∆m

Sj−r+m +

Lm−1∑
i=1

λ
(m−1)
i Sj−r+m−i

 =

=

{
0 j = Lr−1 + 1, . . . , r− 1

∆r −
∆r

∆m
· ∆m = 0 j = r.

Ked’že register R(r) generuje postupnost’ S1, S2, . . . , Sr, podl’a predchádzajúcej lemy

Lr ≥ max (Lr−1, r− Lr−1) .

To znamená, že
Lr = max (Lr−1, r− Lr−1)

a register R(r) : (Lr, Λ(r)(x)) je optimálny LFSR generujúci postupnost’ S1, S2, . . . , Sr; resp.
R(2t) : (L2t, Λ

(2t)(x)) je optimálny LFSR generujúci postupnost’ S1, S2, . . . , S2t.

Vrátime sa k príkladu zo začiatku paragrafu a zostrojíme LFSR pomocou Berlekamp
Masseovho algoritmu.

Príklad. Nech je daná binárna postupnost’ 0, 0, 1, 0, 1, 1, 0, 1, 0, 1. V tabul’ke 10.2 sú uve-
dené hodnoty parametrov Berlekamp-Masseyovho algoritmu v jednotlivých krokoch vý-
počtu.

10.6. ZVLÁŠTNOSTI DEKÓDOVANIA BINÁRNYCH BCH KÓDOV 161

r ∆r δr Lr Λ(r)(x) B(r)(x)

0 0 0 0 1 1

1 0 0 0 1 x

2 0 0 0 1 x2

3 1 1 3 1+ x3 1

4 0 0 3 1+ x3 x

5 1 0 3 1+ x2 + x3 x2

6 0 0 3 1+ x2 + x3 x3

7 1 1 4 1+ x2 + x3 + x4 1+ x2 + x3

8 1 0 4 1+ x+ x2 x+ x3 + x4

9 1 1 5 1+ x+ x4 + x5 1+ x2 + x3

10 1 0 5 1+ x2 + x3 + x4 + x5 x+ x3 + x4

Tabul’ka 10.2: Berlekamp-Massey

10.6 Zvláštnosti dekódovania binárnych BCH kódov

10.7 Reedove-Solomonove kódy

Špeciálnym prípadom BCH kódov sú Reedove-Solomonove kódy, ktoré, ako zakrátko
ukážeme, sú z istého hl’adiska optimálne.

Definícia 10.7.1. Reed-Solomonov kód (RS kód) je primitívny BCH kód dĺžky n = q− 1
nad pol’om GF(q).

Ked’že RS kódy tvoria podtriedu BCH kódov, RS kód opravujúci t chýb možno za-
dat’ generujúcim polynómom g(x) s koreňmi αj0+1, αj0+2, . . . , αj0+2t, kde α je primitívny
prvok pol’a GF(q). Kvôli zjednodušeniu položíme j0 = 0 a nájdeme explicitné vyjadrenie
generujúceho polynómu. Generujúci polynóm BCH kódu je definovaný ako najmenší spo-
ločný násobok minimálnych polynómov svojich koreňov. Minimálnym polynómom prvku
αi pol’a GF(q) je polynóm mαi(x) = x − αi nad pol’om GF(q). To však znamená, že gene-
rujúci polynóm g(x) bude súčinom minimálnych polynómov svojich koreňov:

g(x) = (x− α)(x− α2) . . . (x− α2t).

Určíme opravné schopnosti RS kódu. Konštrukčná vzdialenost’ RS-kódu ako špeciálneho
prípadu BCH kódu je d ≥ 2t + 1. Na druhej strane, g(x) je kódovým slovom a jeho váha
neprevyšuje 2t + 1 (túto hodnotu by polynóm g(x) dosiahol v prípade, ak by boli všetky
jeho koeficienty nenulové). Stupeň generujúceho polynómu cyklického kódu zodpovedá
počtu kontrolných symbolov. To znamená, že

deg(g(x)) = 2t = n− k,

resp. n − k + 1 = 2t + 1. RS kód je zároveň lineárnym kódom a pre lineárne kódy platí
Singeltonova hranica d ≤ n − k + 1. To znamená, že minimálna vzdialenost’ RS kódu je
d = n− k+ 1. Tým sme dokázali nasledujúcu vetu.

162 KAPITOLA 10. BOSEOVE-CHANDHURYOVE-HOCQUENGHEMOVE KÓDY

Veta 10.7.1. RS kód má minimálnu vzdialenost’ n − k + 1 a je kódom s maximálnou
(minimálnou) vzdialenost’ou.

Z uvedenej vety vyplýva, že pre dané n, k neexistuje kód, ktorého minimálna vzdiale-
nost’ by bola väčšia ako minimálna vzdialenost’ RS kódu. Túto skutočnost’ však nemožno
preceňovat’, pretože často potrebujeme zostrojit’ kód s parametrami n′, k′ pre ktoré ne-
existuje RS kód, ale existujú iné dostatočne dobré samoopravné kódy.

RS kódy nie sú binárne, ale ked’ zvolíme q = 2m, symboly kódovej abecedy možno
priamo nahrádzat’ binárnymi vektormi dĺžkym. Uvedieme niekol’ko príkladov RS kódov
a potom sa budeme zaoberat’ ich praktickým použitím pri opravovaní zhlukov chýb.

Príklad. Začneme krátkym RS kódom. Nech q = 8. Pole GF(23) zostrojíme faktorizá-
ciou okruhu polynómov GF(2) ireducibilným polynómom x3 + x + 1. Prvky pol’a GF(23)
vyjadrené pomocou mocnín primitívneho prvku α a lineárnych kombinácií mocnín pri-
mitívneho prvku α sú uvedené v nasledujúcej tabul’ke:

αi α2 α1 α0 αi α2 α1 α0

α0 0 0 1 α4 1 1 0

α1 0 1 0 α5 1 1 1

α2 1 0 0 α6 1 0 1

α3 0 1 1 α7 0 0 1

1. RS kód opravujúci chybu váhy 1 je zadaný generujúcim polynómom s koreňmi
α,α2;

g(x) = (x− α)(x− α2) = x2 + α4 · x+ α3.

2. RS kód opravujúci chybu váhy 2 je zadaný generujúcim polynómom s koreňmi
α,α2, α3, α4;

g(x) = (x− α)(x− α2)(x− α3)(x− α4) = x4 + α3x3 + x2 + αx+ α3.

Ked’že generujúci polynóm má stupeň 4, informačný polynóm bude mat’ stupeň 2.
Nech i(x) = α4x2 + α2x+ α6. Kódovým polynómom bude

i(x) · g(x) = x6α4 + x5α6 + x4α2 + x3α5 + x2α5 + xα4 + α2.

Ak vyjadríme kódové slovo v tvare vektora a nahradíme prvky pol’a GF(23) binár-
nymi vektormi dĺžky 3, dostávame binárny vektor dĺžky 21:

110 101 100 111 111 110 100.

Pozrieme sa ešte na RS kód dĺžky 15 nad pol’om GF(24), opravujúci 3 chyby. Tento kód
bude zadaný generujúcim polynómom g(x) s koreňmi α,α2, . . . , α6;

g(x) = (x− α)(x− α2)(x− α3)(x− α4)(x− α5)(x− α6).

a bude opravovat’ chyby váhy ≤ 3. Pri binárnom zápise kódových slov dostávame z RS
(15, 9) kódu (60, 36) kód. Ak by sme RS kód chceli použit’ na kódovanie informácie pre-
nášanej kanálom, na ktorý pôsobí biely šum, binárny zápis kódových slov je skôr nevý-
hodou. Ak totiž v kódovom slove (dĺžky 60) vznikne chyba váhy 4 alebo väčšej, zmení

10.7. REEDOVE-SOLOMONOVE KÓDY 163

pravdepodobne viac než 3 hexadecimálne symboly kódového slova, čo prevýši opravnú
schopnost’ daného RS kódu. V mnohých aplikáciách je však predpoklad o nezávislosti
chýb neopodstatnený: ak dôjde k poškodeniu CD, elektrickému výboju alebo poruche,
tieto udalosti ovplyvnia pravdepodobne niekol’ko susedných znakov kódového slova. Ta-
kýmto chybám sa hovorí zhluky chýb (burst errors), a RS kódy sa dajú výhodne použit’
práve na ochranu informácie prenášanej kanálom, v ktorom dochádza k zhlukom chýb.

Definícia 10.7.2. (Cyklickým) zhlukom chýb dĺžky t

164 KAPITOLA 10. BOSEOVE-CHANDHURYOVE-HOCQUENGHEMOVE KÓDY

Kapitola 11

Modifikácie samoopravných
kódov

Niekedy sa stane, že nevieme nájst’ dobrý samoopravný kód, ktorý vyhovuje presne na-
ším potrebám, ale vieme o existencii dobrého samoopravného kódu, ktorého parametre
sa od nami požadovaných hodnôt vel’mi neodlišujú. Ponúka sa prirodzená otázka, či sa
známy kód nedá upravit’ tak, aby si zachoval svoje dobré vlastnosti a zároveň splnil
naše požiadavky. Ako zakrátko uvidíme, metódy umožňujúce transformácie samooprav-
ných kódov skutočne existujú. V tejto krátkej kapitole stručne popíšeme šest’ základných
metód úprav samoopravných kódov. Budeme pracovat’ prevažne s lineárnymi kódmi; nie
však preto, že by sa dané metódy nedali použit’ na úpravy nelineárnych kódov, ale preto,
že v prípade lineárnych kódov majú modifikácie, ktoré budeme uvádzat’, vel’mi jednodu-
chú interpretáciu. Metódy modifikácie samoopravných kódov možno nájst’ prakticky v
l’ubovol’nej monografii venovanej kódovaniu; čitatel’ovi pre podrobnejšie štúdium proble-
matiky odporúčame vynikajúco spracovanú kapitolu v [7], resp. prednášky [?], z ktorých
sme prebrali niektoré príklady.

Lineárny kód C má tri základné parametre: dĺžku n, počet informačných symbolov
(= dimenzia lineárneho podpriestoru) k a počet kontrolných symbolov n − k. Podstata
základných metód modifikácie spočíva v tom, že sa jeden z troch uvedených parametrov
fixuje a ostatné dva sa menia. Celkovo teda máme 6 základných možností ktoré kvôli
prehl’adnosti uvádzame v nasledujúcej tabul’ke (ked’že slovenská terminológia zatial’ ne-
existuje, budeme sa pridržiavat’ aglického označenia):

No. Názov metódy n k n− k

1. augmenting zväčšenie - ↑ ↓
2. expurgating zmenšenie - ↓ ↑
3. extending rozšírenie ↑ - ↑
4. puncturing zúženie ↓ - ↓
5. lengthening predĺženie ↑ ↑ -
6. shortening skrátenie ↓ ↓ -

Pripomenieme, že lineárne (n, k) kódy je možné zadat’ generujúcou maticou G typu k ×
n alebo kontrolnou maticou H typu n − k × n. Vo všeobecnosti sa pri zmenách počtov

165

166 KAPITOLA 11. MODIFIKÁCIE SAMOOPRAVNÝCH KÓDOV

informačných a kontrolných symbolov a nemennej dĺžke kódových slov pridávajú alebo
vynechávajú riadky v generujúcej/kontrolnej matici; pri zmenách dĺžky kódového slova
sa pridávajú alebo vynechávajú stĺpce generujúcej/kontrolnej matice. Pozrieme sa teraz
na jednotlivé metódy modifikácie kódov podrobnejšie.

Metódy Lengthening a Shortening

Pri predlžovaní a skracovaní kódu sa mení celková dĺžka kódu a počet informačných
symbolov, zostáva zachovaný počet kontrolných symbolov. Pri predlžovaní (lengthening)
zväčšujeme dĺžku kódu (a počet informačných symbolov) a ku kódu pridávame nové kó-
dové slová; pri skracovaní (shortening) kódu naopak odstraňujeme informačné symboly
a tak z pôvodného kódu odstraňujeme kódové slová.

Predlžovanie lineárnych kódov sa robí pridávaním rovnakého počtu riadkov a stĺpcov
ku generujúcej matici. Štandardný spôsob predlžovania lineárnych kódov spočíva v pri-
daní nulového stĺpca ku generujúcej matici a následne v doplnení nulového riadka, ktorý
však má nenulovú hodnotu v poslednom (pridanom) stĺpci. Skracovanie lineárneho kódu
predstavuje inverzný postup k predlžovaniu kódu. Najprv upravíme generujúcu maticu
kódu tak, aby obsahovala jeden riadok, ktorý má nulové hodnoty na všetkých miestach s
výnimkou posledného. Odstránením tohto riadku a posledného stĺpca z generujúcej ma-
tice dostaneme generujúcu maticu skráteného kódu. Iná možnost’ skracovania a predlžo-
vania kódu spočíva vo vynechávaní resp. pridávaní vybraných stĺcov kontrolnej matice.

Príklad (skrátenie kódu). Uvažujme Hammingov (15,11) binárny kód zadaný kontrol-
nou maticou

H =


1 0 0 0 1 0 0 1 1 0 1 0 1 1 1

0 1 0 0 1 1 0 1 0 1 1 1 1 0 0

0 0 1 0 0 1 1 0 1 0 1 1 1 1 0

0 0 0 1 0 0 1 1 0 1 0 1 1 1 1

 . (11.1)

Odstránením stĺpcov 12,13 a 14 dostávame (12,8) kód opravujúci 1 chybu, zadaný
kontrolnou maticou

H′ =


1 0 0 0 1 0 0 1 1 0 1 1

0 1 0 0 1 1 0 1 0 1 1 0

0 0 1 0 0 1 1 0 1 0 1 0

0 0 0 1 0 0 1 1 0 1 0 1

 .

Zostrojený kód má dve prednosti: informačný vektor má dĺžku 8 a ked’že sme z pôvod-
nej kontrolnej matice odstránili stĺpce maximálnej váhy, zjednodušili sa kontrolné sumy
(namiesto pôvodných 8 členov obsahujú teraz 5 a 6 členov). Na druhej strane, počet kó-
dových slov klesol z pôvodných 2048 na 256.

Príklad (predĺženie kódu). (n−1, k) Reedov-Solomonov kód predĺžime pridaním dvoch
nových informačných symbolov a zostrojíme Reedov-Solomonov kód s parametrami (n+
1, k+ 2). Aby sme zaistili opravovanie chýb v doplnených symboloch kódových slov, nové
informačné symboly musíme zaradit’ aj do kontrolných súm. To dosiahneme doplnením

167

kontrolnej matice o také dva nové stĺpce, aby sme neznížili rang kontrolnej matice:

H =


1 α α2 . . . αn−2

1 α2 α4 . . . α2(n−2)

...
...

1 α2t α4t . . . α2t(n−2)

⇒

1 0 1 α α2 . . . αn−2

0 0 1 α2 α4 . . . α2(n−2)

...
...

0 1 1 α2t α4t . . . α2t(n−2)

 .
Metódy Augmenting a Expurgating

Pri týchto modifikáciách si kód zachováva nemennú dĺžku kódového slova, ale mení
sa počet kontrolných a informačných symbolov. Ked’ sa zväčšuje počet informačných sym-
bolov (augmenting), rastie aj počet kódových slov, ale zmenšuje sa počet kontrolných
symbolov a môže sa zmenšit’ (a spravidla sa aj zmenšuje) minimálna vzdialenost’ a tým
aj opravná schopnost’ kódu. Naopak, pri zväčšovaní počtu kontrolných symbolov (expur-
gating) v slove sa zmenšuje počet informačných symbolov, klesá počet kódových slov a
môže sa zväčšit’ minimálna vzdialenost’ kódu.

V prípade lineárneho kódu sa metódy Augmenting a Expurgating realizujú jedno-
ducho: ak chceme kód zväčšit’, pridáme do generujúcej matice nový riadok (často sa
pridáva jednotkový riadok); ak potrebujeme kód zmenšit’, z generujúcej matice odstra-
ňujeme riadky, resp. pridávame riadky do kontrolnej matice kódu. Metódu Augmenting
sme použili pri konštrukcii Reedových-Mullerových kódov; ku generujúcej matici kódu
R(r− 1,m) sme pridali maticu Gr a dostali generujúcu maticu kódu R(r,m):

G =


G0
G1
...

Gr−1

⇒


G0
G1
...

Gr−1
Gr

 .
Pôvodný R(r − 1,m) kód mal dĺžku 2m a mal

∑
0≤j<r

(
m
j

)
informačných symbolov, dĺžka

kódových slov kódu R(r,m) zostala zachovaná, ale počet informačných symbolov v slove
vzrástol v porovnaní s kódom R(r− 1,m) o

(
m
r

)
.

Príklad (metóda Expurgation). Metódu expurgation sme použili pri konštrukcii cyk-
lického (15, 7) kódu opravujúceho 2 chyby z Hammingovho (15, 11) kódu v úvode 8 kapi-
toly. Kontrolnú maticu H (11.1) rozšírime o 4 riadky a dostávame kontrolnú maticu typu
8× 15,

H′ =



1 0 0 0 1 0 0 1 1 0 1 0 1 1 1

0 1 0 0 1 1 0 1 0 1 1 1 1 0 0

0 0 1 0 0 1 1 0 1 0 1 1 1 1 0

0 0 0 1 0 0 1 1 0 1 0 1 1 1 1

1 0 0 0 1 1 0 0 0 1 1 0 0 0 1

0 0 0 1 1 0 0 0 1 1 0 0 0 1 1

0 0 1 0 1 0 0 1 0 1 0 0 1 0 1

0 1 1 1 1 0 1 1 1 1 0 1 1 1 1


ktorú kvôli stručnosti zapíšeme ako maticu nad pol’om GF(24):

H =

[
α0 α1 α2 α3 α4 α5 α6 α7 α8 α9 α10 α11 α12 α13 α14

α0 α3 α6 α9 α12 α15 α18 α21 α24 α27 α30 α33 α36 α39 α42

]
.

168 KAPITOLA 11. MODIFIKÁCIE SAMOOPRAVNÝCH KÓDOV

Dôležitá metóda zmenšenia kódu sa zakladá na výbere podmnožiny kódovej abecedy
a vylúčení všetkých slov pôvodného kódu, ktoré obsahujú aj iné symboly. Presnejšie, nech
je dané konečné pole F a nech je C kód nad pol’om F. Nech je G podpole pol’a F. Podkódom
kódu C nad podpol’om G nazveme množinu kódových slov kódu C, ktorých všetky zložky
patria do podpol’a G. Takýto podkód „zdedil“ mnohé dobré vlastnosti pôvodného kódu a
mohol nadobudnút’ aj d’alšie dobré vlastnosti. Túto metódu sme využili pri konštrukcii
Reedových-Solomonových kódov.

Metódy Extending a Puncturing

V obidvoch prípadoch si kód zachováva počet informačných symbolov (a zároveň aj
počet kódových slov). Mení sa dĺžka kódového slova a počet kontrolných symbolov.

Ked’ sa kód rozširuje (extension), pridávajú sa nové kontrolné symboly. Pri reduk-
cii sa naopak počet kontrolných symbolov v kódových slovách zmenšuje. Pri znižovaní
počtu kontrolných symbolov môže dôjst’ k zníženiu minimálnej vzdialenosti a pri pri-
dávaní kontrolných symbolov sa minimálna vzdialenost’ kódu môže zväčšit’. Rozšírenie
lineárneho kódu sa dá realizovat’ doplnením nového stĺpca generujúcej matice, naopak
redukcia lineárneho kódu sa realizuje odstránením stĺpca generujúcej matice. Lineárny
(n,k)-kód C možno rozšírit’ tak, že sa ku každému kódovému slovu v = (v1, . . . , vn) pridá
nový kontrolný symbol vn+1, ktorý je lineárnou kombináciou symbolov pôvodného slova;

vn+1 = a1v1 + a2v2 + · · ·+ anvn.

Vektor a1, . . . , an by nemal patrit’ do duálneho kódu C⊥, pretože v tom prípade by vn+1 =
0. Požiadavky na výber vektora a sa analyzujú v [7], my sa nimi zaoberat’ nebudeme.
Pri rozširovaní lineárnych kódov sa najčastejšie ku kódovým slovám pridáva paritný
symbol; t.j. kódové slovo v = (v1, . . . , vn, vn+1) potom spĺňa nasledujúcu rovnost’

n+1∑
i=1

v1 = 0.

(V tomto prípade vektor a = (−1, . . . ,−1).)

Kapitola 12

Prínos kódovania

Ked’ na prenos správ používame komunikačný kanál, na ktorý vplýva nejaký zdroj šumu,
hrozí že šum modifikuje prenášanú správu do takej miery, že príjemca nebude schopný
zrekonštruovat’ pôvodne odvysielanú správu. Existujú principiálne dva spôsoby, ako eli-
minovat’ alebo aspoň znížit’ riziko modifikácie, ktoré by spôsobilo nesprávnu interpretá-
ciu prijatej správy;

• zvýšenie odolnosti signálov voči šumu a

• použitie samoopravných kódov.

Doteraz sme sa zaoberali takmer výlučne riešeniami založenými na použití samoop-
ravných kódov. Sú však situácie, kedy samoopravný kód nedokáže zaistit’ potrebnú úro-
veň spol’ahlivosti komunikácie, inokedy je jednoduchšie zvýšit’ robustnost’ vysielaného
signálu (napríklad zvýšit’ hlasitost’ vysielania v hlučnom prostredí) alebo je výhodné
kombinovat’ technické (použitie robustnejších signálov na prenos správ) a matematické
riešenie (samoopravný kód). Predpokladajme, že našou úlohou je pre daný komunikačný
systém nájst’ optimálne riešenie, ktoré by zaistilo požadovanú úroveň bezpečnosti ko-
munikácie (vyjadrenú napríklad pravdepodobnost’ou nesprávneho dekódovania alebo
interpretácie prijatého slova), pričom máme možnost’ ovplyvňovat’ robustnost’ signálov
prostredníctvom zmien výkonu vysielača a použit’ nejaký samoopravný kód. Aby sme
dokázali posúdit’ príspevok použitia samoopravného kódu k zmene1 spol’ahlivosti komu-
nikácie, budeme v tejto kapitole študovat’ vzt’ah medzi energiou signálu pripadajúceho
na jeden symbol prenášanej správy (kódovanej alebo nekódovanej) a pravdepodobnost’ou
nesprávneho dekódovania prijatého slova.2

Na zjednodušenie výkladu prijmeme nasledujúce predpoklady:

• kódová abeceda je binárna,

• vysielač má ohraničený (konštantný výkon) a na prenos jedného bitu pripadá ener-
gia Eb joulov,

1zýšeniu alebo zníženiu
2Výklad vychádza z práce [15] a využíva matematický aparát teórie signálov z práce [5]

169

170 KAPITOLA 12. PRÍNOS KÓDOVANIA

• na prenos správ sa používajú amplitúdovo modulované signály; 1 je reprezentovaná
signálom S hodnotou

√
Eb a 0 je reprezentovaná signálom s hodnotou −

√
Eb.

Poznámka. Signál reprezentujúci 1 môžeme popísat’ funkciou S(t) (impulzom) s obdĺž-
nikovým priebehom:

S(t) =

{√
Eb −1/2 < t < 1/2,

0 ináč.

Množstvo energie pripadajúcej na impulz je [5] tak, ako sme predpokladali Eb:∫∞
−∞ S(t)2dt = Eb

∫ 1/2
−1/2

dt = Eb.

Predpokladáme d’alej, že na prenosový kanál pôsobí zdroj bieleho Gaussovského adi-
tívneho šumu3. Výsledkom jeho pôsobenia je náhodný signál N(t) (noise), ktorý sa pri-
počítava k signálu prenášajúcemu správu. Aby sme sa nemuseli zaoberat’ časovou alebo
spektrálnou reprezentáciou signálu S(t) a šumu N(t), signálu (aj šumu) na intervale
jednotkovej dĺžky priradíme číselné hodnoty S resp. N (dané napríklad priemernou hod-
notou príslušného signálu na intervale, alebo hodnotou ktorú nadobúda v strede inter-
valu). Šum potom môžeme chápat’ ako náhodnú premennú s normálnym rozdelením so
strednou hodnotou 0 a disperziou σ2. Hodnoty signálu a šumu sa sčítavajú a výsledná
hodnota S+N sa interpetuje (demodulátorom) nasledovne

S+N→ {1 S+N > 0,

0 ináč.

Je zrejmé, že demodulátor chybne interpretuje prijatý signál vtedy, ak sa v dôsledku
šumu mení znamienko signálu, t.j. pôvodne kladná hodnota signálu reprezentujúceho 1
sa pripočítaním hodnoty šumu zmenila na zápornú, ktorá reprezentuje 0 a vice versa. To
znamená, že, napríklad pri prenose 0 hodnota šumu musela prevýšit’

√
Eb a pri prenose 1

dôjde ku chybe, akN < −
√
Eb. Využijeme to, že náhodná premennáN popisujúca pôsobe-

nie šumu má normálne rozdelenie a vyčíslime pravdepodobnost’ toho, že šum nadobúda
vyššie uvedené hodnoty.

P(N >
√
Eb) =

1√
2πσ

∫∞
√
Eb

e−t
2/2σ2dt = 1−Φ

(√
Eb

σ2

)
, (12.1)

P(N < −
√
Eb) =

1√
2πσ

∫√Eb
−∞ e−t

2/2σ2dt = Φ

(
−

√
Eb

σ2

)
, (12.2)

kdeΦ(x) je distribučná funkcia normálneho rozdelenia. Zo symetrie hustoty normálneho

rozdelenia vyplýva, že P(N >
√
Eb) = P(N < −

√
Eb) = 1 − Φ

(√
Eb
σ2

)
. Zaujímavý je

argument funkcieΦ; pomer Eb/σ2 sa nazýva pomer signálu k šumu (signal to noise ratio),
3presnú charakteristiku takého šumu možno nájst’ v [5]

171

SRN a ako sa ukáže neskôr, pomocou neho sa dá kvantitatívne vyjadrit’ odolnost’ signálu
voči šumu.

Vyjadrili sme pravdepodobnost’ vzniku chyby pri prenose jedného bitu. Aby sme
mohli určit’ efekt kódovania, predpokladajme, že nekódovaná správa pozostáva zo slov
dĺžky k bitov. Na kódovanie použijeme (n, k) kód, takže pri prenesení n-bitového kó-
dového slova prenesieme v skutočnosti len k informačných bitov; ak by sme nezmenili
modulátor ani vysielač, prenosová rýchlost’ by po kódovaní nadobudla hodnotu R = k/n.
Aby sme toto zníženie prenosovej rýchlosti kompenzovali, musíme za jednotku času pre-
niest’ 1/R = n/k bitov kódového slova. Ked’že vysielač má konštantný výkon, znamená
to, že po takejto úprave bude množstvo energie pripadajúce na jednotkový signál (signál
reprezentujúci jeden bit prenášanej správy) REb, t.j. menšie. Tým sa zníži aj robust-
nost’ signálu a pravdepodobnost’ toho, že pri prenose jedného bitu dôjde vplyvom šumu
k chybe stúpne na

p′e = 1−Φ

(√
REb

σ2

)
. (12.3)

Na prvý pohl’ad to nevyzerá dobre, pretože zjavne pe < p′e. Efekt samoopravného kódova-
nia sa však prejaví až pri dekódovaní slov. Porovnáme pravdepodobnosti chybného dekó-
dovania/interpretácie prijatého slova v prípade ked’ na jeho zápis pri prenose nebol/bol
použitý samoopravný kód. V prvom prípade prenášame slovo dĺžky k a interpretujeme
ho správne, ak pri prenose nevznikla žiadna chyba. V druhom prípade prenášame slovo
dĺžky n a chyba dekódovania nastane vtedy, ak počas prenosu v slove vzniklo viac chýb,
ako dekóder dokázal opravit’. Ilustrujeme tieto skutočnosti na dvoch príkladoch.

Príklad. [15] Kozmická sonda Mariner, vypustená v roku 1969 používala na kódovanie
obrazov (32, 6)-kód opravujúci chyby váhy 7 a menšej. Predpokladajme, že tolerovatel’ná
pravdepodobnost’ nesprávneho dekódovania slova je 10−4. Bez použitia samoopravných
kódov bude mat’ prenášané slovo dĺžku 6 bitov a ak je pravdepodobnost’ chyby v jednom
bite pe, pravdepodobnost’ chyby v slove bude

Pe = 1− (1− pe)
6 ≤ 10−4 (12.4)

Z nerovnosti 12.4 vyjadríme pe: 1−10−4 ≤ (1−pe)
6; potom (1−10−4)1/6 ≤ 1−pe a napokon

pe ≤ 1−(1−10−4)1/6 = 1.66674 ·10−5. Aby sme dosiahli požadovanú spol’ahlivost’ prenosu,
hl’adáme takú hodnotu pomeru signál/šum Eb/σ

2, aby

pe ≈
10−4

6
= 1−Φ

(√
Eb

σ2

)
; t.j. Φ

(√
Eb

σ2

)
= 1−

10−4

6
= 0.999983;

Platí Φ(4.15) = .9999833763, a teda Eb/σ2 ≈ 4.152 = 17.22. Pravdepodobnost’ chyby v
jednom bite sa pri použití 32 bitového samoopravného kódu výrazne zvýši (lebo R = 6/32)
a dosiahne

p′e = 1−Φ(
√
17.22 ∗ 6/32) = 1−Φ(1.79687) = 0.0361757483.

Kód však má opravnú schopnost’ 7 a to znamená, že ak v prenášanom slove nevznikne
viac ako 7 chýb, dekóder dokáže prijaté slovo dekódovat’ správne. Pravdepodobnost’

172 KAPITOLA 12. PRÍNOS KÓDOVANIA

vzniku aspoň 8 chýb v slove je

P′E =

32∑
i=8

(
32

i

)
(p′e)

i(1− p′e)
32−i = 0.00001413616427,

čo je podstatne lepšie ako požadovaná hodnota 10−4. (Pri použití „mäkkých“ metód de-
modulácie a dekódovania sa dá dosiahnut’ dokonca až hodnota P′E = 2 · 10−11 [15]).

Uvedieme ešte jeden príklad. Binárny BCH (15,5) kód opravujúci tri chyby nám dobre
poslúžil napríklad pri výklade metód dekódovania BCH kódov. Ale pomohol by nám zvý-
šit’ spol’ahlivost’ prenosu údajov z Marinera?

Príklad 12.1. Aby sme mohli porovnat’ „kvality“ BCH (15,5) kódu s kódom použitým
na kódovanie údajov Marinera, zachovajme úroveň spol’ahlivosti PE = 10−4. Pri prenose
bez použitia samoopravného kódu budeme prenášat’ 5 bitové slová a pravdepodobnost’
chybného prenosu 1 bitu dosiahne pe = 2 · 10−5 = 1−Φ(4.107479655) a pomer signál/šum
bude Eb/σ2 = 16.87138910. Pri použití uvedeného binárneho (15,5) kódu sa prenosová
rýchlost’ zníži na tretinu (R = 5/15). Vyjadríme pravdepodobnosti p′e a P′E:

p′e = 1−Φ(2, 37145448) = 0.0088591145

a
P′E = 0.7776185512 · 10−5.

Pravdepodobnost’ chybného dekódovania prijatého slova bude teda pri použití binárneho
BCH (15,5) kódu 12 krát nižšia v porovnaní s pravdepodobnost’ou chybnej interpretácie
prijatej pätice (nekódovaných) informačných bitov.

Napriek optimistickým výsledkom predchádzajúcich príkladov, použitie samooprav-
ných kódov nemusí zaistit’ zvýšenie spol’ahlivosti komunikácie; resp. presnejšie pove-
dané, každý samoopravný kód má svoj rozsah použitia a jeho použitie mimo tohto roz-
sahu môže dokonca znížit’4 spol’ahlivost’ komunikácie.

Čo sa dá spravit’ v prípade, ak pomocou samoopravného kódu zvýšime spol’ahlivost’
prenosu nad stanovenú hodnotu (vyjadrenú pravdepodobnost’ou nesprávneho dekódo-
vania prijatého slova, PE)? Ak nám stanovená hranica spol’ahlivosti prenosu postačuje,
môžeme znížit’ množstvo energie použité na prenos jedného bitu

• znížením výkonu vysielača,

• zvýšením počtu bitov prenesených za časovú jednotku.

Ked’že v obidvoch prípadoch ide o stanovenia množstva energie/signál prenášajúci 1 bit,
ktoré postačuje na dosiahnutie želanej hodnoty PE, stačí sa zaoberat’ prvým prípadom. V
prípade sondy Mariner na dosiahnutie požadovanej úrovne PE = 10−4 postačuje hodnota
SRN 14.83. Použitie samoopravného kódu v tomto prípade malo pozitívny efekt, ktorý sa

4použitie samoopravného kódu možno kombinovat’ aj so zmenou iných parametrov komunikačného sys-
tému, čo môže ovplyvnit’ rozsah použitel’nosti kódu

173

kód t coding gain
Hammingov(7, 4) 1 3.066127697

Hammingov(15, 11) 1 2.824701569

Hammingov(31, 26) 1 2.615760124

BCH(15, 5) 3 5.750883407

Golayov(23, 12) 3 5.447658460

RM(2, 4)∗ 1 −2.398093804
Mariner(32, 6) 7 0.6489199602

Tabul’ka 12.1: Efektívnost’ vybraných samoopravných kódov

dokonca dá vyjadrit’ aj kvantitatívne - pomerom SRN (bez kódovania):SRN (s kódova-
ním); v našom prípade je hodnota pomeru 1.1611. Na dosiahnutie požadovanej spol’ah-
livosti prenosu by teda bolo možné znížit’ výkon vysielača asi o 15%. „Pomer pomerov“,
ktorý sme pred chvíl’ou zaviedli sa skutočne používa na meranie efektu kódovania.

Pomer SRN (nekódovaného)/SRN (kódovaného) prenosu pre rovnakú pravdepodob-
nost’ chyby dekódovania prijatého slova5 sa nazýva prínos kódovania (coding gain) .

Prínos kódovania sa vyjadruje v decibeloch (dB) a vypočítava sa ako desat’násobok
hodnoty dekadického logaritmu z pomeru SRN (nekódovaného)/SRN (kódovaného). V
prípade kódovania prenosu Marinera je prínos kódovania 0.65 dB. Pre BCH (15, 5) kód je
prínos kódovania ešte väčší (5.75 dB). V tabul’ke 12.1 sú pre porovnanie uvedené niektoré
zo samoopravných kódov, ktorými sme sa doteraz zaoberali a hodnoty code gain pre PE =
10−4. Pri Reedovom-Mullerovom kóde je minimálna vzdialenost’ 4, ale opravná schopnost’
kódu je len 1.

Na záver tejto kapitoly ešte pripomenieme, že to, že prínos kódovania je kladný6

nemusí samo o sebe byt’ dostatočným dôvodom na použitie samoopravného kódu. Samo-
opravné kódy si o. i. vyžadujú (softvérovo alebo hardvérovo realizovaný) kóder a dekóder,
čo sa prejavuje tak na cene komunikačného systému, ako aj na čase spracovania správ.
Ten istý efekt, ako zavedenie samoopravných kódov môžeme dosiahnut’ použitím iného
komunikačného kanála alebo iných signálov, ktoré sú odolnejšie voči šumu. Pri hl’adaní
optimálneho riešenia na zaistenie požadovanej úrovne spol’ahlivosti komunikácie je po-
trebné zvažovat’ tak technické možnosti a ohraničenia, ako aj možnosti samoopravných
kódov.

5ak nebolo použité kódovanie, tak chyba dekódovania znamená, že nastala chyba v l’ubovol’nom bite
prenášaného slova

6SRN (nekódovaného)>SRN (kódovaného) prenosu

174 KAPITOLA 12. PRÍNOS KÓDOVANIA

Kapitola 13

Shannonova teoréma

Samoopravné kódy umožňujú zvýšit’ pravdepodobnost’ správneho dekódovania prijatej
informácie. Cena, ktorú za to treba zaplatit’, je doplnenie informačných symbolov v kó-
dovom slove o kontrolné symboly. V malých kódoch, ktoré sme konštruovali v predchá-
dzajúcich kapitolách bol podiel kontrolných symbolov na celkovej dĺžke slova pomerne
značný. Zdalo by sa, že opravná schopnost’ a rýchlost’ prenosu sú v nepriamej úmere; t.j.
že podiel počtu informačných symbolov na celkovej dĺžke kódového slova sa bude nutne
zmenšovat’ so vzrastajúcou minimálnou vzdialenost’ou kódu. Prekvapujúci výsledok pri-
náša klasická Shannonova veta. Ukazuje sa, že pre mnohé prenosové kanály je možné

• prenášat’ informáciu rýchlost’ou blízkou prenosovej rýchlosti kanála;

• pravdepodobnost’ chybného dekódovania prijatej informácie možno stlačit’ pod l’u-
bovol’ne malú, dopredu zadanú hodnotu.

V tejto časti vyslovíme a dokážeme Shannonovu vetu. Najprv uvedieme a vysvet-
líme predpoklady Shannonovej vety a pripomenieme pojmy, ktoré budeme pri jej dôkaze
potrebovat’.

Budeme predpokladat’, že prenosový kanál, ktorý sa používa na prenos správ (kódo-
vanej informácie) je binárny symetrický kanál bez pamäte; t.j. na kódovanie správ sa
používa binárna abeceda a prenosy jednotlivých binárnych symbolov sa uskutočňujú s
nasledujúcimi pravdepodobnost’ami:

p : 0→ 0, 1→ 1

1− p = q : 0→ 1, 1→ 0

Budeme pracovat’ s kódom C = {x1, . . . ,xM}, ktorý má M kódových slov dĺžky n. Pred-
pokladáme, že kódové slová kódu C sa na výstupe zdroja informácie vyskytujú rovnako
často; t.j., že

∀xi ∈ C; P(xi) = 1/M. (13.1)

Predpokladajme, že bolo odvysielané kódové slovo xi a prijaté slovo y. Prijaté slovo y sa
dekóduje ako kódové slovo xj také, že

175

176 KAPITOLA 13. SHANNONOVA TEORÉMA

P(y|xj) = max
xk∈C

{P(y|xk)}. (13.2)

Prijaté slovo sa teda dekóduje na základe maximálnej pravdepodobnosti; ak vznikne
chyba malej váhy, prijaté slovo sa dekóduje správne, ak vznikne chyba väčšej váhy, ako
je opravná schopnost’ použitého kódu, prijaté slovo sa dekóduje nesprávne. Odhadneme
pravdepodobnost’ nesprávneho dekódovania prijatého slova. Pravdepodobnost’ nespráv-
neho dekódovania odvysielaného (a šumom pri prenose modifikovaného kódového slova)
xi označíme symbolom Pi. Pravdepodobnost’ nesprávneho dekódovania prijatého slova
pri použití kódu C je

PC =
1

M

M∑
i=1

Pi.

Uvažujme teraz množinu C, množinu všetkých binárnych kódov, ktoré majúM slov dĺžky
n a zavedieme:

P∗(M,n, q) = min
C∈C

{PC}.

Pre konkrétny kód C je dĺžka kódu nemenná. V Shannonovej konštrukcii budeme potre-
bovat’ parameter n menit’. Predpokladáme, že v závislosti od n sa bude menit’ aj počet
kódových slov; t.j., M =M(n). Kvôli stručnosti budeme namiesto M(n) písat’ len Mn;

P∗(Mn, n, q) = min
C∈C

{PC}. (13.3)

Pripomenieme ešte, že Hammingova vzdialenost’ dvoch vektorov u,v, ktorú označujeme
symbolom d(u,v) je daná počtom zločiek, v ktorých sa oba vektory líšia. Gul’ou so stre-
dom v bode (vektore) x a polomerom r označíme množinu vektorov

Br(x) = {y ∈ {0, 1}n; d(x, y) ≤ r}. (13.4)

Napokon, rýchlost’ prenosu R kódu C definujeme ako podiel R = |C|/2n.

Veta 13.0.2 (Shannonova teoréma). Nech je prenosová rýchlost’ kódu 0 ≤ R ≤ 1+p lgp+
q lgq a mohutnost’ kódu M = 2⌊R·n⌋, potom

P∗(Mn, n, q)→ 0

pre n→∞.
Dôkaz. Pravdepodobnost’ toho, že v kódovom slove xi vznikne pri prenose k chýb, je(
n
k

)
· pn−k(1 − p)k. Táto hodnota závisí len od parametrov p, n a nezávisí od toho, aké

slovo bolo odvysielané. Zavedieme náhodnú premennú ξp,n, vyjadrujúcu počty chýb v
odvysielaných slovách;

P(ξp,n = k) =

(
n

k

)
· pn−k(1− p)k.

Je zrejmé, že náhodná premenná ξp,n má binomické rozdelenie pravdepodobností so
strednou hodnotou E(ξp,n) = nq a disperziou Var(ξp,n) = npq. Pre l’ubovol’nú náhodnú

177

premennú ζ so strednou hodnotou E(ζ), disperziou Var(ζ) a l’ubovol’né reálne číslo α > 0
platí (Čebyševova nerovnost’)

P(|ζ− E(ζ)| > α) <
Var(ζ)

α2
.

Položíme v Čebyševovej nerovnosti α =
√
2npq/ε, ζ = ξp,n a upravíme:

P(|ξp,n − nq| >
√
2npq/ε) <

npq

2npq/ε
=
ε

2
. (13.5)

Z nerovnosti (13.5) vyplýva, že pre počet chýb v prenášanom slove s pravdepodobnos-
t’ou 1− ε/2 platí

nq−
√
2npq/ε < ξp,n < nq+

√
2npq/ε. (13.6)

Nás zaujímajú chyby väčšej váhy, ktoré vedú k nesprávnemu dekódovaniu. Z (13.5)
vyplýva, že

P(ξp,n > nq+
√
2npq/ε) <

ε

2
.

Všimneme si, že ak n→∞, 0 < p, q < 1 a ε > 0 sú konštanty,

ξp,n = nq+O(
√

(n)),

t.j. dá sa očakávat’, že v prenášanom slove vznikne asi nq chýb. Položíme

t = ⌊nq+
√
2npq/ε⌋ (13.7)

a zistíme, aká je pravdepodobnost’ toho, že pri prenose vznikne v slove viac chýb ako t.

Zavedieme dve funkcie. Prvá je indikátor, ktorý pre dvojicu vektorov u,v určí, či sú
vo vzdialenosti ≤ t alebo nie:

f(u,v) =
{
0 d(u,v) > t
1 d(u,v) ≤ t

(13.8)

Pre l’ubovol’né kódové slovo xi ∈ C a l’ubovol’ný binárny vektor dĺžky n, y ∈ {0, 1}n zave-
dieme nasledujúcu funkciu:

gi(y) = 1− f(y,xi) +
∑
j ̸=i
f(y,xj). (13.9)

Posledná funkcia si zaslúži podrobnejšie vysvetlenie: ak je xi odvysielané a y prijaté
slovo, tak môžu nastat’ tri možnosti:

1. xi je jediné kódové slovo také, že d(xi,y) ≤ t. Potom f(xi,y) = 1, ale ∀j ̸= i f(xj,y) =
0. To znamená, že v tomto prípade

gi(y) = 1− 1+ 0 = 0

178 KAPITOLA 13. SHANNONOVA TEORÉMA

2. d(xi,y) ≤ t a existuje ešte aspoň jedno kódové slovo xj; j ̸= i také, že d(xj,y) ≤ t.
Potom

gi(y) = 1− 1+ 1+
∑
k ̸=i,j

f(y,xk) = 1+
∑
k ̸=i,j

f(y,xk).

Suma
∑
k ̸=i,j f(y,xk) je nezáporná, a teda v tomto prípade

gi(y) ≥ 1.

3. d(xi,y) > t; t.j. f(xi,y) = 0 a

gi(y) = 1− 0+
∑
j ̸=i
f(y,xj) = 1+

∑
j ̸=i
f(y,xj).

Suma
∑
j ̸=i f(y,xj) je nezáporná, a teda aj v tomto prípade gi(y) ≥ 1.

Funkcia gi(y) teda nadobúda hodnotu 0 v prípade, ak prijaté slovo y leží vo vzdialenosti
menšej alebo rovnej t od kódového slova xi a leží vo vzdialenosti väčšej ako t od ostatných
kódových slov. V opačnom prípade nadobúda hodnotu väčšiu alebo rovnú jednej.

Pristúpime teraz k dôkazu Shannonovej vety. Vyberieme kódové slová kódu C náhod-
ne a nezávisle na sebe:

C = {x1, . . . ,xM}.

Predpokladáme, že sme odvysielali kódové slovo xi a prijali slovo y. Prijaté slovo dekó-
dujeme nasledovne:

• Ak existuje jediné kódové slovo xj také, že d(xj,y) ≤ t dekódujeme prijaté slovo
ako xj. Ak i = j, dekódovali sme správne, v opačnom prípade sme sa dopustili
chyby dekódovania.

• Ak existuje niekol’ko kódových slov ležiacich vo vzdialenosti ≤ t od prijatého slova
y; resp. neexistuje žiadne kódové slovo, ktoré by ležalo vo vzdialenosti ≤ t od prija-
tého slova y1) vyhlásime chybu.

Aká je pravdepodobnost’ chybného dekódovania?

Pi ≤
∑

y∈{0,1}n
P(y|xi) · gi(y) =

∑
y∈{0,1}n

P(y|xi) ·

1− f(y,xi) +∑
j ̸=i
f(y,xj)

 =

=
∑

y∈{0,1}n
P(y|xi) · [1− f(y,xi)] +

∑
y∈{0,1}n

∑
j̸=i

P(y|xi) · f(y,xj) (13.10)

Prvá suma z výrazu (13.10) sa dá zapísat’ takto∑
y∈{0,1}n

P(y|xi) · [d(xi,y) > t] = P(d(xi,y) > t). (13.11)

1kód C sme vytvárali náhodne

179

Výraz (13.11) vyjadruje pravdepodobnost’ toho, že prijaté slovo nepatrí do gule Bt(xi) a
dá sa odhadnút’ zhora nasledovne

P(d(xi,y) > t) <
1

2
ε,

pretože to, že d(xi,y) > t znamená, že pri prenose (slova xi) vznikla chyba váhy väčšej
ako t. Spočítame pravdepodobnost’ nesprávneho dekódovania prijatého slova, ak bolo
odvysielané niektoré kódové slovo.

PC =
1

M
·
M∑
i=1

Pi ≤
1

2
ε+

1

M

M∑
i=1

∑
y∈{0,1}n

∑
j ̸=i
P(y|xi) · f(y,xj). (13.12)

Hlavná myšlienka dôkazu spočíva v tom, že

P∗(Mn, n, q) ≤ E(PC),

t.j. minimálnu hodnotu chyby dekódovania možno odhadnút’ zhora strednou hodnotou
chyby dekódovania, ktorú berieme cez všetky možné kódy C:

P∗(Mn, n, q) ≤ E

1
2
ε+

1

M

M∑
i=1

∑
y∈{0,1}n

∑
j̸=i

P(y|xi) · f(y,xj)

 . (13.13)

Upravíme (13.13) pomocou nasledujúcich pravidiel pre strednú hodnotu:

• pre l’ubovol’nú konštantu c, E(c) = c;

• pre l’ubovol’né dve náhodné premenné φ,ψ, E(φ+ψ) = E(φ) + E(ψ).

Dostávame

P∗(Mn, n, q) ≤
1

2
ε+

1

M

M∑
i=1

∑
y∈{0,1}n

∑
j̸=i

E [P(y|xi) · f(y,xj)] . (13.14)

Zmeníme poradie sumácie v (13.14) tak, aby sme najprv počítali sumu vzhl’adom na
y ∈ {0, 1}n:

P∗(Mn, n, q) ≤
1

2
ε+

1

M

M∑
i=1

∑
j̸=i

∑
y∈{0,1}n

E [P(y|xi) · f(y,xj)] . (13.15)

Vnútornú sumu z (13.15) ∑
y∈{0,1}n

E [P(y|xi) · f(y,xj)] (13.16)

rozdelíme na dve časti∑
y∈{0,1}n

E [P(y|xi) · f(y,xj)] =
∑

y∈{0,1}n∩Bt(xj)

E [P(y|xi) · f(y,xj)]+
∑

y ̸∈{0,1}n∩Bt(xj)

E [P(y|xi) · f(y,xj)]

180 KAPITOLA 13. SHANNONOVA TEORÉMA

Ked’že f(y,xj) = 0 pre y ̸∈ {0, 1}n ∩ Bt(xj), a f(y,xj) = 1 pre y ∈ {0, 1}n ∩ Bt(xj)∑
y∈{0,1}n

E [P(y|xi) · f(y,xj)] =
∑

y∈{0,1}n∩Bt(xj)

E [P(y|xi)] .

Podmienenú pravdepodobnost’ P(y|xi) vyjadríme nasledovne:

P(y|xi) =
P(y,xi)
P(xi)

.

Ale P(xi) = 1/M, a teda∑
y∈{0,1}n

E [P(y|xi) · f(y,xj)] =M ·
∑

y∈{0,1}n∩Bt(xj)

E(P(y,xi)). (13.17)

Dosadíme (13.17) do vzt’ahu (13.15):

P∗(Mn, n, q) ≤
1

2
ε+

M∑
i=1

∑
j ̸=i

∑
y∈{0,1}n∩Bt(xj)

E(P(y,xi)) (13.18)

a upravíme trojitú sumu. Postupne dostávame

M∑
i=1

∑
y∈{0,1}n∩Bt(xj)

∑
j̸=i

E(P(y,xi)) = (M− 1)

M∑
i=1

∑
y∈{0,1}n∩Bt(xj)

E(P(y,xi)) =

(M− 1)
∑

y∈{0,1}n∩Bt(xj)

M∑
i=1

E(P(y,xi)) = (M− 1)
∑

y∈{0,1}n∩Bt(xj)

E(P(y)) =

(M− 1)
∑

y∈{0,1}n∩Bt(xj)

E(2−n) = (M− 1) · |Bt|
2n
. (13.19)

Pre pravdepodobnost’ P∗(Mn, n, q) sme zatial’ z (13.15) a (13.19)odvodili nasledujúci horný
odhad

P∗(Mn, n, q) ≤
1

2
ε+ (M− 1) · |Bt|

2n
. (13.20)

Upravíme (13.20) (najprv odčítame od oboch strán 1
2
ε, výsledok logaritmujeme a napokon

obe strany vydelíme hodnotou n):

P∗(Mn, n, q) −
1

2
ε ≤ (M− 1) · |Bt|

2n

lg(P∗(Mn, n, q) −
1

2
ε) ≤ lg(M− 1) + lg(|Bt|) − n

lg(P∗(Mn, n, q) −
1
2
ε)

n
≤ lgM

n
+

lg(|Bt|)
n

− 1. (13.21)

Ostáva odhadnút’ výraz lg |Bt|
n

z výrazu (13.21). Odhadneme najprv mohutnost’ gule s
polomerom t (v binárnom vektorovom priestore dimenzie n) zhora (pripomíname, že

181

t < n/2)

|Bt| =

t∑
k=0

(
n

k

)
≤ t
(
n

t

)
≤ 1

2
n · n!

t!(n− t)!
<
1

2
n · nn

tt(n− t)n−t
=

=
1

2
n

1(
t
n

)t (
1− t

n

)(n−t) . (13.22)

Teraz na základe odhadu (13.21) zostrojíme horný odhad pre lg |Bt|
n

:

lg |Bt|

n
≤ 1

n

[
lg
1

2
n− t lg

t

n
− (n− t) lg

(
1−

t

n

)]
=

= −
1

n
+

lgn
n

−
t

n
lg
t

n
−

(
1−

t

n

)
lg
(
1−

t

n

)
Pripomíname, že t = ⌊nq+

√
2npq/ε⌋. Odhadneme výrazy t

n
lg t

n
a
(
1− t

n

)
lg
(
1− t

n

)
:

t

n
=

⌊nq+
√
2npq/ε⌋
n

=
nq+

√
2npq/ε+O(1)

n
= q+O

(
1√
n

)
t

n
lg
t

n
=

[
q+O

(
1√
n

)]
lg
[
q+O

(
1√
n

)]
= q lgq+O

(
1√
n

)
. (13.23)

Podobne odhadneme výraz
(
1− t

n

)
lg
(
1− t

n

)
(
1−

t

n

)
lg
(
1−

t

n

)
= p lgp+O

(
1√
n

)
. (13.24)

Pripomenieme ešte, že prenosová rýchlost’ kódu je 0 ≤ R ≤ 1+p lgp+q lgq a mohutnost’
kódu jeM = 2⌊R·n⌋, t.j. existuje kladná konštanta β > 0 taká, že R = 1+p lgp+q lgq−β.
Potom

lgMn

n
=

lg 2⌊n(1+p lgp+q lgq−β)⌋

n
=

⌊n(1+ p lgp+ q lgq− β)⌋
n

≤

(1+ p lgp+ q lgq− β) (13.25)

Teraz dosadíme odhady (13.24) a (13.25) do (13.21)

lg(P∗(Mn, n, q) −
1
2
ε)

n
≤ lgMn

n
−

[
1+ p lgp+ q lgq+O

(
1√
n

)]
≤

≤ (1+ p lgp+ q lgq− β) −

[
1+ p lgp+ q lgq+O

(
1√
n

)]
= −β+O

(
1√
n

)
.

Nakoniec odhadneme zhora samotnú pravdepodobnost’ P∗(Mn, n, q):

lg(P∗(Mn, n, q) −
1

2
ε) ≤ −βn+O

(√
n
)
= −β′n

P∗(Mn, n, q) ≤ 1

2
ε+ 2−β

′n.

kde β′ > 0 je konštanta. Veta je dokázaná.

182 KAPITOLA 13. SHANNONOVA TEORÉMA

Kapitola 14

Hranice parametrov
samoopravných kódov

Pozrieme sa najmä na dolné odhady minimálnej vzdialenosti kódov.

183

184 KAPITOLA 14. HRANICE PARAMETROV SAMOOPRAVNÝCH KÓDOV

Čast’ III

Matematické základy teórie
kódovania

185

187

Konštrukcia kódov, skúmanie ich vlastností a návrh efektívnych metód kódovania a
dekódovania si vyžadujú pomerne rozsiahle vedomosti z matematiky, informatiky a nie-
ktorých technických vied. Predpokladáme, že čitatel’ absolvoval základné kurzy z mate-
matiky (najmä z algebry a lineárnej algebry) a má aspoň základné poznatky z teórie
pravdepodobnosti. V tejto časti uvedieme prehl’ad tých poznatkov z matematiky, ktoré
čitatel’ potrebuje na štúdium našej knihy. Prehl’ad matematiky má slúžit’ na rýchle pri-
pomenutie si zabudnutých poznatkov, prípadne doplnenie chýbajúcich fragmentov zna-
lostí, ale v žiadnom prípade nemá ambíciu nahradit’ systematický výklad uvedenej prob-
lematiky ako je napríklad [8, 9]. Čitatel’ovi, ktorý má záujem o hlbšie štúdium proble-
matiky uvedenje v tejto kapitole, resp. objavil vo svojich vedomostiach hlbšie medzery,
odporučíme práce, v ktorých nájde potrebné informácie spracované v dostupnej forme.

188

Kapitola 15

Algebra

Konštrukcie viacerých kódov vychádzajú z takých algebraických štruktúr, ako sú grupy,
vektorové priestory, konečné polia, konečné geometrie a iné. Zavedieme tieto algebraické
štrukúry a popíšeme ich najdôležitejšie vlastnosti.

Budeme predpokladat’, že čitatel’ovi sú známe pojmy množiny, podmnožiny, uspo-
riadanej dvojice, kartézskeho súčinu množín, relácie a zobrazenia, pozri napr. ??.

15.1 Grupy

Nech je M nejaká množina. Zobrazenie f : M × M → M budeme nazývat’ binárnou
operáciou na množine M. Často budeme pracovat’ s nejakými podmnožinami základnej
množiny a vtedy môže dôjst’ k prípadu, ked’ výsledok operácie nad prvkami z podmnožiny
už nebude prvkom danej podmnožiny. Ak pre l’ubovol’né dva prvky x, y ∈ M′ a binárnu
operáciu f platí f(x, y) ∈ M′, budeme hovorit’, že množina M′ je uzavretá vzhl’adom
na binárnu operáciu f. Algebraickou štruktúrou alebo algebraickým systémom budeme
nazývat’ množinu M s jednou alebo viacerými operáciami na M.

V d’alšom nebudeme skúmat’ nejaké abstraktné binárne operácie, ale takmer výlučne
sa budeme zaoberat’ aditívnymi a multiplikatívnymi operáciami. Preto budeme namies-
to zápisu f(x, y) používat’ pre binárnu operáciu tradičné označenie x ◦ y, kde ◦ označuje
operátor "+"v prípade aditívnej operácie a "*"v prípade multiplikatívnej operácie.

Príklad. Symbolmi N,Z,Q, R budeme (aj v d’alších častiach knihy, ak nebude povedané
inak) označovat’ množiny prirodzených, celých, racionálnych a reálnych čísel. Pripomí-
name, že nula (0) je prirodzené číslo. Na množine R definujeme štandardným spôsobom
operácie sčítania ("+"), odčítania ("−"), násobenia ("∗") a na množine R − {0} aj operáciu
delenia ("/"). Potom

1. množiny N,Z,Q, R sú uzavreté vzhl’adom na operácie + a ∗;

2. množiny Z,Q, R sú uzavreté vzhl’adom na operáciu −;

3. množiny Q− {0}, R− {0} sú uzavreté vzhl’adom na operáciu /.

189

190 KAPITOLA 15. ALGEBRA

Operácia ◦ na množine M sa nazýva

• asociatívnou, ak pre l’ubovol’né prvky a, b, c ∈M platí:

a ◦ (b ◦ c) = (a ◦ b) ◦ c

• komutatívnou, ak pre l’ubovol’né prvky a, b ∈M platí:

a ◦ b = b ◦ a.

MnožinaM s operáciou ◦ (v d’alšom budeme takúto algebraickú štruktúru označovat’
(M, ◦)) sa nazýva pologrupou, ak je M uzavretá vzhl’adom na operáciu ◦ a operácia ◦ je
(na M) asociatívna.

Prvok u ∈ (M, ◦) nazýva neutrálnym prvkom množiny M vzhl’adom na operáciu ◦,
ak pre l’ubovol’ný prvok a ∈ M platí a ◦ u = u ◦ a = a. Pologrupa (M, ◦) s neutrálnym
prvkom u sa nazýva monoidom.

Nech je a l’ubovol’ný prvok monoidu (M, ◦), potom prvok b ∈ (M, ◦), pre ktorý platí

a ◦ b = b ◦ a = u,

sa nazýva opačným alebo inverzným prvkom prvku a1

Príklad. Uvažujme množinu Q racionálnych čísel s operáciami sčítania a násobenia.
Neutrálnym prvkom pre operáciu sčítania je číslo 0, pre operáciu násobenia je neutrál-
nym prvkom číslo 1. Pre l’ubovol’né racionálne číslo a existuje opačné číslo −a ∈ Q. Ak
a ̸= 0, tak pre a existuje inverzné číslo 1/a.

Ďalší pojem je natol’ko dôležitý, že si zasluhuje explicitnú definíciu.

Definícia 15.1.1. Množina G s operáciou ◦, ktorá spĺňa nasledujúce podmienky

1. G je uzavretá vzhl’adom na operáciu ◦,

2. operácia ◦ je asociatívna,

3. G obsahuje neutrálny prvok vzhl’adom na operáciu ◦,

4. ku každému prvku množiny G existuje opačný prvok vzhl’adom na operáciu ◦

sa nazýva grupou.

1pojem opačný prvok sa zvykle používat’ v súvislosti s aditívnou operáciou a pojem inverzný prvok zasa
v súvislosti s multiplikatívnou operáciou.

15.1. GRUPY 191

Poznámka. Je zrejmé, že pologrupa, v ktorej ku každému prvku existuje opačný pr-
vok, je grupou.

Ak je operácia ◦ grupy (G, ◦) komutatívna, grupa (G, ◦) sa nazýva komutatívnou alebo
abelovskou grupou.

Príklad. (Komutatívnymi) grupami sú napríklad nasledujúce algebraické štruktúry:
(Z,+), (Q,+), (R,+), (Q − {0}, ∗), (R − {0}, ∗). Uvedieme ešte jednu, menej obvyklú grupu.
Množina Z3 = {0, 1, 2} s operáciou modulárneho sčítania ⊕ definovaného nasledujúcou
tabul’kou je komutatívna grupa:

⊕ 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

Grupa, ktorá má konečný počet prvkov, sa nazýva konečnou grupou. Počet prvkov
konečnej grupy G budeme označovat’ symbolom |G| a nazývat’ rádom grupy. V grupe
môže existovat’ podmnožina prvkov, ktoré spolu s operáciou defiinovanou na nadmno-
žine tvoria grupu. Takáto podmnožina s operáciou prevzatou s grupy (nadmnožiny) sa
bude nazývat’ podgrupou. Zrejme najmenšou podgrupou grupy je jednoprvková množina
obsahujúca neutrálny prvok grupy. Definujeme teraz pojem podgrupy exaktne.

Nech je (G, ◦) grupa. Podmnožina G1 ⊂ G, taká, že G1, ◦ je grupa, sa nazýva podg-
rupou grupy G. Podgrupu možno charakterizovat’ aj nasledujúcim spôsobom (predpo-
kladajme, že operácia ◦ je aditívna):

Veta 15.1.1. Podmnožina G1 grupy (G,+) s operáciou + je podgrupou (grupy G) práve
vtedy, ak pre l’ubovol’né prvky a, b ∈ G1 platí a− b ∈ G1.

Dôkaz. Ak je (G1,+) podgrupou, tak spĺňa všetky štyri axiómy grupy. To znamená. že
pre l’ubovol’ný prvok b ∈ G1 je aj −b ∈ G1; a pre l’ubovol’né dva prvky z G1 je prvkom G1
aj ich súčet.

Nech na druhej strane platí, že ak a, b ∈ G1 tak potom aj a − b ∈ G1. Zoberieme
l’ubovol’ný prvok a ∈ G1, podl’a predpokladu je aj a−a = 0 prvkom G1. To však znamená,
že pre l’ubovol’ný prvok c ∈ G1 je aj k nemu opačný prvok c = 0 − c ∈ G1; resp. pre
l’ubovol’né prvky a, b ∈ G1 je aj a + b = a − (−b) ∈ G1. To znamená, že G1 je uzavretá
vzhl’adom na asociatívnu operáciu +, obsahuje neutrálny prvok a ku každému prvku
obsahuje opačný prvok. T.j. (G1,+) je grupa.

Poznámka. Tvrdenie predchádzajúcej vety možno zovšeobecnit’ nasledovne: Podmno-
žina G1 grupy (G, ◦) s operáciou ◦ je podgrupou (grupy G) práve vtedy, ak pre l’ubovol’né
prvky a, b ∈ G1 platí a ◦ b′ ∈ G1, kde b′ je opačný/inverzný prvok k prvku b.

Príklad. 1. Uvažujme množinu Z6 = {0, 1, 2, 3, 4, 5} s operáciou + definovanou nasle-

192 KAPITOLA 15. ALGEBRA

dovne:
+ 0 1 2 3 4 5

0 0 1 2 3 4 5

1 1 2 3 4 5 0

2 2 3 4 5 0 1

3 3 4 5 0 1 2

4 4 5 0 1 2 3

5 5 0 1 2 3 4

Je zrejmé, že (Z6,+) je grupa. Jej podgrupami sú nasledujúce množiny {0}, {0, 3}, {0, 2, 4} s
operáciou +.

2. Nech je m l’ubovol’né celé číslo. Dá sa l’ahko ukázat’, že množnina mZ = {0,m,−m,
2m,−2m, . . . } všetkých celočíselných násobkov číslam tvorí s operáciou + aditívnu grupu,
ktorá je podgrupou aditívnej grupy celých čísel (Z,+). (Stačí dokázat’, že rozdiel l’ubovol’-
ných dvoch celočíselných násobkov čísla m je opät’ celočíselným násobkom čísla m.)

Uvažujme teraz grupu (G, ∗) s multiplikatívnou operáciou, nech je a ∈ G l’ubovol’ný
prvok, a m ∈ N. Definujeme mocniny prvku a nasledovne:

1. a0 = 1, kde 1 je neutrálny prvok grupy G vzhl’adom na multiplikatívnu operáciu,

2. am+1 = am ∗ a = a ∗ a ∗ · · · ∗ a︸ ︷︷ ︸
m+1

,

3. a−m = (a−1)m = a−1 ∗ · · · ∗ a−1︸ ︷︷ ︸
m

.

Kvôli zjednodušeniu označenia budeme namiesto a1 písat’ len a. Podobnm spôsobom
možno zaviest’ "mocniny"prvku a v prípade aditívnej operácie:

1. a0 = 0, kde 0 je neutrálny prvok grupy G vzhl’adom na aditívnu operáciu,

2. am+1 = am + a = a+ a+ · · ·+ a︸ ︷︷ ︸
m+1

,

3. a−m = (−a)m = −a− a− . . .− a︸ ︷︷ ︸
m

Tam kde nebude potrebné odlišovat’ multiplikatívne a aditívne grupy, budeme pou-
žívat’ terminológiu multiplikatívnych grúp (inverzný prvok, jednotkový prvok, mocnina
prvku a pod.)

Definícia 15.1.2. Nech je (G, ∗) grupa s multiplikatívnou operáciou, potom sa grupa G
nazýva cyklickou grupou, ak existuje taký prvok g ∈ G, že pre l’ubovol’né a ∈ G existuje
prirodzené číslo j ∈ N také, že a = gj; t.j., že všetky prvky grupy G možno vyjadrit’ v
podobe mocnín prvku g. Prvok g sa nazýva generátorom cyklickej grupy G a cyklická
grupa generovaná prvkom a sa označuje symbolom (a).

15.1. GRUPY 193

Príklad. 1. Uvažujeme množinu Z5 = {0, 1, 2, 3, 4} s multiplikatívnou operáciou ∗ defino-
vanou tabul’kou

∗ 0 1 2 3 4

0 0 0 0 0 0

1 0 2 3 4 5

2 0 2 4 1 3

3 0 3 1 4 2

4 0 4 3 2 1

(Z5, ∗) je síce len monoid, ale ak z neho odstránime problematický prvok 0, pre ktorý v
(Z5, ∗) neexistuje inverzný prvok, dostávame multiplikatívnu grupu (Z5 − {0},+). Táto
grupa je cyklická a prvky 2, 3, 4 sú jej generátormi.

2. Grupa (Z6,+) z príkladu 15.1 je cyklická. jej generátorom sú prvky 1, 5.

3. Aditvna grupa celých čísel (Z,+) je cyklická, jej generátormi sú čísla 1,−1.

Uvažujme konečnú grupu (G, ∗) a prvok a ∈ G. Množina mocnín {a, a2, . . . } je v dô-
sledku konečnosti G a uzavretosti G vzhl’adom na operáciu ∗ konečná a s operáciou ∗
tvorí podgrupu nazývanú podgrupou generovanou prvkom a. Pre l’ubovol’né a ∈ G exis-
tuje prirodzené číslo k také, že ak = 1, kde 1 je neutrálny prvok gupy G. Je zrejmé, že
podgrupa generovaná prvkom a má prvky a, a2, . . . , ak = 1. Rádom prvku a ∈ G budeme
nazývat’ rád podgrupy generovanej prvkom a. Množinu mocnín a, a2, . . . , ak = 1 budeme
nazývat’ cyklom.

Budeme skúmat’ niektoré vzt’ahy medzi grupami a ich pologrupami. Na to potrebu-
jeme zaviest’ pojem rozkladu alebo faktorizácie grupy.

Nech je M l’ubovol’ná množina. Potom M = {M1, . . . Mi ⊆ M} systém podmožín
množiny M sa nazýva rozkladom množiny M, ak spĺňa nasledujúce tri podmienky:

1. ∀i Mi ̸= ∅,

2.
∪
iMi =M,

3. Mi

∩
Mj = ∅; i ̸= j.

Prvky systému M budeme nazývat’ triedami rozkladu.

Existujú zvláštne relácie na množine, ktoré definujú rozklady tejto množiny.

Nech je M l’ubovol’ná množina. Potom relácia R ⊆ M ×M na množine M nazýva
reláciou ekvivalencie (ekvivalenciou) , ak

1. pre l’ubovol’né x ∈M, (x, x) ∈ R (reflexívnost’),

2. pre l’ubovol’né x, y ∈M platí, ak (x, y) ∈ R, tak potom aj (y, x) ∈ R (symetria),

3. pre l’ubovol’né x, y, z ∈ M platí, ak (x, y) ∈ R a (y, z) ∈ R tak potom aj (x, z) ∈ R

(tranzitívnost’).

194 KAPITOLA 15. ALGEBRA

Poznámka. Relácia ekvivalencie sa zvykne označovat’ symbolom ∼ alebo ≡. Namiesto
≡ (x, y) budeme písat’ x ≡ y.

Príkladom ekvivalencie je rovnost’. Relácia ekvivalencie určuje rozklad množiny. Triedy
rozkladu množinyM určené reláciou ekvivalencie ≡ na množineM sa nazývajú triedami
ekvivalencie a sú definované nasledovne:

[a] = {x ∈M; x ≡ a};

t.j. jednu triedu rozkladu/ekvivalencie tvoria všetky tie prvky množiny M, ktoré sú na-
vzájom ekvivalentné. Trieda rozkladu je jednoznačne určená l’ubovol’ným svojím prv-
kom, a preto sa z každej triedy rozkladu vyberie nejaký prvok, ktorý reprezentuje danú
triedu, nazývaný reprezentantom alebo predstavitel’om triedy.

Príklad. Nech je m ∈ N prirodzené číslo, m > 1. Relácia ≡ definovaná na množine
celých čísel nasledujúcim spôsobom

a ≡ b⇔ m|(a− b)

je ekvivalencia. Rozklad množiny celých čísel definovaný touto ekvivalenciou pozostáva
z tried [0], ...[m − 1]. Prvkami triedy ekvivalencie [t] sú všetky celé čísla, ktoré majú
rovnaký zvyšok po delení číslom m ako reprezentant triedy. Túto ekvivalenciu budeme
ešte potrebovat’, a preto pre ňu zavedieme špeciálne označenie; to že pre celé čísla a, b
platí m|(a− b), budeme označovat’ nasledovne

a ≡ b mod m.

Uvažujme grupu (G, ∗) a nejakú jej podgrupu (H, ∗); H = {h1 . . . hk}. Zostrojíme teraz
rozklad grupy G nasledujúcim spôsobom:

1. prvou triedou rozkladu je podgrupa H; reprezentantom tejto triedy rozkladu je pr-
vok 1;

2. predpokladáme, že sme zostrojili i−1 tried rozkladu; ak existuje prvok ai ∈ G, torý
nepatrí do žiadnej z prvých i − 1 tried rozkladu, vyberieme ho ako reprezentanta
i-tej triedy, ktorú zostrojíme nasledujúcim spôsobom:

[ai] = ai ∗ h1, . . . , ai ∗ hk

3. krok (2) opakujeme dovtedy, kým budú existovat’ prvky množiny G, ktoré nepatria
do žiadnej triedy rozkladu.

Je zrejmé, že triedy [ai] sú neprázdne a že každý prvok množiny G patrí do niektorej
triedy. Ukážeme ešte, že [ai]

∩
[aj] = ∅ i ̸= j. Predpokladajme opak, t.j. že existuje prvok

x ∈ [ai]
∩
[aj]. To však znamená, že existujú prvky hr, hs ∈ H také, že

x = ai ∗ hr = aj ∗ hs.

Ked’že G je grupa, obsahuje prvok a−1i , inverzný k prvku ai. To znamená, že

a−1i ∗ (ai ∗ hr) = (a−1i ∗ ai) ∗ hr = hr = a−1i ∗ (aj ∗ hs) = (a−1i ∗ aj) ∗ hs;

15.1. GRUPY 195

t.j. (a−1i ∗ aj) ∈ H, a teda ai ∈ aj ∗ H, z čoho vyplýva, že [ai] = [aj]. Systém {[ai]}i teda
naozaj predstavuje rozklad grupy G, ktorý budeme nazývat’ rozkladom grupy G podl’a
podgrupy H. Rozklad grupy podl’a podgrupy je uvedený v nasledujúcej tabul’ke.

h1 h2 . . . hk
a2 a2 ∗ h1 a2 ∗ h2 . . . a2 ∗ hk
...

...
... . . .

...
ai ai ∗ h1 ai ∗ h2 . . . ai ∗ hk
...

...
... . . .

...
am am ∗ h1 am ∗ h2 . . . am ∗ hk

Poznámka. V prípade ak multiplikatívna operácia ∗ nie je komutatívna, bude po-
trebné rozlišovat’ násobenie sprava a zl’ava, pretože vo všeobecnosti a∗H ̸= H∗a. Triedy
a∗H (H∗a) budeme nazývat’ l’avými, resp.pravými triedami rozkladu. Podgrupa H grupy
(G, ∗) sa nazýva normálna, ak pre každý prvok a ∈ G platí a ∗H = H ∗ a; t.j. ak sa pravé
a l’avé triedy rozkladu grupy G podl’a H rovnajú. My budeme pracovat’ s abelovskými
grupami, ktorých podgrupy sú normálne podgrupy.

Z konštrukcie rozkladu konečnej grupy podl’a jej podgrupy vyplýva nasledujúci kla-
sický výsledok.

Veta 15.1.2 (Lagrange). Rád konečnej grupy je celočíselným násobkom rádu každej jej
podgrupy.

Pripomíname, že rád prvku bol definovaný ako rád podgrupy, ktorú daný prvok ge-
neroval. Z Lagrangeovej vety potom vyplýva nasledujúci

Dôsledok. Rád každého prvku konečnej grupy G je delitel’om rádu grupy G.

Vrát’me sa ešte k systému tried, vytvorených pri rozklade grupy G podl’a normálnej
podgrupy H; ktorý budeme označovat’ symbolom G/H;

G/H = {[ai] = ai ∗H}i.

Definujeme na systéme G/H binárnu operáciu ∗ nasledovne:

[ai] ∗ [aj] = [ai ∗ aj].

Dá sa l’ahko overit’, že (G/H, ∗) tvorí grupu, ktorú budeme nazývat’ faktorovou grupou
(grupy G podl’a (normálnej) podgrupy H).

Príklad. Faktorizujeme grupu (Z,+) podl’a podgrupy (2Z,+), kde 2Z je množina všet-
kých párnych celých čísel. Rozklad Z/2Z bude mat’ dve triedy, 2Z, Z − 2Z, pričom trieda
Z− 2Z pozostáva zo všetkých nepárnych celých čísel. Vyberme ako reprezentantov tried
rozkladu čísla 0, 1. Potom 2Z = [0] a Z− 2Z = [1]. Operácia sčítania na Z/H je definovaná
nasledujúcou tabul’kou:

+ [0] [1]

[0] [0] [1]
[1] [1] [0]

196 KAPITOLA 15. ALGEBRA

Faktorová grupa (Z/2Z,+) zodpovedá (až na označenie prvkov) grupe (Z2,⊕), kde Z2 =
{0, 1} a ⊕ označuje sčítanie mod 2.

Zovšeobecníme predchádzajúci príklad. Pre l’ubovol’né prirodzené číslo m ≥ 2 2 ozna-
číme symbolom (Zm,+) faktorovú grupu (Z/mZ,+) s operáciou sčítania mod m. Kvôli
zjednodušeniu zápisu budeme prvky množiny Zm označovat’ symbolmi 0, . . . ,m−1. Grupy
Zm budeme v d’alšom často používat’.

15.2 Okruhy

Doteraz sme sa zaoberali algebraickými štruktúrami s jednou binárnou operáciou. V
tejto časti zavedieme agebraické štruktúry s dvoma binárnymi operáciami - sčítaním a
násobením.

Definícia 15.2.1. Okruh (A,+, ·) je množina A spolu s dvoma binárnymi operáciami,
označenými ako + a ·, ktorá spĺňa nasledujúce podmienky:

1. A je abelovská grupa vzhl’adom na aditívnu operáciu +,

2. multiplikatívna operácia · je asociatívna, t.j. pre l’ubovol’né a, b, c ∈ A platí (a · b) ·
c = a(·b · c);

3. platí distributívny zákon; t.j. pre l’ubovol’né a, b, c ∈ A platí a · (b+ c) = a · b+ a · c
a (b+ c) · a = b · a+ c · a.

Okruh (A,+.·) budeme kvôli zjednodušeniu zápisu označovat’ symbolom A, symbo-
lom 0 budeme označovat’ neutrálny prvok vzhl’adom na aditívnu operáciu a symbolom 1

neutrálny prvok vzhl’adom na multiplikatívnu operáciu (ak okruh taký prvok obsahuje);
opačný prvok k prvku a vzhl’adom na aditívnu operáciu budeme označovat’ symbolom
−a. Namiesto a+(−b) budeme písat’ a−b a súčin a ·b budeme stručnejšie zapisovat’ ako
ab. Dá sa l’ahko odvodit’, že pre l’ubovol’né a, b ∈ A platí a ·0 = 0 a (−a)b = a(−b) = −ab.
Ak ab = c, budeme hovorit’, že prvky a, b sú delitel’mi prvku c. Je zrejmé, že 1 · c = c;
t.j. prvky 1 a c sú delitel’mi c. Ak sú delitele a, b, rôzne od prvkov c, 1 tak sa nazývajú
vlastnými delitel’mi prvku c.

Teraz zavedieme niektoré algebraické štruktúry, ktoré majú okrem vlastností okruhu
aj d’alšie vlastnosti.

Definícia 15.2.2. Okruh A sa nazýva

1. unitárnym, ak v A existuje prvok 1, neutrálny prvok vzhl’adom na multiplikatívnu
operáciu;

2. komutatívnym okruhom, ak je operácia · komutatívna;

3. oborom integrity, ak je komutatívnym unitárnym okruhom, 1 ̸= 0 a z rovnosti ab = 0
vyplýva a = 0 alebo b = 0,

2Posúdenie prípadov m ≤ 1 ponechávame na čitatel’a

15.2. OKRUHY 197

4. telesom, ak je (A− {0}, ·) multiplikatívna grupa,

5. pol’om, ak je komutatívnym telesom.

Kl’účovým pojmom, s ktorým budeme v teórii samoopravných kódov neustále pra-
covat’, je pojem (konečného) pol’a. Konečným poliam sa budeme v tejto kapitole veno-
vat’ podrobnejšie, a preto si len stručne zrekapitulujeme vlastnosti pol’a. Pole je algeb-
raická štruktúra s aditívnou a multiplikatívnou operáciou. Tvorí abelovskú grupu vzhl’a-
dom na aditívnu operáciu a jeho nenulové prvky tvoria abelovskú grupu vzhl’adom na
multiplikatívnu operáciu. Obe operácie sú navzájom zviazané distributívnym zákonom:
a(b+ c) = ab+ ac. Pole je aj oborom integrity, to znamená, že nemá vlastných delitel’ov
nuly; resp. z toho, že ab = 0 vyplýva a−1ab = b = 0; resp. abb−1 = a = 0.

Vrátime sa ešte k pojmu okruhu. Podobne ako sme pre grupu definovali pojem podg-
rupy, zavedieme pre okruh najprv pojem podokruhu a potom definujeme podokruhy so
špeciálnymi vlastnost’ami.

Definícia 15.2.3. Podmnožina S okruhu A sa nazýva podokruhom okruhu A, ak je uzav-
retá vzhl’adom na operácie + a · a tvorí vzhl’adom na tieto operácie okruh.

Pri konštrukcii polynómov budeme potrebovat’ k podokruhu pridávat’ nové prvky. Na-
sledujúca veta [8] hovorí, ako to možno urobit’ tak, aby výsledná algebraická štruktúra
zostala okruhom.

Veta 15.2.1. Nech A je podokruh unitárneho komutatívneho okruhu (B,+, ·) a nech 1 ∈
A. Potom pre l’ubovol’ný prvok b ∈ B je najmenší podokruh generovaný množinou A ∪ {b}

okruh C,+·), kde

C = {a0 + a1b+ · · ·+ anbn;n ∈ N,a0, a1, . . . , an ∈ A}.

Dôkaz. Dá sa l’ahko overit’, že (C,+, ·) je okruh. Ked’že A∪{b} ⊆ B, (C,+, ·) je podokruh
okruhu (B,+, ·). Ukážeme, že (C,+, ·) je najmenší podokruh okruhu (B,+, ·) obsahujúci
množinuA∪{b}. Predpokladajme, že existuje okruh (C′,+, ·) taký, žeA∪{b} ⊆ C′ ⊂ C ⊆ B.
Nech d ∈ C− C′, potom existuje m ∈ N a prvky ai ∈ A, i = 0 . . .m také, že

d = a0 + a1b+ · · ·+ ambm.

Kedže b ∈ C′ a (C′,+, ·) je okruh, potom pre l’ubovol’né k ∈ N aj bk ∈ C′ a teda aj akbk ∈ C′

pre ak ∈ A ⊆ C′. To znamená, že d ∈ C′. Dostávame spor s predpokladom, čo dokazuje
platnost’ vety.

Poznámka. Podokruh (C,+, ·) generovaný množinou A ∪ {b} budeme označovat’ sym-
bolom (A[b],+, ·).

Definícia 15.2.4. Podokruh J okruhu A sa nazýva ideálom ak pre každé a ∈ J a r ∈ A
platí ar ∈ J a ra ∈ J.

198 KAPITOLA 15. ALGEBRA

Príklad. Uvažujme okruh (Z,+, ·). Množina všetkých párnych čísel tvorí podokruh (Z2,+, ·)
okruhu Z. Ked’že súčin l’ubovol’ného celého čísla a párneho čísla je párne číslo, (Z2,+, ·)
je ideálom okruhu Z.

Pri štúdiu vlastností tzv. cyklických kódov budeme pracovat’ s algebraickou štruktú-
rou nazvanou okruhom hlavných ideálov.

Definícia 15.2.5. Nech je A komutatívny okruh. Ideál J okruhu A sa nazýva hlavným
ideálom, ak v okruhu A existuje prvok a, ktorý je generátorom cyklickej grupy ideálu J.
Ideál J sa nazýva hlavným ideálom generovaným prvkom a.

Definícia 15.2.6. Komutatvny okruhA nazývame okruhom hlavných ideálov, ak je každý
ideál okruhu A hlavný.

Grupy bolo možné faktorizovat’ podl’a ich normálnych podgrúp a vytvárat’ faktorové
grupy. Podobne je možné faktorizovat’ okruhy. Úlohu normálnej podgrupy pri faktorizácii
okruhov zohráva ideál.

Veta 15.2.2. Nech je I ideál okruhuA,+, ·); nech [a] = {a+I, a ∈ A} je trieda rozkladuA/I
aditívnej grupy (A,+) podl’a normálnej podgrupy (I,+) obsahujúca prvok (reprezentanta)
a. Potom množina A/I tried rozkladu s operáciami +, · definovanými nasledovne

[a] + [b] = [a+ b], [a] · [b] = [a · b],

kde a, b ∈ A, tvorí okruh. Ak je okruh A komutatívny, tak je aj okruh (A/I,+, ·) komuta-
tívny.

Dôkaz. Je priamočiary; stačí overit’ platnost’ axióm okruhu pre (A/I,+, ·). Prenecháme
preto túto úlohu čitatel’ovi.

Poznámka. Okruh (A/I,+, ·) nazýva faktorovým okruhom okruhu A podl’a I.

Príklad. Uvažujme aditívnu faktorovú grupu (Z/Zq,+) Táto grupa má q prvkov: [0], . . . [q−
1]; [j] = {m ∈ Z;m mod q = j; j = 0, . . . q−1}. Operácia násobenia prvkov faktorovej grupy
(Z/Zq,+) je asociatívna

∀[a], [b], [c] ∈ Z/Zq; [a] · ([b] · [c]) = ([a] · [b]) · [c]

a platí distributívny zákon

∀[a], [b], [c] ∈ Z/Zq; [a] · ([b] + [c]) = ([a] · [b]) + [a] · [c], ([b] + [c]) · [a] = [b] · [a] + [c] · [a].

To znamená, že Z/Zq s uvedenou aditívnou a multiplikatívnou operáciou tvorí faktorový
okruh (Z/Zq,+, ·).

Nie všetky okruhu celých čísel sa prenášajú automaticky do faktorového okruhu
(Z/Zq,+, ·). Okruh celých čísel je oborom integrity, t.j. z rovnosti a · b = 0 vyplýva, že
aspoň jeden z prvkov a, b je nulový. Uvažujme teraz faktorový okruh (Z/Z6,+, ·). Je
zrejmé, že [2][3] = [2 · 3] = [6] = [0], pričom [2] ̸= [0], [3] ̸= [0].

Na záver tejto časti zavedieme ešte jeden dôležitý pojem.

15.3. POLYNÓMY A OKRUHY POLYNÓMOV 199

Definícia 15.2.7. Nech je R l’ubovol’ný okruh a existuje také kladné celé číslo n, že pre
l’ubovol’né r ∈ R platí nr = 0. Potom najmenšie také číslo n sa nazýva charakteristikou
okruhu R. O okruhu R v takom prípade hovoríme, že má kladnú charakteristiku. Ak
kladné celé číslo n s požadovanými vlastnost’ami neexistuje, hovoríme, že okruh R má
charakteristiku 0.

Príklad. Okruhy komplexných, reálnych, racionálnych, celých, prirodzených čísel majú
charakteristiku 0, okruh (Z/Z6,+, ·) má charakteristiku 6.

Charakteristika okruhu nie je nezávislá od ostatných vlastností okruhu.

Veta 15.2.3. Nech je R ̸= {0} obor integrity s jednotkou a kladnou charakteristikou. Potom
je charakteristika R prvočíslo.

Dôkaz. Ked’že R obsahuje nenulové prvky, Rmá charakteristiku n ≥ 2. Ak by n nebolo
prvočíslo, dalo by sa zapísat’ v podobe súčinu celých čísel, n = km, kde k,m ∈ Z, 1 <

k,m < n. Nech e označuje multiplikatívnu jednotku oboru integrity R. Potom z vyššie
uvedeného výplýva, že 0 = ne = (km)e = (ke)(me). Nakol’ko R je obor integrity, z posled-
nej rovnosti vyplýva, že bud’ ke = 0 alebo me = 0. Ale potom je charakteristika R bud’ k
alebo m – spor s minimálnost’ou n.

Predchádzajúca veta má zaujímvý a vel’mi dôležitý dôsledok pre konečné polia.

Veta 15.2.4. Konečné pole má prvočíselnú charakteristiku.

Dôkaz. Konečné pole je oborom integrity a obsahuje jednotkový prvok (e). To znamená,
že stačí dokázat’, že má konečnú charakteristiku. Uvažujme postupnost’ kladných celo-
číselných násobkov jednotkového prvku

e, 2e, 3e,

Vzhl’adom na to, že pole je uzavreté na operáciu sčítania, predchádzajúca postupnost’
obsahuje prvky daného konečného pol’a. Ked’že pole je konečné, budú sa v uvedenej
postupnosti prvky opakovat’. Zoberme najmenšie také k1 > k2, že k1e = k2e. Potom
(k1 − k2)e = 0, a teda dané pole má kladnú charakteristiku.

15.3 Polynómy a okruhy polynómov

Ďalším dôležitým pojmom teórie samoopravných kódov je pojem polynómu. Kódové slová
sa dajú reprezentovat’ pomocou polynómov, syndrómy chýb sa dajú vypočítat’ dosadzova-
ním istých hodnôt do plynómov reprezentujcich prijaté slová a pozície chýb v kódových
slovách sa dajú určit’ pomocou koreňov polynómu nazývaného lokátorom chýb. Zave-
dieme preto pojem polynómu a popíšeme najdôležitejšie vlastnosti polynómov.

Nech je A unitárny komutatívny okruh3 a nech je B jeho podokruh, obsahujúci jed-
notkový prvok. Nech x ∈ A − B je l’ubovol’ný prvok. Prvky podokruhu B[x] sa podl’a vety

3v d’alšom budeme najčastejšie predpokladat’, že A je pole

200 KAPITOLA 15. ALGEBRA

15.2.1 dajú vyjadrit’ v tvare

a0 + a1x+ a2x
2 · · ·+ anxn; ak ∈ B, n ∈ N; (15.1)

pričom pre n > 0 predpokladáme, že an ̸= 0. V niektorých prípadoch by výber prvku
x mohol viest’ k nejednoznačnosti vyjadrenia prvkov z okruhu B[x]. Predpokladajme, že
existuje prvok, označme ho symbolom a(x), ktorý je možné vyjadrit’ v tvare 15.1 dvoma
rozličnými spôsobmi

a(x) = a0 + a1x+ a2x
2 · · ·+ anxn = b0 + b1x+ b2x

2 · · ·+ bmxm.

Bez ujmy na všeobecnosti budeme predpokladat’, že n ≥ m. Ukážeme, že jednoznačnost’
vyjadrenia prvku a(x) je ekvivalentná jednoznačnosti vyjadrenia nulového prvku okruhu
B[x] v tvare 15.1. Vypočítame rozdiel dvoch rozličných reprezentácií prvku a(x):

0 = a(x) − a(x) = a0 + a1x+ a2x
2 · · ·+ anxn − (b0 + b1x+ b2x

2 · · ·+ bmxm) =
= (a0 − b0) + (a1 − b1)x+ (a2 − b2)x

2 · · ·+ (am − bm)x
m + am+1x

m+1 +

· · ·+ anxn. (15.2)

Z rovnosti 15.2 vyplýva, že l’ubovol’ný prvok okruhu B[x] je možné vyjadrit’ jednoznačne
v tvare 15.1 práve vtedy, ak rovnost’

0 = c0 + c1x+ · · · cnxn

platí práve vtedy, ak
c0 = c1 · · · = cn = 0. (15.3)

Ak totiž platí 15.3, pre vyjadrenie a(x) platí n = m a ak = bk k = 0, . . . , n. Prvok x ∈ A,
pre ktorý je možné nulový prvok okruhu B[x] vyjadrit’ jednoznačne, t.j. platí 15.3, sa
nazýva transcendentým prvkom nad B; v opačnom prípade sa x nazýva algebraickým
prvkom nad B. Ak je prvok x transcendentný nad okruhom B, budeme okruh B[x] nazývat’
okruhom polynómov neurčitej x nad B. Prvky okruhu B[x] budeme nazývat’ polynómami
v neurčitej/premennej x, alebo len stručne, polynómami. Nech je a(x) ∈ B[x] polynóm,
a(x) = a0+a1x+a2x

2 · · ·+anxn. Prvky a0, . . . , an ∈ B nazývame koeficientami a sčítance
akx

k členmi polynómu. Ak n ̸= 0, číslo n nazývame stupňom polynómu, koeficient an
vedúcim koeficientom a člen anxn vedúcim členom polynómu a(x). Stupeň polynómu f(x)
budeme označovat’ symbolom deg(f(x)). Polynóm f(x) = 0 nazvame nulovým polynómom
a stupeň nulového polynómu definujeme ako deg(0) = −∞. Ak je vedúci člen polynómu
a(x), an = 1, polynóm a(x) nazývame normovaným polynómom. Uvedieme ešte, že ak sú
a(x), b(x) dva polynómy, a(x) = a0 + a1x + · · · + anxn; b(x) = b0 + b1x + · · · + bmxm, tak
ich súčinom je polynóm a(x)b(x) = a0b0 + (a1b0 + a0b1)x + · · · + (a0bk + a1bk−1 + · · · +
akb0)x

k + · · ·+ anbmxm+n.

Príklad. Množiny reálnych R a racionálnych Q čísel s operáciami sčítania a násobe-
nia tvoria okruhy. Je zrejmé, že okruh racionálnych čísel je podokruhom reálnych čísel.
Vyberieme rôzne reálne čísla x a vytvoríme okruhy Q[x].

1. Vyberme najprv ako neurčitú racionálne číslo; x ∈ Q. Potom však Q[x] = Q, lebo
a0 + a1x+ · · ·+ anxn ∈ Q pre x, ak ∈ Q.

15.3. POLYNÓMY A OKRUHY POLYNÓMOV 201

2. Položíme teraz x =
√
2; je zrejmé, že x ̸∈ Q. Nakol’ko však

(√
2
)2k

= 2k ∈ Q,

Q[x] = {a0 + a1
√
2; a0, a1 ∈ Q}. Naviac, napríklad prvok 4 sa dá vyjadrit’ v tvare

15.2.1 viacerými spôsobmi: 4 = 4+ 0x+ 0x2 + · · · = 2+ 0x+ 1x2 = 2x2 = x4, atd’.

3. Napokon, položme x = e. Prvok e je transcendentný a okruh Q[e] tvoria prvky,
ktoré sa dajú jednoznačne vyjadrit’ v tvare

a0 + a1e+ · · ·+ enen; n ∈ N, ak ∈ Q.

V d’alšom sa budeme zaoberat’ delitel’nost’ou polynómov, a preto budeme skúmat’ po-
lynómy nad nejakým pol’om F. Okruh polynómov nad pol’om F budeme označovat’ sym-
bolom F[x].

Definícia 15.3.1. Nech je F[x] okruh polynómov nad pol’om F a nech sú f(x), g(x) poly-
nómy z okruhu F[x]. Budeme hovorit’, že polynóm g(x) delí polynóm (je delitel’om poly-
nómu) f(x), ak v okruhu F[x] existuje taký polynóm q(x), že f(x) = g(x) · q(x).

Je zrejmé, že každý polynóm je delitel’ný sebou samým, resp. (vzhl’adom na to, že F
je pole) prvkami pol’a F, ktoré predstavujú v okruhu F[x] polynómy nultého stupňa, resp.
konštanty. Tieto delitele sú triviálne delitele polynómu. Ak polynóm f(x) nemá v okruhu
F[x] iných delitel’ov okrem triviálnych, budeme ho nazývat’ ireducibilným polynómom
v okruhu F[x]. Polynóm, ktorý nie je ireducibilný, budeme nazývat’ reducibilným poly-
nómom. Pripomíname, že ireducibilita polynómu sa vzt’ahuje na istý okruh polynómov.
Napríklad, polynóm f(x) = x2 − 2 je ireducibilný v okruhu polynómov Q[x], ale v okruhu
R[x] 4 má netriviálne delitele x −

√
2 a x +

√
2. Nech je f(x) = f0 + f1x + · · · + fnxn je

l’ubovol’ný polynóm okruhu F[x]. Pre l’ubovol’ný prvok a ∈ F definujeme hodnotu f(a) =
f0 + f1a + · · · + fnan. Potom polynóm f(x) predstavuje zobrazenie (polynomickú funkciu)
f : F→ F. Hodnotu f(a) budeme nazvat’ hodnotou polynómu f(x) pre prvok a. Dôležité sú
tie prvky pol’a F, ktoré sa polynomickou funkciou zobrazujú na nulový prvok pol’a F.

Definícia 15.3.2. Nech je f[x] okruh polynómov nad pol’om F a nech f(x) ∈ F[x] je poly-
nóm. Prvok a ∈ F budeme nazývat’ koreňom polynómu f(x), ak f(a) = 0.

V okruhu polynómov nemôžeme vo všeobecnosti zaviest’ delenie polynónov, ale po-
dobne ako pre okruh celých čísel môžeme aj v okruhu polynómov F[x] zaviest’ delenie so
zvyškom.

Veta 15.3.1 (O delitel’nosti polynómov). Nech sú f(x), g(x) l’ubovol’né polynómy nad po-
l’om F a nech g(x) ̸= 0. Potom v okruhu F[x] existujú polynómy q(x), r(x) také, že

f(x) = q(x)g(x) + r(x), (15.4)

kde deg(r(x)) < deg(g(x)) a polynómy q(x), r(x) sú určené jednoznačne.

4stačil by aj okruh polynómov Q[
√
2][x]

202 KAPITOLA 15. ALGEBRA

Dôkaz. Budeme robit’ indukciou vzhl’adom na stupeň polynómu f(x).

1. Nech deg(f(x)) < deg(g(x)). Potom q(x) = 0 a r(x) = f(x).

2. Predpokladajme, že tvrdenie vety platí pre deg(f(x)) ≥ deg(g(x)); deg(f(x)) < n.

3. Dokážeme platnost’ tvrdenia vety pre deg(f(x)) = n, deg(f(x)) ≥ deg(g(x)). Nech
f(x) = fnx

n + · · · + f1x + f0; g(x) = gmx
m + · · · + g1x + g0, n > m. Odčítame od

polynómu f(x) polynóm fng
−1
m x

n−m · g(x), kde g−1m je prvok pol’a F inverzný k ve-
dúcemu koeficientu polynómu g(x) a dostaneme polynóm f1(x). Tento polynóm má
stupeň deg(f1(x)) < n, a teda podl’a indukčného predpokladu existujú také poly-
nómy q1(x), r1(x) nad pol’om F, že

f1(x) = q1(x)g(x) + r1(x).

Potom však možno v tvare 15.4 vyjadrit’ aj polynóm f(x):

f(x) = f1(x) + fng
−1
m x

n−m · g(x) = (fng
−1
m x

n−m + qi(x)) · g(x) + r1(x);

t.j. r(x) = r1(x) a q(x) = fng−1m xn−m + qi(x).

Predpokladajme ešte, že existujú polynómy q′(x) ̸= q(x) a r′(x) ̸= r(x), také, že

q′(x)g(x) + r′(x) = f(x) = q(x)g(x) + r(x).

Potom však

0 = q(x)g(x) + r(x) − q(x)′g(x) − r′(x) = (q(x) − q′(x))g(x) + (r(x) − r′(x)).

Predpokladajme, ža polynóm (r(x)− r′(x)) je nenulový. Ked’že polynóm (q(x)−q′(x))g(x)
je bud’ nulový, alebo má stupeň

deg((q(x) − q′(x))g(x)) ≥ deg(g(x)) > max{deg(r(x)),deg(r′(x))} ≥ deg(r(x) − r′(x)),

dostávame, že (q(x)−q′(x))g(x)+(r(x)−r′(x)) ̸= 0. Spor. To znamená, že (r(x)−r′(x)) = 0
a (q(x)−q′(x))g(x) = 0. Ked’že g(x) ̸= 0, musí byt’ (q(x)−q′(x) = 0, a teda polynómy q(x)
(podiel) a r(x) (zvyšok) sú určené jednoznačne.

Vrátime sa ku skúmaniu vlastností okruhu polynómov F[x]. Zo skutočnosti, že v
okruhu F[x] je definované delenie so zvyškom (veta 15.3.1), vyplýva známy fakt, že každý
ideál okruhu F[x] je hlavný; t.j. že okruh F[x] je okruhom hlavných ideálov.

Veta 15.3.2. Nech je F[x] okruh polynómov nad pol’om F. Potom je F[x] okruhom hlavných
ideálov.

Dôkaz. Ukážeme, že pre každý ideál J ̸= (0) okruhu F[x] existuje jednoznačne určený
normovaný polynóm g(x) ∈ F[x] taký, že J = (g(x)). Ked’že F je pole, okruh F[x] je obo-
rom integrity. Nech je J = ̸= (0) ideál okruhu F[x] a nech je h(x) polynóm najmenšieho
stupňa, ktorý sa v J nachádza; nech je b vedúci koeficient polynómu h(x). Položíme
g(x) = b−1h(x). Je zrejmé, že g(x) ∈ J a g(x) je normovaný polynóm. Zoberieme teraz

15.3. POLYNÓMY A OKRUHY POLYNÓMOV 203

l’ubovol’ný polynóm f(x) ∈ J a vyjadríme ho v tvare 15.4: f(x) = q(x)g(x) + r(x), pričom
deg(r(x)) < deg(g(x)) = deg(h(x)). Ked’že J je ideál, polynóm f(x) − q(x)g(x) = r(x) ∈ J.
Nakol’ko h(x) bol polynóm najmenšieho stupňa v J, polynóm r(x) je nulový. To znamená,
že (l’ubovol’ný polynóm z ideálu J) f(x) je násobkom polynómu g(x) a teda, J = (g(x).
Ostáva ešte ukázat’ jednoznačnost’ výberu polynómu g(x). Predpokladajme, že existuje
iný normovaný polynóm g1(x) ∈ F[x], ktorý je generátorom ideálu J. Potom však g(x) =
c1(x)g1(x) a g1(x) = c2(x)g(x). Z uvedených rovností vyplýva, že g(x) = c1(x)c2(x)g(x), a
teda polynómy c1(x), c2(x) sú konštantné. Ked’že obidva polynómy g(x), g1(x) sú normo-
vané, c1c2 = 1, a teda g(x) = g1(x). Tým je dokázaná jednoznačnost’ určenia generátora
ideálu J.

Každý nenulový polynóm f(x) okruhu F[x] definuje (hlavný) ideál, (f(x)). Rozložíme te-
raz okruh F[x] podl’a ideálu (f(x)); triedy rozkladu budú množiny polynómov g(x)+(f(x)),
kde g(x) ∈ F[x]. (Triedu rozkladu g(x) + (f(x)) budeme označovat’ symbolom [g(x)].) Dve
triedy rozkladu, [a(x)], [b(x)] sa budú zhodovat’ práve vtedy, ak a(x) − b(x) ∈ (f(x));
t.j. ak f(x)|(a(x)(

¯
x). Táto podmienka sa dá vyjadrit’ aj tak, že polynómy a(x), b(x) dá-

vajú po delení polynómom f(x) rovnaký zvyšok. Každá z tried rozkladu [g(x)] obsahuje
jediný polynóm r(x) ∈ F[x], stupňa deg(r(x)) < deg(f(x)). Tento polynóm sa dá vypo-
čítat’ ako zvyšok po delení polynómu g(x) polynómom f(x) a nazýva sa reprezentan-
tom triedy [g(x)]. Ukžeme ešte, že v každej triede rozkladu sa nachádza jediný polynóm
stupňa < deg(f(x)). Predpokladajme opak, t.j. nech r1(x), r(x) ∈ [g(x)] sú dva polynómy
stupňa < deg(f(x)), ktoré patria do tej istej triedy. Ale potom platí f(x)|r(x) − r1(x) a
deg(r(x) − r1(x)) < deg(f(x)). To znamená, že r(x) − r1(x) = 0 a r(x) = r1(x). Ked’že každá
trieda rozkladu obsahuje jediný polynóm stupňa < deg(f(x)), môžeme explicitne charak-
terizovat’ triedy rozkladu F[x]/(f(x)): sú to množiny polynómov r(x)+(f(x)), kde r(x) ∈ F[x]
a deg(r(x)) < deg(f(x)). Ak na triedach z rozkladu F[x]/(f(x)) definujeme operácie sčíta-
nia a násobenia tradičným spôsobom; t.j. pre l’ubovol’né [a(x)], [b(x)] ∈ F[x]/(f(x)) polo-
žíme

[a(x)] + [b(x)] = [a(x) + b(x)], [a(x)] · [b(x)] = [a(x) · b(x)],

dostávame okruh, ktorý budeme nazývat’ faktorovým okruhom polynómov nad pol’om
F podl’a polynómu f(x). Faktorové okruhy polynómov budeme v d’alšom využívat’ pri
konštrukcii konečných polí.

Podobne ako v okruhu celých čísel, môžeme aj v okruhu polynómov nad pol’om F

zaviest’ pojem najväčšieho spoločného delitel’a a najmenšieho spoločného násobku poly-
nómov.

Definícia 15.3.3. Nech je F[x] okruh polynómov nad pol’om F a nech sú f(x), g(x) poly-
nómy z okruhu F[x].

1. Normovaný polynóm d(x) ∈ F[x] nazveme najväčším spoločným delitel’om polynó-
mov f(x), g(x), ak d(x)|f(x), d(x)|g(x) a pre l’ubovol’ný polynóm h(x) ∈ F[x], ktorý delí
polynómy f(x), g(x) platí h(x)|d(x). Najväčší spoločný delitel’ polynómov f(x), g(x)
budeme označovat’ symbolom gcd(f(x), g(x))

2. Normovaný polynóm a(x) ∈ F[x] nazveme najmenším spoločným násobkom poly-
nómov f(x), g(x) (označenie lcm(f(x), g(x))), ak f(x)|a(x), g(x)|a(x) a pre l’ubovol’ný
polynóm b(x) ∈ F[x], ktorý je delitel’ný polynómami f(x), g(x) platí, že a(x)|b(x).

204 KAPITOLA 15. ALGEBRA

Veta 15.3.3. Nech sú f(x), g(x) dva nenulové polynómy okruhu F[x]. Potom existujú také
polynómy a(x), b(x), že

gcd(f(x), g(x)) = a(x)f(x) + b(x)g(x).

Dôkaz. Uvažujme množinu polynómov J = {c1(x)f(x) + c2(x)g(x)} c1(x), c2(x) ∈ F[x].
Je zrejmé, že J je ideál a že J ̸= (0). Okruh F[x] je okruhom hlavných ideálov, a preto
existuje d(x) ∈ F[x], ktorý generuje ideál J. Vzhl’adom na to, ako sú vyjadrené prvky
ideálu J z toho, že d(x) ∈ J vyplýva existencia polynómov a(x), b(x) takých, že d(x) =
a(x)f(x)+b(x)g(x).Ukážeme ešte, že d(x) = gcd(f(x), g(x)).Oba polynómy f(x),g(x) patria
do J, a preto d(x)|f(x) a d(x)|g(x). Ak by existoval iný (normovaný) polynóm, d1(x) taký,
že (d1(x)) = J, d1(x)|d(x) a d(x)|d1(x), t.j. d(x) = d1(x).

Najväčší spoločný delitel’ dvoch polynómov f(x), g(x) ∈ F[x] možno vypočítat’ pomocou
Euklidovho algoritmu. Predpokladajme kvôli jednoduchosti, že g(x) ̸= 0 a že g(x) nie je
delitel’om polynómu f(x), potom budeme postupne delit’:

f(x) = q1(x)g(x) + r1(x) 0 ≤ deg(r1(x)) < deg(g(x))
g(x) = q2(x)r1(x) + r2(x) 0 ≤ deg(r2(x)) < deg(r1(x))
r1(x) = q3(x)r2(x) + r3(x) 0 ≤ deg(r3(x)) < deg(r2(x))

...
...

rs−2 = qs(x)rs−1(x) + rs(x) 0 ≤ deg(rs(x)) < deg(rs−1(x))
rs−1 = qs+1(x)rs(x).

V tejto postupnosti sú q1(x), . . . , qs+1(x); r1(x) . . . , rs(x) polynómy okruhu F[x]. Kedže deg(g(x))
je konečný a v každom kroku sa stupeň polynómu ri(x) zmenšuje, procedúra po koneč-
nom počte krokov skončí. Nech má polynóm rs(x) vedúci koeficient a, potom najväčší
spoločný delitel’ polynómov f(x), g(x) vyjadríme nasledovne: gcd(f(x), g(x)) = a−1rs(x).
Normované polynómy f(x), g(x) ∈ F[x] nazveme nesúdelitel’nými (relatively prime), ak
gcd(f(x), g(x) = 1.

Dôležitú úlohu pri štúdiu vlastností okruhu polynómov F[x] zohrávajú ireducibilné
polynómy. Každý polynóm z F[x] sa dá totiž jednoznačne vyjadrit’ ako súčin ireducibil-
ných polynómov. Skôr ako formulujeme a dokážeme tento poznatok, využijeme vetu o
delitel’nosti polynómov na ustanovenie vzt’ahu medzi koreňmi polynómu a delitel’nos-
t’ou polynómu.

Veta 15.3.4. Nech je f(x) l’ubovol’ný polynóm nad pol’om F a nech je c l’ubovol’ný prvok
pol’a F. Potom polynóm (x − c) delí polynóm f(x) práve vtedy, ak je c koreňom polynómu
f(x).

Dôkaz. Nech polynóm (x− c) delí polynóm f(x), potom existuje taký polynóm f1(x), že
f(x) = (x− c)f1(x). Potom však f(c) = (c− c)f1(c) = 0, a teda c je koreňom polynómu f(x).
Nech na druhej strane f(c) = 0; t.j. prvok c je koreňom polynómu f(x). Podl’a vety 15.3.1
sa polynóm f(x) dá vyjadrit’ nasledovne:

f(x) = (x− c)q(x) + r(x),

15.3. POLYNÓMY A OKRUHY POLYNÓMOV 205

pričom deg(r(x)) < deg(x − c) = 1. To však znamená, že r(x) musí byt’ konštantný poly-
nóm. Ale f(c) = (c− c)q(c) + r(c) = r(c) = 0, a teda r(x) = 0.

Veta 15.3.5. Nech sú f1(x), . . . , fm(x) ∈ F[x], nech je g(x) ∈ F[x] ireducibilný polynóm.
Potom platí: ak g(x) delí súčin f1(x) · f2(x) . . . fm(x), tak potom g(x) delí aspoň jeden z
polynómov f1(x), . . . , fm(x).

Dôkaz. Bez ujmy na všeobecnosti môžeme predpokladat’, že polynómy g(x), f1(x), f2(x), . . . , fm(x)
sú normované. Ak je g(x) ireducibilný polynóm, tak potom gcd(g(x), fi(x)) = g(x) ak je
polynóm fi(x) násobkom polynómu g(x), v opačnom prípade gcd(g(x), fi(x)) = 1. Ak by
totiž gcd(g(x), fi(x)) = d(x) ̸∈ {1, g(x)}, potom by d(x)|g(x), čo je v spore s ireducibilitou
g(x). Teda musí existovat’ i také, že g(x)|fi(x).

Veta 15.3.6 (O jednoznačnej faktorizácii polynómov). Nech je f(x) ∈ F[x] l’ubovol’ný poly-
nóm stupňa deg(f(x)) ≥ 0. Potom sa f(x) dá zapísat’ v tvare súčinu

f(x) = af1(x)
e1 · · · fm(x)em , (15.5)

kde a ∈ F, e1, . . . , em ∈ N a f1(x), . . . , fm(x) sú navzájom rôzne normované ireducibilné
polynómy z F[x]. Naviac, odhliadnuc od poradia činitel’ov v rozklade 15.5, je rozklad po-
lynómu f(x) určený jednoznačne.

Dôkaz budeme viest’ matematickou indukciou vzhl’adom na stupeň polynómu. Prípad
n = 1 je triviálny, nakol’ko polynómy stupňa 1 sú ireducibilné nad F[x]. Predpokladajme,
že sa l’ubovol’ný polynóm stupňa menšieho ako n dá zapísat’ v tvare 15.5. Ukážeme, že
aj polynóm stupňa n možno rozložit’ na súčin ireducibilných polynómov v tvare 15.5.
Ak je f(x) ireducibilný polynóm, stačí ho normovat’, t.j. vyjadrit’ v tvare a−1f(x), kde a je
vedúci koeficient polynómu f(x). Ak polynóm f(x) nie je ireducibilný, možno ho vyjadrit’ v
tvare súčinu aspoň dvoch polynómov; f(x) = g1(x)g2(x). Oba polynómy g1(x), g2(x) majú
stupeň 1 ≤ deg(g1(x)),deg(g2(x)) < n, a preto ich podl’a indukčného predpokladu možno
vyjadrit’ v tvare 15.5.

Ostáva ukázat’ jednoznačnost’ rozkladu 15.5. Predpokladajme, že existujú dva roz-
ličné rozklady polynómu f(x); t.j.

f(x) = af1(x)
e1 · · · fm(x)em = bg1(x)

d1 · · ·gs(x)ds . (15.6)

Vedúce koeficienty v rozličných vyjadreniach toho istého polynómu sa musia zho-
dovat’, preto a = b. Zoberieme teraz napríklad polynóm f1(x). Ked’že f1(x) delí polynóm
f(x), musí delit’ aj g1(x)d1 · · ·gs(x)ds .Ale f(x) je ireducibilný polynóm, a potom podl’a pred-
chádzajúcej vety musí delit’ niektorý z polynómov gj(x), napríklad gk(x). Ale aj gk(x) je
ireducibilný nad F[x], a teda f1(x) = cgk(x), kde c ∈ F. Oba polynómy f1(x), gk(x) sú
normované, a teda f1(x) = gk(x). Vydelíme rovnost’ 15.6 polynómom f1(x)(= gk(x)) a
analogickým spôsobom budeme riešit’ novú identitu. Nakol’ko v každom kroku sa zníži
stupeň polynómov v identite, po konečnom počte iterácií dostaneme identitu 1 = 1. Tým
sme dokázali, že obe faktorizácie polynómu f(x) sú, až na poradie činitel’ov v súčine,
identické.

206 KAPITOLA 15. ALGEBRA

15.4 Konečné polia

Pole, ako sme uviedli v definícii 15.2.2, je okruh, ktorého množina nenulových prvkov
tvorí komutatívnu grupu vzhl’adom na multiplikatívnu operáciu. Príkladmi polí sú mno-
žiny komplexných, reálnych a racionálnych čísel s operáciami sčítania a násobenia. Na
druhej strane, celé čísla tvoria okruh (dokonca obor integrity), ale nie pole. Spomínané
polia sú nekonečné. V teórii kódovania pracujeme a konečnými množinami, a preto bu-
deme využívat’ polia s konečným počtom prvkov — konečné polia. Uvedieme najprv ko-
nečné polia založené na okruhu celých čísel a potom sa budeme zaoberat’ konečnými
pol’ami vychádzajúcimi z okruhu polynómov.

Pripomenieme, že (Z,+, ·) je okruh (obor integrity) a (Z/Zq,+, ·) je faktorový okruh,
ktorého prvkami sú triedy rozkladu [0], . . . , [q−1]. Kým okruh (Z,+, ·) nemohol byt’ pol’om
(s výnimkou 1 a -1 inverzné prvky k celým číslam nie sú celé čísla), faktorový okruh
(Z/Zq,+, ·) za istých podmienok môže byt’ pol’om .

Veta 15.4.1. Faktorový okruh (Z,+, ·) je pol’om práve vtedy, ak je q prvočíslo.

Dôkaz. Nech je q prvočíslo. Potrebujeme ukázat’, že ku každému nenulovému prvku
okruhu (Z/Zq,+, ·) existuje v tomto okruhu inverzný prvok. Pripomenieme najprv, že
nulovým prvkom okruhu (Z/Zq,+, ·) je [0] a jednotkovým trieda [1]. Nech je s celé číslo,
s ∈ {1, . . . , q − 1}. Ked’že q je prvočíslo, platí gcd(s, q) = 1 a teda existujú také dve celé
čísla a, b, že

aq+ bs = gcd(s, q) = 1.

To znamená, že

[1] = [aq+ bs] = [aq] + [bs] = [0] + [bs] = [bs] = [b][s],

a teda [b] je inverzným prvkom k prvku [s] a faktorový okruh (Z/Zq,+, ·) je pol’om.

Na druhej strane, predpokladajme, že okruh (Z/Zq,+, ·) je pole, ale q nie je prvočíslo,
t.j. q je zložené číslo a dá sa zapísat’ ako súčin čísel q = q1q2, kde 1 < q1, q2 < q. Kedže
(Z/Zq,+, ·) je pole, k nenulovému prvku [q1] existuje v poli inverzný prvok, [q−11]. Potom
platí

[0] ̸= [q2] = [q1][q
−1
1][q2] = [(q1 · q−11) · q2] = q−11 · (q1 · q2)] = [q−11 · q] = [0],

spor.

Zjednodušíme trocha výpočty v poli (Z/Zq,+, ·) zavedením vhodnejšej reprezentácie.
Uvažujme množinu celých čísel Fq = {0, . . . , q − 1} a definujeme operácie sčítania ⊕ a
násobenia ⊗ prvkov z Fq nasledovne (a, b ∈ Fq):

a⊕ b = (a+ b) mod q, a⊗ b = ab mod q.

Definujeme teraz zobrazenie φ : Z/Zq → Fq; φ([a]) = a mod q. Je zrejmé, že φ je
bijekcia. Ukážeme, že je aj homomorfizmus:

φ([a] + [b]) = φ([a+ b]) = a+ b mod q = a⊕ b = φ([a])⊕φ([b])
φ([a][b]) = φ([a · b]) = a · b mod q = a⊗ b = φ([a])⊗φ([b]).

15.4. KONEČNÉ POLIA 207

Z vyššie uvedeného vyplýva, že φ je izomorfizmus, (Fq,⊕,⊗) je konečné pole a polia
(Z/Zq,+, ·) a (Fq,⊕,⊗) sú izomorfné. Pole (Fq,⊕,⊗) budeme nazývat’ Galoisovým pol’om
a označovat’ symbolom GF(q). Tam, kde to nepovedie k nedorozumeniu, budeme operá-
cie pol’a GF(q) označovat’ štandardným spôsobom — ako + a ·.

Podobne ako sme zaviedli konečné polia GF(q) pomocou okruhu celých čísel, zave-
dieme teraz rozšírenia konečných polí pomocou okruhu polynómov.

Veta 15.4.2. Nech je F[x] okruh polynómov nad pol’om F, f(x) ∈ F[x] a F[x]/(f(x)) je fakto-
rový okruh polynómov nad pol’om F. Potom F[x]/(f(x)) je pol’om práve vtedy, ak je polynóm
f(x) ireducibilný polynóm okruhu F[x].

Dôkaz. Predpokladajme, že polynóm f(x) je ireducibilný polynóm okruhu F[x]. Uká-
žeme, že k l’ubovol’nému nenulovému prvku faktorového okruhu F[x]/(f(x)) existuje v
tomto okruhu inverzný prvok; t.j.

∀(g(x)) ∈ F[x]/(f(x)); (g(x)) ̸= (0)∃(h(x)) ∈ F[x]/(f(x)); (f(x))(h(x)) = (1)

Nech (g(x)) ∈ F[x]/(f(x)) je l’ubovol’ný nenulový prvok faktorového okruhu. Bez ujmy
na všeobecnosti môžeme predpokladat’, že deg(g(x)) < deg(f(x)). Ked’že polynóm f(x)
je ireducibilný polynóm nad pol’om F, gcd(f(x), g(x)) = 1 a existujú také dva polynómy
a(x), b(x) ∈ F[x], že

a(x)f(x) + b(x)g(x) = gcd(f(x), g(x)) = 1.

To znamená, že

(a(x)f(x) + b(x)g(x)) = (a(x)f(x)) + (b(x)g(x)) = (0) + (b(x))(g(x)) = (b(x))(g(x)) = (1)

a prvok (b(x)) je inverzným prvkom prvku (g(x)) faktorového okruhu F[x]/(f(x)).

Opačne, nech faktorový okruhu F[x]/(f(x)) je pole a nech polynóm f(x) je reducibilný
polynóm okruhu F[x].To znamená, že v okruhu F[x] existujú polynómy f1(x) a f2(x) také,
že f(x) = f1(x)f2(x) a 0 < deg(f1(x)),deg(f2(x)) < deg(f(x)). Ked’že F[x]/(f(x)) je pole k
prvku (f1(x)) ∈ F[x]/(f(x)) existuje v tomto poli inverzný prvok, trieda (f1(x)

−1). Potom
platí

(0) ̸= (f2(x)) = (1)(f2(x)) = (f1(x)
−1)(f1(x))(f2(x)) = (f1(x)

−1f1(x)f2(x)) =

= (f1(x)
−1f(x)) = (f1(x)

−1)(0) = (0)

spor.

Z predchádzjúcej vety vyplýva, že ak je dané konečné pole GF(q) a polynóm f(x) ∈
GF(q)[x] ireducibilný v okruhu polynómov GF(q)[x], tak môžeme skonštruovat’ konečné
pole GF(q)[x]/(f(x)), ktoré bude mat’ rád qdeg(f(x)). Otvorenou zostáva otázka, či exis-
tujú ireducibilné polynómy potrebných stupňov. Skôr, ako sa budeme zaoberat’ týmito
problémami, ilustrujeme na príklade konštrukciu konečného pol’a pomocou faktorového
okruhu polynómov.

Príklad. Pri konštrukcii tzv. BCH kódov budeme využívat’ konečné pole GF(24). Pri jeho
konštrukcii budeme vychádzt’ z binárneho konečného pol’a GF(2). Potrebujeme nájst’

208 KAPITOLA 15. ALGEBRA

No stupeň polynóm rozklad poznámka
1 0 0 0 prvok pol’a
2 0 1 1 prvok pol’a
3 1 x x ireducibilný
4 1 x+ 1 x+ 1 ireducibilný
5 2 x2 x · x reducibilný
6 2 x2 + 1 (x+ 1)2 reducibilný
7 2 x2 + x x · (x+ 1) reducibilný
8 2 x2 + x+ 1 x2 + x+ 1 ireducibilný
9 3 x3 x · x · x reducibilný

10 3 x3 + 1 (x+ 1)(x2 + x+ 1) reducibilný
11 3 x3 + x x(x+ 1)2 reducibilný
12 3 x3 + x2 x2(x+ 1) reducibilný
13 3 x3 + x+ 1 x3 + x+ 1 ireducibilný
14 3 x3 + x2 + 1 x3 + x2 + 1 ireducibilný
15 3 x3 + x2 + x x · (x2 + x+ 1) reducibilný
16 3 x3 + x2 + x+ 1 (x+ 1)3 reducibilný

Tabul’ka 15.1: Polynómy stupňa 0, 1, 2, 3 nad pol’om GF(2)

ireducibilný polynóm stupňa 4 nad pol’om GF(2). Polynóm stupňa 4 nad binárnym pol’om
má tvar

a0 + a1x+ a2x
2 + a3x

3 + a4x
4, ai ∈ {0, 1}, i = 0, . . . , 4.

Aby mal polynóm požadovaný stupeň (4), a4 = 1 a na výber ostatných 4 koeficientov
zostáva 24 = 16 možností. Aby bol hl’adaný polynóm ireducibilný, nesmie byt’ delitel’ný
iným polynómom nižšieho stupňa. To znamená, že stačí overit’, či je daný polynóm de-
litel’ný ireducibilnými polynómami stupňa 1 a 2. V tabul’ke 15.1 uvádzame polynómy
stupňa 3 a menšieho nad pol’om GF(2).

Preveríme teraz 16 polynómov stupňa 4 nad pol’om GF(2) na delitel’nost’ ireducibil-
nými polynómami stupňa 0, 1, 2, 3. Výsledky sú uvedené v tabul’ke 15.2.

Okruh polynómov GF(2)[x] budeme faktorizovat’ pomocou ireducibilného polynómu
f(x) = x4+ x+ 1. Prvkami pol’a GF(2)[x]/x4+ x+ 1 sú triedy rozkladu okruhu polynómov
GF(2)[x] podl’a ireducibilného polynómu f(x). V jednej triede rozkladu sú tie polynómy
okruhu polynómov GF(2)[x], ktorých rozdiel je delitel’ný polynómom f(x). Je zrejmé, že
v každej triede rozkladu existuje práve jeden polynóm stupňa 3 alebo menšieho, ktorý
budeme nazývat’ predstavitel’om triedy. Ked’že polynómov okruhu GF(2)[x] stupňa 3 a
menšieho je 16, pole GF(2)[x]/x4 + x + 1 obsahuje 16 prvkov. V tabul’ke 15.3 uvádzame
prvky pol’a GF(2)[x]/x4+x+1; prvok (trieda rozkladu) je reprezentovaný predstavitel’om
triedy.

Kvôli lepšiemu prehl’adu zhrnieme najdôležitejšie poznatky o konečných poliach v
nasledujúcej tabul’ke [2]. Čast’ z nich sme už dokázali, dokazovaním ostatných poznatkov
sa budeme zaoberat’.

1. Rád (počet prvkov) l’ubovol’ného konečného pol’a je mocninou prvočísla.

15.4. KONEČNÉ POLIA 209

No stupeň polynóm rozklad poznámka
1 4 x4 x4 R
2 4 x4 + 1 (x+ 1)4 R
3 4 x4 + x x · (x+ 1)(x2 + x+ 1) R
4 4 x4 + x+ 1 x4 + x+ 1 I
5 4 x4 + x2 x2 · (x+ 1)2 R
6 4 x4 + x2 + 1 (x2 + x+ 1)2 R
7 4 x4 + x2 + x x · (x3 + x+ 1) R
8 4 x4 + x2 + x+ 1 (x+ 1) · (x3 + x2 + 1) R
9 4 x4 + x3 x · (x3 + x2 + 1) R

10 4 x4 + x3 + 1 x4 + x3 + 1 I
11 4 x4 + x3 + x x · (x3 + x2 + 1) R
12 4 x4 + x3 + x2 x2(x2 + x+ 1) R
13 4 x4 + x3 + x+ 1 (x+ 1)2 · (x2 + x+ 1) R
14 4 x4 + x3 + x2 + 1 (x+ 1) · (x3 + x+ 1) R
15 4 x4 + x3 + x2 + x x · (x+ 1)3 R
16 4 x4 + x3 + x2 + x+ 1 x4 + x3 + x2 + x+ 1 I

Tabul’ka 15.2: Polynómy stupňa 4 nad pol’om GF(2)

1 (x)
2 (x2)
3 (x3)
4 (x+ 1)
5 (x2 + x)
6 (x3 + x2)
7 (x3 + x+ 1)
8 (x2 + 1)
9 (x3 + x)
10 (x2 + x+ 1)
11 (x3 + x2 + x)
12 (x3 + x2 + x+ 1)
13 (x3 + x2 + 1)
14 (x3 + 1)
15 (1)
16 (0)

Tabul’ka 15.3: Prvky pol’a GF(2)[x]/x4 + x+ 1

210 KAPITOLA 15. ALGEBRA

2. Pre l’ubovol’né prvočíslo p a celé kladné číslom je najmenším podpol’om pol’a GF(pm)
pole GF(p). Prvky pol’a GF(p) sa nazývajú celými číslami pol’a GF(pm) a číslo p
jeho charakteristikou

3. V konečnom poli charakteristiky 2 pre l’ubovol’ný prvok pol’a β platí β = −β.

4. Pre l’ubovol’né prvočíslo p a celé kladné číslom existuje konečné pole s pm prvkami.

5. Každé konečné pole GF(q) obsahuje aspoň jeden primitívny prvok.

6. Nad každým konečným pol’om existuje pre l’ubovol’né kladné celé číslo m primi-
tívny polynóm stupňa m.

7. Každý primitívny prvok pol’a GF(q) má nad l’ubovol’ným podpol’om pol’a GF(q)
ireducibilný minimálny polynóm.

8. Dve konečné polia s tým istým počtom prvkov sú izomorfné.

9. Pre l’ubovol’né q, ktoré je mocninou prvočísla a l’ubovol’né celé kladné číslo m je
pole GF(q) podpol’om pol’a GF(qm) a pole GF(qm) je rozšírením pol’a GF(q).

10. Ak číslo n nie je delitel’om čísla m, tak pole GF(qn) nie je podpol’om pol’a GF(qm).

11. Pre l’ubovol’ný prvok pol’a GF(qm) stupeň jeho minimálneho polynómu nad GF(q)
delí m.

Konečné pole predstavuje aditívnu abelovskú grupu a množina jeho nenulových prv-
kov je multiplikatívna abelovská grupa. V d’alšom budeme pracovat’ s multiplikatívnou
grupou konečného pol’a.

Veta 15.4.3. Nech je GF(q) konečné pole a β1, . . . , βq−1 sú jeho nenulové prvky. Potom
platí

xq−1 − 1 = (x− β1)(x− β2) . . . (x− βq−1).

Dôkaz. Stačí ukázat’, že l’ubovol’ný nenulový prvok pol’a GF(q) je koreňom polynómu
xq−1 − 1. Uvažujme prvok β. Jeho mocniny β,β2, . . . , βh = 1 tvoria podgrupu multipli-
katívnej grupy pol’a GF(q). Rád podgrupy, generovanej prvkom β delí rád multiplika-
tívnej grupy pol’a GF(q); h|(q − 1). To znamená, že existuje kladné celé číslo k také, že
hk = (q − 1). Potom však βq = βhk = (βh)k = 1k = 1, a teda β je koreňom polynómu
xq−1 − 1.

Reprezentácia konečných polí pomocou tried polynómov bola trocha neprehl’adná.
Ukážeme, že multiplikatívna grupa konečného pol’a je cyklická a budeme reprezentovat’
(nenulové) prvky konečného pol’a mocninami generátora jeho cyklickej multiplikatívnej
grupy.

Veta 15.4.4. Multiplikatívna grupa konečného pol’a GF(q) je cyklická.

15.4. KONEČNÉ POLIA 211

Dôkaz. Budeme postupovat’ podl’a [2]. Multiplikatívna grupa konečného pol’a GF(q)
má rád q− 1. Ak by bolo číslo q− 1 prvočíslo (napr. 3, 7, 31, 127, . . .), tvrdenie vety by bolo
triviálne. Podl’a predchádzajúcej vety musí rád každého nenulového prvku delit’ q − 1.
To znamená, že nenulové prvky majú bud’ rád 1 alebo rád q − 1. Jednotkový prvok pol’a
GF(q) má rád 1 a všetky ostatné nenulové prvky majú rád q − 1 a teda sú generátormi
multiplikatívnej grupy konečného pol’a GF(q).

Nech je číslo q− 1 zložené. Potom ho možno jednoznačne rozložit’ na súčin prvočísel:

q− 1 = pν11 · · ·pνss

Polynóm x(q−1)/pi − 1 môže mat’ najviac (q − 1)/pi koreňov, to znamená, že v poli GF(q)
existuje nenulový prvok, ktorý nie je koreňom polynómu x(q−1)/pi − 1. Označíme tento
prvok symbolom ai. Je zrejmé, že pre l’ubovol’né i, i = 1, . . . , s existuje nenulový prvok
ai pol’a GF(q) taký, že a(q−1)/pii ̸= 1. Na základe prvkov ai zostrojíme teraz prvky bi a b
pol’a GF(q):

bi = a
(q−1)/p

νi
i

i a b = b1b2 . . . bs

a ukážeme, že rád prvku b je q − 1; t.j. že b je generátor multiplikatívnej grupy pol’a
GF(q) a tým aj to, že táto grupa je cyklická.

Najprv ukážeme, že rád prvku bi je pνii . Platí

b
p
νi
i

i =

(
a
(q−1)/p

νi
i

i

)pνi
i

= a
(q−1)
i = 1.

To znamená, že rád prvku bi delí pνii , t.j. má tvar pni

i , pričom ni ≤ νi. Predpokladajme,
že ni < νi. Potom by aj

b
p
νi−1

i

i = b
p
ni
i

·pνi−ni
i

i =

(
b
p
ni
i

i

)pνi−ni
i

= (1)p
νi−ni
i = 1.

Ale

b
p
νi−1

i

i =

(
a
(q−1)/p

νi
i

i

)pνi−1

i

= a
(q−1)/pi
i ̸= 1.

To znamená, že ni = νi. Teraz ukážeme, že rád prvku b sa rovná q− 1. Predpokladajme,
že rád prvku b je n; t.j. bn = 1. Pre l’ubovol’né i = 1, . . . , s platí

bn·p
ν1
1

···pνss /p
νi
i = 1.

Vyjadríme teraz prvok b pomocou prvkov bi a využijeme to, že bp
νi
i

i = 1:

(b1b2 . . . bs)
n·pν1

1
···pνss /p

νi
i = (b1)

n·pν1
1

···pνss /p
νi
i . . . (bi−1)

p
νi−1
i−1

n·pν1
1

···pνss /(p
νi−1
i−1

·pνi
i

) ·

· (bi)
n·pν1

1
···pνss /p

νi
i (bi+1)

p
νi+1
i+1

n·pν1
1

···pνss /(p
νi+1
i+1

·pνi
i

)
. . . (bs)

p
νs
s n·pν1

1
···pνs−1

s−1
/p

νi
i =

= (1)n·p
ν2
2

···pνss /p
νi
i . . . (1)n·p

ν1
1

···pνss /p
νi
i
p
νi−1
i−1 · (bi)n·p

ν1
1

···pνss /p
νi
i (1)n·p

ν1
1

···pνss /(p
νi+1
i+1

·pνi
i

)
. . .

. . . (1)n·p
ν1
1

···pνs−1
s−1

/(p
νi
i

) = (bi)
n·pν1

1
···pνss /(p

νi
i

) = 1.

212 KAPITOLA 15. ALGEBRA

Z toho, že rád prvku bi je pνii a z poslednej rovnosti vyplýva, že, že pνii delí n pre i, . . . , s.
Čísla pνii sú však navzájom nesúdelitel’né, a to znamená, že

n = pν11 · · ·pνss = q− 1.

Prvok b rádu q− 1, ktorého existenciu sme dokázali v predchádzajúcej vete, je primi-
tívnym prvkom pol’a GF(q). Tým sme zároveň dokázali nasledujúce dôležité tvrdenie.

Dôsledok 2. V každom konečnom poli existuje primitívny prvok.

Vrátime sa k pol’u GF(24) = GF(2)[x]/x4 + x+ 1 z príkladu 15.4 a nájdeme jeho primi-
tívny prvok. Pole GF(24) sme zostrojili faktorizáciou okruhu polynómov GF(2)[x] pomo-
cou polynómu f(x) = x4 + x + 1. Uvažujme teraz prvok (x) pol’a GF(24); (x) predstavuje
triedu polynómov z okruhu GF(2)[x], ktoré po delení polynómom f(x) dávajú zvyšok x.
Dosadíme prvok (x) do polynómu f(x). Vzhl’adom na uzavretost’ pol’a GF(24) na sčítanie
a násobenie dostaneme opät’ prvok pol’a GF(24). Pripomenieme ešte, že pre l’ubovol’né
a(x), b(x) ∈ GF(2)[x] platí

(a(x)) + (b(x)) = (a(x) + b(x)), (a(x))(b(x)) = (a(x)b(x)).

Postupne dostávame

f((x)) = (x)4 + (x) + 1 = (x4) + (x+ 1) = (x4 + x+ 1) = (0).

To znamená, že prvok (x) je koreňom polynómu x4+x+1. Označíme prvok (x) symbolom
α a ukážeme, že (zhodou okolností) je α primitívnym prvkom pol’a GF(24). Vyjadrenie
prvkov pol’a GF(24) v podobe mocnín primitívneho prvku α je uvedené v tabul’ke 15.4

V prvom stĺpci tabul’ky 15.4 je exponent mocniny primitívneho prvku α, v druhom je
uvedená mocnina αi, v tret’om je binárny kód príslušného prvku a vo štvrtom je prvok αi

vyjadrený v podobe lineárnej kombinácie mocnín prvkov α3, α2, α1, α0. Posledný stĺpec
si zasluhuje vysvetlenie. Zápis prvkov konečného pol’a pomocou mocnín primitívneho
prvku umožňuje jednoducho realizovat’ násobenie prvkov pol’a. Pre l’ubovol’né dva prvky
pol’a αi, αj ∈ GF(24) platí αiαj = αi+j = α(i+j) mod 15. Na druhej strane, aj ked’ je pole
GF(24) aditívna abelovská grupa, určit’ prvok, ktorý predstavuje súčet αi + αj nie je pri
tejto reprezentácii prvkov pol’a GF(24)jednoduché.

Ukážeme, že sa každý prvok pol’a GF(24) dá zapísat’ pomocou lineárnej kombinácie
prvkov α3, α2, α1, α0 jednoznačným spôsobom. Nulový prvok pol’a sa dá zapísat’ v podobe
lineárnej kombinácia s nulovými koeficientami. Vieme, že 1 = α0 a predpokladajme, že
sa všetky mocniny αi, 0 ≤ i ≤ n dajú vyjadrit’ v tvare lineárnej kombinácie prvkov
α3, α2, α1, α0 . Ukážeme, že potom takto dá vyjadrit’ aj prvok αn+1. Nech αn = a3α

3 +
a2α

2 + a1α
1 + a0. Potom

αn+1 = αn · α = a3α
4 + a2α

3 + a1α
2 + a0α.

Ked’že α je koreňom polynómu x4 + x + 1, platí α4 + α + 1 = 0 a (ked’že pole GF(24) má
charakteristiku 2, a teda −α4 = α4)platí α4 = α + 1. Využijeme tento vzt’ah a upravíme
lineárnu kombináciu pre αn+1:

αn+1 = a2α
3 + a1α

2 + a0α+ a3(α+ 1) = a2α
3 + a1α

2 + (a0 + a3)α+ a3.

15.4. KONEČNÉ POLIA 213

0 α0 0001 1

1 α1 0010 α

2 α2 0100 α2

3 α3 1000 α3

4 α4 0011 +α +1
5 α5 0110 α2 +α
6 α6 1100 α3 +α2

7 α7 1011 α3 +α +1
8 α8 0101 α2 +1
9 α9 1010 α3 +α
10 α10 0111 α2 +α +1
11 α11 1110 α3 +α2 +α
12 α12 1111 α3 +α2 +α +1
13 α13 1101 α3 +α2 +1
14 α14 1001 α3 +1
15 α15 0001 1

Tabul’ka 15.4: Reprezentácia nenulových prvkov GF(24)

Ostáva ešte ukázat’, že vyjadrenie αi je jednoznačné. Predpokladajme opak, t.j.

αi = a3α
3 + a2α

2 + a1α
1 + a0 = b3α

3 + b2α
2 + b1α

1 + b0.

Potom však

0 = a3α
3 + a2α

2 + a1α
1 + a0 − b3α

3 + b2α
2 + b1α

1 + b0 =

= (a3 − b3)α
3 + (a2 − b2)α

2 + (a1 − b1)α
1 + (a0 − b0).

Z poslednej rovnosti vyplýva, že a3 = b3, a2 = b2, a1 = b1, a0 = b0, a teda vyjadrenie
prvku pol’a v podobe lineárnej kombinácie mocnín primitívneho prvku je jednoznačné.

Poznámka. Ak budeme reprezentovat’ prvky pol’a GF(24) pomocou 4-bitových celých
čísel, výpočet αi+1 možno realizovat’ nasledovne:

if (a > 7) then : a3 = 1
a = (a << 1) + 3; : a = a2a1a00+ 0011 = a2a1a01
else : a3 = 0
a = (a << 1); : a = a2a1a00

Zovšeobecnením predchádzajúcej konštrukcie dokážeme nasledujúcu vetu.

Veta 15.4.5. Nech je GF(qm) l’ubovol’né konečné pole, nech je α primitívny prvok tohto
pol’a. Potom l’ubovol’ný prvok β pol’a GF(qm) možno jednoznačným spôsobom vyjadrit’ v
tvare

β = am−1α
m−1 + · · ·+ a1α+ a0, (15.7)

kde a0 . . . , am−1 ∈ GF(q).

214 KAPITOLA 15. ALGEBRA

Na konštrukciu konečného pol’a nám stačil l’ubovol’ný ireducibilný polynóm. V prí-
klade, ktorý sme uviedli, bol koreň ireducibilného polynómu použitého na vytvorenie
pol’a zároveň aj primitívnym prvkom zostrojeného pol’a. Takýto polynóm sa nazýva pri-
mitívnym polynómom.

Definícia 15.4.1. Nech je dané konečné pole GF(q) a ireducibilný polynóm f(x) nad
týmto pol’om. Polynóm f(x) sa nazýva primitívnym polynómom nad pol’om GF(q), ak ko-
reňomj polynómu f(x) v rozšírení pol’a GF(q), poli GF(q)[x]/f(x) je primitívny prvok pol’a
GF(q)[x]/f(x).

Pripomíname, že nie každý ireducibilný polynóm f(x) nad pol’om GF(q) je zároveň
primitívnym polynómom. Na druhej strane, pre l’ubovol’né konečné pole GF(q) existujú
primitívne polynómy (nad pol’om GF(q)) l’ubovol’ného stupňa.

Príklad. Uvažujme ireducibilný polynóm f(x) = x4 + x3 + x2 + x + 1 nad pol’om GF(2).
Tento polynóm má v poli GF(2)[x]/x4+x3+x2+x+1 korene (x) = β;β2, β3, β4. Využijeme
vzt’ah β4 + β3 + β2 + β + 1 = 0 a vyjadríme β4 pomocou lineárnej kombinácie nižších
mocnín prvku β: β4 = β3 + β2 + β+ 1. Jednotlivé mocniny sú uvedené v tabul’ke 15.5.

0 β0 0001 1

1 β1 0010 β

2 β2 0100 β2

3 β3 1000 β3

4 β4 1111 β3 +β2 +β +1
5 β5 0001 1

Tabul’ka 15.5: Mocniny prvku β pol’a GF(24)

Prvok β má teda rád 5. (Pomocou tabul’ky 15.5 l’ahko dokážeme, že rád 5 majú aj
ostatné korene polynómu f(x), prvky β2, β3, β4). Ireducibilný polynóm x4+ x3+ x2+ x+ 1
nad pol’om GF(2) teda nie je primitívny.

V d’alšej časti budeme pokračovat’ v skúmaní základných vlastností konečných polí.
Vieme, že charakteristika konečného pol’a je prvočíslo. V akom vzt’ahu je pole GF(pm) s
charakteristikou p s konečným pol’om GF(p)?

Veta 15.4.6. Nech je GF(q) l’ubovol’né konečné pole, potom GF(q) obsahuje jediné konečné
pole, ktorého rád je charakteristikou pol’a GF(q).

Dôkaz. Nech je 1 jednotka konečného pol’a GF(q). Sumu 1+ 1+ · · ·+ 1︸ ︷︷ ︸
n

označíme sym-

bolom n a zostrojíme postupnost’

0, 1, 2, 3 . . . , p− 1, p = 0.

Táto postupnost’ je konečná (lebo GF(q) je konečné pole) jej prvky tvoria aditívnu cyk-
lickú grupu G. Sčítanie prvkov je v grupe G definované ako súčet celých čísel mod p.
Využijeme to, že v poli GF(q) platí distributívny zákon a zavedieme násobenie v grupe G
pomocou sčítania mod p nasledovne (α,β ∈ G):

15.5. VEKTOROVÉ PRIESTORY 215

1. α · 1 = α,

2. α · (β+ 1) = α · β+ α.

dokončit’ podl’a Niederreitera

V tabul’kách 15.1 a 15.2 sme uviedli ireducibilné polynómy stupňa 2, 3, 4 nad pol’om
GF(2). V poli GF(24) sa však tieto ireducibiné polynómy dali rozložit’ na súčin lineárnych
činitel’ov 15.6. Tento príklad ilustruje skutočnost’, že ireducibilné polynómy nad pol’om
GF(q) môžu byt’ reducibilné nad vhodným rozšírením pol’a GF(q). Pri konštrukcii cyk-
lických kódov budeme potrebovat’ zostrojit’ polynóm nad nejakým konečným pol’om s
predpísanými koreňmi; pozrieme sa preto na takéto polynómy podrobnejšie. Zavedieme
najprv jeden dôležitý pojem.

Definícia 15.4.2. Nech je GF(q) konečné pole a GF(Q) je jeho rozšírenie; nech α ∈ GF(Q).
Normovaný polynóm mα(x) nad GF(q) budeme nazývat’ minimálnym polynómom prvku
α nad pol’om GF(q), ak platí

1. mα(α) = 0,

2. ak existuje polynóm a(x) nad GF(q) taký, že a(α) = 0, tak potom mα(x)|a(x).

Minimálny polynóm prvku α nad pol’om GF(q) je teda normovaný polynóm najmen-
šieho stupňa nad pol’om GF(q), ktorého koreňom je prvok α. Minimálny polynóm prvku
α vždy existuje a je daný jednoznačne.

Príklad. Minimálne polynómy prvkov pol’a GF(24) nad pol’om GF(2) sú uvedené v ta-
bul’ke 15.6

Poznámka. Čast’ venovaná konečným poliam bola spracovaná na základe [2] a [10].
Čitatel’ovi, zaujímajúcemu sa o teóriu konečných polí odporúčame do pozornosti najmä
prácu [10]. Zaujímavý pohl’ad na konečné polia a ich aplikácie v kryptológii ponúka aj
práca [?].

15.5 Vektorové priestory

Zrejme najznámym príkladom vektorového priestoru je trojrozmerný Euklidovský pries-
tor, ktorý vystupuje v mnohých úlohách stredoškolskej matematiky a fyziky. Euklidov-
ský priestor možno zovšeobecnit’ na n-rozmerný vektorový priestor nad pol’om reálnych
čísel, ktorý taktiež nachádza uplatnenie v mnohých aplikáciách. V teórii kódovania ne-
budeme pracovat’ s vektorovými priestormi nad reálnymi číslami, ale budeme využí-
vat’ trocha abstraktnejšie vektorové priestory nad konečnými pol’ami. Tieto vektorové
priestory sú základom pre konštrukciu vel’mi dôležitých samoopravných kódov, pre tzv.
lineárne kódy. Zavedieme najprv základné pojmy a potom preskúmame vlastnosti vek-
torových priestorov, ktoré budeme potrebovat’ (napríklad) pre konštrukciu, kódovanie a
dekódovanie lineárnych kódov.

216 KAPITOLA 15. ALGEBRA

prvok minimálny polynóm
0 x

α0 x+ 1
α1 x4 + x+ 1
α2 x4 + x+ 1
α3 x4 + x3 + x2 + x+ 1
α4 x4 + x+ 1
α5 x2 + x+ 1
α6 x4 + x3 + x2 + x+ 1
α7 x4 + x3 + 1
α8 x4 + x+ 1
α9 x4 + x3 + x2 + x+ 1
α10 x2 + x+ 1
α11 x4 + x3 + 1
α12 x4 + x3 + x2 + x+ 1
α13 x4 + x3 + 1
α14 x4 + x3 + 1

Tabul’ka 15.6: Minimálne polynómy prvkov pol’a GF(24)

Definícia 15.5.1. Nech je F l’ubovol’né pole. Nech V je množina, na ktorej je definovaná
binárna operácia +, a nech pre každé a ∈ F a v ∈ V existuje prvok a · v ∈ V , pričom pre
aditívne a multiplikatívne operácie platia nasledujúce podmienky:

1. (V,+) je abelovská grupa; pre l’ubovol’né u,v ∈ V a l’ubovol’né a, b ∈ F

2. a · (u + v) = a · u + a · v;

3. (a+ b) · v = a · v + b · v;

4. (a · b) · u = a(b · u);

5. 1 · u = u,

kde 1 je jednotkový prvok pol’a F. Potom V je vektorový priestor nad pol’om F. Prvky mno-
žiny V sa nazývajú vektory a prvky pol’a F skaláry.

Poznámka. Všimnite si, že v definícii vektorového priestoru nad pol’om F vystupujú
dve rôzne aditívne operácie (sčítanie v poli F a sčítanie v grupe (V,+)) a dve takisto roz-
ličné multiplikatívne operácie ("vnútorné násobenie prvkov pol’a a "vonkajšie násobenie
vektora skalárom.) Z kontextu bude spravidla jasné, o akú operáciu sa jedná, a preto na
označenie oboch aditívnych operácií budeme používat’ symbol "+". Budeme sa pridŕžat’
zaužívaného označenia a operátor "·"budeme vynechávat’ tak pri označovaní "vonkaj-
šiehoäko aj "vnútorného"násobenia. Aby sme odlíšili vektory a skaláry, budeme vektory
sádzat’ boldom.

Príklad. 1. Nech je F l’ubovol’né pole a n > 1 je l’ubovol’né prirodzené číslo. Potom sym-
bolom Fn označíme množinu všetkých usporiadaných n-tíc prvkov pol’a F. Definujeme

15.5. VEKTOROVÉ PRIESTORY 217

operácie sčítania n-tíc a násobenia n-tíc prvkom pol’a nasledovne: pre l’ubovol’né prvky
(n-tice) u,v ∈ Fn; u = (u1, . . . , un),v = (v1, . . . , vn) a l’ubovol’ný prvok c ∈ F platí

u + v = (u1 + v1, . . . , un + vn), cu = (cu1, . . . , cun).

Dá sa l’ahko overit’, že Fn s takto definovanými operáciami je vektorový priestor.

2. Trocha netradičným príkladom vektorového priestoru je faktorový okruh poly-
nómov F[x]/(xn − 1), pozostávajúci z tried reprezentovaných polynómami nad pol’om F

stupňa menšieho než n.

Nech je daný vektorový priestor V nad pol’om F, nech sú u1, . . . ,um ∈ V l’ubovol’né
vektory a nech sú a1, . . . , am ∈ F l’ubovol’né skaláry. Vektor

v = a1u1 + · · ·+ amum

budeme nazývat’ lineárnou kombináciou vektorov u1, . . . ,um. Množina vektorov u1, . . . ,um
sa nazýva lineárne závislou, ak existuje množina skalárov a1, . . . , am ∈ F, z ktorých je
aspoň jeden nenulový a

0 = a1u1 + · · ·+ amum.

Ak množina vektorov u1, . . . ,um ∈ V nie je lineárne závislá, budeme o nej hovorit’, že
je lineárne nezávislá. Je zrejmé, že ak má byt’ nejaká množina vektorov lineárne nezá-
vislá, nesmie obsahovat’ nulový vektor a žiaden z jej vektorov sa nesmie dat’ vyjadrit’
v podobe lineárnej kombinácie ostatných vektorov. Množinu všetkých lineárnych kom-
binácií vektorov u1, . . . ,um ∈ V {a1u1 + · · · + amum, a1 . . . , am ∈ F} budeme označovat’
symbolom [u1, . . . ,um]. Budeme hovorit’, že množina vektorov u1, . . . ,um generuje vek-
torový priestor W, ak sa každý vektor z W dá vyjadrit’ v podobe lineárnej kombinácie
vektorov u1, . . . ,um; t.j.

∀v(v ∈W → v ∈ [u1, . . . ,um]).

Je zrejmé, že ten istý vektorový priestor možno generovat’ pomocou viacerých generu-
júcich množín vektorov. Budú nás zaujímat’ mohutnosti generujúcich množín vektorov
vektorového priestoru.

Veta 15.5.1 (Steinitzova veta.). Nech je vektorový priestor V nad pol’om F generovaný
množinou lineárne nezávislých vektorov u1, . . . ,una nech sú vektory v1, . . . ,vk ∈ V lineár-
ne nezávislé. Potom k ≤ n a existuje n−k vektorov ui takých, že [v1, . . . ,vk,ui1 , . . . ,uin−k] =
V .

Dôkaz. Budeme postupne nahrádzat’ vektory ui vektormi vj v množine generujúcej
vektorový priestor V . Dôkaz budeme potom robit’ matematickou indukciou vzhl’adom na
počet vektorov vi v množine vektorov generujúcich vektorový priestor V .
Množina u1, . . . ,un generuje V; t.j. [u1, . . . ,un] = V. Pridajme do generujúcej množiny
vektor v1. Ked’že v1 ∈ V a v1 ̸= 0 existuje lineárna kombinácia

v1 = a1u1 + · · ·+ anun,

taká, že medzi koeficientami a1 . . . , an je aspoň jeden nenulový. Bez ujmy na všeobec-
nosti môžeme predpokladat’, že a1 ̸= 0. Potom môžeme vyjadrit’ vektor u1 pomocou line-
árnej kombinácie

u1 = v1 + a−11 a2u2 · · ·+ a−11 anun.

218 KAPITOLA 15. ALGEBRA

Z toho vyplýva, že množina v1,u2, . . . ,un generuje vektorový priestor V .
Predpokladajme, že množina vektorov v1, . . . ,vs−1,us, . . . ,un generuje vektorový pries-
tor V ,

Definícia 15.5.2. Vektorový priestor V nad pol’om F sa nazýva konečnorozmerný, ak exis-
tujú vektory u1, . . . ,un ∈ V také, že [u1, . . . ,un] = V. Ak vektorový priestor nie je konečno-
rozmerný, nazývame ho nekonečnorozmerným vektorovým priestorom.

Definícia 15.5.3. Nech je vektorový priestor V nad pol’om F konečnorozmerný. Vektory
u1, . . . ,un ∈ V nazývame bázou vektorového priestoru V , ak

1. [u1, . . . ,un] = V,

2. vektory u1, . . . ,un sú lineárne nezávislé.

Jeden a ten istý (konečnorozmerný) vektorový priestor môže mat’ viacero rozličných
báz. Podstatné je, že všetky budú mat’ rovnaký počet prvkov.

Veta 15.5.2. Nech je V konečnorozmerný vektorový priestor nad pol’om F. Potom všetky
bázy vektorového priestoru V majú rovnaký počet prvkov.

Počet prvkov bázy (konečnorozmerného) vektorového priestoru teda nezávisí od vý-
beru bázy. Zavedieme na jeho označenie špeciálny pojem.

Definícia 15.5.4. Dimenzia konečnorozmerného vektorového priestoru je počet prvkov
niektorej z jeho báz. Dimenzia nulového vektorového priestoru je 0. Dimenzia nekonečno-
rozmerného vektorového priestoru je∞.

15.6 Lineárna algebra

V tejto časti zavedieme matice, základné operácie s maticami a ich vlastnosti; pojem de-
terminantu, vlastnosti determinantov a použitie determinantov pri zist’ovaní vlastností
matíc a na riešenie sústav lineárnych rovníc. Pôjde o základné poznatky nevyhnutné
najmä pre konštrukciu, kódovanie, dekódovanie a dokazovanie vlastností lineárnych,
cyklických a BCH kódov. Pri písaní tejto časti sme čerpali najmä z prác [4], [8] a [13].

15.6.1 Matice

Definícia 15.6.1. Maticou A typum×n nazývamemn prvkov a1,1, a1,2, . . . , a1,n, a2,1, . . . , am,n
pol’a F5 usporiadaných v m riadkoch a n stĺpcoch:

A =


a1,1, a1,2, a1,3, . . . , a1,n
a2,1, a2,2, a2,3, . . . , a2,n
.

am,1, am,2, am,3, . . . , am,n


5niektoré vlastnosti matíc platia aj pre slabšie algebraické štruktúry, napr. okruhy, ale väčšina matíc,

s ktorými pracujeme v teórii kódovania (najmä pri skúmaní samoopravných kódov) je definovaných ako
matice nad nejakými konečnými pol’ami, a preto sme aj my postavili definíciu matíc na poliach.

15.6. LINEÁRNA ALGEBRA 219

Maticu A typu m × n budeme označovat’ A = (ai,j)m,n, alebo typ matice vypisovat’
explicitne; A = (ai,j) je matica typum×n. Usporiadaná dvojica (i, j) 1 ≤ i ≤ m, 1 ≤ j ≤ n
sa nazýva miestom matice , číslo i riadkovým indexom a číslo j stĺpcovým indexom
matice, prvok pol’a F priradené jednotlivým miestam matice A budeme nazývat’ prv-
kami matice A. Ak m = b, maticu A budeme nazývat’ štvorcovou maticou rádu n.
Prvky a1,1, a2,2, . . . , an,n tvoria hlavnú diagonálu štvorcovej matice A (rádu n) a prvky
a1,n, a2,n−1, . . . , an,1 vedl’ajšiu diagonálu matice A. Nulovou maticou sa nazýva matica,
ktorej všetky prvky sú nulové (rovné neutrálnemu prvku pol’a F vzhl’adom na sčítanie).
Štvorcová matica (rádu n) sa nazýva diagonálna, ak ai,j = 0, i ̸= j; 1 ≤ i, j ≤ n t.j. matica
môže mat’ nenulové prvky len na hlavnej diagonále a všetky jej ostatné prvky sú nulové.
Štvorcová matica (rádu n) sa nazýva jednotková (alebo aj identická), ak je diagonálna a
všetky prvky na jej hlavnej diagonále nadobúdajú hodnotu 1, t.j. neutrálneho prvku pol’a
F vzhl’adom na násobenie. Jednotková matica rádu m sa označuje symbolom Im.

Definícia 15.6.2. Hodnost’ou matice sa nazýva maximálny počet lineárne nezávislých
vektorov, tvorených riadkami matice.

Veta 15.6.1. Nech je A matica typu m× n. Potom pre hodnost’ h matice A platí

h ≤ min(m,n).

Definícia 15.6.3. Matica

A⊤ =


a1,1, a2,1, a3,1, . . . , am,1
a1,2, a2,2, a3,2, . . . , am,2
.

a1,n, a2,n, a3,n, . . . , am,n


ktorá vznikne výmenou riadkov matice A za stĺpce (alebo preklopením okolo hlavnej dia-
gonály) sa nazýva transponovaná matica k matici A.

Veta 15.6.2. [13] Hodnost’ matice A sa rovná hodnosti transponovanej matice A⊤.

Nasledujúce dve vety prevzaté z [13] poskytujú návod na výpočet hodnosti matice.

Veta 15.6.3. Hodnost’ matice A nad pol’om F sa nezmení, ak

1. zmeníme poradie riadkov v matici,

2. vynásobíme jeden riadok matice nenulovým prvkom pol’a F,

3. pripočítame k jednému riadku matice lineárnu kombináciu ostatných riadkov ma-
tice,

4. vynecháme v matici riadok, ktorý je lineárnou kombináciou ostatných riadkov ma-
tice.

Poznámka. Využijúc vetu 15.6.2 môžeme úpravy uvádzané vo vete 15.6.3 robit’ aj nad
stĺpcami matice A.

220 KAPITOLA 15. ALGEBRA

Veta 15.6.4. Matica

A =


a1,1, a1,2, a1,3, a1,4, . . . , a1,n
0, a2,2, a2,3, a2,4, . . . , a2,n
0, 0, a3,3, a3,4, . . . , a3,n
.

0, . . . , 0, am,m, . . . am,n

 (15.8)

kde sú prvky ležiace na diagonále a1,1, . . . , am,m nenulové a prvky pod diagonálou
rovné 0 má hodnost’ m.

Príklad 15.1. Využijeme operácie uvádzané vo vete 15.6.3, upravíme maticu na tvar
uvedený vo vete 15.6.4 a určíme jej hodnost’. Uvažujme celočíselnú maticu A

2 0 −3 5 1

6 −2 1 3 4

8 −2 −2 8 5

4 1 2 0 −1


Tretí riadok je lineárnou kombináciou prvých dvoch, a preto ho možno vynechat’ 2 0 −3 5 1

6 −2 1 3 4

4 1 2 0 −1

 .
Teraz preusporiadame stĺpce matice 1 2 0 −3 5

4 6 −2 1 3

−1 4 1 2 0

 .
Od druhého riadku odčítame štvornásobok prvého a k tretiemu riadku pripočítame prvý
riadok:  1 2 0 −3 5

0 −2 −2 13 −17
0 6 1 −1 5

 .
A nakoniec k tretiemu riadku pripočítame trojnásobok druhého 1 2 0 −3 5

0 −2 −2 13 −17
0 0 −5 38 −46

 .
Výsledná matica spĺňa podmienky vety 15.6.4, a preto má matica A hodnost’ 3.

Teraz definujeme dôležitý pojem podmatice, ktorý budeme potrebovat’ pri výpočte de-
terminantov. Budeme vychádzat’ z matice A typu m × n. Z množiny 1, . . . ,m vyberieme
k-prvkovú podmnožinu i1, . . . , ik a podobne z množiny 1, . . . , n vyberieme l-prvkovú pod-
množinu j1, . . . , jl. Podmaticou A′ typu k× l nazveme maticu

15.6. LINEÁRNA ALGEBRA 221

A′ =


ai1,j1 , ai1,j2 , ai1,j3 , . . . , ai1,jl
ai2,j1 , ai2,j2 , ai2,j3 , . . . , ai2,jl
.

aik,j1 , aik,j2 , aik,j3 , . . . , aik,jl


Hoci matice vyzerajú zložito, môžu byt’ samy prvkami ešte zložitejších štruktúr. Uva-

žujeme množinu matíc typu m × n s prvkami z pol’a F (nad pol’om F). Najprv formalizu-
jeme zdanlivo triviálny, ale mimoriadne dôležitý pojem, rovnosti matíc, ktorý potrebu-
jeme na korektné zavedenie operácií nad maticami.

Definícia 15.6.4. Matica A sa rovná matici B, ak sú rovnakého typu a

ai,j = bi,j ∀i, j.

Pre tieto, resp. pre matice rovnakého typu nad tým istým pol’om môžeme definovat’
operáciu sčítania.

Definícia 15.6.5. Súčtom dvoch matíc A a B typu m×n je matica B typu m×n, taká že

ci,j = ai,j + bi,j, 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Ked’že do súčtu matíc sa premietajú vlastnosti súčtu prvkov pol’a, súčet matíc je aso-
ciatívny, komutatívny, v množine všetkých matíc toho istého typu nad pol’om F existuje
nulový prvok (nulová matica 0) a pre každú maticu A existuje opačná matica −A taká,
že

A +−A = 0.

Množina všetkých matíc rovnakého typu nad tým istým pol’om s operáciu sčítania teda
tvorí komutatívnu grupu.

Matice môžeme podobne ako vektory násobit’ prvkom pol’a F: pre maticu A = (ai,j)
typu m× n a prvok α ∈ F definujeme α · A = (α · ai,j).

Ako to je s násobením matíc? Aby výsledok násobenia matíc nad pol’om F bol maticou
nad pol’om F, využijeme pri násobení matíc skalárny súčin vektorov. Potrebujeme ešte,
aby matica A mala tol’ko stĺpcov, kol’ko má matica B riadkov. Ak je táto podmienka
splnená, môžeme definovat’ súčin matíc

Definícia 15.6.6. Matica C typu m× n, taká že

ci,j = ai,1b1,j + ai,2b2,j + · · ·+ ai,pbp,j =
p∑
k=1

ai,k · bk,j,

je súčinom matíc A typu m× p a B typu p× n.

Príklad 15.2. Ukážeme, že súčin matíc nie je komutatívna operácia. Uvažujme dve štvor-
cové matice nad pol’om R,

A =

(
1 2

3 4

)
B =

(
5 6

7 8

)
.

222 KAPITOLA 15. ALGEBRA

Potom
AB =

(
19 24

43 50

)
BA =

(
23 34

31 46

)
a teda

AB ̸= BA.

Vlastnosti súčinu matíc zhrnieme v nasledujúcej vete [4].

Veta 15.6.5. Nech sú matice A typu m× p, B typu p× r a C typu r× n l’ubovol’né matice
nad pol’om F, nech sú α,β l’ubovol’né prvky pol’a F. Potom platí

1. (AB)C = A(BC);

2. (A + B)C = (AC + BC);

3. A(B + C) = AC + BC;

4. α · (β · A = (αβ) · A;

5. α · (AB) = (α · A)B;

6. ImA = A, AIp = A.

15.6.2 Determinanty

Uvažujme štvorcovú maticu

A =

(
a1,1 a1,2
a2,1 a2,2

)
s prvkami z pol’a F. Determinantom matice A budeme nazývat’ výraz∣∣∣∣ a1,1 a1,2

a2,1 a2,2

∣∣∣∣ = a1,1a2,2 − a1,2a2,1. (15.9)

Determinant matice A budeme označovat’ symbolom det(A). Zovšeobecníme definíciu
determinantu na prípad štvorcovej matice typu n × n, kde n ≥ 2. Permutáciou množiny
M = {1, 2, . . . , n} budeme nazývat’ l’ubovol’nú bijekciu ϕ : M → M. Množinu všetkých
permutácií množiny M budeme označovat’ symbolom P(M). Permutáciu ϕ možno jedno-
značne zadat’ pomocou tabul’ky:

i 1 2 . . . n

ϕ(i) ϕ(1) ϕ(2) . . . ϕ(n)

resp. ak fixujeme poradie prvkov definičného oboru (prvý riadok tabul’ky), tak permutá-
ciu ϕmôžeme jednoznačne zadat’ pomocou druhého riadka tabul’ky zapísaného v podobe
vektora: (ϕ(1), ϕ(2), . . . , ϕ(n)). Inverziou permutácie ϕ nazveme dvojicu (1 ≤ i < j ≤ n)
takú, že ϕ(i) > ϕ(j). Napríklad identická permutácia (1, 2, 3, 4, 5) nemá žiadnu inverziu,
permutácia (2, 1, 3, 4, 5) má jednu inverziu (1, 2), permutácia (3, 5, 4, 2, 1) má 8 inverzií:
(1, 4); (1, 5); (2, 3); (2, 4); (2, 5); (3, 4); (3, 5); (4, 5). Pre zovšeobecnenie pojmu determinantu
je popri pojme permutácie dôležitý aj počet inverzií permutácie; počet inverzií permu-
tácie ϕ budeme označovat’ symbolom i(ϕ).

15.6. LINEÁRNA ALGEBRA 223

Definícia 15.6.7. Nech A je štvorcová matica typu n × n nad nejakým pol’om F, M =
{1, 2, . . . , n};

A =


a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . . a2,n

... . . .

an,1 an,2
... an,n

 .
Determinanom matice A budeme nazvat’ výraz

det(A) =
∑

ϕ∈P(M)

(−1)i(ϕ) × a1,ϕ(1)a2,ϕ(2) . . . an,ϕ(n). (15.10)

Všimneme si dva prípady, n = 2, 3. V prvom prípade existujú dve permutácie mno-
žiny {1, 2}; identicka permutácia ϕ1 a permuácia ϕ2 = (2, 1). Identická permutácia nemá
žiadnu inverziu, permutácia ϕ2 má práve jednu inverziu; (1, 2). Determinant matice A
typu 2 × 2 vyjadrený podl’a vzt’ahu 15.10 sa zhoduje so špecifickým prípadom definova-
ným vzt’ahom 15.9. Pozrime sa teraz na prípad matice typu 3×3. Existuje 3! = 6 rôznych
permutácií trojprvkovej množiny, ktorým zodpovedajú nasledujúce členy sumy v 15.10:

ϕi permutácia i(ϕi)

ϕ1 (1, 2, 3) 0 a1,1a2,2a3,3
ϕ2 (1, 3, 2) 1 −a1,1a2,3a3,2
ϕ3 (2, 3, 1) 2 a1,2a2,3a3,1
ϕ4 (2, 1, 3) 1 −a1,2a2,1a3,3
ϕ5 (3, 1, 2) 2 a1,3a2,1a3,2
ϕ6 (3, 2, 1) 3 −a1,3a2,2a3,1

Determinant matice A typu 3 × 3 sa dá vypočítat’ podl’a tzv. Sarusovho pravidla takto:
k matici sa pripíšu prvé dva riadky a determinant sa vyjadrí ako súčet súčinov členov
ležiacich na diagonálach smerujúcich zl’ava doprava, od ktorých sa odčítajú súčiny členov
ležiacich na diagonálach smerujúcich sprava dol’ava:

a1,1 a1,2 a1,3
a2,1 a2,2 a2,3

−a1,3a2,2a3,1 ← a3,1 a3,2 a3,3 → a1,1a2,2a3,3
−a2,3a3,2a1,1 ← a1,1 a1,2 a1,3 → a2,1a3,2a1,3
−a3,3a1,2a2,1 ← a2,1 a2,2 a2,3 → a3,1a1,2a2,3

Uvedieme niektoré zakladné vlastnosti determinantov, ktoré využijeme napr. na skúma-
nie opravných schopností lineárnych kódov a dekódovanie BCH kódov. Budeme vychá-
dzat’ z prác [4] a [8]. Nasledujúca veta uvádza, ako závisí determinat matice od vlastností
jej riadkov, resp. ako sa zmení pri rozličných operáciách nad riadkami matice. Analogické
tvrdenia platia pre stĺce matice.

Veta 15.6.6. Nech je A štvorcová matica typu n×n nad pol’om F, s determinantom det(A).
Potom platia nasledujúce tvrdenia

1. Ak je niektorý riadok matice A nulový, tak potom det(A) = 0.

224 KAPITOLA 15. ALGEBRA

2. Determinant matice A sa nezmení, ak k niektorému riadku pripočítame l’ubovol’ný
násobok iného riadku matice A.

3. Ak matica A obsahuje dva rovnaké riadky, tak potom det(A) = 0.

4. Ak je jeden z riadkov matice A lineárnou kombináciou ostatných riadkov matice A,
tak det(A) = 0.

5. Ak matica B vznikne z matice A tak, že sa i-ty riadok matice A vynásobí konštantou
c, tak det(B) = c · det(A).

6. Ak matica B vznikne z matice A tak, že sa v matici A vymenia dva riadky, tak
det(B) = −det(A).

7. Matica A je regulárna práve vtedy, ak det(A) ̸= 0.

8. det(A) = det(A⊤).

Dôkaz. Dôkazy vyššie uvedených tvrdení možno nájst’ napríklad v [8].

Pre determinant súčinu matíc platí nasledujúce tvrdenie, ktorého dôkaz možno tak-
tiež nájst’ v [8].

Veta 15.6.7. Nech sú A,B štvorcové matice typu n× n nad pol’om F. Potom platí

det(A · B) = det(A) · det(B).

Vrát’me sa teraz k pojmu podmatice. Nech je A matica typum×n a A′ je jej štvorcová
podmatica typu k × k k ≤ min(m,n). Determinant matice A′ sa nazýva subdetermi-
nant k-teho stupňa matice A. Zatial’ vieme prakticky vypočítat’ len determinanty matíc
typu nanajvýš 3× 3. Ukážeme, že determinanty „väčších“ matíc sa dajú vyjadrit’ pomo-
cou subdeterminantov nižších stupňov. Uvažujem kvôli jednoduchosti prvok a1,j prvého
riadku6 matice A a všetky členy determinantu det(A), ktoré a1,j obsahujú. Túto čast’
determinantu môžeme vyjadrit’ v tvare a1,j · A1,j, kde výraz A1,j sa nazýva algebraickým
doplnkom prvku a1,j. Ked’že každý sčítanec determinantu det(A) obsahuje práve jeden
prvok prvého (vo všeobecnosti i-teho) riadku, determinant matice A možno vyjadrit’ v
tvare

det(A) = a1,1 · A1,1 + a1,2 · A1,2 + · · ·+ a1,n · A1,n.
Ostáva ešte určit’, ako sa vypočítajú hodnoty A1,j.

Definícia 15.6.8. Determinant

Aij = det



a1,1 a1,2 . . . a1,j−1 a1,j+1 . . . a1,n
a2,1 a2,2 . . . a2,j−1 a2,j+1 . . . a2,n
. .

ai−1,1 ai−1,2 . . . ai−1,j−1 ai−1,j+1 . . . ai−1,n
ai+1,1 ai+1,2 . . . ai+1,j−1 ai+1,j+1 . . . ai+1,n
. .

an,1 an,2 . . . an,j−1 an,j+1 . . . an,n


6úvahy a tvrdenia platia aj pre l’ubovol’ný prvok tabul’ky

15.6. LINEÁRNA ALGEBRA 225

podmatice ktorá vznikne vynechaním i-teho riadka a j-teho stĺpca matice A sa nazýva
subdeterminant (n − 1)-ho stupňa determinantu det A prislúchajceho k prvku ai,j. Do-
plnkom Ai,j prvku ai,j v determinante det A nazývame subdeterminant Aij vynásobený
znamienkom (−1)i+j;

Ai,j = (−1)i+j · Aij.

Teraz môžeme dokončit’ úvahy o vyjadrení determinantu pomocou subdeterminantov
nižších stupňov.

Veta 15.6.8. (Rozvoj determinantu podl’a i-teho riadku) Nech je A štvorcová matica typu
n× n. Potom platí

det(A) = ai,1 · Ai,1 + ai,2 · Ai,2 + · · ·+ ai,n · Ai,n =

= (−1)i+1 · ai,1 · Ai,1 + (−1)i+2 · ai,2 · Ai,2 + · · ·+ (−1)i+n · ai,n · Ai,n

Vetu 15.6.8 využijeme pri výpočte Vandermondovho eterminantu, ktorý zohráva mi-
moriadne dôležitú úlohu pri určovaní konštrukčnej minimálnej vzdialenosti BCH kódov.

Veta 15.6.9. Nech je daná štvorcová matica

A = det


1 x1 x21 x31 . . . xn−11

1 x2 x22 x32 . . . xn−12

.

1 xn x2n x3n . . . xn−1n

 . (15.11)

Potom

det(A) =
∏

1≤i<j≤n
(xj − xi). (15.12)

Dôkaz. Matematickou indukciou.

1. n = 2

det A =

∣∣∣∣ 1 x1
1 x2

∣∣∣∣ = x2 − x1. (15.13)

2. Predpokladajme, že tvrdenie vety platí pre m < n a dokážeme jeho platnost’ pre
n. Upravíme maticu 15.11 tak, že od každého riadka druhým počínajúc odčítame
prvý riadok:

det A =

∣∣∣∣∣∣∣∣
1 x1 x21 x31 . . . xn−11

0 x2 − x1 x22 − x
2
1 x32 − x

3
1 . . . xn−12 − xn−11

.

0 xn − x1 x2n − x
2
1 x3n − x

3
1 . . . xn−1n − xn−11

∣∣∣∣∣∣∣∣ (15.14)

226 KAPITOLA 15. ALGEBRA

Rozvinieme determinant matice A podl’a 1. stĺpca. Podl’a vety 15.6.8 z 15.14 dostá-
vame

det(A) =

∣∣∣∣∣∣∣∣
x2 − x1 x22 − x

2
1 x32 − x

3
1 . . . xn−12 − xn−11

x3 − x1 x23 − x
2
1 x33 − x

3
1 . . . xn−13 − xn−11

.

xn − x1 x2n − x
2
1 x3n − x

3
1 . . . xn−1n − xn−11

∣∣∣∣∣∣∣∣ (15.15)

Vyjmeme z prvého riadku 15.15 x2 − x1, druhého x3 − x1 až n − 1-ho xn − x1 a
dostávame

det(A) =

n∏
k=2

(xk − x1)×

∣∣∣∣∣∣∣∣∣
1 x2 + x1 x22 + x2x1 + x

2
1 . . .

∑n−2
l=0 x

n−2−l
2 · xl1

1 x3 + x1 x23 + x3x1 + x
2
1 . . .

∑n−2
l=0 x

n−2−l
3 · xl1

.

1 xn + x1 x2n + xnx1 + x
2
1 . . .

∑n−2
l=0 x

n−2−l
n · xl1

∣∣∣∣∣∣∣∣∣
Podl’a indukčného predpokladu má Vandermondova matica typu (n − 1) × (n − 1)
determinant ∏

2≤j<k≤n
(xk − x1) − (xj − x1) =

∏
2≤j<k≤n

(xk − xj).

Poznámka. Aby sme rozptýlili prípadné pochybnosti o tom, či je posledný determinant
v predchádzajúcom dôkaze Vandermondov, spravíme ešte dva kroky dôkazu. Najprv od-
čítame prvý riadok od všetkých ostatných. V prvom stĺpci máme v prvom riadku jednotky
a v ostatných riadkoch nuly. Zasa spravíme rozklad determinantu podl’a prvého stĺpca.
Kvôli zjednodušeniu výkladu označíme maticu po poslednej úprave B = (bi,j)n−1,n−1. Po-
zrieme sa na k−1-vý riadok, 3 < k ≤ n. Zrejme bk,0 = 0. Prvok v druhom stĺpci nadobúda
hodnotu

bk,1 = (xk + x1) − (x2 + x1) = xk − x2,

v tret’om stĺpci

bk,2 = (x2k + xkx1 + x
2
1) − (x22 + x2x1 + x

2
1) = (x2k − x

2
2) + x1(xk − x2),

až napokon

bk,n−1 =

n−2∑
l=0

xl1(x
n−2−l
k − xn−2−l2).

Každý prvok k − 1-ho riadka je delitel’ný (xk − x2), a to znamená, že z každého prvku v
k − 1-vom riadku môžeme vyňat’ činitel’ (xk − x2). Eliminovali sme d’alší riadok a stĺpec
matice a k hodnote determinantu príspevok

∏n
k=3(xk − x2).

15.6.3 Sústavy lineárnych rovníc

Kapitola 16

Entropia a množstvo informácie

Pri riešení niektorých problémov potrebujeme určit’ množstvo informácie obsiahnuté
v údajoch. Predpokladajme, že na začiatku nemáme o údajoch žiadnu informáciu, t.j.
údaje môžu byt’ ktorýmkol’vek prvkom nejakej množiny textov (údaje môžu byt’ naprí-
klad v šifrovej podobe a my nepoznáme ani použitý šifrovací algoritmus a nemáme k
dispozícii dešifrovací kl’úč). Môžeme nanajvýš odhadnút’ potenciálnu množinu otvore-
ných textov, ktorých zašifrovaním vznikli naše údaje. Potom získame nejakú informáciu
(napr. o dĺžke a formáte údajov). Táto informácia redukuje počiatočnú neurčitost’ - mno-
žina možných textov vyhovujúcich získanej informácii je menšia ako pôvodná množina
textov. Takto budeme postupovat’ až do okamihu, ked’ jednoznačne určíme údaje a nere-
dukujeme neurčitost’ na nulovú hodnotu. Kvantitatívna miera informácie obsiahnutej v
údajoch sa teda dala určit’ pomocou miery neurčitosti. Na meranie neurčitosti sa používa
entropia. Zavedieme najprv entropiu a pomocou nej aj kvantitatívnu mieru informácie.

Nech je daný zdroj S, s abecedou ΣS = {s0, . . . , sm−1} a rozdelením pravdepodobností
P = {p0, . . . , pm−1}. Na začiatku budeme predpokladat’, že je rozdelenie pravdepodobností
rovnomerné, t.j. že sa všetky symboly zdrojovej abecedy vyskytujú v textoch rovnako
často. Funkcia, označme ju pracovne symbolom f, ktorá má merat’ neurčitost’ zdroja,
musí spĺňat’ nasledujúce prirodzené podmienky:

1. jej hodnota nesmie závisiet’ od symbolov1 ale len od rozdelenia pravdepodobností
P,

2. funkcia je monotónne rastúca vzhl’adom na počet symbolov zdrojovej abecedy 2

3. aditívnost’: ak sú S1, S2 dva nezávislé zdroje, tak potom

f(S1, S2) = f(S1) + f(S2).

Vyššie uvedené požiadavky spĺňa logaritmická funkcia. R.V.L. Hartley (1928) definoval
logaritmickú mieru informácie (mieru neurčitosti) zdroja S s m-prvkovou abecedou a

1symboly môžu byt’ reprezentované číslami
2pripomíname, že rozdelenie pravdepodobností je rovnomerné

227

228 KAPITOLA 16. ENTROPIA A MNOŽSTVO INFORMÁCIE

rovnomerným rozdelením pravdepodobnosti nasledovne:

H(S) = log(m).

Základ logaritmov neovplyvňuje podstatne hodnotu entropie, vzhl’adom na to, že pre
logaritmy o základoch a, b platí

loga x = (loga b) logb x.

Jednotkou miery informácie (neurčitosti) je v závislosti od použitého základu logarit-
mov bit (binárne logaritmy) nat (prirodzené logaritmy) a Hartley (dekadické logaritmy).
Množstvo informácie sa najčastejšie vyjadruje v bitoch alebo jednotkách od nich dovede-
ných.

Akú informáciu nesie jeden symbol v prípade, ked’ rozdelenie pravdepodobností zdroja
nie je rovnomerné? Informačný obsah budeme tak ako v predchádzajúcom prípade me-
rat’ znížením neurčitosti, ktorá závisí od pravdepodobnosti výskytu symbolu. Predpokla-
dajme napríklad, že zdroj má generovat’ jednu z množiny možných správ, možné správy
máme usporiadané lexikograficky. Na výstupe zdroja sa objaví symbol si0 . Pozrieme sa
na dve krajné možnosti: ak sa všetky správy začínajú symbolom si0 , jeho objavenie nere-
dukovalo množinu možných správ a teda symbol si0 nenesie žiadnu informáciu. Druhá
krajná možnost’ - existuje jediná správa, začínajúca symbolom si0 ; t.j. v tomto prípade
je množstvo informácie obsiahnuté v si0 maximálne (rovné logaritmu počtu možných
správ). Definujeme množstvo informácie v si0 ako

log 1/pi0 ,

kde pi0 = p(si0). V prípade rovnomerného rozdelenia pravdepodobností niesol každý
symbol rovnaké množstvo informácie. V prípade nerovnomerného rozdelenia pravdepo-
dobností symbolov tomu tak nie je a má zmysel sa zaoberat’ strednou hodnotou množstva
informácie, t.j. hodnotou

Hr(S) =

m−1∑
i=0

pi logr 1/pi.

Funkcia Hr(S) sa nazýva entropiou zdroja S. Entropiu zdroja ako prvý definoval C. Shan-
non. Pozrieme sa teraz na vlastnosti entropie. Začneme skúmaním funkcie p lg 1/p.

Vypočítame deriváciu funkcie p lg 1/p a určíme jej extrémy (obr. 1):

d(p lg 1/p)
dp

= lg 1/p− lg e = 0,

ked’že funkcia p lg 1/p je rastúca na intervale ⟨0, 1/e) a klesajúca na intervale (1/e, 1⟩,
nadobúda v bode p = 1/emaximum (≈ 0.5307378454). V bode 0 nadobúda funkcia p lg 1/p
nadobúda hodnotu 0 (L´Hospitalovo pravidlo). Často budeme pracovat’ so zdrojom, ktorý
má binárnu abecedu a rozdelenie pravdepodobností p, 1−p. Entropia sa v tomto prípade
dá vyjadrit’ formulou:

H2(p) = p lg 1/p+ (1− p) lg 1/(1− p).

Funkcia H2(p) (obr. 2) dosahuje maximálnu hodnotu (=1) pre p = (1 − p) = 1/2.

Zhrnieme stručne podstatné vlastnosti entropie.

229

0

0.1

0.2

0.3

0.4

0.5

0.2 0.4 0.6 0.8 1p

Obr. 16.1: Graf funkcie p · lg1/p

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1p

Obr. 16.2: Graf funkcie H2(p)

230 KAPITOLA 16. ENTROPIA A MNOŽSTVO INFORMÁCIE

Veta 16.0.10. Nech je daný zdroj S, s abecedou ΣS = {s0, . . . , sm−1} a rozdelením pravde-
podobností P = {p0, . . . , pm−1},m ≥ 1; entropia zdroja H2(S) je definovaná formulou

H2(S) =

m−1∑
i=0

pi lg 1/pi.

Potom pre H2(S) platí:

1. H2(S) je reálna nezáporná funkcia,

2. H2(S) = 0 práve vtedy, ak existuje také i, že pi = 1 a pj = 0 pre i ̸= j,

3. H2(S) ≤ m.

Dôkaz. Prvé dve tvrdenia sú očividné a ich dôkazy prenechávame čitatel’ovi. Doká-
žeme tretie tvrdenie. Použijeme Lagrangeovu metódu neurčitých koeficientov. Nech

f(p0, p1, . . . , pm−1) =
1

ln 2
·
m−1∑
i=0

pi ln(1/pi) + λ ·

(
m−1∑
i=0

pi − 1

)

Vypočítame parciálne derivácie funkcie f(p0, p1, . . . , pm−1) a položíme ich rovné nule:

∂f

∂pi
=

1

ln 2
[ln(1/pi) − 1] + λ = 0, i = 0, . . .m− 1.

Z poslednej rovnosti vyplýva

λ =
1

ln 2
[1− ln(1/pi)] i = 0, . . .m− 1.

Ked’že λ je konštanta, to znamená, že pre l’ubovol’né i, j platí pi = pj a teda pi = 1/m pre
i = 0, . . . ,m − 1. To znamená, že entropia dosahuje maximálnu hodnotu H2(S) = m pre
rovnomerné rozdelenie pravdepodobností.

Zoznam obrázkov

2.1 Shannonov model komunikačného systému 11

2.2 Zovšeobecnený model komunikačného systému 12

2.3 Signál . 14

2.4 Šum . 15

2.5 Prijatý signál . 16

3.1 Ohodnotený binárny strom . 33

3.2 Kódový strom Shannonovho kódu . 34

3.3 Kódový strom skráteného Shannonovho kódu 34

3.4 Konečný automat . 36

3.5 Kódovanie s predpoved’ou . 53

7.1 Binárny symetrický kanál bez pamäte . 78

8.1 Kódovanie správy pomocou lineárneho kódu s generujúcou maticou G . . 92

9.1 Kódové slovo systematického cyklického kódu 114

10.1 LFSR so spätnou väzbou zadanou Λ(x) . 151

10.2 LFSR R(1) . 152

10.3 LFSR R(3) . 153

10.4 LFSR R(5) . 153

10.5 LFSR R(7) . 154

10.6 LFSR R(10) . 155

16.1 Graf funkcie p · lg1/p . 229

16.2 Graf funkcie H2(p) . 229

231

232 ZOZNAM OBRÁZKOV

Zoznam tabuliek

3.1 Kompresný pomer pri kódovaní s predpoved’ou 55

8.1 Základné parametre Reedových-Mullerových kódov 99

8.2 Generujúca matica kódu R(2, 4) . 102

9.1 Polynómy cyklických kódov . 115

9.2 Dekódovacia tabul’ka binárneho (15,7)-kódu 119

9.3 Dekódovanie (15,7)-kódu pomocou Meggittovej metódy 120

9.4 Váhy slov Golayovho (23,12)-kódu . 130

10.1 Pole GF(33). 147

10.2 Berlekamp-Massey . 161

12.1 Efektívnost’ vybraných samoopravných kódov 173

15.1 Polynómy stupňa 0, 1, 2, 3 nad pol’om GF(2) 208

15.2 Polynómy stupňa 4 nad pol’om GF(2) . 209

15.3 Prvky pol’a GF(2)[x]/x4 + x+ 1 . 209

15.4 Reprezentácia nenulových prvkov GF(24) 213

15.5 Mocniny prvku β pol’a GF(24) . 214

15.6 Minimálne polynómy prvkov pol’a GF(24) 216

233

Register

abeceda, 5
zdroja, 9
zdrojová, 9

absolútna redundancia kódu, 83
automat

konečný, 31

Binárny symetrický kanál bez pamäte, 75

cena kódu, 34
cena optimálneho kódu, 35
chyba dekódera, 15
code gain, 171

dĺžka slova, 5
dekódovanie

úplné, 15
automatové, 31
na základe maximálnej pravdepodobnosti,

15
neúplné, 15

dekódovanie error trapping, 118
demodulátor, 12
determinant, 220
dokonalý kód, 81

ergodický Markovovský zdroj, 48
error trapping, 118

Fanov kód, 38

Hammingov kód, 83
Hammingova váha, 77
Hammingova vzdialenost’, 77
hranica

sférického uloženia kódu, 80
hranica pokrytia kódu, 80
Huffmanov kód, 39

informácia, 9

informačný symbol, 82
iterácia jazyka, 6

kladná, 6
nezáporná, 6

jazyk nad abecedou, 6

kód
úplný, 28
dokonalý, 81
automatový, 31
blokový, 17
Fanov, 38
Hammingov, 83
Huffmanov, 39
kvázioptimálny, 38
lineárny, 87
Markovovský, 50
nerovnomerný, 18
obdĺžnikový, 81
okamžitý, 31
optimálny, 35, 39
prefixový, 22
rovnomerný, 17
rozdelitel’ný, 17
samoopravný, 75
Shannonov, 26, 37
sufixový, 23

kód s opakovaním, 109
kódová dul’a, 80
kódový strom, 30
kódovanie

zdroja, 10
zdrojovej informácie, 10

kódovanie Markovovského zdroja, 46
kódovanie s predpoved’ou, 50
kompresia, 10

bezstratová, 10
so stratou informácie, 10

234

REGISTER 235

komunikácia, 9
komunikačný systém, 9

Shannonov model, 9
konečný automat, 31
kontrolný symbol, 83
kvázioptimálny kód, 38

lineárny kód, 87

Markovovský kód, 50
Markovovský zdroj

ergodický, 48
miesto matice, 217
minimálna vzdialenost’ kódu, 79
MLD, 15

nerovnost’ Kraftova - McMillanova , 23

optimálny kód, 35, 39
konštrukcia, 40

paritný bit, 81
permutácia, 220
podslovo, 6

koncové, 6
počiatočné, 6
vlastné, 6

polynóm generujúci, 107
polynóm kontrolný, 108
prínos kódovania, 171
prefix, 6
prenosová rýchlost’, 83
prenosový kanál, 11
prijímač, 12

redundancia, 10, 75
absolútna, 83
relatívna, 83

relatívna redundancia kódu, 83
rozšírenie kódu, 41
rozdelenie pravdepodobností

limitné, 48
rozdelitel’nost’ kódu, 17

Shannonov kód, 37
slovo, 5

prázdne, 5
zrkadlový obraz, 6

správa, 9

strom
kódový, 30

sufix, 6
šum, 12
symbol

informačný, 82
kontrolný, 83

syndróm chyby, 84

test parity, 81

údaje, 9

zdroj
šumu, 12
informácie, 9

zlyhanie
dekódera, 15

zret’azenie slov, 5

236 REGISTER

Literatúra

[1] Adamek J. Foundation of Coding. John Wiley, Chichester, 1991.

[2] Blahut R.E. Theory and practice of error control codes. Addison Wesley, 1984. ruský
preklad, Moskva, Mir 1986.

[3] Hamming R.W. Coding and Information Theory. Prentice Hall, New Jersey, 1980.

[4] Havel V. and Holenda J. Lineární algebra. SNTL, Praha, 1-st edition, 1984.

[5] Hoffner V. Úvod do teorie signálú. SNTL, Praha, 1-st edition, 1979.

[6] Jablonskij S.V. and Lupanov O.B. Diskrétna matematika a matematické otázky ky-
bernetiky. Mir, 1974, Moskva. (V ruštine).

[7] Hall J.I. Notes on coding theory. www.math.msu.eduj̃hall, 2003. prednášky.

[8] Katriňák T. et al. Algebra a teoretická aritmetika, volume 1. SNTL a Alfa, Praha,
Bratislava, 1-st edition, 1985.

[9] Katriňák T. et al. Algebra a teoretická aritmetika, volume 2. SNTL a Alfa, Praha,
Bratislava, 1-st edition, 1986.

[10] Lidl R. and Niederreiter H. Introduction to finite fields and their applications. Cam-
bridge University Press, Cambridge, revised edition, 1994.

[11] MacKay D.J.C. Information Theory, Inference and Learning Algorithms. Cambridge
University Press, Cambridge, 4-th edition, 2005.

[12] Peterson W.W. and Weldon E.J. Error Correctin Codes. MIT Press, Cambridge, 2-nd
edition, 1972.

[13] Rektorys K. et al. Přehled užité matematiky. SNTL, Praha, 4-th edition, 1981.

[14] Rényi A. Teorie pravděpodobnosti. Academie, Praha, 1972.

[15] van Lint J.H. Introduction to Coding Theory. Springer Verlag, Berlin, 3-rd edition,
1999.

[16] X.Xxx. Error-correcting codes. www.xxx.edu, 2002. rukopis prenášok.

237

