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KAPITOLA 1Sémantika formúl logiky prvého rádu1.1. Interpretá
ia formúl v logike prvého ráduVo výrokovej logike je interpretá
ia pripísanie pravdivostnej hodnoty elemetárnym formulám� logi
kým premenným. V logike prvého rádu musíme urobi´ via
, pretoºe formuly sú zloºitej²ieobjekty ako vo výrokovej logike. Na to, aby sme ur£ili interpretá
iu pre formuly logiky prvéhorádu, musíme ur£i´ predmetovú oblas´ � oblas´ hodn�t predmetový
h premenný
h a kon²tánt �univerzum a vhodne interpretova´ funk£né a predikátové symboly, ktoré sa vyskytujú vo formule.Stru£ne povedané, interpretá
ia formuly A logiky prvého rádu sa skladá z neprázdnej predme-tovej oblasti (univerza) � mnoºiny indivíduí (niekedy pre ¬u pouºívame ozna£enie D alebo M) az ur£enia hodn�t v²etký
h kon²tánt, funk£ný
h symbolov a predikátový
h symbolov, vyskytujú
i
hsa v A. Teda kaºdej kon²tante priradíme niektorý element z D, kaºdému n-árnemu funk£némusymbolu priradíme zobrazenie z Dn do D (poznamenávame, ºe Dn = f(x1; x2; : : : ; xn) j x1 22 D; x2 2 D; : : : ; xn 2 Dg) a kaºdému n-árnemu predikátovému symbolu priradíme zobrazenieDn ! f0; 1g. Niekedy, aby sme obrátili pozornos´ na D, hovoríme o interpretá
ii formuly na D.Ke¤ h©adáme �hodnotu�, t.j. ur£ujeme pravdivostnú hodnotu formuly v interpretá
ii na ob-lasti D, �(8x)� interpretujeme ako �pre v²etky prvky x z D�, �(9x)� ako �existuje prvok x z D�.Pre kaºdú interpretá
iu formuly na oblasti D formula m�ºe nadobudnú´ pravdivostnú hodnotu1 � pravda alebo 0 � nepravda v súlade so známymi pravidlami výrokovej logiky. V prípadekvanti�kovaný
h výrokov je situá
ia obdobná.Poznamenávame, ºe formula obsahujú
a vo©né premenné nem�ºe nadobudnú´ pravdivostnúhodnotu. V ¤al²om budeme predpoklada´, ºe formula bu¤ neobsahuje vo©né premenné, alebovo©né premenné uvaºujeme ako kon²tanty.V logike prvého rádu je nekone£ne ve©a oblastí, teda vo v²eobe
nosti povedané, máme neko-ne£ne ve©a interpretá
ií formuly. Z toho vyplýva, ºe na rozdiel od výrokovej logiky, nem�ºemedokáza´ v²eobe
nú platnos´ � tautologi£nos´ alebo nesplnite©nos´ formuly ohodnotením formulypre v²etky moºné interpretá
ie. Na²ou úlohou bude uvies´ pro
edúry na preverenie nesplnite©-nosti formúl v logike prvého rádu. Aby sme zjednodu²ili pro
edúry d�kazov, budeme pra
ova´ sformulami, ktoré sú vyjadrené pre�xovou normálnou formou, t.j. v tvare(Q1x1) � � � (Qnxn)(M)kde kaºdé (Qixi) (i = 1; : : : ; n) je alebo (8xi) alebo (9xi) a M je formula, neobsahujú
a kvanti�-kátory. (Q1x1) � � � (Qnxn) sa nazýva pre�x a M mati
a formuly, jadro formuly. (Odteraz budemeM pouºíva´ len na ozna£enie mati
e a nie univerza, t.j. na ozna£enie oblasti interpretá
ie budemepouºíva´ výlu£ne symbol D.) V ¤al²om budemem pouºíva´ ozna£enie A � B, ak A a B nado-búdajú rovnaké pravdivostné hodnoty pri ©ubovo©nej interpretá
ii. Niektoré ekvivalentné dvoji
eformúl uº poznáme; uvedieme tie, ktoré obsahujú kvanti�kátory.Ne
h A je formula, ktorá obsahuje vo©nú premennú x (budeme to ozna£ova´ A(x)) a ne
h Bje formula, ktorá neobsahuje x. Potom máme nasledujú
e dvoji
e ekvivalentný
h formúl, kde Q jebu¤ �8� alebo �9�: (Qx)A(x) _ B � (Qx)�A(x) _ B� (1a)(Qx)A(x) ^ B � (Qx)�A(x) ^ B� (1b):(8x)A(x) � (9x):A(x) (2a):(9x)A(x) � (8x):A(x) (2b)1



2 � Sémantika formúl logiky prvého ráduZákony (1a) a (1b) sú zrejme pravdivé, pretoºe B neobsahuje x, a teda m�ºe by´ uvedená dooblasti p�sobenia kvanti�kátora Q. Zákony (2a), (2b) nie je ´aºké dokáza´: Ne
h I je ©ubovo©náinterpretá
ia s oblas´ouD. Ak :(8x)A(x) je pravdivá v I , tak (8x)A(x) neplatí v I . To znamená, ºeexistuje taký prvok a v D, ºe A(a) neplatí, t.j. :A(a) platí v I , teda (9x):A(x) platí v I . Z druhejstrany, ak :(8x)A(x) neplatí v I , tak (8x)A(x) platí v I . To znamená, ºe A(x) platí pre kaºdýelement x 2 D, a teda (9x):A(x) neplatí v I . Pretoºe :(8x)A(x) a (9x):A(x) vºdy nadobúdajújednu a tú istú hodnotu pre ©ubovo©nú interpretá
iu, tak pod©a de�ní
ie :(8x)A(x) � (9x):A(x).Zákon (2a) je dokázaný. Analogi
ky m�ºeme dokáza´ zákon (2b).Predpokladajme, ºe A(x) a B(x) sú dve formuly, ktoré obsahujú x vo©ne. Potom(8x)A(x) ^ (8x)B(x) � (8x)�A(x) ^ B(x)� (3a)(9x)A(x) _ (9x)B(x) � (9x)�A(x) _ B(x)� (3b)t.j. kvanti�kátor 8 a kvanti�kátor 9 m�ºeme rozde©ova´ pod©a ^, resp. _. Kvanti�kátor 8 a kvan-ti�kátor 9 nem�ºeme rozde©ova´ pod©a _, resp. ^, t.j.(8x)A(x) _ (8x)B(x) 6� (8x)�A(x) _ B(x)�(9x)A(x) ^ (9x)B(x) 6� (9x)�A(x) ^ B(x)�Na overenie sta£í vzia´ D = fa; bg a vhodne de�nova´ pravidovos´ formúl A(x) a B(x).V podobný
h prípado
h musíme postupova´ ²pe
iálnymi sp�sobmi. Pretoºe kaºdá viazanápremenná vo formule sa m�ºe uvaºova´ ako miesto pre zámenu ©ubovo©nej premennej, tak kaºdúviazanú premennú x m�ºeme premenova´ na z a formula (8x)B(x) prejde do formuly (8z)B(z),t.j. (8x)B(x) � (8z)B(z). Predpokladáme, ºe vyberieme premennú, ktorá sa nevyskytuje v A(x).Potom (8x)A(x) _ (8x)B(x) � (8x)A(x) _ (8z)B(z)(tak, ºe nahradíme v²etky x, vyskytujú
e sa v (8x)B(x))� (8x)(8z)�A(x) _ B(z)� (pod©a (1a))Analogi
ky dostávame(9x)A(x) ^ (9x)B(x) � (9x)A(x) ^ (9z)B(z)(tak, ºe nahradíme v²etky x, vyskytujú
e sa v (9x)B(x))� (9x)(9z)�A(x) ^ B(z)� (pod©a (1b))Teda, pre tieto dva prípady vºdy m�ºeme vynies´ v²etky kvanti�kátory vo formule na©avo. Vov²eobe
nom prípade dostávame(Q1x)A(x) _ (Q2x)B(x) � (Q1x)(Q2z)�A(x) _ B(z)� (4a)(Q3x)A(x) ^ (Q4x)B(x) � (Q3x)(Q4z)�A(x) ^ B(z)� (4b)kde Q1, Q2, Q3 a Q4 sú �8� alebo �9� a z nevystupuje v A(x). Ak Q1 = Q2 = 9 a Q3 = Q4 = 8, taknetreba premenova´ premennú x v (Q2x)B(x) alebo (Q4x)B(x). V tomto prípade m�ºeme priamopouºi´ formuly (3a), (3b). Ak pouºijeme známe zákony, m�ºeme kaºdú formulu transformova´ napre�xový normálny tvar. Uvedieme stru£ne algoritmus na takúto transformá
iu:Krok 1. Odstránenie ekvivalen
ií a impliká
ií:A$ B � (A! B) ^ (B ! A)A! B � :A _ B



Vybrané partie z logiky � 3Krok 2. Odstránenie dvojitej negá
ie a presun negá
ie k formule::(:A) � A:(A _ B) � :A ^ :B:(A ^ B) � :A _ :B:(8x)A(x) � (9x):A(x):(9x)A(x) � (8x):A(x)Krok 3. Premenovanie viazaný
h premenný
h, ak je to nevyhnutné.Krok 4. Pouºijeme zákony (Qx)A(x) _ B � (Qx)�A(x) _ B�(Qx)A(x) ^ B � (Qx)�A(x) ^ B�(8x)A(x) ^ (8x)B(x) � (8x)�A(x) ^ B(x)�(9x)A(x) _ (9x)B(x) � (9x)�A(x) _ B(x)�(Q1x)A(x) _ (Q2x)B(x) � (Q1x)(Q2z)�A(x) _ B(z)�(Q3x)A(x) ^ (Q4x)B(x) � (Q3x)(Q4z)�A(x) ^ B(z)�kde premenná z sa nevyskytuje vo formule A(x).Príklad 1.1.� Vo formule (8x)P (x; y) je premenná x viazaná a premenná y vo©ná.� Vo formule (8x)P (x; y) ^ (8y)Q(y) je y aj vo©ná aj viazaná premenná.Príklad 1.2. (8x)(8y)�(9z)�P (x; z) ^ P (y; z)�! (9u)Q(x; y; u)� �� (8x)(8y)�:(9z)�P (x; z) ^ P (y; z)� _ (9u)Q(x; y; u)� �� (8x)(8y)�(8z)�:P (x; z) _ :P (y; z)� _ (9u)Q(x; y; u)� �� (8x)(8y)(8z)(9u)�:P (x; z) _ :P (y; z) _ Q(x; y; u)�



KAPITOLA 2Herbrandova vetaMnohé úlohy sa dajú rie²i´ pomo
ou d�kazov � odvodením teorém. D�leºitou úlohou logikyje aj ²túdium me
hani
ký
h pre
edúr h©adania d�kazov (odvodení) teorém. Poznamenávame, ºeh©adanie v²eobe
nej rozhodnute©nej pro
edúry na preverenie toho, £i daná formula je tautológiaalebo nie je, patrí k starým úlohám. G. Leibniz (1646�1716) bol prvý, kto sa snaºil nájs´ takú-to pro
edúru. Na hrani
i 20. storo£ia sa pokú²al nájs´ takúto pro
edúru Peáno, ¤alej to bolaHilbertova ²kola okolo roku 1920. To pokra£ovalo, pokým A. Chur
h a A. M. Turing (1936) nezá-visle nedokázali, ºe neexistuje ºiadna v²eobe
ne rozhodnute©ná pro
edúra, teda ºiadny algoritmus,preverujú
i tautologi£nos´ formúl v logike prvého rádu. Existujú v²ak algoritmy nájdenia d�kazu,ktoré m�ºu potvrdi´, ºe formula je tautológia, ak skuto£ne je tautológiou. Pre formuly, ktoré nie sútautológiami tieto algoritmy vo v²eobe
nosti povedané nezakon£ujú svoju £innos´. Ak berieme doúvahy výsledok Chur
ha a Turinga, je to to najlep²ie, £o m�ºeme o£akáva´ od algoritmu nájdeniad�kazu.Významný vklad do teórie automati
kého dokazovania teorém vniesol Herbrand (1930). Herb-rand rozpra
oval algoritmus nájdenia interpretá
ie, ktorá vyvra
ia danú formulu. Ak v²ak danáformula je tautológia, potom neexistuje taká interpretá
ia a algoritmus zakon£uje svoju £innos´za kone£ný po£et krokov. Herbrandova metóda tvorí základ automati
ký
h pro
edúr pre nájdenied�kazu (odvodenia) teorém.Gilmore (1960) ako jeden z prvý
h realizoval pro
edúru navrhnutú Herbrandom na po£íta£i.Formula je tautológiou práve vtedy, ke¤ jej negá
ia je nesplnite©ná. Jeho program je ur£ený naodhalenie nesplnite©nosti negá
ie danej formuly. Po£as uskuto£¬ovania jeho programu sa indukujúlogi
ké formuly, u ktorý
h sa pravidelne preveruje nesplnite©nos´. Ak je negá
ia danej formulynesplnite©ná, tak program nakonie
 zaznamená tento fakt. Gilmoreho program efektívne pra
ovalpre d�kazy jednodu
hý
h formúl, no stretol sa s ve©kými ´aºkos´ami pri d�kazo
h zloºitej²í
h formúllogiky prvého rádu. Pozorné ²túdium jeho programu ukázalo, ºe metóda preverenia nesplnite©nostilogi
ký
h formúl je neefektívna. Gilmoreho metódu zlep²il Davis s Putnamom (1960) nieko©komesia
ov po tom, £o bola opublikovaná, no rovnako i
h zlep²enie bolo e²te nedostato£né. Mnohétautológie logiky prvého rádu sa e²te nedajú na po£íta£i dokáza´ za rozumný £as.Hlavný skok urobil Robinson (1965�1968), ktorý zaviedol metódu rezolvent. Pro
edúra náj-denia d�kazu rezolven£nou metódou je omnoho efektívnej²ia ako ©ubovo©ná pro
edúra opísanápredtým. Po zavedení rezolven£nej metódy boli rozpra
ované aj ¤al²ie stratégie za ú£elom zvý²e-nia jej efektívnosti. My budeme rozobera´ d�kaz Herbrandovej vety a vyloºíme metódu rezolvent.2.1. Skolemovské ²tandardné formyPro
edúry nájdenia d�kazu Herbrandovou metódou alebo metódou rezolvent sú v skuto£nostipro
edúrami nájdenia vyvrátenia, t.j. namiesto d�kazu tautologi£nosti formuly sa dokazuje, ºejej negá
ia je nesplnite©ná. To je len otázka vhodnosti � pri pouºívaní pro
edúr vyvráteniasa v²eobe
nos´ nestrá
a. Pro
edúry vyvrátenia aplikujeme na ²tandardnú formu formuly, ktorúzaviedli Davis a Putnam. V podstate Davis a Putnam pouºili nasledujú
e tvrdenia:(1) Formula logiky prvého rádu m�ºe by´ vyjadrená v pre�xovej normálnej forme, v ktorejmati
a neobsahuje ºiadne kvanti�kátory a pre�x je postupnos´ kvanti�kátorov.(2) Pretoºe mati
a neobsahuje kvanti�kátory, m�ºe by´ vyjadrená v konjunktívnej normálnejforme.(3) Za
hovávajú
 nesplnite©nos´ formúl, m�ºeme v nej eliminova´ existen£né kvanti�kátorypomo
ou pouºitia skolemovský
h funk
ií.4



Vybrané partie z logiky � 5Ne
h sa formula A na
hádza v pre�xovom normálnom tvare (Q1x1) � � � (Qnxn)M , kde M je kon-junktívna normálna forma. Predpokladajme, ºe Qr je existen£ný kvanti�kátor v pre�xe(Q1x1) � � � (Qnxn) (1 � r � n)Ak ºiaden kvanti�kátor �8� nestojí v pre�xe v©avo od Qr, vyberieme kon²tantu 
, r�znu od iný
hkon²tánt, vyskytujú
i
h sa v M , zameníme v²etky výskyty premennej xr, vyskytujú
e sa v Mkon²tantou 
 a vy£iarkneme (Qrxr) z pre�xu. Ak Qs1 ; : : : ; Qsm je zoznam v²etký
h kvanti�kátorov�8�, ktoré vystupujú v©avo od Qr (1 � s1 < s2 < � � � < sm < r), vyberieme nový m-miestnyfunk£ný symbol f r�zny od iný
h funk£ný
h symbolov, zameníme v²etky xr za f(xs1 ; : : : ; xsm)a vy£iarkneme (Qrxr) z pre�xu. Tento pro
es zopakujeme pre v²etky kvanti�kátory �9� v pre�xe:posledná z dosiahnutý
h formúl je skolemovská ²tandardná forma � skrátene ²tandardná formaformulyA. Kon²tanty a funk
ie, ktoré sme pouºili na zámenu premenný
h kvanti�kátora existen
ie,sa nazývajú skolemovské funk
ie.Príklad 2.1. Nájdite ²tandardnú formu formuly(9x)(8y)(8z)(9u)(8v)(9w)P (x; y; z; u; v; w)Rie²enie: V tejto formule v©avo od (9x) niet v²eobe
ný
h kvanti�kátorov, v©avo od (9u) sú (8y)a (8z) a v©avo od (9w) sú (8y), (8z) a (8v). Z toho vyplýva, ºe premennú x zameníme kon²tantoua, premennú u binárnou funk
iou f(y; z) a premennú w ternárnou funk
iou g(y; z; v). Týmtosp�sobom dostávame nasledujú
u ²tandardnú formu vy²²ie uvedenej formuly:(8y)(8z)(8v)P (a; y; z; f(y; z); v; g(y; z; v))Príklad 2.2. Nájdite ²tandardnú formu pre formulu(8x)(9y)(9z)��:P (x; y) ^ Q(x; z)� _ R(x; y; z)�Rie²enie: Najprv napí²eme mati
u v konjunktívnej normálnej forme:(8x)(9y)(9z)��:P (x; y) _ R(x; y; z)� ^ �Q(x; z) _ R(x; y; z)��Pred (9y) aj (9z) je (8x), preto premenné y, resp. z zamie¬ame unárnymi funk
iami f(x), resp.g(x). Takým sp�sosbom dostávame ²tandardnú formu:(8x)��:P (x; f(x)) _ R(x; f(x); g(x))� ^ �Q(x; g(x)) _ R(x; f(x); g(x))��De�ní
ia 2.3. Klauzula je disjunk
ia literálov. (Pod literálom rozumieme logi
kú premennú alebojej negá
iu.)Niekedy je uºito£né uvaºova´ mnoºinu literálov ako synonymum klauzuly. Napr., P _Q_:R == fP;Q;:Rg. Jednoliterálna klauzula sa nazýva jednotková klauzula. Ke¤ klauzula neobsahujeºiadne literály, budeme ju nazýva´ prázdnou klauzulou. Pretoºe prázdna klauzula neobsahuje ºiadneliterály, ktoré by mohli by´ pravdivé pri akejko©vek interpretá
ii, tak prázdna klauzula je vºdynepravdivá. Prázdnu klauzulu ozna£ujeme ���.Disjunk
ie :P (x; f(x)) _ R(x; f(x):g(x)) a Q(x; g(x)) _ R(x; f(x); g(x)) v ²tandardnej formez príkladu 2.2 sú klauzuly. Predpokladáme, ºe mnoºina klauzúl S je konjunk
ia v²etký
h klauzúl zS, kde kaºdá premenná v S je viazaná ve©kým kvanti�kátorom. V¤aka tejto dohode, ²tandardnáforma m�ºe by´ prosto vyjadrená mnoºinou klauzúl. Napr., ²tandardná forma z príkladu 2.2 m�ºeby´ vyjadrená mnoºinou f:P (x; f(x)) _ R(x; f(x); g(x)); Q(x; g(x)) _ R(x; f(x); g(x))gV nasledujú
ej vete dokáºeme, ºe m�ºeme eliminova´ existen£né kvanti�kátory a pritom za-
hovávame nesplnite©nos´ formuly.Veta 2.4. Ne
h S je mnoºina klauzúl, ktoré tvoria ²tandardnú formu klauzuly A. Potom A nie jesplnite©ná práve vtedy, ke¤ S nie je splnite©ná.



6 � Herbrandova vetaD�kaz: � Bez ujmy na v²eobe
nosti m�ºeme predpoklada´, ºe A je vyjadrená v prenexnej nor-málnej forme, t.j. A = (Q1x1) � � � (Qnxn)M [x1; : : : ; xn℄. (Pouºívame zápis M [x1; : : : ; xn℄, aby smeukázali, ºe jadro M obsahuje premenné x1; : : : ; xn. Jadro niekedy nazývame aj mati
a). Ne
h Qrje prvý existen£ný kvanti�kátor. Ne
hA1 = (8x1) � � � (8xr�1)(Qr+1xr+1) � � � (Qnxn)M [x1; : : : ; xr�1; f(x1; : : : ; xr�1); xr+1; : : : ; xn℄kde f je skolemovská funk
ia, ktorá zodpovedá xr (1 � r � n). Ch
eme dokáza´, ºe A nie jesplnite©ná práve vtedy, ke¤ A1 nie je splnite©ná.Predpokladajme, ºe A nie je splnite©ná. Keby A1 bola splnite©ná, tak by existovala takáinterpretá
ia I , ºe A1 platí v I (I vyhovuje A1), t.j. pre v²etky x1; : : : ; xr�1 existuje aspo¬ jedenelement (je to práve element f(x1; : : : ; xr�1)), pre ktorý je(Qr+1xr+1) � � � (Qnxn)M [x1; : : : ; xr�1; f(x1; : : : ; xr�1); xr+1; : : : ; xn℄je splnená (pravdivá) v I . Takým sp�sobom je A splnená v I , £o je v spore s predpokladom, ºe Anie je splnite©ná. Teda ani A1 nem�ºe by´ splnite©ná.Predpokladajme teraz, ºe A je splnite©ná. Potom existuje taká interpretá
ia I na oblasti D,ºe I vyhovuje A, t.j. pre v²etky x1; : : : ; xr�1 existuje taký element xr, ºe(Qr+1xr+1) � � � (Qnxn)M [x1; : : : ; xr�1; xr; xr+1; : : : ; xn℄je splnená v I . Roz²írime interpretá
iu I tým, ºe pridáme funk
iu f , ktorá zobrazuje (x1; : : : ; xr�1)na xr pre v²etky x1; : : : ; xr�1 2 D, t.j. f(x1; : : : ; xr�1) = xr. Ozna£me toto roz²írenie ako I 0. Jezrejmé, ºe pre v²etky x1; : : : ; xr�1 je(Qr+1xr+1) � � � (Qnxn)M [x1; : : : ; xr�1; f(x1; : : : ; xr�1); xr+1; : : : ; xn℄splnená v I 0, t.j. A1 je splnená v I 0, £o je v spore s predpokladom, ºe A1 nie je splnite©ná. A tedaA nem�ºe by´ splnite©ná.Predpokladajme teraz, ºe A obsahuje m existen£ný
h kvanti�kátorov. Ne
h A0 = A. Ne
hAk dostaneme z Ak�1 zámenou prvého existen£ného kvanti�kátora v Ak�1 skolemovskou funk
iouk = 1; 2; : : : ;m. Je zrejmé, ºe S = Am. Ak pouºijeme tie isté úvahy ako vy²²ie, m�ºeme dokáza´,ºe Ak�1 nie je splnite©ná práve vtedy, ak Ak nie je splnite©ná (k = 1; 2; : : : ;m), a teda m�ºemeurobi´ záver: A nie je splnite©ná práve vtedy, ke¤ S nie je splnite©ná, £o bolo treba dokáza´. �Ne
h S je ²tandardná forma formuly A. Ak A nie je splnite©ná, tak pod©a vety 2.4 je A � S.Ak A je splnite©ná, tak vo v²eobe
nosti A nie je ekvivalentná s S.Napríklad, ne
h A je (9x)P (x) a S je P (a). Je zrejmé, ºe S je ²tandardná forma formuly A.Ne
h I je nasledujú
a interpretá
ia:� oblas´ D = f1; 2g� hodnoty pre a: 1� hodnoty pre P : P (1) � nepravda, P (2) � pravdaFormula (9x)P (x) je splnená v interpretá
ii I , no S nie je splnená v I , teda A 6� S.Poznamenávame, ºe formula m�ºe ma´ via
ej ako jednu ²tandardnú formu. Kv�li jednodu
hos-ti, ke¤ transformujeme formulu A na ²tandardnú formu S, zamie¬ame existen£né kvanti�kátoryskolemovskými funk
iami tak jednodu
hými, ako sa to dá. �alej, ak máme A = A1 ^ A2 ^ � � � ^^ An, m�ºeme oddelene dosta´ mnoºinu klauzúl Si, kde kaºdé Si vyjadruje ²tandardnú formu Ai(i = 1; 2; : : : ; n). Potom ne
h S = S1 [ � � � [Sn. Pomo
ou úvah podobný
h tým, ktoré sme pouºilivo vete 2.4, nie je ´aºké vidie´, ºe A nie je splnite©ná práve vtedy, ke¤ S nie je splnite©ná.Príklad 2.5. V tomto príklade ukáºeme, ako je moºné vyjadri´ nasledujú
u vetu v ²tandardnejforme: �Ak x Æ x = e pre v²etky x v grupe G, tak G je komutatívna.� Pritom �Æ� je binárnaoperá
ia a e jednotka v grupe G.Rie²enie: Spo£iatku budeme túto vetu formalizova´ a potom vyjadríme negá
iu tejto vety mnoºi-nou klauzúl. Vieme, ºe grupa G vyhovuje nasledujú
im ²tyrom axiómam:(A1): x; y 2 G implikuje x Æ y 2 G (vlastnos´ uzavretosti)(A2): x; y; z 2 G implikuje x Æ (y Æ z) = (x Æ y) Æ z (vlastnos´ aso
iatívnosti)



Vybrané partie z logiky � 7(A3): x Æ e = e Æ x pre v²etky x 2 G (vlastnos´ existen
ie jednotkového prvku)(A4): pre kaºdé x 2 G existuje prvok x�1 2 G taký, ºe xÆx�1 = x�1 Æx = e (vlastnos´ existen
ieinverzného prvku).Ne
h P (x; y; z) ozna£uje x Æ y = z a i(x) = x�1. Potom vy²²ie uvedené axiómy nadobúdajú tvar:(A01): (8x)(8y)(9z)P (x; y; z)(A02): (8x)(8y)(8z)(8u)(8v)(8w)��P (x; y; u) ^ P (y; z; v) ^ P (u; z; w)�! P (x; v; w)� ^^ (8x)(8y)(8z)(8u)(8v)(8w)��P (x; y; u) ^ P (y; z; v) ^ P (x; v; w)� ! P (u; z; w)�(A03): (8x)P (x; e; x) ^ (8x)P (e; x; x)(A04): (8x)P (x; i(x); e) ^ (8x)P (i(x); x; e)Záver vety je nasledovný:(B): Ak xÆx = e pre v²etky x 2 G, tak G je komutatívna, t.j. uÆv = vÆu pre v²etky u; v 2 G.Tvrdenie B m�ºe by´ vyjadrené formulou:(B0): (8x)P (x; x; e)! �(8u)(8v)(8w)�P (u; v; w)! P (v; u; w)��Teda 
elá veta je vyjadrená formulou F = A01 ^ � � � ^ A04 ! B0. Takýmto sp�sobom:F = A01 ^ A02 ^ A03 ^ A04 ^ :B0Aby sme získali mnoºinu klauzúl pre :F , najprv získame mnoºinu klauzúl Si pre kaºdú axiómuA0i (i = 1; 2; 3; 4) nasledujú
im sp�sobom:S01 = fP (x; y; f(x; y))gS02 = f:P (x; y; u) _ :P (y; z; v) _ :P (u; z; w) _ P (x; v; w);:P (x; y; u) _ :P (y; z; v) _ :P (x; v; w) _ P (u; z; w)gS03 = fP (x; e; x); P (e; x; x)gS04 = fP (x; i(x); e); P (i(x); x; e)gPlatí :B0 = :�(8x)P (x; x; e)! �(8u)(8v)(8w)�P (u; v; w)! P (v; u; w)��� == :�:(8x)P (x; x; e) _ �(8u)(8v)(8w)�:P (u; v; w) _ P (v; u; w)��� == (8x)P (x; x; e) ^ :�(8u)(8v)(8w)�:P (u; v; w) _ P (v; u; w)�� == (8x)P (x; x; e) ^ (9u)(9v)(9w)�P (u; v; w) ^ :P (v; u; w)�Preto mnoºina klauzúl pre :B0 je nasledujú
a:T = fP (x; x; e); P (a; b; 
);:P (b; a; 
)gPreto mnoºina S = S1 [ S2 [ S3 [ S4 [ T je mnoºina, ktorá sa skladá z nasledujú
i
h klauzúl(1) P (x; y; f(x; y))(2) :P (x; y; u) _ :P (y; z; v) _ :P (u; z; w) _ P (x; v; w)(3) :P (x; y; u) _ :P (y; z; v) _ :P (x; v; w) _ P (u; z; w)(4) P (x; e; x)(5) P (e; x; x)(6) P (i(x); x; e)(7) P (x; i(x); e)(8) P (x; x; e)(9) P (a; b; 
)(10) :P (b; a; 
)



8 � Herbrandova vetaV príklade 2.5 sme ukázali, ako dostaneme mnoºinu klauzúl S pre formulu :F . Zo známy
htvrdení vieme, ºe F je tautológia práve vtedy, ke¤ S nie je splnite©ná. Ako sme uº povedali, d�kazytoho, ºe formula je tautológia budeme prevádza´ na to, ºe jej negá
ia nie je splnite©ná. Preto odtohto miesta budeme predpoklada´, ºe na vstupe pro
edúry uvaºovaného d�kazu vºdy stojí mnoºinaklauzúl (taká, ako je S, ktoré sme dostali v príklade 2.5). �alej pouºívame pre mnoºinu klauzúltermíny �nie je splnite©ná� (�splnite©ná�), niekedy aj �protire£ivá�, �sporná� (�neprotire£ivá�, �nie jesporná�). 2.2. Herbrandovské univerzum mnoºiny klauzúlPod©a de�ní
ie mnoºina klauzúl nie je splnite©ná práve vtedy, ak je nepravdivá pri v²etký
hinterpretá
iá
h na v²etký
h oblastia
h. Pretoºe nie je vhodné a ani nie je uºito£né skúma´ v²etkyinterpretá
ie na v²etký
h oblastia
h, bolo by dobré, ak by sme mohli �xova´ jednu ²pe
iálnuoblas´ H a pre S urobi´ záver, ºe S nie je splnite©ná práve vtedy, ke¤ S nie je pravdivá priºiadnej interpretá
ii na tejto oblasti. Na ²´astie taká oblas´ existuje. Nazývame ju Herbrandovskéuniverzum mnoºiny S a de�nujeme nasledujú
im sp�sobom.De�ní
ia 2.6. Ne
h H0 je mnoºina kon²tánt, ktoré sa vyskytujú v S. Ak sa ºiadna kon²tantanevyskytuje v S, tak H0 sa skladá z jednej kon²tanty, povedzme H0 = fag. Pre i = 0; 1; 2; : : :je Hi+1 zjednotením Hi a mnoºiny v²etký
h termov tvaru f (n)(t1; : : : ; tn) pre kaºdé n a v²etkyf (n), ktoré sa vyskytujú v S, kde tj 2 Hi (j = 1; 2; : : : ; n). Potom kaºdé Hi nazývame mnoºinoukon²tánt i-tej úrovne pre S a H1 nazývame Herbrandovo univerzum pre S.Príklad 2.7. Ne
h S = fP (a);:P (x) _ :P (f(x))g. PotomH0 = fagH1 = fa; f(a)gH2 = fa; f(a); f(f(a))g...H1 = fa; f(a); f(f(a)); : : : gPríklad 2.8. Ne
h S = fP (x) _ Q(x); R(z); T (y) _ :W (y)g. Pretoºe v S neexistujú ºiadnekon²tanty, kladieme H0 = fag. Pretoºe v S neexistujú ani ºiadne funk£né symboly, takH = H0 = H1 = � � � = fagPríklad 2.9. Ne
h S = fP (f(x); a; g(y); b)g. PotomH0 = fa; bgH1 = fa; b; f(a); f(b); g(a); g(b)gH2 = fa; b; f(a); f(b); g(a); g(b); f(f(a)); f(f(b)); f(g(a)); f(g(b));g(f(a)); g(f(b)); g(g(a)); g(g(b))gV d�sledku toho, £o bolo povedané, pod výrazom budeme 
hápa´ term, mnoºinu termov, mno-ºinu atomárny
h formúl, literál, klauzulu, £i mnoºinu klauzúl. Ak sa vo výraze nevyskytujú ºiadnepremenné, aby sme zd�raznili túto skuto£nos´, niekedy tento výraz nazývame základnou in²tan
i-ou. Takýmto sp�sobom m�ºeme pouºíva´ pojmy základný term, základný atóm, základný literál,základná klauzula, aby sme zd�raznili, ºe ºiadne premenné sa nevyskytujú v zodpovedajú
i
hvýrazo
h.Podvýrazom výrazu E je výraz, ktorý sa vyskytuje v E.De�ní
ia 2.10. Ne
h S je mnoºina klauzúl. Potom mnoºina atómov tvaru P (n)(t1; : : : ; tn) prev²etky n-árne predikáty P (n), ktoré sa vyskytujú v S a t1; : : : ; tn sú elementy Herbrandovskéhouniverza pre S, sa nazýva Herbrandovskou bázou pre S.



Vybrané partie z logiky � 9De�ní
ia 2.11. Základná in²tan
ia klauzuly C z mnoºiny klauzúl S je klauzula, ktorú dostanemezámenou premenný
h v C prvkami Herbrandovského univerza pre S.Príklad 2.12. Ne
h S = fP (x); Q(f(y)) _ R(y)g, t.j. C = P (x) je klauzula v S a H == fa; f(a); f(f(a)); : : : g je Herbrandovské univerzum v S. Potom P (a) a P (f(f(a))) sú základnéin²tan
ie C.Uvaºujme teraz interpretá
ie nad Herbrandovským univerzom. Ne
h S je mnoºina klauzúl.Ako sme uº povedali, interpretá
ia nad Herbrandovským univerzom mnoºiny S je ur£ená hod-notami kon²tánt, funk£ný
h symbolov a predikátový
h symbolov, ktoré sa vyskytujú v S. �alejbudeme de�nova´ ²pe
iálnu interpretá
iu nad Herbrandovským univerzom, ktorú budeme nazýva´H-interpretá
iou mnoºiny S.De�ní
ia 2.13. Ne
h S je mnoºina klauzúl, H Herbrandovské univerzum pre S a I interpretá
ia Snad H . Hovoríme, ºe I je H-interpretá
ia mnoºiny S, ak vyhovuje nasledujú
im podmienkam:� I zobrazuje v²etky kon²tanty z S na seba, t.j. kon²tante ai 2 S priradí ai 2 H .� Ne
h f (n) je n-árny funk£ný symbol a h1; : : : ; hn sú elementy H . V I znakom f (n) ozna-£ujeme funk
iu, ktorá zobrazuje element (h1; : : : ; hn) z Hn na element f (n)(h1; : : : ; hn)z H .Poznamenávame, ºe nekladieme ºiadne ohrani£enia pri interpretá
ii a ur£ovaní hodnoty ©ubo-vo©ného n-árneho predikátového symbolu z S. Ne
h A = fA1; A2; : : : ; An; : : : g je Herbrandovskábáza mnoºiny S. H-interpretá
iu I je vhodné vyjadri´ v tvareI = fm1;m2; : : : ;mn; : : : gkde mj je bu¤ Aj alebo :Aj pre j = 1; 2; : : : Zmysel tejto mnoºiny je v tom, ºe ak mj je Aj , takatómu Aj je priradená hodnota �pravda� a v opa£nom prípade hodnota �nepravda�.Príklad 2.14. Uvaºujme mnoºinu S = fP (x) _ Q(x); R(f(y))g. Herbrandovské univerzum Hpre S je H = fa; f(a); f(f(a)); : : : g. V S sa vyskytujú predikátové symboly: P , Q a R. Z tohovyplýva, ºe Herbrandovská báza pre S je A = fP (a); Q(a); R(a); P (f(a)); Q(f(a)); R(f(a)); : : : g.Niektoré H-interpretá
ie mnoºiny S súI�1 = fP (a); Q(a); R(a); P (f(a)); Q(f(a)); R(f(a)); : : : gI�2 = f:P (a);:Q(a);:R(a);:P (f(a));:Q(f(a));:R(f(a)); : : : gI�3 = fP (a); Q(a);:R(a); P (f(a)); Q(f(a));:R(f(a)); : : : gInterpretá
iu mnoºiny klauzúl S nie je nutné zadáva´ nad Herbrandovským univerzom, t.j.interpretá
ia nemusí by´ H-interpretá
iou. Ne
h napr. S = fP (x); Q(y; f(y; a))g. Potom je moºnánasledujú
a interpretá
ia nad oblas´ou D = f1; 2g uvedená v tabu©ke 2.1. Pre takúto interpretá
iua f(1; 1) f(1; 2) f(2; 1) f(2; 2)2 1 2 2 1P (1) P (2) Q(1; 1) Q(1; 2) Q(2; 1) Q(2; 2)platí neplatí neplatí platí neplatí platíTabu©ka 2.1. Interpretá
ia na oblasti D = f1; 2gm�ºeme ur£i´ H-interpretá
iu I�, zodpovedajú
u I . Ilustrujeme to na tom istom príklade. Najprvnájdeme Herbrandovskú bázu pre S:A = fP (a); Q(a; a); P (f(a; a)); Q(a; f(a; a)); Q(f(a; a); a); : : :g



10 � Herbrandova vetaPotom ohodnotíme kaºdý £len mnoºiny A tým, ºe pouºijeme tabu©ku hodn�t 2.1:P (a) = P (2) = neplatíQ(a; a) = Q(2; 2) = platíP (f(a; a)) = P (f(2; 2)) = P (1) = platíQ(a; f(a; a)) = Q(2; f(2; 2)) = Q(2; 1) = neplatíQ(f(a; a); a) = Q(f(2; 2); 2) = Q(1; 2) = platíQ(f(a; a); f(a; a)) = Q(f(2; 2); f(2; 2)) = Q(1; 1) = neplatíD�sledkom toho H-interpretá
ia I� zodpovedajú
a I jeI� = f:P (a); Q(a; a); P (f(a; a));:Q(a; f(a; a)); Q(f(a; a); a);:Q(f(a; a); f(a; a)); : : : gAk v S nie sú kon²tanty, tak element a, ktorý sme pouºili na to, aby sme mohli za£a´ Herbrandovskéuniverzum, m�ºeme zobrazi´ na ©ubovo©ný element v oblasti D. V prípade, ºe oblas´ D mávia
ej ako jeden prvok, tak existuje via
 ako jedna H-interpretá
ia zodpovedajú
a I . Ne
h napr.S = fP (x); Q(y; (f(y; z)) a ne
h je pre S vybraná interpretá
ia na oblasti D = f1; 2g pod©atabu©ky 2.2. f(1; 1) f(1; 2) f(2; 1) f(2; 2)1 2 2 1P (1) P (2) Q(1; 1) Q(1; 2) Q(2; 1) Q(2; 2)platí neplatí neplatí platí neplatí neplatíTabu©ka 2.2. Interpretá
ia na oblasti D = f1; 2gPotom interpretá
ii I budú zodpoveda´ dve H-interpretá
ie:� I�1 = fP (a);:Q(a; a); P (f(a; a));:Q(a; f(a; a));:Q(f(a; a); a);:Q(f(a; a); f(a; a)); : : : g,ak a = 1� I�2 = f:P (a);:Q(a; a); P (f(a; a));:Q(a; f(a; a));:Q(f(a; a); a);:Q(f(a; a); f(a; a)); : : : g,ak a = 2Teraz m�ºeme sformulova´ vy²²ie uvedené pojmy nasledujú
im sp�sobom.De�ní
ia 2.15. Ne
h I je interpretá
ia pre S na oblasti D. H-interpretá
iou I� zodpovedajú
ouI je interpretá
ia, ktorá vyhovuje nasledujú
ej podmienke: Ne
h h1; : : : ; hn sú elementy Herb-randovského univerza. Ne
h sa kaºdé hi zobrazuje v interpretá
ii I na niektoré di 2 D. AkP (n)(d1; : : : ; dn) dostáva v interpretá
ii I hodnotu pravda (resp. nepravda), tak P (n)(h1; : : : ; hn)taktieº dostáva hodnotu pravda (resp. nepravda) v interpretá
ii I�.V skuto£nosti nie je ´aºké dokáza´ nasledujú
u lemu:Lema 2.16. Ak interpretá
ia I na niektorej oblasti D vyhovuje mnoºine klauzúl S, tak ©ubovo©náz H-interpretá
ií I�, ktorá zodpovedá I , taktieº vyhovuje S.D�kaz: � Ne
h S = fC1; C2; : : : ; Cng je mnoºina klauzúl, Ci = Li1 _Li2 _ � � � _Liri (i = 1; : : : ; n).Predpokladajme, ºe interpretá
ia I na niektorej oblasti D vyhovuje mnoºine klauzúl S. To zna-mená, ºe kaºdá z klauzúl Ci nadobúda hodnotu �pravda�, t.j. v kaºdom Ci existuje aspo¬ jedenliterál Lij tvaru P (n)(d1; : : : ; dn), ktorý je pravdivý. Ne
h h1; : : : ; hn sú prvky H-univerza a kaºdéhi sa zobrazuje na di v oblasti D (i = 1; : : : ; n). Na základe uvedeného aj literál P (n)(h1; : : : ; hn)je pravdivý v interpretá
ii I�, t.j. v ©ubovo©nej interpretá
ii zodpovedajú
ej I . �Veta 2.17. Mnoºina klauzúl S nie je splnite©ná práve vtedy, ke¤ S je nepravdivá pri v²etký
hH-interpretá
iá
h v S.



Vybrané partie z logiky � 11D�kaz: � ()) Prvá polovi
a uvedenej vety je zrejmá, pretoºe pod©a de�ní
ie je S nesplnite©nápráve vtedy, ke¤ S je nepravdivá pri v²etký
h interpretá
iá
h na ©ubovo©nej oblasti.(() Aby sme dokázali druhú polovi
u predloºenej vety, predpokladajme, ºe S je nepravdivá priv²etký
h H-interpretá
iá
h v S. Predpokadajme, ºe S je splnite©ná. Potom existuje taká interpre-tá
ia I na niektorej oblasti D, ºe S je pravdivá pri I . Ne
h I� je H-interpretá
ia zodpovedajú
a I .V súlade s lemou 2.16, S je pravdivá pri I� a to je v spore s predpokladom, ºe S nie je pravdivápri v²etký
h H-interpretá
iá
h v S. Teda S nie je splnite©ná, £o bolo treba dokáza´. �Takým sp�sobom sme dosiahli 
ie©, ktorý sme si vytý£ili na za£iatku tejto £asti, teda nevyhnut-ne nám treba uvaºova´ len interpretá
ie nad H-univerzom, t.j. H-interpretá
ie, na preverenie toho,£i je splnite©ná mnoºina klauzúl alebo nie je. Poznamenávame, ºe ak odteraz budeme uvaºova´interpretá
iu, tak máme na mysli H-interpretá
iu.Ne
h ; ozna£uje prázdnu mnoºinu. Kaºdý z nasledujú
i
h výrokov je zrejmý:(1) Základná in²tan
ia C 0 klauzuly C je splnite©ná v interpretá
ii I práve vtedy, ke¤ existujezákladný literál L0 2 C 0 taký, ºe L0 je taktieº v I , t.j.C 0 \ I 6= ;; L0 2 I = fm1;m2; : : : ;mj ; : : : g(2) Klauzula C je splnená v interpretá
ii I práve vtedy, ke¤ kaºdá jej základná in²tan
ia C 0je splnená v interpretá
ii I .(3) Klauzula C je odmietnutá (vyvrátená) interpretá
iou I práve vtedy, ke¤ existuje aspo¬jedna taká základná in²tan
ia C 0 pre C, ºe C 0 nie je splnená v I .(4) Mnoºina klauzúl S nie je splnite©ná práve vtedy, ke¤ pre kaºdú interpretá
iu I existujeaspo¬ jedna taká základná in²tan
ia C 0 niektorej klauzuly C v S, ºe C 0 nie je splnená vI .Príklad 2.18. (a) Uvaºujme klauzulu C = :P (x) _ Q(f(x)). Ne
h I1, I2, I3 sú de�novanénasledujú
im sp�sobom:I1 = f:P (a);:Q(a);:P (f(a));:Q(f(a));:P (f(f(a)));:Q(f(f(a))); : : : gI2 = fP (a); Q(a); P (f(a)); Q(f(a)); P (f(f(a))); Q(f(f(a))); : : : gI3 = fP (a);:Q(a); P (f(a));:Q(f(a)); P (f(f(a)));:Q(f(f(a))); : : : gM�ºeme sa ©ahko presved£i´, ºe C je splnená v interpretá
iá
h I1 a I2, no zamietnutáv interpretá
ii I3.(b) Uvaºujme mnoºinu S = fP (x);:P (a)g. Existujú dve H-interpretá
ie I1 = fP (a)g aI2 = f:P (a)g. S je zamietnutá oboma interpretá
iami. Z toho vyplýva, ºe S nie jesplnite©ná. 2.3. Sémanti
ké stromyPo zavedení H-univerza uvaºujme sémanti
ké stromy. Ako uvidíme nesk�r, nájdenie d�kazupre mnoºinu klauzúl je ekvivalentné zostrojeniu sémanti
kého stromu pre mnoºinu klauzúl.De�ní
ia 2.19. Ne
h A je atóm. Hovoríme, ºe dva literály A a :A sú navzájom kontrárne.Mnoºina fA;:Ag sa nazýva kontrárnou dvoji
ou.Poznamenávame, ºe ak klauzula obsahuje kontrárnu dvoji
u, tak je tautológiou. Pri pouºitípojmu �tautológia� máme na mysli klauzulu, ktorá je tautológiou.De�ní
ia 2.20. Ne
h S je mnoºina klauzúl a A jej Herbrandovská báza. Sémanti
ký strom preS je dole rastú
i strom, v ktorom je kaºdej hrane pripísaná mnoºina atómov alebo negá
ií atómovz A takým sp�sobom, ºe:� Z kaºdého vr
hola v vy
hádza kone£ný po£et hrán l1; : : : ; ln. Ne
h Qi je konjunk
iav²etký
h literálov, pripísaný
h k li (i = 1; 2; : : : ; n). Potom Q1 _ Q2 _ � � � _ Qn jev²eobe
ne platná logi
ká formula.



12 � Herbrandova veta� Ne
h pre kaºdý vr
hol v je I(v) zjednotenie v²etký
h mnoºín literálov, ktoré sú pripísanéhranám vetvy, ktorá vedie k v. Potom I(v) neobsahuje kontrárne dvoji
e.De�ní
ia 2.21. Ne
h A = fA1; A2; : : : ; An; : : : g je Herbrandovská báza mnoºiny S. Hovoríme,ºe sémanti
ký strom pre S je úplný, ak pre kaºdé i (i = 1; 2; : : : ) a kaºdý kon
ový vr
hol vsémanti
kého stromu (t.j. vr
hol, z ktorého nevy
hádzajú ºiadne hrany) I(v) obsahuje bu¤ Aialebo :Ai.Príklad 2.22. Ne
h A = fP;Q;Rg je Herbrandovská báza mnoºiny S. Potom kaºdý z dvo
hstromov na obrázku 2.1 je úplný sémanti
ký strom pre S.

�
P :PQ :Q Q :QR :R R :R R :R R :R(a) �

P :P;:QQQR :RQ :Q R :R R :R
R :RP :PR :Q;:R

(b)Obrázok 2.1. Stromy k príkladu 2.22Príklad 2.23. Uvaºujme S = fP (x); P (a)g. Herbrandovská báza mnoºiny S je fP (a)g. Úplnýsémanti
ký strom pre S je na obrázku 2.2.
�P (a) :P (a)

Obrázok 2.2. Strom k príkladu 2.23Príklad 2.24. Uvaºujme S = fP (x); Q(f(x))g. Herbrandovská báza mnoºiny S je fP (a); Q(a);P (f(a)); Q(f(a)); P (f(f(a))); Q(f(f(a))); : : : g. Na obrázku 2.3 je zobrazený sémanti
ký strompre S.Poznamenávame, ºe pre kaºdý vr
hol v v sémanti
kom strome pre S je I(v) podmnoºinaniektorej interpretá
ie pre S. D�sledkom toho budeme I(v) nazýva´ £iasto£nou interpretá
ioupre S.Ke¤ je Herbrandovská báza mnoºiny S nekone£ná, kaºdý úplný sémanti
ký strom pre S budetaktieº nekone£ný. �ahko vidie´, ºe úplný sémanti
ký strom vy£erpávajú
o preberá v²etky moºnéinterpretá
ie pre S. Ak S nie je splnite©ná, tak S nem�ºe by´ pravdivá na ºiadnej z tý
htointerpretá
ií. Preto m�ºeme zastavi´ rast stromu z vr
hola v, ak I(v) odmieta S. To nám umoº¬ujenasledujú
u de�ní
iu.
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�
P (a) :P (a)Q(f(a)) :Q(f(a)) Q(f(a)) :Q(f(a))

P (f(a)) :P (f(a))
Obrázok 2.3. Strom k príkladu 2.24De�ní
ia 2.25. Vr
hol v sémanti
kého stromu pre S sa nazýva odmietajú
im, ak I(v) odmietaniektorú základnú in²tan
iu klauzuly z S, no pre ©ubovo©ný pred
hádzajú
i vr
hol v0 (v0 pred
há-dza v) I(v0) neodmieta ºiadnu základnú in²tan
iu klauzuly z S.De�ní
ia 2.26. Hovoríme, ºe sémanti
ký strom T je uzavretý práve vtedy, ke¤ sa kaºdá vetvavr
hola T kon£í odmietajú
im vr
holom.De�ní
ia 2.27. Vr
hol v uzavretého sémanti
kého stromu nazývame ak
eptujú
im, ak v²etkyvr
holy bezprostredne nasledujú
e za v sú odmietajú
e.Príklad 2.28. Ne
h S = fP;Q _ R;:P _ :Q;:R _ :Pg Herbrandovská báza mnoºiny S jeA = fP;Q;Rg. Na obrázku 2.4(a) je úplný sémanti
ký strom pre S. Práve tak na obrázku 2.4(b)je uzavretý sémanti
ký strom pre S.

�
P :PQ :Q Q :QR :R R :R R :R R :R(a) �

P :PQ :QR :R� � �
�

(b)Obrázok 2.4. Stromy k príkladu 2.28Príklad 2.29. Uvaºujme S = fP (x); P (x) _ Q(f(x));:Q(f(a))g. Herbrandovská báza mnoºinyS je A = fP (a); Q(a); P (f(a)); Q(f(a)); : : : g. Na obrázku 2.5 je zobrazený uzavretý strom pre S.
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�

P (a) :P (a)Q(f(a)) :Q(f(a)) �� �Obrázok 2.5. Strom k príkladu 2.292.4. Herbrandova vetaHerbrandova veta je d�leºitá veta v matemati
kej logike a tvorí základ vä£²iny sú£asný
h po-uºite©ný
h algoritmov dokazovania teorém. Herbrandova veta úzko súvisí s vetou 2.4, t.j. aby smepreverili, £i mnoºina klauzúl nie je splnite©ná, sta£í nám uvaºova´ len interpretá
ie nad Herbran-dovským univerzom S. Potom m�ºeme urobi´ záver, ºe S nie je splnite©ná. Zvy£ajne to býva tak,ºe interpretá
ií je mnoho, moºno aj nekone£ne ve©a. Nejakým sp�sobom sa i
h preto snaºíme or-ganizova´. Systemati
ky i
h organizujeme pomo
ou sémanti
kého stromu. Dokáºeme dva variantyHerbrandovej vety. V literatúre sa takisto pouºívajú oba varianty.Veta 2.30 (Herbrandova). Mnoºina klauzúl S nie je splnite©ná práva vtedy, ke¤ ©ubovo©némuúplnému sémanti
kému stromu pre S zodpovedá kone£ný uzavretý sémanti
ký strom, t.j. ©ubovo©návetva úplného stromu vedie do zamietajú
eho vr
hola.D�kaz: � ()) Predpokladajme, ºe S nie je splnite©ná. Ne
h T je úplný sémanti
ký strom pre S.Pre kaºdú vetvu V stromu T ne
h IV je mnoºina v²etký
h literálov, ktoré sú pripísané v²etkýmhranám vetvy V . Potom IV je interpretá
ia pre S. Pretoºe S nie je splnite©ná, musí IV odmieta´základnú in²tan
iu C 0 klauzuly C v S. Uvedomme si, ºe C 0 je kone£ná, teda na v musí existova´zamietajú
i vr
hol (ktorý má kone£nú vzdialenos´ od kore¬a stromu). Pretoºe kaºdá vetva stromuT má odmietajú
i vr
hol, existuje uzavretý sémanti
ký strom T 0 pre S. �alej, pretoºe z kaºdéhovr
hola v z T 0 vy
hádza len kone£ný po£et hrán, tak T 0 musí by´ kone£ný (t.j. po£et vr
holov vT 0 je kone£ný), inak by sme v súlade s Königovou lemou mohli nájs´ nekone£ne dlhú vetvu, ktoráneobsahuje odmietajú
e vr
holy. Tým je ukon£ený d�kaz prvej £asti vety.(() Obrátene, ak pre kaºdý úplný sémanti
ký strom T pre S existuje kone£ný uzavretý séman-ti
ký strom, tak kaºdá vetva T obsahuje odmietajú
i vr
hol. To znamená, ºe kaºdá interpretá
iaodmieta S. Teda S nie je splnite©ná. To ukon£uje d�kaz druhej £asti vety. �Veta 2.31 (Herbrandova). Mnoºina klauzúl S nie je splnite©ná práve vtedy, ke¤ existuje kone£nánesplnite©ná mnoºina S0 základný
h in²tan
ií klauzúl z S.D�kaz: � ()) Predpokladajme, ºe S nie je splnite©ná. Ne
h T je úplný sémanti
ký strom preS. Potom pod©a Herbrandovej vety 2.30 existuje kone£ný uzavretý sémanti
ký strom T 0 zodpove-dajú
i stromu T . Ne
h S0 je mnoºina v²etký
h základný
h in²tan
ií klauzúl, ktoré sa odmietajúv zamietajú
i
h vr
holo
h stromu T 0. Mnoºina S0 je kone£ná, pretoºe v strome T 0 je len kone£-ný po£et zamietajú
i
h vr
holov. Pretoºe S0 neplatí v ºiadnej interpretá
ii pre S0, tak S0 nie jesplnite©ná.(() Predpokladajme, ºe existuje kone£ná nesplnite©ná mnoºina S0 základný
h in²tan
ií klauzúlz S. To znamená, ºe pre kaºdú interpretá
iu I je S0 odmietnutá (vyvrátená). Pretoºe kaºdáinterpretá
ia I pre S obsahuje interpretá
iu I 0 mnoºiny S0 a I 0 zamieta S0, tak I musí taktieºodmieta´ aj S, a teda S nie je splnite©ná. �
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h S = fP (x);:P (f(a))g. Táto mnoºina S nie je splnite©ná. Z Herbrandovejvety vyplýva, ºe existuje kone£ná nesplnite©ná mnoºina S0 základný
h in²tan
ií klauzúl mnoºiny S.Na²li sme jednu z tý
hto mnoºín: S0 = fP (f(a));:P (f(a))g.Príklad 2.33. Ne
h S = f:P (x) _ Q(f(x); x); P (g(b));:Q(y; z)g. Mnoºina S nie je splnite©ná.Jedna z nesplnite©ný
h mnoºín základný
h in²tan
ií klauzúl mnoºiny S je S0 = f:P �g(b)� __ Q�f(g(b)); g(b)�; P �g(b)�;:Q�f(g(b)); g(b)�g.Príklad 2.34. Ne
h mnoºina S obsahuje nasledujú
e klauzuly:S = f:P (x; y; u) _ :P (y; z; v) _ :P (x; v; w) _ P (u; z; w);:P (x; y; u) _ :P (z; y; v) _ :P (u; z; w) _ P (x; v; w);P (g(x; y); x; y); P (x; h(x; y); y); P (x; y; f(x; y));:P (k(x); x; k(x))gTáto mnoºina je tieº nesplnite©ná, no nie je ©ahké nájs´ ihne¤ kone£nú nesplnite©nú mnoºinu S0 zá-kladný
h in²tan
ií klauzúl mnoºiny S. Jedna 
esta nájdenia takej mnoºiny S0 spo£íva v zostrojeníuzavretého sémantik
ého stromu T 0 pre S. Potom mnoºina S0 v²etký
h základný
h in²tan
ií od-mietaný
h v zamietajú
i
h vr
holov stromu T 0 je h©adaná mnoºina. Mnoºinu S0 uvádzame niº²ie.M�ºeme sa presved£i´, ºe kaºdá základná klauzula v S0 je základná in²tan
ia niektorej klauzuly zmnoºiny S a ºe S0 nie je splnite©ná.S0 = nP�a; h(a; a); a�;:P�k�h(a; a)�; h(a; a); k�h(a; a)��; P�g�a; k(h(a; a))�; a; k�h(a; a)��;:P�g�a; k(h(a; a))�; a; k�h(a; a)�� _ :P�a; h(a; a); a� __ :P�g�a; k(h(a; a))�; a; k�h(a; a)�� _ P�k�h(a; a)�; h(a; a); k�h(a; a)��o2.5. Apliká
ie Herbrandovej vetyDruhý variant Herbrandovej vety predpokladá pro
edúru odmietnutia. To znamená, ºe aktreba dokáza´ nesplnite©nos´ mnoºiny klauzúl S a máme algoritmus pre po£íta£, ktorý dokáºeúspe²ne indukova´ mnoºiny S01; : : : ; S0n základný
h in²tan
ií klauzúl z S a úspe²ne stanovi´ i
hnesplnite©nos´, tak táto pro
eúra, ako nám garantuje Herbrandova veta, nám ukáºe také kone£né n,ºe S0n nie je splnite©ná.Gilmore bol jeden z prvý
h, kto aplikoval uvedenú ideu (1960). Napísal program pre po£íta£,ktorý úspe²ne generoval mnoºiny S00; S01; : : : zámenou premenný
h v S kon²tantami z Hi � mno-ºinami kon²tánt i-tej úrovne pre S. Pretoºe S0i je konjunk
ia základný
h in²tan
ií, tak m�ºemepouºíva´ ©ubovo©nú metódu vhodnú vo výrokovej logike, aby sme preverili jej nesplnite©nos´. T.j.,uviedol kaºdú indukovanú mnoºinu S0i v tvare d.n.f. Potom sa kaºdá konjunk
ia v d.n.f., obsahujú-
a kontrárne dvoji
e, vyne
háva. Ak takýmto postupom získame prázdnu mnoºinu pre niektoré S0i,tak mnoºina Si je nesplnite©ná.Príklad 2.35. Uvaºujme S = fP (x);:P (a)g, H0 = fag, S00 = P (a) ^ :P (a) = �. Tým jedokázané, ºe mnoºina S nie je splnite©ná.Príklad 2.36. Ne
h S = fP (a);:P (x) _ Q(f(x));:Q(f(a))g, H0 = fag,S00 = P (a) ^ �:P (a) _ Q(f(a))� ^ :Q(f(a)) == �P (a) ^ :P (a) ^ :Q(f(a))� _ �P (a) ^ Q(f(a)) ^ :Q(f(a))� = � _ � = �Tým je dokázané, ºe S nie je splnite©ná.Multiplikatívna metóda nie je efektívna. Moºno sa ©ahko presved£i´, ºe pre mnoºinu z desiati
hdvojliterálny
h základný
h klauzúl existuje 210 konjunk
ií. Davis a Putnam (1960) zaviedli efek-tívnej²iu metódu na preverovanie nesplnite©nosti mnoºiny základný
h klauzúl. Opí²eme niektorúmodi�ká
iu i
h metódy.



16 � Herbrandova veta2.6. Metóda Davisa a PutnamaNe
h S je mnoºina klauzúl. Podstatu metódy tvoria nasledujú
e ²tyri pravidlá:(1) Pravidlo tautológie: Vyne
háme v²etky tautologi
ké základné in²tan
ie klauzúl z S.Mnoºina S0, ktorá nám zostáva po vyne
haní, nie je splnite©ná práve vtedy, ke¤ S nie jesplnite©ná.(2) Pravidlo jednoliterálny
h klauzúl: Ak existuje jednotková základná klauzula (rozmerklauzuly je rovný po£tu literálov) L v S, tak S0 dostávame z S vyne
haním tý
h zákldný
hklauzúl v S, ktoré obsahujú L. Ak S0 je prázdna mnoºina, tak S je splnite©ná. V opa£nomprípade zostrojíme mnoºinu S00, ak vyne
hávame z S0 výskyty :L. S00 nie je splnite©nápráve vtedy, ke¤ S nie je splnite©ná. poznamenávame, ºe ak :L je jednotková základnáklauzula, tak pri vy£iarkovaní :L sa zmení na �.(3) Pravidlo £istý
h literálov: Literál L v základnej klauzule z S budeme nazýva´ £istýmv S práve vtedy, ak sa literál :L nevyskytuje v ºiadnej základnej klauzule S. Ak je literálL £istý v S, tak vyne
háme v²etky základné klauzuly obsahujú
e L. Mnoºina S0, ktorázostala, nie je splnite©ná práve vtedy, ke¤ S nie je splnite©ná.(4) Pravidlo rezu: Ak mnoºinu S m�ºeme vyjadri´ v tvare(A1 _ L) ^ � � � ^ (Am _ L) ^ (B1 _ :L) ^ � � � ^ (Bn _ :L) ^ Rkde v Ai, Bi, a R sa nevyskytujú L ani :L, tak dostávame mnoºiny (nazývame i
hmnoºinami rezu) S1 = A1 ^ � � � ^ Am ^ RS2 = B1 ^ � � � ^ Bn ^ RPritom S nie je splnite©ná práve vtedy, ke¤ S1 _ S2 nie je splnite©ná, t.j. ke¤ S1 a S2nie sú splnite©né.M�ºeme teraz dokáza´, ºe vy²²ie uvedené pravidlá m�ºeme aj obráti´, t.j. ak poºadovaná mnoºinaS nie je splnite©ná, tak mnoºina, ktorá zostáva po apliká
ii jedného z pravidiel nie je splnite©ná aobrátene.D�kaz pre pravidlo (1): � Pretoºe tautológia vyhovuje kaºdej interpretá
ii, S0 nie je splnite©nápráve vtedy, ke¤ S nie je splnite©ná. �D�kaz pre pravidlo (2): � Ak S0 je prázdna mnoºina, tak v²etky základné klauzuly z S obsahujúL, a teda kaºdá interpretá
ia obsahujú
aL vyhovuje S. Preto je S splnite©ná. Musíme e²te dokáza´,ºe S00 nie je splnite©ná práve vtedy, ke¤ S nie je splnite©ná.Predpokladajme, ºe S00 nie je splnite©ná. Ak je splnite©ná S, tak existuje model M , ktorýobsahuje L. �alej, pretoºe M odmieta :L, modelu M musia vyhovova´ v²etky klauzuly, ktoréspo£iatku obsahovali :L. Z toho vyplýva, ºeM musí vyhovova´ S00. To v²ak protire£í predpokladu,ºe S00 nie je splnite©ná. Preto S nie je splnite©ná.Obrátene, predpokladáme, ºe S nie je splnite©ná. Ak S00 splnite©ná je, tak existuje model M 00pre S00. Takým sp�sobom kaºdá interpretá
ia S obsahujú
aM 00 aj L musí by´ modelom pre S. Toje v spore s predpokladom, ºe S nemá model. Preto S00 musí by´ nesplnite©ná. Z toho vyplýva, ºeS00 nie je splnite©ná práve vtedy, ke¤ S nie je splnite©ná. �D�kaz pre pravidlo (3): � Predpokladajme, ºe S0 nie je splnite©ná. Potom S nem�ºe by´ spl-nite©ná, pretoºe S0 je podmnoºinou S. Obrátene, predpokladajme, ºe S nie je splnite©ná. Ak S0splnite©ná je, tak existuje model M pre S0, pri£om ani L, ani :L sa nena
hádzajú v M . Takýmsp�sobom kaºdá interpretá
ia S, ktorá obsahujeM aj L je model S. To je v spore s predpokladom,ºe S nemá model. Preto S0 nem�ºe by´ splnite©ná. Z toho vyplýva, ºe S0 nie je splnite©ná právevtedy, ke¤ S nie je splnite©ná. �D�kaz pre pravidlo (4): � Predpokladajme, ºe S nie je splnite©ná. Ak (S1_S2) je splnite©ná, takbu¤ S1 alebo S2 má model. Ak S1 (resp. S2) má model M , tak kaºdá interpretá
ia S obsahujú
aM a :L (resp. L) je model pre S. To je v spore s predpokladom, ºe S nemá model. Z toho vyplýva,ºe (S1 _ S2) nie je splnite©ná.



Vybrané partie z logiky � 17Predpokladajme, ºe (S1 _ S2) nie je splnite©ná. Ak je S splnite©ná, tak S musí ma´ modelM . Ak M obsahuje :L (resp. L), tak M vyhovuje S1 (resp. S2). To je v spore s predpokladom, ºe(S1 _ S2) nie je splnite©ná. Preto S nem�ºe by´ splnite©ná. Z toho vyplýva, ºe S nie je splnite©nápráve vtedy, ke¤ nie je splnite©ná (S1 _ S2). �Uvedené pravidlá sú d�leºité. V nasledujú
i
h £astia
h uvidíme, ºe tieto pravidlá majú ²irokúoblas´ aplikovate©nosti. Teraz uvedieme nieko©ko príkladov, aby sme demon²trovali pouºívanietý
hto pravidiel.Príklad 2.37. Ukáºte, ºe S = (P _ Q _ :R) ^ (P _ :Q) ^ :P ^ R ^ U nie je splnite©ná.Rie²enie:(1) (P _ Q _ :R) ^ (P _ :Q) ^ :P ^ R ^ U(2) (Q _ :R) ^ (:Q) ^ R ^ U � pravidlo (2) v :P(3) :R ^ R ^ U � pravidlo (2) v :Q(4) � ^ U � pravidlo (2) v :RTeda vidíme, ºe posledná formula obsahuje prázdnu klauzulu �, a preto S nie je splnite©ná.Príklad 2.38. Ukáºte, ºe S = (P _ Q) ^ :Q ^ (:P _ Q _ :R) je splnite©ná.Rie²enie:(1) (P _ Q) ^ :Q ^ (:P _ Q _ R)(2) P ^ (:P _ :R) � pravidlo (2) v :Q(3) :R � pravidlo (2) v P(4) � � pravidlo (2) v :Rt.j. zvolíme I = fP;:Q;:Rg. Posledná mnoºina je prázdna mnoºina. Z toho vyplýva, ºe S jesplnite©ná pre I = fP;:Q;:Rg.Príklad 2.39. Ukáºte, ºe mnoºina S = (P _ :Q) ^ (:P _ Q) ^ (Q _ :R) ^ (:Q _ :R) jesplnite©ná.Rie²enie:(1) (P _ :Q) ^ (:P _ Q) ^ (Q _ :R) ^ (:Q _ :R)(2) �:Q ^ (Q _ :R) ^ (:Q _ :R)� __ �Q ^ (Q _ :R) ^ (:Q _ :R)� � pravidlo (2) v P(3) :R _ :R � pravidlo (2) v :Q a Q(4) � _ � � pravidlo (2) v :RPretoºe obidve mnoºiny S1 aj S2 sú splnite©né, je aj S splnite©ná.Príklad 2.40. Ukáºte, ºe S = (P _ Q) ^ (P _ :Q) ^ (R _ Q) ^ (R _ :Q) je splnite©ná.Rie²enie:(1) (P _ Q) ^ (P _ :Q) ^ (R _ Q) ^ (R _ :Q)(2) (R _ Q) ^ (R _ :Q) � pravidlo (3) v P(3) � � pravidlo (3) v RTeda, S je splnite©ná.Uvedená metóda na preverovanie nesplnite©nosti je efektívnej²ia ako multiplikatívna metóda am�ºe by´ aplikovaná na ©ubovo©nú formulu vo výrokovej logike, t.j. najprv vyjadríme danú logi
kúformulu v konjunktívnej normálnej forme a potom aplikujeme vy²²ie uvedené ²tyri pravidlá.�ahko sa m�ºeme presved£i´, ºe pravidlá (2) a (3) sú ²pe
iálny prípad pravidla (4). Je pri-rodzené predpoklada´, ºe pri apliká
ii pravidla (4) pod©a literálu L klauzuly obsahujú
e L _ :Lvyne
háme. Takýmto sp�sobom je pravidlo (1) zahrnuté do pravidla (4). Pravidlá (2) a (3) zod-povedajú tvorbe jednej z mnoºin S1 alebo S2. Pravidlá (1)�(4) sa aplikujú na základné klauzuly.



KAPITOLA 3Rezolven£ná metódaZ Herbrandovej vety (II. variant) vyplýva jednodu
há metóda pre nájdenie zamietnutia. Tátojednodu
há metóda postupného preberania má jeden podstatný nedostatok: musíme generova´mnoºiny S00; S01; S02; : : : základný
h in²tan
ií klauzúl. Vo vä£²ine prípadov táto postupnos´ rastieexponen
iálne.Základná idea rezolven£nej metódy spo£íva v zistení, £i S obsahuje prázdnu klauzulu �. Ak Sobsahuje �, tak S nie je splnite©ná. Ak S neobsahuje �, tak preverujeme nesledujú
i fakt: m�ºeme� získa´ z S. Nesk�r uvidíme, ºe na základe Herbrandovej vety (I. variant) preverenie získania �je ekvivalentné spo£ítaniu po£tu vr
holov uzavretého sémati
kého stromu pre S.Pod©a uvedeného variantu Herbrandovej vety S nie je splnite©ná práve vtedy, ke¤ existujekone£ný uzavretý sémanti
ký strom T pre S. Je zrejmé, ºe S obsahuje � práve vtedy, ke¤ sa Tskladá len z jedného vr
hola � kore¬a. Ak S neobsahuje �, tak T nemusí obsahova´ via
ej akojeden vr
hol. No ak m�ºeme zostroji´ strom T s jedným vr
holom, tak sa nakonie
 � nutne objavív S. V tom spo£íva podstata metódy rezolvent. Inými slovami povedané: m�ºeme ju 
hápa´ako ²pe
iálne pravidlo odvodenia, ktoré pouºijeme na tvorbu nový
h klauzúl z S. Ak pridámetieto nové klauzuly k S, tak niektoré vr
holy v po£iato£nom T sa stávajú odmietajú
imi vr
holmi.Takýmto sp�sobom m�ºe by´ po£et vr
holov v T zmen²ený a nakonie
 prázdnu klauzulu �m�ºemezíska´.Najprv budeme uvaºova´ metódu rezolvent pre výrokovú logiku. Potom ju roz²írime na logiku1. rádu. 3.1. Metóda rezolvent pre výrokovú logikuNajprv sformulujeme pravidlo rezolventy ; niekedy ho budeme nazýva´ aj pravidlo rezu:De�ní
ia 3.1. Ne
h C1 a C2 sú ©ubovo©né dve klauzuly. Ak existuje literál L1 v C1, ktorýje kontrárny literálu L2 v C2, tak vyne
hávame L1 a L2 z C1, resp. C2 a zostrojíme disjunk
iuzostávajú
i
h klauzúl. Klauzulu, ktorá vznikne takýmto sp�sobom nazývame rezolventa C1 a C2.Príklad 3.2. Uvaºujme nasledujú
e klauzulyC1: P _ R C2: :P _ QKlauzula C1 má literál P , ktorý je kontrárny k literálu :P v C2. Ak teda vyne
háme P a :P zC1, resp. C2 a utvoríme disjunk
iu zostávajú
i
h klauzúl R a Q, dostávame rezolventu R _ Q.Príklad 3.3. Uvaºujme klauzulyC1: :P _ Q _ R C2: :Q _ SRezolventa C1 a C2 je :P _ R _ S.Príklad 3.4. Uvaºujme klauzulyC1: :P _ Q C2: :P _ RPretoºe neexistuje ºiadny literál v C1, ktorý je kontrárny nejakému literálu v C2, tak neexistujeºiadna rezolventa C1 a C2.D�leºitou vlastnos´ou rezolventy je to, ºe ©ubovo©ná rezolventa dvo
h klauzúl C1 a C2 je logi
kýd�sledok C1 a C2. Túto vlastnos´ dokáºeme v nasledujú
ej vete.Veta 3.5. Ne
h sú dané dve klauzuly C1 a C2. Potom rezolventa C klauzúl C1 a C2 je logi
kýmd�sledkom C1 a C2. 18



Vybrané partie z logiky � 19D�kaz: � Ne
h C1, C2 a C majú nasledujú
i význam:C1 = L _ C 01C2 = :L _ C 02C = C 01 _ C 02kde C 01 a C 02 sú disjunk
ie literálov. Predpokladajme, ºe C1 a C2 sú pravdivé v interpretá
i I .Ch
eme ukáza´, ºe rezolventa C klauzúl C1 a C2 je taktieº pravdivá v I . Predpkladajme, ºe Lnie je pravdivý v I . Potom C1 nem�ºe by´ jednotková klauzula, inak by C1 bola nepravdivá v I .Analogi
ky m�ºeme dokáza´, ºe ak :L neplatí v I , tak C 02 musí by´ pravdivá v I , £o bolo trebadokáza´. �Poznámka 3.6. Ak máme dve jednotkové klauzuly, tak i
h rezolventa, ak existuje, je prázdnaklauzula �. To nás privádza k záveru, ºe pre nesplnite©nú mnoºinu klauzúl apliká
iou pravidlarezolvent m�ºeme dosta´�. Tento výsledok dokáºeme nesk�r. Zatia© uvedieme de�ní
iu odvodenia.De�ní
ia 3.7. Ne
h S je mnoºina klauzúl. Rezolven£ným odvodením C z S je taká kone£nápostupnos´ C1; C2; : : : ; Cn klauzúl, ºe kaºdá Ck patrí do S alebo je rezolventou pred
hádzajú
i
hCi a Cj a ºe Cn = C. Odvodenie � z S nazývame zamietnutie (alebo d�kaz nesplnite©nosti) S.Hovoríme, ºe klauzulu C m�ºeme odvodi´ alebo získa´ z S, ak existuje odvodenie C z S.Uvedieme nieko©ko príkladov, ktoré ilustrujú pouºitie metódy rezolvent pre d�kaz nesplnite©-nosti mnoºiny klauzúl.Príklad 3.8. Uvaºujme mnoºinu S = f(1) :P _ Q; (2) :Q; (3) Pg. Z (1) a (2) dostávamerezolventu (4) :P . Zo (4) a (3) dostávame �. Pretoºe � dostávame z S aplikovaním pravidlarezolventy, tak v súlade s pred
hádzajú
ou vetou, � je logi
ký d�sledok S. Z toho vyplýva, ºe Snie je splnite©ná.Príklad 3.9. Pre mnoºinu S = f(1) P _ Q; (2) :P _ Q; (3) P _ :Q; (4) :P _ :Qg dostávamenasledujú
e rezolventy: (5) Q z (1) a (2), (6) :Q z (3) a (4), (7) � z (5) a (6).Dostali sme �, teda S nie je splnite©ná. Uvedené odvodenie m�ºeme vyjadri´ pomo
ou stromu,ktorý nazývame strom odvodenia.
��Q :QP _ Q :P _ Q P _ :Q :P _ :Q

Obrázok 3.1Pravidlo rezolventy je ve©mi silné odvodzova
ie pravidlo. V ¤al²om ho budeme de�nova´ ajpre logiku 1. rádu. Taktieº dokáºeme úplnos´ metódy rezolvent pre d�kaz nesplnite©nosti mnoºinyklauzúl, t.j. daná mnoºina klauzúl nie je splnite©ná práve vtedy, ke¤ existuje odvodenie prázdnejklauzuly � z S. Nesk�r uvedieme aj príklady aplikovania metódy rezolvent. Na záver tejto £astiodvodíme ekvivalentnos´ pravidla rezu a pravidla modus ponens. To zna£í nasledujú
i fakt:(a) :A _ B;A _ C ` B _ C � Ak prepí²eme uvedené tvrdenie pomo
ou impliká
ií dostávameA ! B;:A ! C ` :B ! C. Ukáºeme, ºe pouºitím pravidla modus ponens dokáºeme uvedenétvrdenie:(1) ` (A! B)! (:B ! :A)(2) ` (:B ! :A)! ((:A! C)! (:B ! C))



20 � Rezolven£ná metóda(3) ` :B ! C, z predpokladov A! B, :A! C pouºitím pravidla modus ponens (2-krát).(b) A;A ! B ` B � Z uvedený
h predpokladov pomo
ou pravidla rezu odvodíme B: najprvprepí²eme predpoklady pomo
ou disjunk
ie; dostávame A _ �;:A _ B ` B _ � = B.3.2. Substitú
ia a uni�ká
iaV pred
hádzajú
ej £asti sme metódu rezolvent uvaºovali pre výrokovú logiku. V ¤al²í
h £as-tia
h sa budeme snaºi´ roz²íri´ túto metódu na logiku 1. rádu. V pred
hádzajú
ej £asti smepoznamenali, ºe podstatné pre pravidlo rezu je nájs´ v klauzule literál, ktorý je kontrárny literáluv druhej klauzule. Pre klauzuly, ktoré neobsahujú premenné, je to ve©mi jednodu
hé. No preklauzuly obsahujú
e premenné, je to zloºitej²ia ve
. Uvaºujme napr. klauzulyC1 = P (x) _ Q(x) C2 = :P (f(x)) _ R(x)Neexistuje ºiaden literál v C1, kontrárny nejakému literálu v C2. No ak zameníme premennú x vC1 na f(a) a x v C2 na a, tak dostávame:C 01 = P (f(a)) _ Q(f(a)) C2 = :P (f(a)) _ R(a)Vieme, ºe C 01 a C 02 sú základné in²tan
ie C1, resp. C2 a P (f(a)) a :P (f(a)) sú kontrárne navzájom.Z toho vyplýva, ºe z C 01 a C 02 m�ºeme dosta´ rezolventu C 03 = Q(f(a)) _ R(a).Vo v²eobe
nom prípade, ak zameníme x v C1 funk
iou f(x), dostaneme C�1 = P (f(x)) __ Q(f(x)). Opä´ C�1 je in²tan
ia C1. Sú£asne literál P (f(x)) v C�1 je kontrárny literálu :P (f(x))v C2. Z toho vyplýva, ºe m�ºeme dosta´ rezolventu z C�1 a C2: C3 = Q(f(x))_R(x), C 03 je in²tan
iaklauzuly C3. Ak vhodnými termami zamie¬ame premenné v C1 a C2, ako to robíme vy²²ie, takm�ºeme dosta´ nové rezolventy C1 a C2. Okrem toho klauzula C3 je najvia
 spolo£nou klauzulouv tom zmysle, ºe v²etky druhé klauzuly, ktoré dostaneme podobne ako vy²²ie, sú in²tan
ie C3.C3 taktieº nazveme rezolventou C1 a C2. �alej sa budemem zaobera´ tým, ako tvori´ rezolventy zklauzúl (obsahujú
i
h aj premenné). Pretoºe získanie rezolvent z klauzúl £asto potrebuje zamie¬a´premenné, uvedieme potrebné de�ní
ie.De�ní
ia 3.10. Pod substitú
iou rozumieme kone£nú mnoºinu tvaru ft1=v1; : : : ; tn=vng, kde kaº-dá vi je premenná, kaºdý term ti je r�zny od vi a v²etky vi sú navzájom r�zne. Ak t1; t2; : : : tnsú základné termy, tak substitú
iu nazývame základná substitú
ia. Substitú
iu, ktorá neobsahujeºiaden prvok nazývame prázdna a ozna£ujeme ju ". Na ozna£enie substitú
ií budeme pouºíva´gré
ke písmená.Príklad 3.11. Nasledujú
e dve mnoºiny sú substitú
ie:ff(z)=x; y=zg fa=x; g(y)=y; f(g(b))=zgDe�ní
ia 3.12. Ne
h � = ft1=v1; : : : tn=vng je substitú
ia a E je výraz. Potom E� je výraz, ktorýdostaneme z E tak, ºe sú£asne zameníme v²etky výskyty premennej vi (1 � i � n) v E termom ti.E� nazývame in²tan
ia E.Príklad 3.13. Ne
h � = fa=x; f(b)=y; 
=zg a E = P (x; y; z). Potom E� = P (a; f(b); 
).De�ní
ia 3.14. Ne
h � = ft1=x1; : : : ; tn=xng a � = fu1=y1; : : : ; um=ymg sú dve substitú
ie.Potom zloºenie (kompozí
ia) � a � je substitú
ia (ozna£íme je � Æ �), ktorú dostávame z mnoºinyft1�=x1; : : : ; tn�=xn; u1=y1; : : : ; um=ymg vyne
haním v²etký
h prvkov tj�=xj , pre ktoré tj� = xja v²etký
h prvkov ui=yi taký
h, ºe yi 2 fx1; x2; : : : ; xng.Príklad 3.15. Ne
h � = ft1=x1; t2=x2g = ff(y)=x; z=yg, � = fu1=y1; u2=y2; u3=y3g = fa=x; b=y;y=zg. Potom ft1�=x1; t2�=x2; u1=y1; u2=y2; u3=y3g = ff(b)=x; y=y; a=x; b=y; y=zg. Pretoºe t2� == x2, t2�=x2 (t.j. y=y) musí by´ vyne
hané z mnoºiny. �alej y1 a y2 sú obsiahnuté v fx1; x2g, tedau1=y1 a u2=y2 (t.j. a=x a b=y) musíme vyne
ha´. Takým sp�sobom dostávame �Æ� = ff(b)=x; y=zg.Poznamenávame, ºe kompozí
ia zámen je aso
iatívna a ºe prázdna zámena " je sú£asne ©aváaj pravá identita, t.j. (� Æ�) Æ� = � Æ (� Æ�) a " Æ � = � Æ " pre v²etky �, � a � (zámeny, substitú
ietvoria monoid, t.j. pologrupu s 1).



Vybrané partie z logiky � 21Pri d�kazo
h metódou rezolvent, aby sme mohli identi�kova´ kontrárne dvoji
e literálov, je£asto treba zjednoti´ � uni�kova´ � dva alebo via
ej výrazov, t.j. musíme nájs´ zámenu, ktorám�ºe previes´ nieko©ko výrazov na identi
ké. V ¤al²om sa budeme zaobera´ uni�ká
iou výrazov.De�ní
ia 3.16. Substitú
iu � nazývame uni�kátorom pre mnoºinu fE1; E2; : : : ; Ekg práve vtedy,ke¤ E1� = E2� = � � � = Ek�. Hovoríme, ºe mnoºina fE1; E2; : : : ; Ekg je uni�kovate©ná, ak pre ¬uexistuje uni�kátor.De�ní
ia 3.17. Uni�kátor � pre mnoºinu výrazov nazývame najv²eobe
nej²ím uni�kátorom právevtedy, ak pre kaºdý uni�kátor � pre túto mnoºinu existuje taká substitú
ia �, ºe � = � Æ �.Príklad 3.18. Mnoºina fP (a; y); P (x; f(b))g je uni�kovate©ná, pretoºe substitú
ia � = fa=x;f(b)=yg je jej uni�kátor. 3.3. Uni�ka£ný algoritmusV tejto £asti uvedieme algoritmus uni�ká
ie pre nájdenie najv²eobe
nej²ieho uni�kátora pre ko-ne£nú neprázdnu uni�kovate©nú mnoºinu výrazov. Ke¤ mnoºina nie je uni�kovate©ná, algoritmuszaznamená aj tento fakt.Uvaºujme P (a) a P (x). Tieto dva výrazy nie sú identi
ké. Diferen
ia je v tom, ºe a sa vyskytujev P (a) a x v P (x). Aby sme mohli P (a) a P (x) stotiºni´, najprv musíme nájs´ diferen
iu a potomsa pokúsi´ túto diferen
iu vylú£i´. Pre P (a) a P (x) diferen
ia bude fa; xg. Pretoºe x je premenná,tak x m�ºeme zameni´ na a. Na tom je zaloºená idea uni�ka£ného algoritmu.De�ní
ia 3.19. Diferen£nú mnoºinu neprázdnej mnoºiny výrazovW dostávame tak, ºe nájdemeprvú (z©ava) pozí
iu, na ktorej sa nie pre v²etky výrazy z W na
hádza jeden a ten istý symbola vypí²eme z kaºdého výrazu v W podvýrazy, ktoré sa za£ínajú symbolom, ktorý sa na
hádzana uvaºovanej pozí
ii. Mnoºina D tý
hto podvýrazov sa nazýva diferen£ná mnoºina pre W a jejvýrazy sú termy.Príklad 3.20. Ak W = fP (x; f(y; z)); P (x; a); P (x; g(h(k(x))))g, tak prvá pozí
ia, na ktorej sanie vo v²etký
h výrazo
h z W na
hádzajú rovnaké symboly, je piata, pretoºe v²etky výrazy majúrovnaké prvé 4 symboly, a to �P (x;�. Takým sp�sobom sa diferen£ná mnoºina skladá zo zodpo-vedajú
i
h výrazov (podvýrazov) � pod£iarknutý
h termov, ktoré sa za£ínajú na piatej pozí
ii,teda je to mnoºina ff(y; z); a; g(h(k(x)))g.Uni�ka£ný algoritmusKrok 1. k = 0, W0 = W , �0 = ".Krok 2. Ak Wk je jednotková klauzula, algoritmus zakon£í svoju £innos´: �k je najv²eobe
nej²íuni�kátor pre W . V opa£nom prípade nájdeme Dk � diferen£nú mnoºinu pre Wk .Krok 3. Ak existujú také elementy vk a tk v Dk, ºe vk je premenná, ktorá sa nevyskytuje v tk,tak prejdeme ku kroku 4. V opa£nom prípade algoritmus zakon£uje svoju £innos´: Wnie je uni�kovate©ná.Krok 4. Ne
hWk+1 = Wkftk=vkg a �k+1 = �k Æftk=vkg (poznamenávame, ºeWk+1 = Wk�k+1).Krok 5. Vypí²eme hodnoty pre k + 1 a prejdeme ku kroku 2.Obrázok 3.2. Uni�ka£ný algoritmusPríklad 3.21. Nájdite najv²eobe
nej²í uni�kátor pre W = fP (a; x; f(g(y))); P (z; f(z); f(u))g.(1) �0 = " a W0 = W . Pretoºe W0 nie je jednotková klauzula, tak �0 nie je najv²eobe
nej²íuni�kátor pre W .(2) Diferen£ná mnoºina D0 = fa; zg. V D0 existuje premenná v0 = z, ktorá sa nevyskytujev t0 = a.



22 � Rezolven£ná metóda(3) Ne
h �1 = �0 Æ ft0=v0g = " Æ fa=zg = fa=zgW1 = W0ft0=v0g = fP (a; x; f(g(y))); P (z; f(z); f(u))gfa=zg== fP (a; x; f(g(y))); P (a; f(a); f(u))g(4) W1 nie je jednotková klauzula, na²li sme diferen£nú mnoºinu D1 pre W1, a to D1 == fx; f(a)g.(5) Z D1 dostávame, ºe v1 = x a t1 = f(a).(6) Ne
h �2 = �1 Æ ft1=v1g = fa=zg Æ ff(a)=xg = fa=z; f(a)=xgW2 = W1ft1=v1g = fP (a; x; f(g(y))); P (a; f(a); f(u))gff(a)=xg == fP (a; f(a); f(g(y))); P (a; f(a); f(u))g(7) W2 nie je jednotková klauzula, pretoºe sme na²li diferen£nú mnoºinu D2 pre W2, a toD2 = fg(y); ug. Z D2 dostávame, ºe v2 = u a t2 = g(y).(8) Ne
h�3 = �2 Æ ft2=v2g = fa=z; f(a)=xg Æ fg(y)=ug = fa=z; f(a)=x; g(y)=ugW3 =W2ft2=v2g = fP (a; f(a); f(g(y))); P (a; f(a); f(u))gfg(y)=ug == fP (a; f(a); f(g(y))); P (a; f(a); f(g(y)))g = fP (a; f(a); f(g(y)))g(9) Pretoºe W3 je jednoprvková klauzula, tak �3 = fa=z; f(a)=x; g(y)=ug je najv²eobe
nej²íuni�kátor pre W .Príklad 3.22. Zistite, £i je uni�kovate©ná mnoºina W = fQ(f(a); g(x)); Q(y; y)g.(1) Ne
h �0 = " a W0 = W .(2) W0 nie je jednotková klauzula, pretoºe sme na²li diferen£nú mnoºinu D0 pre W0, a toD0 = ff(a)=yg. Z D0 vieme, ºe v0 = y a t0 = f(a).(3) Ne
h �1 = �0 Æ ft0=v0g = " Æ ff(a)=yg = ff(a)=ygW1 =W0ft0=v0g = fQ(f(a); g(x)); Q(f(a); f(a))g(4) W1 nie je jednotková klauzula, pretoºe nájdeme diferen£nú mnoºinu D1 pre W1, a toD1 = fg(x); f(a)g, a navia
 nemáme prvok, ktorý by bol premennou. Teda uni�ka£nýalgoritmus kon£í svoju £innos´; m�ºeme urobi´ záver, ºeW nie je uni�kovate©ná mnoºina.Poznamenávame, ºe vy²²ie uvedený algoritmus uni�ká
ie vºdy zakon£uje svoju £innos´ pre ©u-bovo©nú kone£nú neprázdnu mnoºinu výrazov, v opa£nom prípade by vznikla nekone£ná postupnos´W�0;W�1;W�2 : : : kone£ný
h neprázdny
h mnoºín, ktorá má tú vlastnos´, ºe kaºdá nasledujú
amnoºina má o jednu premennú menej ako pred
hádzajú
a (skuto£ne: W�k obsahuje vk, noW�k+1ju neobsahuje). No to nie je moºné, pretoºe W obsahuje len kone£ný po£et premenný
h.Na príklade sme ukázali, ºe pre uni�kovate©nú mnoºinu W uni�ka£ný algoritmus nájde naj-v²eobe
nej²í uni�kátor. �e to ide urobi´ vºdy, dokazuje nasledujú
a veta.Veta 3.23 (Uni�ka£ná veta). AkW je kone£ná neprázdna uni�kovate©ná mnoºina výrazov, takuni�ka£ný algoritmus vºdy zakon£uje svoju £innos´ na 2. kroku a posledné �k bude najv²eobe
nej²íuni�kátor pre W .D�kaz: � PretoºeW je uni�kovate©ná mnoºina, tak � ozna£me jej ©ubovo©ný uni�kátor. Induk
iouvzh©adom na k ukáºeme, ºe existuje taká substitú
ia �k, ºe � = �k Æ �k.1Æ Ne
h k = 0. Poloºme �0 = �. Potom � = �0 Æ �0, pretoºe �0 = ".



Vybrané partie z logiky � 232Æ Predpokladajme teraz, ºe � = �k Æ �k platí pre 0 � k � n. Ak W�n je jednotková formula,tak algoritmus uni�ká
ie zakon£uje svoju £innos´ na 2. kroku. Pretoºe � = �n Æ �n, tak �nbude najv²eobe
nej²í uni�kátor pre W . Ak W�n nie je jednotková klauzula, tak uni�ka£nýalgortimus nájde diferen£nú mnoºinu Dn pre W�n. Pretoºe � = �n Æ �n je uni�kátor preW , tak �n musí uni�kova´ Dn. Pretoºe Dn je diferen£ná mnoºina, tak v Dn musí existova´premenná vn.Ne
h tn je ©ubovo©ný iný element r�zny od vn. Pretoºe �n uni�kuje Dn, tak vn�n = tn�n.Ak sa vn vyskytuje v tn, tak sa vn�n vyskytuje v tn�n. No to nie je moºné, pretoºe vn a tn súr�zne a vn�n = tn�n. Z toho vyplýva, ºe vn sa nevyskytuje v tn. Preto sa uni�ka£ný algoritmusnezastaví na 3. kroku, ale prejde ku 4. kroku k mnoºine W�n+1, kde �n+1 = �n Æ ftn=vng.Ne
h �n+1 = �n � ftn�n=vng. Pretoºe vn sa nevyskytuje v tn, taktn�n+1 = tn(�n � ftn�n=vng) = tn�nTakým sp�sobom dostávameftn=vng Æ �n+1 = ftn�n+1=vng [ �n+1 = ftn�n=vng [ �n+1 == ftn�n=vng [ (�n � ftn�n=vng) = �nTo znamená, ºe �n = ftn=vng Æ �n+1. Z toho vyplýva, ºe� = �n Æ �n = �n Æ ftn=vng Æ �n+1 = �n+1 Æ �n+1Preto pre v²etky k � 0 existuje taká substitú
ia �k, ºe � = �k Æ �k.Pretoºe uni�ka£ný algoritmus musí skon£i´ svoju £innos´ a neskon£il ju na 3. kroku, tak musí svoju£innos´ skon£i´ na 2. kroku. Okrem toho, pretoºe � = �k Æ �k pre v²etky k, tak posledná �k budenajv²eobe
nej²ím uni�kátorom pre W , £o sme potrebovali dokáza´. �3.4. Metóda rezolvent pre logiku prvého ráduPo uvedení uni�ka£ného algoritmu m�ºeme rozobra´ metódu rezolvent pre logiku prvého rádu.De�ní
ia 3.24. Ne
h C je klauzula. Ak dva alebo via
ej literálov (s rovnakým znakom predikátu)klauzuly C majú najv²eobe
nej²í uni�kátor �, tak C� sa nazýva spojením C. Ak C� je jednotkováformula, tak sa toto spojenie nazýva jednotkovým spojením.Príklad 3.25. Ne
h C = fP (x) _ P (f(y)) _ :Q(x). Potom prvý a druhý pod£iarknutý literálmajú najv²eobe
nej²í uni�kátor � = ff(y)=xg. Z toho vyplýva, ºe C� = P (f(y)) _ :Q(f(y)) jespojenie C.De�ní
ia 3.26. Ne
h C1 a C2 sú dve klauzuly (nazývame i
h predpoklady), ktoré nemajú ºiadnespolo£né premenné. Ne
h L1 2 C1 a L2 2 C2 sú dva literály. Ak L1 a :L2 majú najv²eobe
nej²íuni�kátor �, tak sa klauzula (C1� � L1�) [ (C2� � L2�)nazýva (binárnou) rezolventou C1 a C2. Literály L1 a L2 sa nazývajú nadbyto£né a m�ºeme i
hvyne
ha´.Príklad 3.27. Ne
h C1 = P (x) _ Q(x) a C2 = :P (a) _ R(x). Pretoºe x vystupuje v C1 a C2,tak zameníme premennú v C2, teda ne
h C2 = :P (a) _ R(y). Vyberme L1 = P (x) a L2 = :P (a).Pretoºe :L2 = P (a), tak L1 a :L2 majú najv²eobe
nej²í uni�kátor � = fa=xg. Z toho vyplýva,ºe (C1� � L1�) [ (C2� � L2�) = (fP (a); Q(a)g � fP (a)g) [ (f:P (a); R(y)g � f:P (a)g) == fQ(a)g [ fR(y)g = fQ(a); R(y)g = Q(a) _ R(y)Takýmto sp�sobom Q(a) _ R(y) je binárna rezolventa C1 a C2. P (x) a :P (a) sú nadbyto£néliterály.De�ní
ia 3.28. Rezolventou predpokladov C1 a C2 je jedna z nasledujú
i
h rezolvent:



24 � Rezolven£ná metóda(1) binárna rezolventa C1 a C2(2) binárna rezolventa C1 a spojenia C2(3) binárna rezolventa spojenia C1 a C2(4) binárna rezolventa spojenia C1 a spojenia C2Poznámka 3.29. Sú moºné aj ohrani£enia na spojenia.Príklad 3.30. Ne
h C1 = P (x) _ P (f(y)) _ R(g(y)) a C2 = :P (f(g(a))) _ Q(b). Spojenie C1je C 01 = P (f(y)) _ R(g(y)). Binárna rezolventa C 01 a C2 je R(g(g(a))) _ Q(b). Z toho vyplýva, ºeR(g(g(a))) _ Q(b) je rezolventa C1 a C2.Pravidlo rezolvent je odvodzova
ie pravidlo, ktoré indukuje rezolventy na mnoºine klauzúl.Toto pravidlo v roku 1965 zaviedol Robinson. Je efektívnej²ie ako pred
hádzajú
e metódy d�ka-zov, napr. ako priama apliká
ia Herbrandovej vety, ktorú pouºil Gilmore a nesk�r Davis a Putman.Okrem toho, metóda rezolvent je úplná, t.j. pri pomo
i pravdla rezu m�ºeme pre ©ubovo©nú ne-splnite©nú mnoºinu získa´ prázdnu klauzulu �. V ¤al²om dokáºeme uvedené tvrdenie.Poznamenávame, ºe ak posledná odvodená klauzula metódou rezolvent je prázdna, tak urobímezáver, ºe mnoºina klauzúl S nie je splnite©ná.Kroky v d�kaze m�ºeme ©ahko vyjadri´ stromom. Strom nazývame stromom odvodenia, t.j.strom odvodenia z mnoºiny S je hore rastú
i strom, pri£om kaºdému jeho visia
emu vr
holupripí²eme klauzulu z S a kaºdému nasledujú
emu vr
holu pripisujeme rezolventu vr
holov (klauzúl)bezprostredne pred
hádzajú
i
h vr
holu. Strom odvodenia nazývame stromom odvodenia klauzulyR, ak je R pripísaná kore¬u stromu. Strom odvodenia je prosto strom, ktorý vyjadruje odvodenie.V d�sledku toho budeme pouºíva´ termíny �odvodenie� a �strom odvodenia� ako zamenite©né.3.5. Úplnos´ metódy rezolventPri d�kaze Herbrandovej vety sme zaviedli pojem sémanti
kého stromu. V tejto £asti budemepouºíva´ sémanti
ký strom na d�kaz úplnosti metódy rezolvent. Skuto£ne, existuje blízka súvislos´medzi sémanti
kým stromom a odvodením pomo
ou rezolvent, £o demon²trujeme nasledujú
impríkladom:Príklad 3.31. Uvaºujme nasledujú
u mnoºinu klauzúl S:(1) P(2) :P _ Q(3) :P _ :QHerbrandovská báza S je fP;Qg. Ne
h T je uzavretý sémanti
ký strom na obr. 3.3(a). T máuzavretý sémanti
ký podstrom T 0 na obr. 3.3(b). Uzol (2) na obr. 3.3(b) je ak
eptujú
im vr
holom.No dva jeho nasledovníky (4) a (5) sú odmietajú
e vr
holy. Klauzuly, ktoré zodpovedajú vr
holom(4) a (5) budú :P _ :Q a :P _ Q v uvedenom poradí. �ahko vidno, ºe tieto dve klauzuly musiama´ kontrárnu dvoji
u literálov a z toho vyplýva, ºe m�ºu by´ predpokladmi pravidla rezu. Akspojíme :P _ :Q a :P _ Q, dostávame :P . Poznamenávame, ºe :P sa odmieta £iasto£nouinterpretá
iou, ktorá zodpovedá vr
holu (2). Ak pridáme k S klauzulu :P , tak budeme ma´uzavretý sémanti
ký strom T 00 pre S[f:Pg, zobrazený na obr. 3.3(
)., kde vr
hol (1) je ak
eptujú
ivr
hol. Sú£asne m�ºe vzniknú´ �, a to aplikovaním pravidla rezu k P a :P . Ak pridáme � doS[f:Pg, dostaneme uzavretý sémanti
ký strom T 000 pre S[f:Pg[f�g, zobrazený na obr. 3.3(d).Opísané �s´ahovanie� sémanti
kého stromu v skuto£nosti zodpovedá nasledujú
emu rezolven£némuodvodeniu pre mnoºinu S = fP;:P _ Q;:P _ :Qg:(4) :P � rezolventa (2) a (3)(5) � � rezolventa (4) a (1)V ¤al²om budeme pouºíva´ uvedenú ideu, aby sme dokázali úplnos´ metódy rezolvent,t.j.zostrojíme uzavretý sémanti
ký strom pre nesplnite©nú mnoºinu klauzúl a postupne spolu s usku-to£¬ovaním metódy rezolvent �s´ahujeme� strom do jedného vr
hola. Sk�r neº dokáºeme vetu oúplnosti, dokáºeme pomo
né tvrdenie.
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P :PQ :Q Q :QT

(a) 

P :P(1)(2) �(4)� �:P _ :Q :P _ Q(5)

T0
(b)

�
P :P(1)(2) (3):P PT00

(
) �
(1)( )S [ f:Pg [ f�gT000

(d)Obrázok 3.3.Lema 3.32. Ne
h C 01 a C 02 sú in²tan
ie C1 a C2 v uvedenom poradí. Ak C 0 je rezolventa C 01 a C 02,tak existuje taká rezolventa C klauzúl C1 a C2, ºe C 0 je in²tan
ia C.D�kaz: � Ak treba, tak premenujeme premenné v C1 a C2 tak, aby C1 a C2 nemali spolo£népremenné. Ne
h L01 a L02 sú literály, ktoré m�ºeme vyne
ha´ a ne
h C 0 = (C 01� � L01�) [ (C 02� �� L02�), kde � je najv²eobe
nej²í uni�kátor L01 a :L02. C 01 a C 02 sú in²tan
ie C1 a C2 v uvedenomporadí. Preto existuje taká substitú
ia �, ºe C 01 = C1� a C 02 = C2�. Ne
h L1i ; : : : ; Lrii sú literály v Ci� zodpovedajú
e L0i, t.j. L1i � = � � � = Lrii � = L0i (i = 1; 2). Ak ri > 1, dostávame najv²eobe
nej²íuni�kátor �i pre fL1i ; : : : ; Lrii g. Ne
h Li = L1i�i (i = 1; 2). Pretoºe �i je najv²eobe
nej²í uni�kátor,tak pre vhodnú substitú
iu � platíL0i = L1i � = L1i (�i Æ �) = (L1i�i)� = Li�teda Li� = L0i. Li je pritom literál v spojení Ci�i pre Ci. Ak ri = 1, tak �i = " a Li = L1i�i. Ne
h� = �1 [ �2. Tak je zrejmé, ºe L0i je in²tan
ia Li.Pretoºe L01 a :L02 sú uni�kovate©né, tak aj L1 a :L2 sú uni�kovate©né. Ne
h � je najv²eobe
-nej²í uni�kátor pre L1 a :L02. Ne
hC = ((C1�)� � L1�) [ ((C2�)� � L2�) == ((C1�)� � (fL11; : : : ; Lr11 g�)�) [ ((C2�)� � (fL12; : : : ; Lr22 g�)�) == (C1(� Æ �)� fL11; : : : ; Lr11 g(� Æ �)) [ (C2(� Æ �) � fL12; : : : ; Lr22 g(� Æ �))C je rezolventa C1 a C2. Je zrejmé, ºe C 0 je in²tan
ia C, pretoºeC 0 = (C 01� � L01�) [ (C 02� � L02�) == ((C1�)� � (fL11; : : : ; Lr11 g�)�) [ ((C2�)� � (fL12; : : : ; Lr22 g�)�) == (C1(� Æ �)� fL11; : : : ; Lr11 g(� Æ �)) [ (C2(� Æ �)� fL12; : : : ; Lr22 g(� Æ �))a � Æ� je v²eobe
nej²í ako � Æ �, pretoºe � je v²eobe
nej²í ako � a � je v²obe
nej²í ako �. Tým smedokázali lemu. �



26 � Rezolven£ná metódaVeta 3.33 (Úplnos´ rezolven£nej metódy). Mnoºina klauzúl S nie je splnite©ná práve vtedy,ke¤ existuje odvodenie prázdnej klauzuly � z S.D�kaz: � (=)) Predpokladajme, ºe S nie je splnite©ná. Ne
h A = fA1; A2; A3 : : : g je mnoºinaatómov S. Ne
h T je uzavretý sémanti
ký strom uvedený na obr. 3.4.

... ... ... ...

A1 :A1A2 :A2 A2 :A2
Obrázok 3.4.Pod©a Herbrandovej vety (I. variant) T obsahuje kone£ný uzavretý sémanti
ký strom T 0. Aksa T 0 skladá len z jedného vr
hola (kore¬a), tak � musí patri´ do S, pretoºe ºiadna iná klauzulanem�ºe by´ odmietnutá v koreni sémanti
kého stromu. Je zrejmé, ºe v tom prípade nám vetaplatí. Predpokladajme, ºe sa T 0 skladá z via
ej ako jedného vr
hola. Potom T 0 má aspo¬ jedenak
eptujú
i vr
hol. Keby to tak totiº nebolo, tak by mal kaºdý vr
hol ako potomka (nasledovníka)aspo¬ jeden neodmietajú
i vr
hol. V tom prípade by sme v²ak mohli nájs´ nekone£nú vetvuvy
hádzajú
u z T 0, £o je v spore s kone£nos´ou T 0.Ne
h v je ak
eptujú
i vr
hol v T 0 a ne
h v1 a v2 sú odmietajú
e vr
holy, ktoré leºia bez-prostredne niº²ie. Ne
h I(v) = fm1;m2; : : : ;mng, I(v1) = fm1;m2; : : : ;mn;mn+1g, I(v2) == fm1;m2; : : : ;mn;:mn+1g. Pretoºe v1 a v2 sú odmietajú
e vr
holy a v neodmietajú
i vr
hol,tak musia existova´ dve základné in²tan
ie C 01 a C 02 klauzúl C1 a C2 také, ºe C 01 a C 02 neplatia vI(v1) a I(v2) v uvedenom poradí, no C 01 a C 02 sa nezamietajú I(v). Z toho vyplýva, ºe C 01 musíobsahova´ :mn+1 a C 02 musí obsahova´ mn+1. Ne
h L01 = :mn+1 a L02 = mn+1. Ak vyne
hámeliterály L01 a L02, m�ºeme dosta´ rezolventu C 0 pre C 01 a C 02, a to práve je C 0 = (C 01�L01)[(C 02�L02).C 0 musí by´ nepravdivá v I(v), pretoºe (C 01�L01) a (C 02�L02) neplatia v I(v). Pod©a pred
hádzajú-
ej lemy existuje taká rezolventa C z C1 a C2, ºe C 0 je základná in²tan
ia C. Ne
h T 00 je uzavretýsémanti
ký strom pre (S [ fCg), ktorý dostaneme z T 0 vyne
haním ©ubovo©ného vr
hola alebohrany, ktorá sa na
hádza niº²ie neº prvý vr
hol, v ktorom sa rezolventa C 0 odmieta. Je zrejmé, ºepo£et vr
holov v T 00 je men²í ako po£et vr
holov v T 0. Ak aplikujeme vy²²ie uvedený postup opä´na T 00, dostávame ¤al²iu rezolventu v (S [ fCg) a m�ºeme dosta´ iný sémanti
ký strom s men²ímpo£tom vr
holov. Tento postup opakujeme dovtedy, pokým nevznikne uzavretý sémanti
ký strom,ktorý sa skladá z len z kore¬ového vr
hola. To je moºné len vtedy, ak je odvodená �. Z tohovyplýva, ºe existuje odvodenie � z S.((=) Obrátene, predpokldajme, ºe existuje odvodenie � z S. Ne
h R1; R2; : : : ; Rk sú re-zolventy v odvodení. Predpokladajme, ºe S je splnite©ná na modeli M . No ak model vyhovujeklauzulám C1 a C2, tak musí vyhovova´ aj ©ubovo©nej i
h rezolvente. Z toho vyplýva, ºe M vyho-vuje klauzulám R1; R2; : : : ; Rk. No posledné tvrdenie nem�ºe plati´, pretoºe jedna z uvaºovaný
hrelovent je �. Preto S musí by´ nesplnite©ná, £o sme mali dokáza´. �Príklad 3.34. Uvaºujme nasledujú
u mnoºinu formúl:F1: (8x)�C(x)! (W (x) ^ R(x))�F2: (9x)�C(x) ^ Q(x)�G: (9x)�Q(x) ^ R(x)�Na²ou úlohou je dokáza´, ºe G je logi
kým d�sledkom F1 a F2.



Vybrané partie z logiky � 27Rie²enie: Vytvoríme pre F1, F2 a :G ²tandardnú formu a dostaneme nasledujú
i
h 5 klauzúl(1) :C(x) _ W (x) z F1(2) :C(x) _ R(x) z F1(3) C(a) z F2(4) Q(a) z F2(5) :Q(x) _ :R(x) z :GTáto mnoºina klauzúl nie je splnite©ná. M�ºeme to dokáza´ pomo
ou metódy rezolvent nasledu-jú
im sp�sobom.(6) R(a) � rezolventa (3) a (2)(7) :R(a) � rezolventa (5) a (4)(8) � � rezolventa (7) a (6)Preto je G logi
kým d�sledkom F1 a F2.3.6. Stratégia vymazávaniaV pred
hádzajú
ej £asti sme dokázali úplnos´ metódy rezolvent. Táto metóda je efektívnej²iaako metódy, ktoré sa pouºívali predtým. No nie príli² rozváºne aplikovanie pravidla rezu m�ºeindukova´ ve©ké mnoºstvo zbyto£ný
h klauzúl. Na to, aby sme sa o tom presved£ili, uvediemejednodu
hý príklad:Majme mnoºinu klauzúl S = fP _ Q;:P _ Q;P _ :Q;:P _ :Qg. Metódou rezolvent 
h
emeukáza´, ºe mnoºina S nie je splnite©ná.Apliká
ia metódy rezolvent pre mnoºinu S spo£íva vo vy£íslení v²etký
h rezolvent v²etký
hdvojí
 klauzúl S, pridaní tý
hto rezolvent k mnoºine S, ur£ení v²etký
h ¤al²í
h rezolvent a vopakovaní tohto pro
esu dotia©, pokým nedostaneme prázdnu klauzulu �. To znamená, ºe tvorímesekven
ie S0; S1; S2; : : : , kdeS0 = SSn = �rezolventy C1 a C2 j C1 2 �S0 [ � � � [ Sn�1� ^ C2 2 Sn�1	 n = 1; 2; : : :Táto metóda sa nazýva metóda nasýtenia úrovne. Inými slovami, postupujeme nasledovne: Najprvzapí²eme klauzuly �S0 [ � � � [ Sn�1� v istom poradí a potom vy£íslime rezolventy porovnávajú
kaºdú klauzulu C1 2 �S0 [ � � � [ Sn�1� s klauzulou C2 2 Sn�1, ktorá sa na
hádza po C1. Ke¤utvoríme rezolventu, pripí²eme ju na konie
 zoznamu, ktorý bol dovtedy vytvorený. Ak pouºijemeuvedenú metódu na mnoºinu klauzúl S z príkladu, zostrojíme sekven
ie S0; S1; S2; : : : , obsahujú
e38 klauzúl a ako 39. sa objaví prázdna klauzula �.Vytvorili sme ve©a klauzúl, ktoré v na²om prípade nepotrebujeme, t.j. sú nadbyto£né. M�ºuto by´ napríklad tautológie. Pretoºe tautológia je pravdivá v ©ubovo©nej interpretá
ii, tak ak juvyne
háme z nejakej nesplnite©nej mnoºiny klauzúl, mnoºina zostávajú
i
h klauzúl je nesplnite©ná.Z toho vyplýva, ºe tautológia nemá vyplyv na výsledok, a teda nie je potrebné ju vytvára´. Akju teda vytvoríme, tak ju treba vyne
ha´. V opa£nom prípade m�ºe dáva´ s inými klauzulaminadbyto£né klauzuly (jedna a tá istá klauzula vznikne via
krát). �alej m�ºu vznika´ niektoréklauzuly via
krát, aj ke¤ nepouºijeme tautológiu. Vzniká nám teda ve©a zbyto£ností. Na rie²enienadbyto£nosti rozoberieme v ¤al²om stratégiu vymazávania.De�ní
ia 3.35. Klauzula C je podklauzulou D (alebo pohl
uje D) práve vtedy, ke¤ existuje takásubstitú
ia �, ºe C� � D. D nazývame nadklauzulou C.Príklad 3.36. Ne
h C = P (x) a D = P (a) _ Q(a). Ak � = fa=xg, tak C� = P (a). PretoºeC� � D, tak C je podklauzula D.Poznamenávame, ºe ak D je identi
ké C alebo D je in²tan
ia C, tak D je nadklauzula C.Stratégia vymazávania spo£íva vo vyne
hávaní ©ubovo©ný
h tautológií a nadklauzúl, kde je tomoºné. Úplnos´ vymazávania závisí od toho, ako sa vyne
hávajú tautológie a nadklauzuly.



28 � Rezolven£ná metódaRobíme to nasledujú
im sp�sobom (pouºívame ju spolu s metódou nasýtenia úrovne): Najprvvypisujeme klauzuly �S0 [ � � � [ Sn�1� v istom poradí. Potom vypisujeme rezolventy tak, ºe po-rovnávame kaºdú klauzulu C1 2 �S0 [ � � � [ Sn�1� s klauzulou C2 2 Sn�1, ktorá je zapísaná poC1. Ke¤ získame rezolventu, tak ju zapisujeme na konie
 zoznamu, ak nie je tautológia a nie jepohltená ºiadnou klauzulou zo zoznamu. V opa£nom prípade ju vyne
hávame.Príklad 3.37. Príklad na pouºitie tohto postupu je na obr. 3.5.S = S0: (1) P _ Q(2) :P _ Q(3) P _ :Q(4) :P _ :QS1: (5) Q z (1) a (2)(6) P z (1) a (3)(7) :P z (2) a (4)(8) :Q z (1) a (4)S2: (9) � z (5) a (8)Obrázok 3.5.Poznamenávame, ºe tento zoznam je omnoho krat²í ako zoznam, ktorý sme vytvorili predtým.Z toho vyplýva, ºe stratégia vymazávania m�ºe zlep²i´ efektívnos´ metódy rezolvent.Aby sme mohli pouºi´ stratégiu vymazávania, musíme vedie´ rie²i´ otázku, £i je klauzula tau-tológia alebo £i je jedna z klauzúl podklauzulou druhej. �ah²ie sa ur£uje, £i je klauzula tautológia� sta£í preveri´ výskyt kontrárny
h dvojí
. No preverenie podklauzúl nie je také jednodu
hé.Opí²eme algoritmus preverenia vlastnosti �by´ podklauzulou�.Ne
h C a D sú klauzuly. Ne
h �fa1=x1; : : : ; an=xng, kde x1; : : : ; xn sú premenné, ktoré savyskytujú v D a a1; : : : ; an sú nové r�zne kon²tanty, ktoré sa nevyskytujú v C alebo D. PoloºímeD = L1 _ L2 _ � � � _ Lm. Potom D� = L1� _ L2� _ � � � _ Lm�. Poznamenávame, ºe D� je základnáklauzula. :D� = :L1� ^ � � � ^ :Lm�. Nasledujú
i algoritmus preveruje, £i je C podklauzulou D.Algortimus pohlteniaKrok 1. Ne
h W = f:L1�; : : : ;:Lm�g.Krok 2. Kladieme k = 0 a U0 = fCgKrok 3. Ak Uk obsahuje �, tak konie
: C je podklauzula D. V opa£nom prípade kladiemeUk+1 = frezolventa C1 a C2 j C1 2 Uk ^ C2 2Wg.Krok 4. Ak Uk+1 je prázdna mnoºina ;, tak konie
: C nie je podklauzula D. V opa£nom prípadekladieme k = k + 1 a prejdeme ku kroku 3.Obrázok 3.6. Algoritmus pohlteniaPoznamenávame, ºe v tomto algoritme je kaºdá klauzula v Uk+1 o jeden literál krat²ia akoklauzula v Uk, z ktorej sme ju dostali. Preto sa v postupnosti U0; U1; : : : musí vyskytnú´ mnoºina,ktorá obsahuje � alebo prázdna mnoºina. Algoritmus pohltenia je korektný, t.j. C je podklauzulaD práve vtedy, ke¤ algoritmus zakon£uje prá
u na 3. kroku. To moºno dokáza´ nasledujú
imsp�sobom.D�kaz: � (1) Ak C je podklauzula D , tak existuje taká substitú
ia �, ºe C� � D. Z toho vyplýva,ºe C(� Æ �) � D�. Takým sp�sobom literály C(� Æ �) m�ºeme vyne
ha´ pouºitím jednotkový
h



Vybrané partie z logiky � 29základný
h klauzúl voW . C(�Æ�) je in²tan
ia C. Z toho vyplýva, ºe literály v C m�ºeme vyne
ha´pouºitím jednotkový
h klauzúl voW . To znamená, ºe nakonie
 nájdeme Uk, obsahujú
u �. Pretoalgoritmus zakon£uje prá
u na 3. kroku.(2) Obrátene, ak algoritmus zakon£uje prá
u na 3. kroku, tak dostávame odmietnutie, ako naobr. 3.7, kde B0; : : : ; Bk sú klauzuly z W , R1 je rezolventa C a B0 a Ri je rezolventa Ri�1 a Bi�1pre i = 2; : : : ; r. Potom C(�0 Æ �1 Æ � � � Æ �r) = f:B0;:B1; : : : ;:Brg � D�.

Æ�R2R1C BrB1B0
Obrázok 3.7.Ne
h � = �0 Æ �1 Æ � � � Æ �r. Potom C� � D�. Ne
h � je substitú
ia, ktorú dostaneme z �zámenou v kaºdom komponente �, a to tak, ºe ai zameníme xi pre i = 1; : : : ; n. Potom C� � DZ toho vyplýva, ºe C je podklauzula D, £o bolo treba dokáza´.Príklad 3.38. Ne
h C = :P (x) _ Q(f(x); a) a D = :P (h(y)) _ Q(f(h(y)); a) _ :P (z). Zistite,£i C je podklauzula D.Rie²enie:(1) y a z sú premenné v D. Ne
h � = fb=y; 
=zg. Poznamenávame, ºe b a 
 sa nevyskytujúv C a D. Potom D� = :P (h(b)) _ Q(f(h(b)); a) _ :P (
). Preto :D� = P (h(b)) ^^ :Q(f(h(b)); a) ^ P (
). Z toho vyplýva, ºeW = fP (h(b));:Q(f(h(b)); a); P (
)gU0 = f:P (x) _ Q(f(x); a)g(2) Pretoºe U0 neobsahuje �, tak dostávame:U1 = fQ(f(h(b)); a);:P (h(b)); Q(f(
); a)g(3) Pretoºe U1 nie je prázdna a neobsahuje �, tak dostaneme U2 = f�g.(4) Pretoºe U2 obsahuje �, tak algoritmus kon£í svoju £innos´, m�ºeme teda urobi´ záver,ºe C je podklauzula D.Príklad 3.39. Ne
h C = P (x; x) a D = P (f(x); y) _ P (y; f(x)). Zistite, £i C je podklauzula D.Rie²enie:(1) x a y sú premenné v D. Vyberieme nové kon²tanty a, b r�zne od ©ubovo©ný
h kon²tánt vC a D. Ne
h � = fa=x; b=yg. Potom D� = P (f(a); b) _ P (b; f(a)). :D� = :P (f(a); b) ^^ :P (b; f(a)). Takýmto sp�sobomW = f:P (f(a); b);:P (b; f(a))gU0 = fP (x; x)g(2) Pretoºe U0 neobsahuje �, tak dostanemeU1 = ;



30 � Rezolven£ná metóda(3) Pretoºe U1 je prázdna, tak algoritmus kon£í svoju £innos´ a m�ºeme urobi´ záver, ºe Cnie je podklauzula D.3.7. Niektoré príklady na pouºitie metódy rezolventPríklad 3.40. Majme formuly(1) P ! S(2) S ! U(3) P(4) UMáme dokáza´, ºe (4) vyplýva z (1), (2) a (3).Rie²enie: Najsk�r vyjadríme v²etky tvrdenia v ²tandardnej forme. Takým sp�sobom dostávame(1') :P _ S(2') :S _ U(3') P(4') UZamietnutím dokáºeme, ºe U je logi
ký d�sledok z (10), (20), (30). Urobíme negá
iu (40) a dostávamenasledujú
i d�kaz:(1) :P _ S(2) :S _ U(3) P(4) :U � negá
ia záveru(5) S � rezolventa (3) a (1)(6) U � rezolventa (5) a (2)(7) � � rezolventa (6) a (4)Príklad 3.41.� Predpoklad: �tudenti sú ob£ania.� Záver: Hlasy ²tudentov sú hlasy ob£anov.Rie²enie: Ne
h� S(x) ozna£uje �x je ²tudent�� C(x) ozna£uje �x je ob£an�� V (x; y) znamená �x je hlas y�Takým sp�sobom m�ºeme napísa´:� Predpoklad: (8y)�S(y)! C(y)�� Záver: (8x)�(9y)(S(y) ^ V (x; y))! (9y)(C(z) ^ V (x; z))��ubovo©ný hlas m�ºeme priradi´ ²tudentovi alebo inému ob£anovi. �tandardná forma predpokladuje: (1) :S(y) _ C(y)�alej, pretoºe :�(8x)�(9y)(S(y) ^ V (x; y))! (9y)(C(z) ^ V (x; z))�� == :�(8x)�(8y)(:S(y) _ :V (x; y)) _ (9z)(C(z) ^ V (x; z))�� == :�(8x)(8y)(9z)�:S(y) _ :V (x; y) _ (C(z) ^ V (x; z))�� == (9x)(9y)(8z)�S(y) ^ V (x; y) ^ �:C(z) _ :V (x; z)��dostávame tri klauzuly pre negá
iu záveru:(2) S(b)



Vybrané partie z logiky � 31(3) V (a; b)(4) :C(z) _ :V (a; z)D�kaz zakon£ujeme nasledujú
im sp�sobom:(5) C(b) � z (1) a (2)(6) :V (a; b) � z (4) a (5)(7) � � z (3) a (6)Predpokladajme, ºe b je ²tudent, a je hlas ²tudenta b, a nie je hlas ºiadneho ob£ana. Pretoºe b je²tudent, b je ob£an. Okrem toho, a nem�ºe by´ hlas b, pretoºe b je ob£an. A to nie je moºné.


