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KAPITOLA 1
Sémantika formaiil logiky prvého radu

1.1. Interpretacia formil v logike prvého radu

Vo vyrokovej logike je interpretéicia pripisanie pravdivostnej hodnoty elemetarnym formuldm
— logickym premennym. V logike prvého radu musime urobit viac, pretoze formuly su zlozitejsie
objekty ako vo vyrokovej logike. Na to, aby sme ur¢ili interpretaciu pre formuly logiky prvého
rddu, musime urcit predmetova oblast — oblast hodnot predmetovych premennych a konstant —
univerzum a vhodne interpretovat funkéné a predikatové symboly, ktoré sa vyskytujia vo formule.

Struc¢ne povedané, interpretacia formuly A logiky prvého radu sa sklada z neprazdnej predme-
tovej oblasti (univerza) — mnoZiny individui (niekedy pre fiu pouZivame oznacenie D alebo M) a
z uréenia hodnot vSetkych kongtant, funkénych symbolov a predikatovych symbolov, vyskytujacich
sa v A. Teda kazdej konStante priradime niektory element z D, kazdému n-arnemu funkénému
symbolu priradime zobrazenie z D" do D (poznamenavame, 7e D" = {(xi,za,...,2,) | 1 €
€ D,z5 € D,...,z, € D}) a kazdému n-arnemu predikdtovému symbolu priradime zobrazenie
D™ — {0,1}. Niekedy, aby sme obratili pozornost na D, hovorime o interpretacii formuly na D.

Ked hladame ,hodnotu”, t.j. uréujeme pravdivostnii hodnotu formuly v interpretacii na ob-
lasti D, ,(Vx)” interpretujeme ako ,pre vSetky prvky = z D”, ,(3z)” ako ,existuje prvok = z D”.
Pre kazdu interpretaciu formuly na oblasti D formula méze nadobudntf pravdivostni hodnotu
1 — pravda alebo 0 — nepravda v sulade so znadmymi pravidlami vyrokovej logiky. V pripade
kvantifikovanych vyrokov je situacia obdobnaé.

Poznamenavame, ze formula obsahujica volné premenné nemdze nadobudnaf pravdivostnu
hodnotu. V dalsom budeme predpokladat, ze formula bud neobsahuje volné premenné, alebo
volné premenné uvazujeme ako konstanty.

V logike prvého radu je nekonecne vela oblasti, teda vo vieobecnosti povedané, mame neko-
necne vela interpretécii formuly. Z toho vyplyva, Ze na rozdiel od vyrokovej logiky, nemozeme
dokézat veobecnu platnost — tautologié¢nost alebo nesplnitelnost formuly ohodnotenim formuly
pre vSetky mozné interpretdcie. NaSou tlohou bude uviest procedury na preverenie nesplnitel-
nosti formul v logike prvého rddu. Aby sme zjednodusili procedury dokazov, budeme pracovat s
formulami, ktoré sa vyjadrené prefixovou norméalnou formou, t.j. v tvare

kde kazdé (Q;z;) (i = 1,...,n) je alebo (Vx;) alebo (3x;) a M je formula, neobsahujica kvantifi-
katory. (Q1z1) -+ (Qnxy) sa nazyva prefiz a M matica formuly, jadro formuly. (Odteraz budeme
M pouzivat len na oznacenie matice a nie univerza, t.j. na oznacenie oblasti interpretacie budeme
pouzivat vylutne symbol D.) V dalsom budemem pouZzivat oznacenie A = B, ak A a B nado-
budajt rovnaké pravdivostné hodnoty pri l'ubovolnej interpretacii. Niektoré ekvivalentné dvojice
formil uz pozname; uvedieme tie, ktoré obsahuju kvantifikatory.

Nech A je formula, ktora obsahuje volnt premennt z (budeme to oznaovat A(z)) a nech B
je formula, ktora neobsahuje . Potom mame nasledujice dvojice ekvivalentnych formul, kde @ je
bud ,.V’ alebo ,,3":

(Qz)A(z) V B = (Qz)(A(z) V B) (1a)
(Qz)A(z) A B = (Qz)(A(z) A B) (1b)
—(Vz)A(z) = (J2)-A(x) (2a)
—(3x)A(z) = (Vz)-A(x) (2b)
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Zakony (1la) a (1b) su zrejme pravdivé, pretoZe B neobsahuje z, a teda moZe byt uvedena do
oblasti posobenia kvantifikitora Q). Zakony (2a), (2b) nie je tazké dokazat: Nech I je l'ubovolna
interpretacia s oblastou D. Ak —(Vx)A(xz) je pravdivav I, tak (Vo) A(z) neplati v I. To znamen4, Ze
existuje taky prvok a v D, Ze A(a) neplati, t.j. =A(a) plati v I, teda (Iz)—A(x) plati v I. Z druhej
strany, ak —(Vz)A(z) neplati v I, tak (Vz)A(z) plati v I. To znamend, ze A(z) plati pre kazdy
element z € D, a teda (3z)—A(x) neplati v I. Pretoze =(Vx)A(z) a (3z)-A(x) vzdy nadobudaju
jednu a tu ista hodnotu pre l'ubovolnt interpretaciu, tak podla definicie ~(Vz)A(z) = (3z)-A(x).
Zakon (2a) je dokdzany. Analogicky moZzeme dokazat zakon (2b).
Predpokladajme, 7ze A(x) a B(z) su dve formuly, ktoré obsahuju = volne. Potom

(Vz)A(z) A (Vz)B(z) = (Vz)(A(z) A B(z)) (3a)

(F2)A(z) vV (3z)B(z) = (3z)(A(z) V B(z)) (3b)
t.j. kvantifikdtor V a kvantifikitor 3 mozeme rozdelovat podla A, resp. V. Kvantifikdtor V a kvan-
tifikdtor 3 nemoZzeme rozdelovat podla V, resp. A, t.j.

(Vz)A(z) Vv (Vz)B(z) # (V2)(A(z) V B(z))

(F2)A(z) A 3z)B(z) £ (3z)(A(z) A B(z))
Na overenie stadi vziat D = {a, b} a vhodne definovat pravidovost formual A(x) a B(z).

V podobnych pripadoch musime postupovat §pecidlnymi sposobmi. Pretoze kazda viazana

premenné vo formule sa moze uvazovat ako miesto pre zamenu [ubovolnej premennej, tak kazda
viazand premenni  modZzeme premenovat na z a formula (Vz)B(z) prejde do formuly (Vz)B(z),

t.j. (Va)B(z) = (Vz)B(z). Predpokladame, 7e vyberieme premennt, ktora sa nevyskytuje v A(z).
Potom

(Vx)A(z) V (Vz)B(z) = (Vo)A(z) VvV (V2)B(z)
(tak, ze nahradime vSetky z, vyskytujtce sa v (Vz)B(z))
= (Vz)(Vz)(A(z) V B(2)) (podla (1a))

Analogicky dostavame

(Fz)A(z) A (Fz)B(z) = (Fz)A(z) A (32)B(z)
(tak, Ze nahradime vSetky z, vyskytujuce sa v (3z)B(z))
= (32)(32)(A(z) A B(2)) (podla (1b))

Teda, pre tieto dva pripady vzdy moZzeme vyniest vSetky kvantifikitory vo formule nalavo. Vo
vSeobecnom pripade dostavame

(Qz)A(z) V (Q22)B(2) = (Qi2)(Q22) (A(z) V B(2)) (4a)
(Qs2)A(z) A (Qaz)B(2) = (Q32)(Qaz) (A(z) A B(2)) (4b)
kde @1, @2, Q3 a Q4 st ,,V” alebo ,,3” a z nevystupuje v A(z). Ak Q; = Q2 =FaQ3=Q4 =V, tak

netreba premenovat premennt z v (Q22)B(x) alebo (Q4x)B(z). V tomto pripade modzeme priamo
pouzit formuly (3a), (3b). Ak pouZijeme zndme zdkony, mozeme kazdt formulu transformovat na

prefixovy normélny tvar. Uvedieme stru¢ne algoritmus na takuto transforméciu:

Krok 1. Odstranenie ekvivalencii a implikacii:

A< B=(A— B) A (B— A)
A—-B=-AV B
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Krok 2. Odstranenie dvojitej negicie a presun negacie k formule:

(AVB)—ﬂA/\ﬂB
~(A A B)=-AV -B

=(Vo)A(z) = (Fz)-A(x)
=(3r)A(z) = (V2)-A(2)

Krok 3. Premenovanie viazanych premennych, ak je to nevyhnutné.
Krok 4. PouzZijeme zakony

(Qz)A(z) vV B = (Qz)(A(z) V B)
(Qz)A(z) A B = (Qz)(A(z) A B)
(Vz)A(z) A (Vz)B(z) = (Vz)(A(z) A B(z))
(F2)A(z) vV (3z)B(z) = (3z)(A(z) V B(z))
(Qz)A(z) V (Q22)B(2) = (Q12)(Q22) (A(z) V B(2))
(Qs2)A(z) A (Qaz)B(2) = (Q32)(Qaz) (A(z) A B(2))

kde premenné z sa nevyskytuje vo formule A(x).

Priklad 1.1.

e Vo formule (
e Vo formule (

Priklad 1.2.

Vz)P(z,y) je premenné x viazand a premennd y volna.
A4

va) (%) ((32) (P(@,2) A P(y,2)) = (3u)Q(,y,u)) =

= (Vx)(Vy (—‘(32’)(13(:6,2) A P(y,z)) V (Eu)Q(az,y,u)) =
vy) ((V2) (=P(z.2) V ~P(y,2)) V Gu)Q(z,y,u)) =

z)P(z,y) A (Vy)Q(y) je y aj volné aj viazana premenné.
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KAPITOLA 2

Herbrandova veta

Mnohé tlohy sa dajua riesit pomocou dokazov — odvodenim teorém. Dolezitou ulohou logiky
je aj §tudium mechanickych precedur hfadania dokazov (odvodeni) teorém. Poznamenévame, Ze
hladanie vSeobecnej rozhodnutelnej proceddry na preverenie toho, ¢i dana formula je tautolégia
alebo nie je, patri k starym tuloham. G. Leibniz (1646-1716) bol prvy, kto sa snazil najst taki-
to proceddru. Na hranici 20. storo¢ia sa pokugal najst takiato procediru Peano, dalej to bola
Hilbertova §kola okolo roku 1920. To pokracovalo, pokym A. Church a A. M. Turing (1936) nezé-
visle nedokézali, Ze neexistuje Zziadna vieobecne rozhodnutelna procedura, teda Ziadny algoritmus,
preverujuci tautologi¢nost formul v logike prvého radu. Existuju v8ak algoritmy néjdenia dokazu,
ktoré mozu potvrdit, ze formula je tautologia, ak skuto¢ne je tautologiou. Pre formuly, ktoré nie si
tautologiami tieto algoritmy vo vSeobecnosti povedané nezakoncuju svoju ¢innost. Ak berieme do
uvahy vysledok Churcha a Turinga, je to to najlepsie, ¢o mozeme ocakavat od algoritmu najdenia
dokazu.

Vyznamny vklad do teorie automatického dokazovania teorém vniesol Herbrand (1930). Herb-
rand rozpracoval algoritmus najdenia interpreticie, ktord vyvracia dani formulu. Ak vSak dana
formula je tautologia, potom neexistuje taka interpretacia a algoritmus zakon¢uje svoju ¢innost
za konecény pocet krokov. Herbrandova metéda tvori zaklad automatickych procedir pre najdenie
dokazu (odvodenia) teorém.

Gilmore (1960) ako jeden z prvych realizoval procedtru navrhnuti Herbrandom na pocitadi.
Formula je tautologiou prave vtedy, ked jej negacia je nesplnitelna. Jeho program je urfeny na
odhalenie nesplnitelnosti negacie danej formuly. Poc¢as uskuto¢iiovania jeho programu sa indukuji
logické formuly, u ktorych sa pravidelne preveruje nesplnitelnost. Ak je negacia danej formuly
nesplnitelné, tak program nakoniec zaznamené tento fakt. Gilmoreho program efektivne pracoval
pre dokazy jednoduchych formul, no stretol sa s velkymi tazkostami pri dokazoch zlozitejsich formul
logiky prvého radu. Pozorné §tudium jeho programu ukézalo, 7e metdda preverenia nesplnitelnosti
logickych formul je neefektivna. Gilmoreho metodu zlepsil Davis s Putnamom (1960) niekolko
mesiacov po tom, ¢o bola opublikované, no rovnako ich zlepSenie bolo este nedostato¢né. Mnohé
tautologie logiky prvého radu sa eSte nedaji na pocitaci dokazat za rozumny ¢as.

Hlavny skok urobil Robinson (1965-1968), ktory zaviedol metddu rezolvent. Procedtra néj-
denia dokazu rezolvenénou metdédou je omnoho efektivnejSia ako Tubovolnéa procedira opisané
predtym. Po zavedeni rezolven¢nej metddy boli rozpracované aj d'alsie stratégie za ucelom zvyse-
nia jej efektivnosti. My budeme rozoberat dokaz Herbrandovej vety a vylozime metédu rezolvent.

2.1. Skolemovské standardné formy

Procediry néjdenia dokazu Herbrandovou metédou alebo metédou rezolvent st v skuto¢nosti
procedirami najdenia vyvratenia, t.j. namiesto dokazu tautologi¢nosti formuly sa dokazuje, Ze
jej negéacia je nesplnitelna. To je len otazka vhodnosti — pri pouzivani procedur vyvratenia
sa v8eobecnost nestraca. Procedury vyvratenia aplikujeme na Standardni formu formuly, ktora
zaviedli Davis a Putnam. V podstate Davis a Putnam pouzili nasledujice tvrdenia:

(1) Formula logiky prvého radu moze byt vyjadrena v prefixovej normalnej forme, v ktorej
matica neobsahuje 7iadne kvantifikdtory a prefix je postupnost kvantifikitorov.

(2) Pretoze matica neobsahuje kvantifikitory, moze byt vyjadrend v konjunktivnej normalnej
forme.

(3) Zachovéavajtc nesplnitelnost formul, moZeme v nej eliminovat existenéné kvantifikdtory
pomocou pouZzitia skolemouvskijch funkcii.

4
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Nech sa formula A nachadza v prefixovom normélnom tvare (Q1z1) - - - (Qnz,) M, kde M je kon-
junktivna normalna forma. Predpokladajme, Ze @), je existen¢ny kvantifikdtor v prefixe

(Quz1) -+ (Quan) (1 <7 <n)

Ak ziaden kvantifikdtor ,,V” nestoji v prefixe vlavo od @, vyberieme konstantu ¢, roznu od inych
kon§tant, vyskytujacich sa v M, zamenime vSetky vyskyty premennej z,, vyskytujice sa v .M

kon§tantou ¢ a vy€iarkneme (Q,z,) z prefixu. Ak Qs,,...,Qs,, je zoznam vietkych kvantifikitorov
V", ktoré vystupuji vlavo od @, (1 < s1 < 89 < -+ < 85, < 1), vyberieme novy m-miestny
funkény symbol f rozny od inych funkénych symbolov, zamenime vietky z, za f(zs,,...,Zs,,)

a vyCiarkneme (Q,z,) z prefixu. Tento proces zopakujeme pre vSetky kvantifikatory ,, 3’ v prefixe:
posledna z dosiahnutych formul je skolemovskd Standardnd forma — skratene Standardnd forma
formuly A. KonStanty a funkcie, ktoré sme pouzili na zdmenu premennych kvantifikdtora existencie,
sa nazyvaju skolemouvské funkcie.

Priklad 2.1. Najdite standardnid formu formuly
() (Vy) (V2) (Fu) (Vo) Gw) P(z, y, 2, u, v, w)

Riegenie: V tejto formule vIavo od (3z) niet vSeobecnych kvantifikitorov, vlavo od (u) sa (Vy)
a (Vz) a vlavo od (Jw) st (Vy), (Vz) a (Yv). Z toho vyplyva, Ze premennt 2 zamenime konstantou

a, premennd u binarnou funkciou f(y,z) a premennt w ternarnou funkciou g(y,z,v). Tymto
sposobom dostavame nasledujicu Standardnd formu vyssie uvedenej formuly:

(Vy)(Vz)(Yv)P(a,y, 2, f(y,2),v,9(y, 2,v))

Priklad 2.2. Najdite standardnu formu pre formulu
(v2)E)E2) ((~Pl@.y) A Q,2)) V Ria.y,2))
Riesenie: Najprv napiSeme maticu v konjunktivnej normaélnej forme:
(v2) @) E) (~P(e.y) V R(z,9,2) A (Q(,2) V R(3,9,2)))

Pred (Jy) aj (3z) je (Vz), preto premenné y, resp. z zamiehame unarnymi funkciami f(z), resp.
g(z). Takym spososbom dostédvame standardnt formu:

(v2) ((~P(a, f(@)) V Rz, f(2),9(x))) A (Qw,9(@) V R(x, f(x).g(a))))

Definicia 2.3. Klauzula je disjunkcia literalov. (Pod literdlom rozumieme logickti premenna alebo
jej negaciu.)

Niekedy je uzito¢né uvazovat mnozinu literdlov ako synonymum klauzuly. Napr., PVQV—-R =
= {P,Q,—-R}. Jednoliterdlna klauzula sa nazyva jednotkovd klauzula. Ked klauzula neobsahuje
ziadne literaly, budeme ju nazyvat prizdnou klauzulou. PretoZe prazdna klauzula neobsahuje Ziadne
literaly, ktoré by mohli byt pravdivé pri akejkolvek interpretacii, tak prazdna klauzula je vzdy
nepravdiva. Prazdnu klauzulu oznacujeme ,,[1”.

Disjunkcie =P(z, f(x)) V R(z, f(z).g9(z)) a Q(z, g(z)) V R(zx, f(x),g(x)) v standardnej forme
z prikladu 2.2 si klauzuly. Predpokladidme, Ze mnozina klauzal S je konjunkcia vSetkych klauzul z
S, kde kazda premenné v S je viazana velkym kvantifikitorom. Vdaka tejto dohode, standardn4
forma moze byt prosto vyjadrend mnozinou klauzal. Napr., tandardné forma z prikladu 2.2 moéze
byt vyjadrena mnozinou {~P(x, f(x)) V R(x, f(2),9(x)), Q(x,g(x)) V Rz, f(x),9(x))}

V nasledujicej vete dokdzeme, Ze mdZzeme eliminovat existen¢né kvantifikitory a pritom za-
chovavame nesplnitelnost formuly.

Veta 2.4. Nech S je mnozina klauzul, ktoré tvoria standardna formu klauzuly A. Potom A nie je
splnitelna prave vtedy, ked S nie je splnitelna.
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Dokaz: > Bez ujmy na v8eobecnosti mozeme predpokladat, ze A je vyjadrend v prenexnej nor-
mélnej forme, t.j. A = (Q121) -+ - (Qnxn)M[z1,...,x,]. (PouZivame zépis M[xy,...,x,], aby sme

ukézali, ze jadro M obsahuje premenné z1,...,z,. Jadro niekedy nazyvame aj matica). Nech @,
je prvy existencény kvantifikdtor. Nech

A1 = (Vﬂ:l) tee (Vﬂ:r_l)(Qr+1CUr+1) e (Qnmn)M[ml ey Lp—1, f(a:l, ceey CU,«_l),ZET_H, ce. ,Cﬂn]
kde f je skolemovska funkcia, ktora zodpoveda z, (1 < r < n). Chceme dokézat, Ze A nie je
splnitelna prave vtedy, ked A; nie je splnitelna.

Predpokladajme, Ze A nie je splnitelna. Keby A; bola splnitelna, tak by existovala taka

interpretacia I, ze A; plati v I (I vyhovuje A,), t.j. pre v8etky z1,...,z,_1 existuje aspon jeden
element (je to prave element f(zy,...,2,_1)), pre ktory je
(QTJrleJrl) e (ann)M[xla sy Tr—1, f(xh e axrfl): LIRS PR 7xn]

je splnena (pravdivd) v I. Takym spdsobom je A splnend v I, ¢o je v spore s predpokladom, Ze A
nie je splnitelnd. Teda ani A; nemdze byt splnitelna.
Predpokladajme teraz, 7e A je splnitelna. Potom existuje taka interpretécia I na oblasti D,

7e I vyhovuje A, t.j. pre vSetky z1,...,x,_1 existuje taky element z,, Ze
(Qr+1wr+1) te (ann)M[wla sy L1, Ty Tpfly e e vy mn]
je splnené v I. Rozsirime interpretaciu I tym, Ze priddme funkciu f, ktora zobrazuje (x1,...,2,_1)
na z, pre vietky x1,...,2,—1 € D, t.j. f(z1,...,2,-1) = x,. Oznacéme toto rozgirenie ako I'. Je
zrejmé, ze pre vietky z1,...,z,—1 je
(Qr+1wr+1) T (ann)M[wla sy Lp—1, f(mlz cee 7wr—1): Trgly--- awn]

splnena v I', t.j. Ay je splnend v I', ¢o je v spore s predpokladom, 7e A; nie je splnitelna. A teda
A nemo67e byt splnitelna.
Predpokladajme teraz, ze A obsahuje m existen¢nych kvantifikitorov. Nech A4y = A. Nech
Ay dostaneme z A1 zamenou prvého existen¢éného kvantifikitora v Ay _1 skolemovskou funkciou
kE=1,2,...,m. Je zrejmé, 7ze S = A,,. Ak pouzijeme tie isté ivahy ako vysg§ie, mézeme dokazat,
7e Ap_1 nie je splnitelna prave vtedy, ak Ay nie je splnitelna (k = 1,2,...,m), a teda mozeme
urobit zaver: A nie je splnitelna prave vtedy, ked S nie je splnitelna, ¢o bolo treba dokazat. <
Nech S je standardné forma formuly A. Ak A nie je splnitelna, tak podla vety 2.4 je A = S.
Ak A je splnitelna, tak vo vSeobecnosti A nie je ekvivalentna s S.
Napriklad, nech A je (3z)P(z) a S je P(a). Je zrejmé, ze S je $tandardna forma formuly A.
Nech I je nasledujica interpretacia:
e oblast D = {1,2}
e hodnoty pre a: 1
e hodnoty pre P: P(1) — nepravda, P(2) — pravda
Formula (3z2) P(z) je splnené v interpretacii I, no S nie je splnena v I, teda A # S.
Poznamenavame, 7e formula moZe mat viacej ako jednu §tandardni formu. Kvoli jednoduchos-
ti, ked transformujeme formulu A na $tandardna formu S, zamiehame existenc¢né kvantifikiatory
skolemovskymi funkciami tak jednoduchymi, ako sa to da. Dalej, ak mame A = A; A Ay A -+ A
A A, mdzeme oddelene dostat mnozinu klauzial S;, kde kazdé S; vyjadruje Standardnd formu A;
(t=1,2,...,n). Potom nech S = S;U---US,. Pomocou tvah podobnych tym, ktoré sme pouzili
vo vete 2.4, nie je tazké vidiet, Ze A nie je splnitelna prave vtedy, ked S nie je splnitelna.
Priklad 2.5. V tomto priklade ukéZeme, ako je mozné vyjadrit nasledujtcu vetu v Standardnej

forme: Ak x o x = e pre vSetky z v grupe G, tak G je komutativna.” Pritom ,0” je binarna
operacia a e jednotka v grupe G.

Riesenie: Spo¢iatku budeme tuto vetu formalizovat a potom vyjadrime negéciu tejto vety mnozi-
nou klauzual. Vieme, Ze grupa G vyhovuje nasledujicim Styrom axiomam:

(A1): z,y € G implikuje z oy € G (vlastnost uzavretosti)
(As): z,y,z € G implikuje z o (y 0 2) = (x o y) o z (vlastnost asociativnosti)
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(A3): xoe=eox pre vietky z € G (vlastnost existencie jednotkového prvku)
- -

(A4): pre kazdé = € G existuje prvok 271 € G taky, ze zoz™ = 27 oz = e (vlastnost existencie
inverzného prvku).
Nech P(z,y,2) oznaéuje zoy = z a i(z) = z*. Potom vy$ie uvedené axiémy nadobtdaji tvar:
(41): (Va)(Vy)(32)P(z,y, 2)
(A8): (va) (%) (¥2) (Fu) (¥0) (V) (P, 9, u) A Ply,2,0) A Plu,z,w)) = Pla,v,w)) A
A (Vz)(Vy) (V2) (Vu) (Vo) w)((P (z,y,u) A P(y,z,v) A P(z,v,w)) = P(u,z,w))
)
)P

(A3): (Vo) P(z,e,2) A (¥ )(x,x)
(4y): (Vo) P(z,i(x),e) A (Vo) P(i(2)

Zaver vety je nasledovny:

z ,T,e)

(B): Ak xzox = e pre vietky z € G, tak G je komutativna, t.j. uov = vou pre vietky u,v € G.

Tvrdenie B moze byt vyjadrené formulou:
(B'): (Va)P(z,z,¢) — ((Vu)(‘v’v)(‘v’w)(P(u,v,w) = P(v,u,w)))
Teda celé veta je vyjadrend formulou F = A} A --- A A} — B'. Takymto spésobom
—F=A] N Ay N A AN AL A
Aby sme ziskali mnozinu klauzal pre —F, najprv ziskame mnoZinu klauzal S; pre kazda axiému
Al (i =1,2,3,4) nasledujacim spésobom:
St =A{P(z,y, f(z,y))}
Sy ={=P(x,y,u) V =P(y,z,v) V ~P(u,z,w) V P(z,v,w),
-P(z,y,u) V =P(y,z,v) V =P(z,v,w) V P(u,z,w)}
Sy ={P(z,e,x), Ple,z,z)}
Sy ={P(z,i(z),e), P(i(z), z,€)}
Plati

-B' = ﬂ((Vm)P(m,m,e) o ((Vu)(‘v’v)(‘v’w)(P(u,v,w) = P(v,u,w)))) -

- —|<—|(Vx)P(x,x,e) v ((Vu)(Vv)(Vw)(—'P(u,v,w) v P(v,u,w)))

— (Va)P(z,2,¢) A —l((‘v’u)(Vv)(Vw)(ﬂP(u,v,w) v P(v,u,w))) -
= (Vz)P(z,z,€) A (Fu)(Fv)(Fw) (P(u,v,w) A =P(v,u,w))

N——

Preto mnozina klauzal pre =B’ je nasledujuca:
T= {P(:E, T, 6), P(aa b, C)a _'P(b: a, C)}
Preto mnoZina S = 57 U Sy U S3 US4 UT je mnozina, ktora sa sklada z nasledujucich klauzul
1) P(z,y, f(z,y))
—P(z,y,u) V =P(y,z,v) V ~P(u,z,w) V P(z,0,w)
~P(z,y,u) V ~P(y,z,v) V ~P(a,0,w) V Pu,zw)
(z,e,x)

€,T, 1)

(

(i(x), )
(z,i(z), )
(
(a,

z,x ,e)

D
)
~
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V priklade 2.5 sme ukézali, ako dostaneme mnozinu klauzil S pre formulu —=F. Zo znamych
tvrdeni vieme, ze F' je tautologia prave vtedy, ked’ S nie je splnitelna. Ako sme uz povedali, dokazy
toho, 7e formula je tautolégia budeme prevadzat na to, Ze jej negécia nie je splnitelna. Preto od
tohto miesta budeme predpokladat, Ze na vstupe procediry uvazovaného dokazu vzdy stoji mnoZzina
klauzul (také, ako je S, ktoré sme dostali v priklade 2.5). Dalej pouzivame pre mnozinu klauzil
terminy ,nie je splnitelnd” (,splnitelnd”), niekedy aj ,protire¢iva”, ,sporna” (,neprotireciva”, ,nie je
spornd”).

2.2. Herbrandovské univerzum mnoziny klauzil

Podla definicie mnozina klauzil nie je splniteln& prave vtedy, ak je nepravdiva pri vietkych
interpretaciach na vsetkych oblastiach. Pretoze nie je vhodné a ani nie je uzito¢né skumat vetky
interpretacie na vgetkych oblastiach, bolo by dobré, ak by sme mohli fixovat jednu Specidlnu
oblast H a pre S urobit zaver, Ze S nie je splnitelna prave vtedy, ked S nie je pravdiva pri
7iadnej interpretacii na tejto oblasti. Na Stastie taka oblast existuje. Nazyvame ju Herbrandovské
univerzum mnoziny S a definujeme nasledujicim spdsobom.

Definicia 2.6. Nech Hj je mnoZina konStant, ktoré sa vyskytuju v S. Ak sa Ziadna konStanta
nevyskytuje v S, tak Hy sa sklada z jednej konStanty, povedzme Hy = {a}. Prei = 0,1,2,...
je Hiyy zjednotenim H; a mnoZiny vietkych termov tvaru f("(¢y,...,t,) pre kazdé n a vietky
) ktoré sa vyskytuja v S, kde t; € H; (j =1,2,...,n). Potom kazdé H; nazyvame mnozinou

konstant i-tej irovne pre S a H., nazyvame Herbrandovo univerzum pre S.
Priklad 2.7. Nech S = {P(a),-P(z) V =P(f(z))}. Potom

Ho = {a}

Hl = {a7 f(a)}

Hy ={a, f(a), f(f(a))}

Heo ={a, f(a), f(f(a),. ..}
Priklad 2.8. Nech S = {P(z) V Q(z),R(2),T(y) Vv =W (y)}. Pretoze v S neexistuju ziadne

Y

konstanty, kladieme Hy = {a}. PretoZe v S neexistuju ani ziadne funkéné symboly, tak

H=Hy=H, = = {a}
Priklad 2.9. Nech S = {P(f(z),a,9(y),b)}. Potom
Hy = {a, b}
Hy ={a,b, f(a), f(b),9(a), g(b)}
Hy ={a,b, f(a), f(b),9(a), g(b), f(f(a)), F(£(D)), f(g(a)), f(g(b)),

V doésledku toho, ¢o bolo povedané, pod vijrazom budeme chapat term, mnoZinu termov, mno-
7inu atomarnych formul, literal, klauzulu, ¢i mnoZzinu klauzal. Ak sa vo vyraze nevyskytuju Zziadne
premenné, aby sme zdoraznili tuto skuto¢nost, niekedy tento vyraz nazyvame zdkladnou instanci-
ou. Takymto sposobom moZeme pouzivat pojmy zakladny term, zdkladny atom, zakladny literal,
zékladna klauzula, aby sme zdoéraznili, Ze ziadne premenné sa nevyskytuji v zodpovedajicich
vyrazoch.

Podvijrazom vyrazu E je vyraz, ktory sa vyskytuje v E.

Definicia 2.10. Nech S je mnozina klauzal. Potom mnoZina atéomov tvaru P (¢1, ... t,) pre
vietky n-arne predikaty P("), ktoré sa vyskytujia v S a t1,...,t, si elementy Herbrandovského
univerza pre S, sa nazyva Herbrandovskou bdzou pre S.
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Definicia 2.11. Zakladna instancia klauzuly C' z mnozZiny klauzul S je klauzula, ktort dostaneme
zamenou premennych v C' prvkami Herbrandovského univerza pre S.

Priklad 2.12. Nech S = {P(2),Q(f(y)) V R(y)}, t.j. C = P(z) je klauzula v S a H =
={a, f(a), f(f(a)),...} je Herbrandovské univerzum v S. Potom P(a) a P(f(f(a))) su zékladné
instancie C.

UvaZzujme teraz interpretacie nad Herbrandovskym univerzom. Nech S je mnozina klauzil.
Ako sme uz povedali, interpretacia nad Herbrandovskym univerzom mnoziny S je urcena hod-
notami kongtant, funkénych symbolov a predikatovych symbolov, ktoré sa vyskytuja v S. ]v)alej
budeme definovat §pecialnu interpretaciu nad Herbrandovskym univerzom, ktord budeme nazyvat
H -interpretdciou mnoZiny S.

Definicia 2.13. Nech S je mnozina klauzal, H Herbrandovské univerzum pre S a I interpretacia S
nad H. Hovorime, ze I je H-interpretdicia mnoziny S, ak vyhovuje nasledujicim podmienkam:

e [ zobrazuje vSetky konstanty z S na seba, t.j. konstante a; € S priradi a; € H.
e Nech f(") je n-arny funkény symbol a hy, ..., hy st elementy H. V I znakom f(™ ozna-
¢ujeme funkciu, ktora zobrazuje element (hy,...,h,) z H" na element f (hy,..., h,)
z H.
Poznamenavame, ze nekladieme ziadne ohrani¢enia pri interpretacii a urc¢ovani hodnoty Iubo-
volného n-arneho predikatového symbolu z S. Nech A = {4, 4,,..., Ay, ...} je Herbrandovska
baza mnoziny S. H-interpretaciu I je vhodné vyjadrit v tvare

I={my,ma,...,mp,...}
kde m; je bud Aj; alebo —A; pre j =1,2,... Zmysel tejto mnoziny je v tom, ze ak m; je A;, tak
atomu A; je priradena hodnota ,pravda” a v opa¢nom pripade hodnota ,nepravda”.

Priklad 2.14. Uvazujme mnozinu S = {P(z) V Q(z),R(f(y))}. Herbrandovské univerzum H
pre S je H = {a, f(a), f(f(a)),...}. V S sa vyskytuja predikatové symboly: P, @Q a R. Z toho
vyplyva, %e Herbrandovska baza pre S je A = {P(a),Q(a), R(a), P(f(a)),Q(f(a)), R(f(a)),...}.
Niektoré H-interpreticie mnoziny S s

I = {P(a),Q(a), R(a), P(f(a)),Q(f(a)), R(f(a)),...}

I3 ={=P(a),=Q(a), =R(a),~P(f(a)),~Q(f(a)),~R(f(a)),...}

I3 = {P(a),Q(a), ~R(a), P(f(a)), Q(f(a)),~R(f(a)),...}

Interpretaciu mnoziny klauzal S nie je nutné zadavat nad Herbrandovskym univerzom, t.j.

interpretacia nemusi byt H-interpretaciou. Nech napr. S = {P(x),Q(y, f(y,a))}. Potom je mo7na
nasledujica interpretécia nad oblastou D = {1,2} uvedena v tabulke 2.1. Pre takuto interpretaciu

a | f(LD)]f(1L,2) | f(21)] f(2,2)
2 1 2 2 1

P(1)| P(2) | Q(11)]Q(1,2)|Q(21)|Q2,2)
plati | neplati | neplati | plati | neplati | plati

TABULKA 2.1. Interpretécia na oblasti D = {1, 2}

mozeme ur¢it H-interpretaciu I'*, zodpovedajucu I. Ilustrujeme to na tom istom priklade. Najprv
nijdeme Herbrandovska bazu pre S:

A ={P(a),Q(a,a),P(f(a,a)),Q(a, f(a,a)),Q(f(a,a),a),...}
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Potom ohodnotime kazdy ¢len mnoziny A tym, Ze pouzijeme tabulku hodnét 2.1:
P(a) = P(2) = neplati

Q(a,a) = Q(2,2) = plati
P(f(a,a)) = P(f(2,2)) = P(1) = plati
Q(a, f(a,a)) = Q(2, f(2,2)) = Q(2,1) = neplati
Q(f(a,a),a) = Q(£(2,2),2) = Q(1,2) = plati

Q(f(a,a), fa,a)) = Q(f(2,2), £(2,2)) = Q(1,1) = neplati

Désledkom toho H-interpretacia I'* zodpovedajuca I je

= {_‘P(a)v Q(a= a)7 P(f(av a)): _'Q(aa f(av a))a Q(f(a’v a)a a)7 _'Q(f(a’v a)a f(av a))a s }
Ak v S nie st kongtanty, tak element a, ktory sme pouZili na to, aby sme mohli za¢at Herbrandovské
univerzum, mozeme zobrazit na Tubovolny element v oblasti D. V pripade, Ze oblast D mé
viacej ako jeden prvok, tak existuje viac ako jedna H-interpretéicia zodpovedajica I. Nech napr.
= {P(z),Q(y,(f(y,2)) a nech je pre S vybrana interpretacia na oblasti D = {1,2} podla
tabulky 2.2.

fLY) [ fF(L2) | f(21) ] f(2,2)
1 2 2 1

P(1)| P(2) | Q(11)]Q(1,2)|Q(21)|Q2,2)
plati | neplati | neplati | plati | neplati | neplati

TABULKA 2.2. Interpretacia na oblasti D = {1, 2}

Potom interpretécii I budia zodpovedat dve H-interpretacie:

i If = {P(a)a_'Q(aaa):P(f(asa))a_'Q(aaf(aaa))a_'Q(f(aaa)aa)a_'Q(f(aaa)af(aaa))a"'}7

aka=1
o Ii: {_'QP(a)a_'Q(aaa):P(f(a=a))a_'Q(aaf(aaa))a_'Q(f(aaa)aa)a_'Q(f(aaa)af(aaa))a cee }a
ak a =

Teraz mézeme sformulovat vysSie uvedené pojmy nasledujiicim sposobom.

Definicia 2.15. Nech [ je interpreticia pre S na oblasti D. H-interpretaciou I'* zodpovedajicou
I je interpretacia, ktorda vyhovuje nasledujicej podmienke: Nech hy,...,h, st elementy Herb-
randovského univerza. Nech sa kazdé h; zobrazuje v interpretacii I na niektoré d; € D. Ak
P™(dy,...,d,) dostava v interpretécii I hodnotu pravda (resp. nepravda), tak P (hy,..., h,)
taktiez dostdva hodnotu pravda (resp. nepravda) v interpretacii I*.

V skutoénosti nie je tazké dokazat nasledujicu lemu:

Lema 2.16. Ak interpretacia I na niektorej oblasti D vyhovuje mnozine klauzul S, tak Tubovolna
z H-interpretécii I*, ktora zodpoveda I, taktiez vyhovuje S.

Dokaz: > Nech S = {C1,Cs,...,Cp} je mnozina klauztl, C; = Li; V Li, V---V L;, (i=1,...,n).
Predpokladajme, zZe 1nterpreta(31a I na niektorej oblasti D vyhovuje mnozine klauzil S. To zna-
mena, Ze kazda z klauzil C; nadobuda hodnotu ,pravda”, t.j. v kazdom C; existuje aspon jeden
literdl L;; tvaru P™M(dy,...,dy), ktory je pravdivy. Nech hi, ..., h, st prvky H-univerza a kazdé
h; sa zobrazuje na d; v oblasti D (i = 1,...,n). Na zaklade uvedeného aj literal P(") (hy, ..., hy,)
je pravdivy v interpretacii I*, t.j. v lubovol'nej interpretécii zodpovedajicej I. <

Veta 2.17. Mnozina klauzil S nie je splnitelna prave vtedy, ked S je nepravdiva pri vietkych
H-interpretaciach v S.
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Dékaz: > (=) Prva polovica uvedenej vety je zrejma, pretoze podla definicie je S nesplnitelna
prave vtedy, ked S je nepravdiva pri vietkych interpretaciach na Tubovolnej oblasti.

(<) Aby sme dokézali druhu polovicu predloZenej vety, predpokladajme, Ze S je nepravdivéa pri
v8etkych H-interpretaciach v S. Predpokadajme, Ze S je splnitelna. Potom existuje taka interpre-
tacia I na niektorej oblasti D, ze S je pravdiva pri I. Nech I* je H-interpretacia zodpovedajica I.
V sulade s lemou 2.16, S je pravdiva pri I* a to je v spore s predpokladom, Ze S nie je pravdiva
pri vietkych H-interpretacidch v .S. Teda S nie je splnitelna, ¢o bolo treba dokazat. <

Takym sposobom sme dosiahli ciel, ktory sme si vytycili na zaciatku tejto casti, teda nevyhnut-
ne nam treba uvazovat len interpretacie nad H-univerzom, t.j. H-interpretécie, na preverenie toho,
¢ je splnitelnd mnozina klauzil alebo nie je. Poznamenavame, 7e ak odteraz budeme uvaZzovat
interpretaciu, tak mame na mysli H-interpretéciu.

Nech () oznaduje prazdnu mnozinu. KaZdy z nasledujtcich vyrokov je zrejmy:

(1) Zakladna ingtancia C' klauzuly C je splnitelna v interpretacii I prave vtedy, ked existuje
zakladny literdl L' € C' taky, 7e L' je taktieZ v I, t.].

Clﬂl#@, L'EIZ{ml,mg,...,mj,...}

(2) Klauzula C je splnend v interpretacii I préave vtedy, ked kazda jej zakladn4 instancia C'
je splnend v interpretéacii 1.

(3) Klauzula C je odmietnutéa (vyvratend) interpretaciou I prave vtedy, ked existuje aspon
jedna taka zakladna instancia C' pre C, ze C' nie je splnena v I.

(4) Mnozina klauzul S nie je splnitelnéa prave vtedy, ked pre kazda interpretéciu I existuje
aspon jedna taka zdkladna instancia C’ niektorej klauzuly C' v S, 7e C' nie je splnené v
1.

Priklad 2.18. (a) Uvazujme klauzulu C = —=P(z) V Q(f(x)). Nech Iy, I, I3 st definované
nasledujicim sposobom:

I = {=P(a),~Q(a), =P(f(a)), ~Q(f(a)), ~P(f(f(a))), ~Q(f (f(a))),... }
I = {P(a),Q(a), P(f(a)),Q(f(a), P(f(f(a)), Q(f(f(a))),...}
I3 = {P(a), ~Q(a), P(f(a)), ~Q(f(a)), P(f(f(a))), ~Q(f(f(a))),. ..}

Mozeme sa l'ahko presvedcit, ze C je splnend v interpretaciach I; a I, no zamietnuté
v interpretacii I3.

(b) Uvazujme mnozinu S = {P(z),—P(a)}. Existuju dve H-interpreticie Iy = {P(a)} a
I, = {=P(a)}. S je zamietnutad oboma interpretaciami. Z toho vyplyva, Ze S nie je
splnitelna.

2.3. Sémantické stromy

Po zavedeni H-univerza uvazujme sémantické stromy. Ako uvidime neskor, ndjdenie dokazu
pre mnozinu klauzil je ekvivalentné zostrojeniu sémantického stromu pre mnozinu klauzul.

Definicia 2.19. Nech A je atéom. Hovorime, Ze dva literdly A a —A st navzajom kontrdrne.
Mnozina {A,-~A} sa nazyva kontrdrnou dvojicou.

Poznamenavame, ze ak klauzula obsahuje kontrarnu dvojicu, tak je tautolégiou. Pri pouziti
pojmu ,tautolégia” médme na mysli klauzulu, ktora je tautolégiou.

Definicia 2.20. Nech S je mnozina klauzil a A jej Herbrandovska béza. Sémanticky strom pre
S je dole rastuci strom, v ktorom je kazdej hrane pripisand mnozina atémov alebo negacii atomov
7 A takym sposobom, Ze:

e 7 kazdého vrchola v vychadza koneény pocet hran [ly,...,l,. Nech @; je konjunkcia

vBetkych literalov, pripisanych k I; (i = 1,2,...,n). Potom Q1 V Q2 V --- V @, je
vSeobecne platna logicka formula.
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e Nech pre kazdy vrchol v je I(v) zjednotenie vSetkych mnozin literdlov, ktoré sa pripisané
hranam vetvy, ktora vedie k v. Potom I(v) neobsahuje kontrarne dvojice.
Definicia 2.21. Nech A = {A;, As,..., A,,...} je Herbrandovskd baza mnoziny S. Hovorime,
Ze sémanticky strom pre S je 4iplng, ak pre kazdé i (i = 1,2,...) a kazdy koncovy vrchol v
sémantického stromu (t.j. vrchol, z ktorého nevychadzaju 7iadne hrany) I(v) obsahuje bud A;
alebo —A4;.

Priklad 2.22. Nech A = {P,Q, R} je Herbrandovska b&za mnoziny S. Potom kazdy z dvoch
stromov na obrazku 2.1 je Gplny sémanticky strom pre S.

OBRAZOK 2.1. Stromy k prikladu 2.22

Priklad 2.23. Uvazujme S = {P(z), P(a)}. Herbrandovska baza mnoziny S je {P(a)}. Uplny

Y

sémanticky strom pre S je na obrazku 2.2.

P(a) ~P(a)

OBRAZOK 2.2. Strom k prikladu 2.23

Priklad 2.24. Uvazujme S = {P(z),Q(f(x))}. Herbrandovski baza mnoziny S je {P(a),Q(a),
P(f(a)),Q(f(a)), P(f(f(a))),Q(f(f(a))),...}. Na obrazku 2.3 je zobrazeny sémanticky strom
pre S.

Poznamenavame, Ze pre kazdy vrchol v v sémantickom strome pre S je I(v) podmnoZina
niektorej interpretacie pre S. Dosledkom toho budeme I(v) nazyvat ciastocnou interpretdiciou
pre S.

Ked je Herbrandovska baza mnoziny S nekone¢nd, kazdy uplny sémanticky strom pre S bude
taktie? nekone¢ny. Lahko vidiet, Ze tplny sémanticky strom vy&erpavajtco prebera vietky mozné
interpretacie pre S. Ak S nie je splnitelnd, tak S nemoze byt pravdivad na Ziadnej z tychto
interpretacii. Preto mozeme zastavit rast stromu z vrchola v, ak I(v) odmieta S. To ndm umoziuje
nasledujucu definiciu.
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OBRAZOK 2.3. Strom k prikladu 2.24

Definicia 2.25. Vrchol v sémantického stromu pre S sa nazyva odmietajicim, ak I(v) odmieta
niektord zakladni instanciu klauzuly z S, no pre lubovolny predchédzajici vrchol v’ (v’ predché-
dza v) I(v") neodmieta ziadnu zékladnu instanciu klauzuly z S.

Definicia 2.26. Hovorime, 7e sémanticky strom T je uzavrety prave vtedy, ked sa kazda vetva
vrchola T' kon¢i odmietajticim vrcholom.

Definicia 2.27. Vrchol v uzavretého sémantického stromu nazyvame akceptujicim, ak vsetky
vrcholy bezprostredne nasledujiice za v st odmietajice.

Priklad 2.28. Nech S = {P,Q V R,~P V —-Q,—~R V —P} Herbrandovska baza mnoziny S je
A ={P,Q, R}. Na obrazku 2.4(a) je tplny sémanticky strom pre S. Prave tak na obrazku 2.4(b)
je uzavrety sémanticky strom pre S.

OBRAZOK 2.4. Stromy k prikladu 2.28

P(z) vV Q(f(z)),~Q(f(a))}. Herbrandovska baza mnoZiny

Priklad 2.29. Uvazujme S = {P(z),
a)),...}. Na obrazku 2.5 je zobrazeny uzavrety strom pre S.

Sje A={P(a),Q(a), P(f(a)),Qf
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OBRAZOK 2.5. Strom k prikladu 2.29

2.4. Herbrandova veta

Herbrandova veta je dolezita veta v matematickej logike a tvori zaklad vac8iny sucasnych po-
uzitelnych algoritmov dokazovania teorém. Herbrandova veta tzko savisi s vetou 2.4, t.j. aby sme
preverili, ¢i mnozina klauzul nie je splnitelnd, stac¢i nam uvazovat len interpretacie nad Herbran-
dovskym univerzom S. Potom mo6Zeme urobit zaver, ze S nie je splnitelna. Zvyajne to byva tak,
Ze interpretacii je mnoho, mozno aj nekonecne vela. Nejakym sposobom sa ich preto snazime or-
ganizovat. Systematicky ich organizujeme pomocou sémantického stromu. DokaZzeme dva varianty
Herbrandovej vety. V literature sa takisto pouzivaji oba varianty.

Veta 2.30 (Herbrandova). MnozZina klauzil S nie je splnitelna prava vtedy, ked l'ubovolnému
uplnému sémantickému stromu pre S zodpoveda koneény uzavrety sémanticky strom, t.j. Tubovolnéa
vetva uplného stromu vedie do zamietajaceho vrchola.

Dékaz: > (=) Predpokladajme, Ze S nie je splnitelna. Nech T je tplny sémanticky strom pre S.
Pre kazda vetvu V stromu T nech Iy je mnozina vSetkych literdlov, ktoré st pripisané vSetkym
hranam vetvy V. Potom Iy je interpretacia pre S. Pretoze S nie je splnitelna, musi Iy, odmietat
zakladnt instanciu C' klauzuly C' v S. Uvedomme si, 7Ze C’ je kone¢né, teda na v musi existovat
zamietajuci vrchol (ktory ma kone¢ni vzdialenost od koreha stromu). PretoZze kazd4a vetva stromu
T ma odmietajuci vrchol, existuje uzavrety sémanticky strom 7" pre S. Dalej, pretoze z kazdého
vrchola v z T' vychédza len kone¢ny pocet hran, tak T' musi byt kone¢ny (t.j. poCet vrcholov v
T' je kone¢ny), inak by sme v stlade s Kénigovou lemou mohli néjst nekonec¢ne dlha vetvu, ktora
neobsahuje odmietajiace vrcholy. Tym je ukonéeny dokaz prvej Casti vety.

(<) Obratene, ak pre kazdy uplny sémanticky strom T pre S existuje koneény uzavrety séman-
ticky strom, tak kazda vetva T obsahuje odmietajici vrchol. To znamené, ze kazda interpretacia
odmieta S. Teda S nie je splnitelna. To ukoncuje dokaz druhej casti vety. <

Veta 2.31 (Herbrandova). Mnozina klauztl S nie je splnitelna prave vtedy, ked existuje kone¢na
nesplnitelnd mnozina S’ zakladnych ingtancii klauzil z S.

Doékaz: > (=) Predpokladajme, Ze S nie je splnitelna. Nech T je uplny sémanticky strom pre
S. Potom podla Herbrandovej vety 2.30 existuje kone¢ny uzavrety sémanticky strom T’ zodpove-
dajuci stromu T'. Nech S’ je mnozina vSetkych zakladnych instancii klauztl, ktoré sa odmietaji
v zamietajicich vrcholoch stromu 7. Mnozina S’ je kone¢na, pretoze v strome T je len koned-
ny pocet zamietajicich vrcholov. Pretoze S’ neplati v Ziadnej interpretacii pre S’, tak S’ nie je
splnitelna.

(<) Predpokladajme, Ze existuje kone¢né nesplnitelna mnozina S’ zédkladnych instancif klauzal
z S. To znamend, Ze pre kazdu interpretaciu I je S’ odmietnutd (vyvratend). Pretoze kazda
interpretacia I pre S obsahuje interpretaciu I' mnoziny S’ a I' zamieta S’, tak I musi taktiez
odmietat aj S, a teda S nie je splnitelna. <
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Priklad 2.32. Nech S = {P(z),~P(f(a))}. Tato mnozina S nie je splnitelna. Z Herbrandovej
vety vyplyva, Ze existuje kone¢né nesplnitelna mnozina S’ zakladnych instancii klauzil mnoziny S.
Nasli sme jednu z tychto mnozin: S' = {P(f(a)), ~P(f(a))}.
Priklad 2.33. Nech S = {—=P(z) V Q(f(z),z),P(g9(b)), ~Q(y,2)}. Mnozina S nie je splnitelna.
Jedna z nesplnitelnych mnozin zékladnych instancii klauztl mnoziny S je S’ = {=P(g(b)) V
Vv Q(f(g(0).9(b)), P(g(b)). ~Q(f(g(b)), (b))}
Priklad 2.34. Nech mnoZina S obsahuje nasledujtce klauzuly:
8 = {~P(z,y,u) V ~P(y,2,v) V =P(z,0,w) V P(u,z,w),

~P(@,y,u) V ~P(z,y,v) V ~P(u,z,w) V Plz,0,w),

P(g(xﬂ y)7 :L" y)} P(',L‘7 h(fL" y)) y)7 P(:I/', y’ f(w7 y))’ _‘P(k(w)’ :L" k(m))}
Této mnoZina je tiez nesplnitelné, no nie je l'ahké najst ihned kone¢nti nesplnitelnti mnozinu S’ z4-
kladnych ingtancii klauzil mnoziny S. Jedna cesta najdenia takej mnoziny S’ spociva v zostrojeni
uzavretého sémantikcého stromu 7’ pre S. Potom mnozina S’ v8etkych zakladnych inStancii od-
mietanych v zamietajtcich vrcholov stromu T” je hladana mnozina. Mnozinu S’ uvadzame nizsie.

MoZeme sa presvedcit, ze kazda zakladna klauzula v S’ je zakladna inStancia niektorej klauzuly z
mnoziny S a Ze S’ nie je splnitelna.

S = {P(a,h(a,a),a),ﬂP(k(h(a,a)),h(a,a),k(h(a,a))),P(
ﬂP(g(a,k(h(a,a))),a,k(h(a,a))) v ﬂP(a,h(a,a),a)

g(a,k(h(a,a))),a,k(h(a,a))),
\Y
\% ﬁP(g(a,k(h(a,a))),a,k(h(a,a))) \% P(k(h(a,a)),h a,a

(a,0). k(h(a,a))) }

2.5. Aplikiacie Herbrandovej vety

Druhy variant Herbrandovej vety predpoklada procedaru odmietnutia. To znamend, 7e ak
treba dokazat nesplnitelnost mnoziny klauzil S a mame algoritmus pre pocitac, ktory dokaze
uspesne indukovat mnoziny Si,..., S, zakladnych instancii klauzil z S a tuspeSne stanovif ich
nesplnitel'nost, tak tato proceiira, ako nam garantuje Herbrandova veta, nam ukaze také koneéné n,
ze S), nie je splnitelna.

Gilmore bol jeden z prvych, kto aplikoval uvedenu ideu (1960). Napisal program pre pocitad,
ktory tspesne generoval mnoziny S, Si,... zdmenou premennych v S kon§tantami z» H; — mno-
zinami konstant i-tej urovne pre S. Pretoze S! je konjunkcia zakladnych inStancii, tak mozeme
pouzivat Tubovolntt metédu vhodni vo vyrokovej logike, aby sme preverili jej nesplnitelnost. T.j.,
uviedol kazdu indukovana mnozinu S} v tvare d.n.f. Potom sa kazda konjunkcia v d.n.f., obsahuji-
ca kontrarne dvojice, vynechava. Ak takymto postupom ziskame prazdnu mnozinu pre niektoré S,
tak mnozina S; je nesplnitelna.

Priklad 2.35. Uvazujme S = {P(z),—P(a)}, Hy = {a}, Sj = P(a) A =P(a) = O. Tym je
dokédzané, ze mnozina S nie je splnitelna.

Priklad 2.36. Nech S = {P(a),~P(z) V Q(f(x)
Sy =P(a) A (=P(a) vV Q(f(a))) A =Q(f(a))
= (P(a) A ~P(@) A ~Q(f(a) V (P(a) A Q(f(a) A ~Q(f(@)) =0 v O =0

Tym je dokdzané, ze S nie je splnitelna.

), ~Q(f(a))}, Ho = {a},

a)) =

Multiplikativna metdda nie je efektivna. Mozno sa l'ahko presved¢it, Ze pre mnozinu z desiatich
dvojliterdlnych zakladnych klauztl existuje 2!° konjunkcii. Davis a Putnam (1960) zaviedli efek-
tivnejsiu metodu na preverovanie nesplnitelnosti mnoziny zakladnych klauzil. OpiSeme niektora
modifikaciu ich metody.
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2.6. Metoda Davisa a Putnama

Nech S je mnozina klauzal. Podstatu metédy tvoria nasledujtuce Styri pravidla:

(1) Pravidlo tautolégie: Vynechame vSetky tautologické zakladné inStancie klauzul z S.
Mnozina S’, ktord nadm zostava po vynechani, nie je splniteln4 prave vtedy, ked S nie je
splnitelna.

(2) Pravidlo jednoliterdlnych klauzul: Ak existuje jednotkova zédkladna klauzula (rozmer
klauzuly je rovny poctu literdlov) L v S, tak S’ dostavame z S vynechanim tych zakldnych
klauzal v S, ktoré obsahuja L. Ak S’ je prazdna mnozina, tak S je splnitelna. V opa¢nom
pripade zostrojime mnozinu S”, ak vynechavame z S’ vyskyty —L. S" nie je splnitelna
prave vtedy, ked S nie je splnitelna. poznamenavame, 7ze ak =L je jednotkova zakladna
klauzula, tak pri vy¢iarkovani =L sa zmeni na .

(3) Pravidlo ¢istych literdlov: Literal L v zakladnej klauzule z S budeme nazyvat éistgm
v S prave vtedy, ak sa literdl —=L nevyskytuje v Ziadnej zakladnej klauzule S. Ak je literal
L ¢isty v S, tak vynechame vSetky zakladné klauzuly obsahujice L. Mnozina S’, ktora
zostala, nie je splnitelna prave vtedy, ked S nie je splnitelna.

(4) Pravidlo rezu: Ak mnozinu S mozeme vyjadrit v tvare

(AL VLA -~ A(An VL) AB V-L)A---A(B,V-L)AR

kde v A;, B;, a R sa nevyskytuju L ani —L, tak dostdvame mnoZziny (nazyvame ich
mnoZinami rezu)

Si=A1 AN NAy AR
Sy=By A+ ANB, AR

Pritom S nie je splnitelna prave vtedy, ked S; V Sy nie je splnitelna, t.j. ked S; a Sy
nie st splnitelné.
MoZeme teraz dokazat, 7ze vyssie uvedené pravidla mozeme aj obratit, t.j. ak pozadovania mnozina
S nie je splnitelna, tak mnoZina, ktora zostava po aplikacii jedného z pravidiel nie je splnitelna a
obréatene.
Doékaz pre pravidlo (1): > Pretoze tautologia vyhovuje kazdej interpretacii, S’ nie je splnitelna
prave vtedy, ked S nie je splnitelna. <
Dékaz pre pravidlo (2): > Ak S’ je prazdna mnozina, tak vsetky zékladné klauzuly z S obsahuju
L, ateda kazda interpretacia obsahujica L vyhovuje S. Preto je S splnitelna. Musime este dokazat,
7e S nie je splnitelné prave vtedy, ked S nie je splnitelna.

Predpokladajme, 7e S” nie je splnitelna. Ak je splnitelna S, tak existuje model M, ktory
obsahuje L. ﬁalej, pretoze M odmieta =L, modelu M musia vyhovovat vsetky klauzuly, ktoré
spociatku obsahovali —=L. Z toho vyplyva, ze M musi vyhovovat S”. To v8ak protireci predpokladu,
ze S nie je splnitelna. Preto S nie je splnitelna.

Obréatene, predpokladame, ze S nie je splnitelnd. Ak S” splnitelna je, tak existuje model M"
pre S”. Takym spoésobom kazd4 interpreticia S obsahujtica M" aj L musi byt modelom pre S. To
je v spore s predpokladom, Ze S nemé model. Preto S” musi byt nesplnitelna. Z toho vyplyva, Ze
S’ nie je splnitelnéa prave vtedy, ked S nie je splnitelna. <
Dékaz pre pravidlo (3): > Predpokladajme, Ze S’ nie je splnitelna. Potom S nemoze byt spl-
niteln4, pretoze S’ je podmnozinou S. Obratene, predpokladajme, 7e S nie je splnitelna. Ak S’
splnitelna je, tak existuje model M pre S’, pricom ani L, ani =L sa nenachadzaju v M. Takym
sposobom kazdé interpretacia S, ktora obsahuje M aj L je model S. To je v spore s predpokladom,
ze S nema model. Preto S’ nemoze byt splnitelna. Z toho vyplyva, ze S’ nie je splnitelna préave
vtedy, ked S nie je splnitelna. <
Doékaz pre pravidlo (4): > Predpokladajme, Ze S nie je splnitelna. Ak (S;V.Ss) je splnitelna, tak
bud S; alebo S ma model. Ak Sy (resp. S2) ma model M, tak kazd4 interpretacia S obsahujuca
M a —L (resp. L) je model pre S. To je v spore s predpokladom, Ze S nemé model. Z toho vyplyva,
ze (S1 V S) nie je splnitelna.
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Predpokladajme, Ze (S; V Ss) nie je splnitelna. Ak je S splnitelna, tak S musi mat model
M. Ak M obsahuje =L (resp. L), tak M vyhovuje S; (resp. S2). To je v spore s predpokladom, Ze
(S1 V S) nie je splnitelna. Preto S nemoze byt splnitelna. Z toho vyplyva, Zze S nie je splnitelna
prave vtedy, ked nie je splnitelna (S; V Ss). <

Uvedené pravidla sa dolezité. V nasledujicich ¢astiach uvidime, ze tieto pravidla maja Siroka
oblast aplikovatelnosti. Teraz uvedieme niekolko prikladov, aby sme demonstrovali pouZzivanie
tychto pravidiel.

Priklad 2.37. Ukaite, e S=(P V Q V =R) A (P V =Q) AN =P A R A U nie je splnitelna.

Riesenie:

1) (PVQV-RAPV-Q) AN-PARANU

(2) (@ V -R)AN(mQ) NRANU — pravidlo (2) v =P
3) - RARAU — pravidlo (2) v =Q
4) OAU — pravidlo (2) v =R

Teda vidime, Ze poslednéa formula obsahuje prazdnu klauzulu [J, a preto S nie je splnitelna.
Priklad 2.38. Ukaite, 72e S= (P V Q) A =Q A (=P V @ V —R) je splnitelna.
Riesenie:

(1) (PV Q) AN-QA(=PVQVR)

(2) P A (WP V —R) — pravidlo (2) v =Q
(3) =R — pravidlo (2) v P
(4) n — pravidlo (2) v =R

t.j. zvolime I = {P,—Q,—R}. Poslednd mnozina je prazdna mnoZina. Z toho vyplyva, Ze S je
splnitelna pre I = {P,-Q, ~R}.

Priklad 2.39. Ukazte, Zze mnozina S = (P V =Q) A (-P V Q) A (@ V —-R) A (-Q V —R) je
splnitelna.
Riesenie:

1) (PV-Q)AN(—PVQE AV -R)A(QV -R)

(2) (FQ A (QV —R) A (=Q V - )) v

V(@A (@QV -R)A(=Q V —R)) — pravidlo (2) v P
(3) "R V =R — pravidlo (2) v -Q a Q
4)mvE — pravidlo (2) v =R

Pretoze obidve mnoziny S; aj So st splnitelné, je aj S splnitelna.
Priklad 2.40. Ukéaite,7e S=(P V Q) A (P V Q) A (R V Q) A (R V —=Q) je splnitelna.
Riesenie:
L PV APV-Q ARVQ AN[RYV-Q)
(2) (RV Q) AN (RV Q) — pravidlo (3) v P
3) m — pravidlo (3) v R
Teda, S je splnitelna.

Uvedena metoda na preverovanie nesplnitelnosti je efektivnejsia ako multiplikativna metéda a
moze byt aplikovana na lubovolni formulu vo vyrokovej logike, t.j. najprv vyjadrime dant logicka
formulu v konjunktivnej normélnej forme a potom aplikujeme vysgie uvedené §tyri pravidla.

Cahko sa mozeme presvedcit, ze pravidla (2) a (3) st Specidlny pripad pravidla (4). Je pri-
rodzené predpokladat, Ze pri aplikacii pravidla (4) podla literalu L klauzuly obsahujace L vV —L
vynechame. Takymto sposobom je pravidlo (1) zahrnuté do pravidla (4). Pravidla (2) a (3) zod-
povedaju tvorbe jednej z mnozin S; alebo Ss. Pravidla (1)—(4) sa aplikuja na zékladné klauzuly.
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Rezolven¢na metoda

Z Herbrandovej vety (II. variant) vyplyva jednoduch& metoda pre néjdenie zamietnutia. Této
jednoduché metéda postupného preberania mé jeden podstatny nedostatok: musime generovat
mnoziny Sg,S1, S5, ... zakladnych instancii klauzal. Vo vidsine pripadov tato postupnost rastie
exponenciélne.

Zékladna idea rezolvenc¢nej metddy spociva v zisteni, ¢ S obsahuje prazdnu klauzulu O0. Ak S
obsahuje OJ, tak S nie je splnitelna. Ak S neobsahuje O, tak preverujeme nesledujici fakt: mézeme
O ziskat z S. Neskor uvidime, Zze na zaklade Herbrandovej vety (I. variant) preverenie ziskania O
je ekvivalentné spocitaniu po¢tu vrcholov uzavretého sématického stromu pre S.

Podl'a uvedeného variantu Herbrandovej vety S nie je splnitelna prave vtedy, ked existuje
kone¢ny uzavrety sémanticky strom T pre S. Je zrejmé, ze S obsahuje O prave vtedy, ked sa T'
skladé len z jedného vrchola — korena. Ak S neobsahuje O, tak T' nemusi obsahovat viacej ako
jeden vrchol. No ak mozeme zostrojit strom 7' s jednym vrcholom, tak sa nakoniec O nutne objavi
v S. V tom spociva podstata metédy rezolvent. Inymi slovami povedané: moZzeme ju chapat
ako $pecidlne pravidlo odvodenia, ktoré pouzijeme na tvorbu novych klauzal z S. Ak pridame
tieto nové klauzuly k S, tak niektoré vrcholy v po¢iato¢nom T sa stavaju odmietajicimi vrcholmi.
Takymto spoésobom moze byt pocet vrcholov v T zmenSeny a nakoniec prazdnu klauzulu [0 m6zeme
ziskat.

Najprv budeme uvazovat metodu rezolvent pre vyrokova logiku. Potom ju rozgirime na logiku
1. radu.

3.1. Metb6da rezolvent pre vyrokovi logiku

Najprv sformulujeme pravidlo rezolventy; niekedy ho budeme nazyvat aj pravidlo rezu:

Definicia 3.1. Nech C; a Cs st Tubovolné dve klauzuly. Ak existuje literdl Ly v Cy, ktory
je kontrarny literdlu Lo v Cs, tak vynechavame L; a Lo z C4, resp. Cs a zostrojime disjunkciu
zostavajucich klauzil. Klauzulu, ktora vznikne takymto sposobom nazyvame rezolventa Cp a Cs.

Priklad 3.2. Uvazujme nasledujice klauzuly
012PVR 02:_‘PVQ

Klauzula C; ma literal P, ktory je kontrarny k literdlu =P v C5. Ak teda vynechidme P a =P z
C1, resp. Cq a utvorime disjunkciu zostavajuacich klauzil R a @, dostavame rezolventu R V Q.

Priklad 3.3. Uvazujme klauzuly
Ci:-PV QVR Cy: =Q VvV S
Rezolventa Cy a Cy je =P V R V S.
Priklad 3.4. Uvazujme klauzuly
Ci: =PV Q Cy: =P V R

PretoZe neexistuje ziadny literdl v Cy, ktory je kontrarny nejakému literdlu v C5, tak neexistuje
ziadna rezolventa C; a Cs.

Délezitou vlastnostou rezolventy je to, ze Tubovolna rezolventa dvoch klauztl Cy a Cs je logicky
dosledok C; a Cs. Tuto vlastnost dokdZeme v nasledujicej vete.

Veta 3.5. Nech st dané dve klauzuly C; a Cy. Potom rezolventa C klauzul C; a Cs je logickym
dosledkom C; a Cs.

18
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Dokaz: > Nech Cp, Cy a C' maju nasledujuci vyznam:

Ci=LV (C
Cy=-LV C
C=0ClvC)

kde C] a C} su disjunkcie literdlov. Predpokladajme, 7e C; a Cs st pravdivé v interpretaci I.
Chceme ukazat, Ze rezolventa C klauzil C; a Cs je taktiez pravdiva v I. Predpkladajme, Ze L
nie je pravdivy v I. Potom C}; nemoze byt jednotkova klauzula, inak by C; bola nepravdiva v 1.
Analogicky mozeme dokazat, Ze ak —L neplati v I, tak C} musi byt pravdiva v I, ¢o bolo treba
dokazat. <

Poznamka 3.6. Ak mame dve jednotkové klauzuly, tak ich rezolventa, ak existuje, je prazdna
klauzula 0. To néas privadza k zaveru, Ze pre nesplnitelni mnozinu klauzal aplikidciou pravidla
rezolvent moézeme dostat [I. Tento vysledok dokaZzeme neskor. Zatial uvedieme definiciu odvodenia.

Definicia 3.7. Nech S je mnozina klauzil. Rezolvenénym odvodenim C z S je takd konecné
postupnost Cy,Cs, ..., C, klauzil, 7ze kazda Cy patri do S alebo je rezolventou predchadzajtcich
C; a Cj aze Cp = C. Odvodenie O z S nazyvame zamietnutie (alebo dokaz nesplnitelnosti) S.
Hovorime, Zze klauzulu C' méZeme odvodit’ alebo ziskat z S, ak existuje odvodenie C z S.

Uvedieme niekolko prikladov, ktoré ilustruju pouZitie metddy rezolvent pre dokaz nesplnitel-
nosti mnoziny klauzil.

Priklad 3.8. UvaZujme mnozinu S = {(1) =P V @,(2) =Q,(3) P}. Z (1) a (2) dostavame
rezolventu (4) =P. Zo (4) a (3) dostavame O. Pretoze O dostavame z S aplikovanim pravidla
rezolventy, tak v silade s predchadzajucou vetou, O je logicky dosledok S. Z toho vyplyva, ze S
nie je splnitelné.
Priklad 3.9. Pre mnozinu S = {(1) P V Q,(2) =P VvV Q,(3) P V =@, (4) =P V -Q} dostavame
nasledujuce rezolventy: (5) @ z (1) a (2), (6) ~Q z (3) a (4), (7) Oz (5) a (6).

Dostali sme OJ, teda S nie je splnitelna. Uvedené odvodenie moézeme vyjadrit pomocou stromu,
ktory nazyvame strom odvodenia.

Pv@ -PVQ Pv-Q -PV-Q

O

OBRAZOK 3.1

Pravidlo rezolventy je velmi silné odvodzovacie pravidlo. V d'alsom ho budeme definovat aj
pre logiku 1. radu. Taktiez dokdZzeme tiplnost metddy rezolvent pre dokaz nesplnitelnosti mnoziny
klauzul, t.j. dan& mnoZzina klauzil nie je splnitelna prave vtedy, ked existuje odvodenie prazdnej
klauzuly O z S. Neskor uvedieme aj priklady aplikovania metody rezolvent. Na zéver tejto Casti
odvodime ekvivalentnost pravidla rezu a pravidla modus ponens. To zna¢i nasledujaci fakt:

(a) AV B,AV C+ BV C — Ak prepiSeme uvedené tvrdenie pomocou implikicii dostdvame
A — B,-A — C+ =B — C. Ukidzeme, 7e pouzitim pravidla modus ponens dokdZeme uvedené
tvrdenie:

(1) F(A— B) = (=B — —4)

2)F(-B—=-A) > ((mA—=>C)—> (=B —= ()



20 M REZOLVENCNA METODA

(3) F =B — C, z predpokladov A — B, =A — C pouzitim pravidla modus ponens (2-krat).

(b) A,A - B+ B — Z uvedenych predpokladov pomocou pravidla rezu odvodime B: najprv
prepiSeme predpoklady pomocou disjunkcie; dostavame A v O0,-A v B+ B v O = B.

3.2. Substittcia a unifikacia

V predchadzajucej ¢asti sme metddu rezolvent uvazovali pre vyrokova logiku. V dalsich cas-
tiach sa budeme snaZit rozgirit tuto metédu na logiku 1. rddu. V predchadzajucej casti sme
poznamenali, Ze podstatné pre pravidlo rezu je najst v klauzule literal, ktory je kontrarny literalu
v druhej klauzule. Pre klauzuly, ktoré neobsahuji premenné, je to velmi jednoduché. No pre
klauzuly obsahujtce premenné, je to zlozitejsia vec. Uvazujme napr. klauzuly

C1 = P(z) v Q(z) Cy ==P(f(z)) V R(z)

Neexistuje ziaden literal v Cp, kontrarny nejakému literalu v Cs. No ak zamenime premennd x v
Ci na f(a) a z v C na a, tak dostavame:

Ci = P(f(a)) v Q(f(a)) C2 = =P(f(a)) V R(a)

Vieme, 7e C] a C} su zakladné instancie Cy, resp. C2 a P(f(a)) a =P(f(a)) st kontrarne navzajom.
Z toho vyplyva, 7e 7 C] a C, mozeme dostat rezolventu C4 = Q(f(a)) V R(a).

Vo vseobecnom pripade, ak zamenime x v C; funkciou f(z), dostaneme C; = P(f(z)) V
V Q(f(z)). Opit C} je instancia Cy. Sucasne literal P(f(z)) v C} je kontrarny literalu =P (f(z))
v Cy. Z toho vyplyva, ze mézeme dostat rezolventu z C; a Cy: C3 = Q(f(x))V R(z), C4 je inStancia
klauzuly C3. Ak vhodnymi termami zamiehame premenné v Cy a Cs, ako to robime vysSie, tak
mozeme dostat nové rezolventy Cy a Cy. Okrem toho klauzula Cs je najviac spolo¢nou klauzulou
v tom zmysle, Ze vSetky druhé klauzuly, ktoré dostaneme podobne ako vys§Sie, su in§tancie Cj.
C; taktiez nazveme rezolventou Cy a Cs. Dalej sa budemem zaoberaf tym, ako tvorit rezolventy z
klauzil (obsahujucich aj premenné). PretoZe ziskanie rezolvent z klauzil ¢asto potrebuje zamiehat
premenné, uvedieme potrebné definicie.

Definicia 3.10. Pod substiticiou rozumieme kone¢ni mnoZinu tvaru {t; /vy, ..., t,/vn}, kde kaz-
da v; je premenné, kazdy term ¢; je rozny od v; a vetky v; st navzajom rozne. Ak ti,to,...t,
sa zékladné termy, tak substiticiu nazyvame zdkladnd substiticia. Substiticiu, ktord neobsahuje
7iaden prvok nazyvame prdzdna a oznacujeme ju . Na oznacenie substiticii budeme pouZivat
grécke pismena.

Priklad 3.11. Nasledujtice dve mnoziny st substiticie:

{f(2)/z,y/z} {a/z,9(y)/y, f(g(b))/=}
Definicia 3.12. Nech § = {t,/v1,...t,/v,} je substiticia a E je vyraz. Potom Ef je vyraz, ktory

dostaneme z E tak, Ze sucasne zamenime vSetky vyskyty premennej v; (1 <i <n) v E termom ¢;.
E6 nazyvame instancia E.

Priklad 3.13. Nech 6 = {a/z, f(b)/y,c/z} a E = P(z,y,z). Potom Ef = P(a, f(b),c).

Definicia 3.14. Nech 6 = {ti/z1,...,tn/zn} a X = {u1/y1,...,Um/ym} st dve substiticie.
Potom zloZenie (kompozicia) 6 a X je substiticia (oznacime je 8 o A), ktort dostdvame z mnoZziny

{tiXz1, .., to A Zn, w1 /Y1, ..., Um/Ym } vynechanim vietkych prvkov t;A/z;, pre ktoré ;A = z;
a v8etkych prvkov w;/y; takych, 7e y; € {x1,22,...,2,}.

Priklad 3.15. Nech 6 = {t1/z1,t2/22} = {f(y)/z,2/y}, X = {wa/y1,uz/y2, us/ys} = {a/z,b/y,
y/z}. Potom {ti\/x1.toN/@2,u1/yr, uz/y2,us/yst = {f(b)/z.y/y,a/z,b]y.y/z}. Pretoze to\ =
= I, taA/x2 (t.j. y/y) musi byt vynechané z mnoZiny. Dalej y; a yo st obsiahnuté v {z1,z2}, teda
u1/y1 aus/ys (t.j. a/z ab/y) musime vynechat. Takym spdsobom dostavame oA = {f(b)/z,y/z}.

Poznamenavame, Zze kompozicia zamen je asociativna a Ze préazdna zamena e je stucCasne Tava
aj prava identita, t.j. (JoX)opu=60o(Aou) acof =6foe pre vietky 6, X a u (zdmeny, substiticie
tvoria monoid, t.j. pologrupu s 1).
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Pri dokazoch metodou rezolvent, aby sme mohli identifikovat kontrarne dvojice literalov, je
¢asto treba zjednotit — unifikovat — dva alebo viacej vyrazov, t.j. musime néjst zamenu, ktora
moze previest niekolko vyrazov na identické. V d'alsom sa budeme zaoberat unifikiciou vyrazov.

Definicia 3.16. Substituciu 6 nazyvame unifikitorom pre mnozinu {E, E»,. .., E;} prave vtedy,
ked Ei0 = Esf = --- = E0. Hovorime, 7e mnozina {E1, Es, ..., E} je unifikovatelnd, ak pre iu
existuje unifikator.

Definicia 3.17. Unifikdtor ¢ pre mnozinu vyrazov nazyvame najvsSeobecnejsim unifikitorom préve
vtedy, ak pre kazdy unifikdtor 6 pre tito mnoZinu existuje taka substittcia A, ze § = g o A.

Priklad 3.18. Mnozina {P(a,y), P(z, f(b))} je unifikovatelna, pretoze substiticia § = {a/z,
f(b)/y} je jej unifikator.

3.3. Unifika¢ny algoritmus

V tejto Casti uvedieme algoritmus unifikcie pre ndjdenie najvseobecnej§ieho unifikatora pre ko-
necni neprazdnu unifikovatel ntt mnozinu vyrazov. Ked mnozina nie je unifikovatelna, algoritmus
zaznamena aj tento fakt.

Uvazujme P(a) a P(z). Tieto dva vyrazy nie st identické. Diferencia je v tom, Ze a sa vyskytuje
v P(a) a z v P(z). Aby sme mohli P(a) a P(z) stotiznit, najprv musime néjst diferenciu a potom
sa pokusit tuto diferenciu vylacit. Pre P(a) a P(z) diferencia bude {a, z}. PretoZe = je premenn4,
tak £ mozeme zamenit na a. Na tom je zaloZené idea unifika¢ného algoritmu.

Definicia 3.19. Diferencéni mnoZinu neprazdnej mnoziny vyrazov W dostavame tak, Ze ndjdeme
prva (zlava) poziciu, na ktorej sa nie pre vietky vyrazy z W nachédza jeden a ten isty symbol
a vypiSeme z kazdého vyrazu v W podvyrazy, ktoré sa zaéinaja symbolom, ktory sa nachadza
na uvazovanej pozicii. Mnozina D tychto podvyrazov sa nazyva diferencnd mnoZina pre W a jej
vyrazy sa termy.

Priklad 3.20. Ak W = {P(z, f(y,2)), P(z,a), P(x,g(h(k(x))))}, tak prva pozicia, na ktorej sa
nie vo vSetkych vyrazoch z W nachadzaju rovnaké symboly, je piata, pretoze vSetky vyrazy majui
rovnaké prvé 4 symboly, a to ,,P(z,”. Takym sposobom sa diferenéné mnozina sklada zo zodpo-
vedajucich vyrazov (podvyrazov) — pod¢iarknutych termov, ktoré sa za¢inaju na piatej pozicii,
teda je to mnozina {f(y, 2), a, g(h(k(x)))}.

Unifikaény algoritmus

Krok 1. £=0,Wy =W, 09 =¢.

Krok 2. Ak Wy je jednotkova klauzula, algoritmus zakonéi svoju ¢innost: oy, je najvieobecnejsi
unifikdtor pre W. V opa¢nom pripade nidjdeme Dy — diferen¢ntt mnozinu pre Wy.

Krok 3. Ak existujua také elementy vy, a tp v Dy, Ze v je premennd, ktora sa nevyskytuje v t,
tak prejdeme ku kroku 4. V opa¢nom pripade algoritmus zakon¢uje svoju ¢innost: W
nie je unifikovatelna.

Krok 4. Nech Wiy = Wi{tr/vr} aokps1 = opo{tr/vr} (poznamenavame, ze Wiy = Wiogy1).

Krok 5. Vypiseme hodnoty pre k£ + 1 a prejdeme ku kroku 2.

OBRAZOK 3.2. Unifika¢ny algoritmus

Priklad 3.21. Najdite najvSeobecnejsi unifikator pre W = {P(a, z, f(9(y))), P(z, f(2), f(u))}.
(1) 09 =€ a Wy = W. Pretoze Wy nie je jednotkové klauzula, tak oo nie je najvieobecnejsi
unifikdtor pre W.
(2) Diferen¢nd mnozina Dg = {a, z}. V Dy existuje premenna vg = z, ktora sa nevyskytuje
\% t[) = a.
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(3) Nech

o1 =000 {to/vo} =eo{a/z} = {a/z}
Wi = Wolto/vo} = {P(a,z, f(9(y))), Pz, f(2), f(u)) Ha/z} =
={P(a,z, f(9(y))), P(a, f(a), f(u))}

(4) Wi nie je jednotkova klauzula, nasli sme diferenéntt mnozinu D; pre Wi, a to Dy =

= {z, f(a)}.
(5) Z Dy dostavame, 7e v; =z a t; = f(a).
(6) Nech

oy = 01 0 {t1/v1} = {a/z} o {f(a)/z} = {a/z, f(a)/x}
Wy = Wi{ti/vi} = {P(a.z, f(9(y))), Pla, f(a), f(u)){f(a)/z} =
={P(a, f(a), f(9(y))), P(a, f(a), f(u))}
(7) Wy nie je jednotkova klauzula, pretoZe sme nasli diferenéni mnoZinu Dy pre W, a to
Dy = {g(y),u}. Z Dy dostavame, 7e va = u a t2 = g(y).
(8) Nech
72 = 02 0 {ta/v2} = {a/2 f(@)/a} o {g(w)/u} = {a/2. 1 (a) .90 u}
W3 = Wa{tz/v2} = {P(a. f(a), f(9(y))), P(a, f(a), f(u) Hg(y)/u} =
={P(a, f(a), f(9())), Pla, f(a), f(9(y)))} = {P(a, f(a), f(9(y)))}

(9) Pretoze W3 je jednoprvkova klauzula, tak o3 = {a/z, f(a)/z, g(y)/u} je najvieobecnejsi
unifikator pre W.

Priklad 3.22. Zistite, ¢ je unifikovatelna mnozina W = {Q(f(a), g9(z)),Q(y,y)}.
(1) Nechog =ca Wy =W.
(2) Wy nie je jednotkova klauzula, pretoze sme nagli diferenénit mnozinu Dy pre Wy, a to

Do = {f(a)/y}. Z Dg vieme, 7e vg =y a to = f(a).
(3) Nech

o1 =090 {to/ve} = eo{f(a)/y} = {f(a)/y}
Wi = Wo{to/vo} = {Q(f(a),9(x)),Q(f(a), f(a))}

(4) Wi nie je jednotkova klauzula, pretoze najdeme diferenéni mnozinu D; pre Wi, a to
Dy = {g(x), f(a)}, a naviac nemame prvok, ktory by bol premennou. Teda unifika¢ny
algoritmus kon¢i svoju ¢innost; moZzeme urobit zaver, Zze W nie je unifikovatelna mnozina.

Poznamenavame, ze vyssie uvedeny algoritmus unifikacie vzdy zakonéuje svoju Einnost pre lu-
bovolnt kone¢nu neprazdnu mnozinu vyrazov, v opacnom pripade by vznikla nekoneéna postupnost
Woo, Woy,Wos ... koneénych neprazdnych mnozin, ktord méa ta vlastnost, Zze kazda nasledujica
mnoZina mé o jednu premennt menej ako predchadzajtca (skutoéne: Woy obsahuje vy, no Wogi1
ju neobsahuje). No to nie je moZné, pretoze W obsahuje len kone¢ny pocet premennych.

Na priklade sme ukazali, ze pre unifikovatelntt mnozinu W unifika¢ny algoritmus najde naj-
vSeobecnejsi unifikator. Ze to ide urobit vzdy, dokazuje nasledujiica veta.

Veta 3.23 (Unifika¢na veta). Ak W je kone¢na neprazdna unifikovatelna mnozina vyrazov, tak
unifikaény algoritmus vzdy zakoncuje svoju ¢innost na 2. kroku a posledné oy, bude najvieobecnejsi
unifikator pre W.

Dokaz: > Pretoze W je unifikovatelna mnozina, tak 6 oznac¢me jej lubovolny unifikator. Indukciou
vzhladom na k ukiZzeme, Ze existuje taka substitacia A;, ze 8 = g, 0 Ag.

1° Nech k£ = 0. PoloZzme \g = 6. Potom 6 = o o g, pretoze oy = €.
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2° Predpokladajme teraz, ze = o o Ag plati pre 0 < k < n. Ak Wo, je jednotkovi formula,

tak algoritmus unifikicie zakon¢uje svoju ¢innost na 2. kroku. Pretoze 6 = o, o A,,, tak o,
bude najvSeobecnejsi unifikator pre W. Ak Wo, nie je jednotkova klauzula, tak unifikac¢ny
algortimus najde diferen¢nt mnozinu D,, pre Wo,. Pretoze § = o0, o A\, je unifikdtor pre
W, tak A, musi unifikovat D,. Pretoze D, je diferen¢na mnozina, tak v D, musi existovat
premenna v,.

Nech t,, je lubovolny iny element roézny od v,. Pretoze A, unifikuje D,,, tak v, A, = t, Ay
Ak sa v, vyskytuje v t,, tak sa v, A, vyskytuje v t,A,. No to nie je mozné, pretoZe v, a t, su
rozne a v, Ap = tpA\n. Z toho vyplyva, Ze v, sa nevyskytuje v ¢,,. Preto sa unifika¢ny algoritmus
nezastavi na 3. kroku, ale prejde ku 4. kroku k mnozine Wo,, 11, kde 0,41 = 0y © {tn/vn}.

Nech A\,+1 = A — {tnAn/vn}. Pretoze v, sa nevyskytuje v t,, tak

toAnt1 = tn(An — {tadn/vn}) = thdy
Takym sposobom dostavame
{tn/vn} o A1 = {tndng1/on} U A1 = {tadn/vn} U A1 =
= {tpAn/vn} U (An — {ta\n/vn}) = An
To znamena, 7e A\, = {tn/vn} o Apt1. Z toho vyplyva, 7e
0 =0,0X =0p0{tn/vn}oAnp1 =0nt1 0 At
Preto pre vsetky k > 0 existuje taka substiticia A, Ze 8 = oy o Ag.
Pretoze unifika¢ény algoritmus musi skonéit svoju ¢innost a neskonéil ju na 3. kroku, tak musi svoju

¢innost skoncit na 2. kroku. Okrem toho, pretoze 8 = o o A; pre vetky k, tak posledné o}, bude
najvSeobecnej§im unifikitorom pre W, ¢o sme potrebovali dokazat. <

3.4. Metoda rezolvent pre logiku prvého radu

Po uvedeni unifika¢ného algoritmu mozeme rozobrat metddu rezolvent pre logiku prvého radu.

Definicia 3.24. Nech C je klauzula. Ak dva alebo viacej literalov (s rovnakym znakom predikétu)
klauzuly C' maju najv8eobecnejsi unifikitor o, tak Co sa nazyva spojenim C. Ak Co je jednotkova
formula, tak sa toto spojenie nazyva jednotkovym spojenim.

Priklad 3.25. Nech C = {P(z) V P(f(y)) V =Q(z). Potom prvy a druhy pod¢iarknuty literal

maju najv8eobecnejsi unifikitor o = {f(y)/x}. Z toho vyplyva, 7e Co = P(f(y)) V =Q(f(y)) je
spojenie C.

Definicia 3.26. Nech C; a C st dve klauzuly (nazyvame ich predpoklady), ktoré nemaju ziadne
spolo¢né premenné. Nech Ly € Cy a Ly € Cs s dva literdly. Ak Ly a =Ly, maji najvSeobecnejsi
unifikitor o, tak sa klauzula
(010' — Lla) U (CQO’ — LQO’)
nazyva (bindrnou) rezolventou C; a Cy. Literdly L; a Lo sa nazyvaji nadbytoéné a moZeme ich
vynechat.
Priklad 3.27. Nech C; = P(z) V Q(z) a Cy = =P(a) V R(x). Pretoze = vystupuje v C; a Cs,
tak zamenime premennt v Cs, teda nech Cy = =P(a) V R(y). Vyberme L; = P(x) a Ly = =P(a).
Pretoze =Ly, = P(a), tak L; a =Ly majt najv8eobecnejsi unifikitor o = {a/x}. Z toho vyplyva,
Ze
(Cro = Lio) U (Ca0 — Layo) = ({P(a), Q(a)} — {P(a)}) U ({~P(a), R(y)} — {-P(a)}) =
={Q(a)} U{R(y)} = {Q(a). R(y)} = Q(a) V R(y)

Takymto sposobom @(a) V R(y) je binarna rezolventa C; a Cs. P(x) a ~P(a) si nadbyto¢né
literaly.

Definicia 3.28. Rezolventou predpokladov C; a Cs je jedna z nasledujucich rezolvent:



24 M REZOLVENCNA METODA

(1) binarna rezolventa C; a Cy

(2) binarna rezolventa C; a spojenia C

(3) binarna rezolventa spojenia Cy a Cs

(4) binarna rezolventa spojenia C a spojenia C

Poznamka 3.29. St mozné aj ohrani¢enia na spojenia.

Priklad 3.30. Nech Cy = P(z) V P(f(y)) V R(g(y)) a Cy = =P(f(g(a))) V Q(b). Spojenie C;
je C1 = P(f(y)) V R(g(y)). Binarna rezolventa C; a Cs je R(g(g(a))) V Q(b). Z toho vyplyva, 7e
R(g(g(a))) V Q(b) je rezolventa Cy a Cs.

Pravidlo rezolvent je odvodzovacie pravidlo, ktoré indukuje rezolventy na mnozine klauzul.
Toto pravidlo v roku 1965 zaviedol Robinson. Je efektivnejsie ako predchédzajuce metody doka-
zov, napr. ako priama aplikacia Herbrandovej vety, ktort pouzil Gilmore a neskor Davis a Putman.
Okrem toho, metdda rezolvent je tplna, t.j. pri pomoci pravdla rezu mozeme pre 'ubovolni ne-
splnitelntt mnozinu ziskat prazdnu klauzulu 0. V dalsom dokéZeme uvedené tvrdenie.

Poznamenavame, Ze ak posledna odvodena klauzula metédou rezolvent je prézdna, tak urobime
zaver, 7ze mnozina klauzal S nie je splnitelné.

Kroky v dokaze mozeme Tahko vyjadrit stromom. Strom nazyvame stromom odvodenia, t.j.
strom odvodenia z mnoZiny S je hore rastici strom, pricom kazdému jeho visiacemu vrcholu
pripiSeme klauzulu z S a kazdému nasledujicemu vrcholu pripisujeme rezolventu vrcholov (klauzil)
bezprostredne predchidzajucich vrcholu. Strom odvodenia nazyvame stromom odvodenia klauzuly
R, ak je R pripisané korenu stromu. Strom odvodenia je prosto strom, ktory vyjadruje odvodenie.
V dosledku toho budeme pouZivat terminy ,odvodenie” a ,strom odvodenia” ako zamenitelné.

3.5. Uplnost metody rezolvent

Pri dokaze Herbrandovej vety sme zaviedli pojem sémantického stromu. V tejto ¢asti budeme
pouZivat sémanticky strom na dokaz uplnosti metédy rezolvent. Skutocne, existuje blizka stvislost
medzi sémantickym stromom a odvodenim pomocou rezolvent, ¢o demonstrujeme nasledujicim
prikladom:

Priklad 3.31. UvaZzujme nasledujiicu mnozinu klauzal S:

(1) P

(2) PV Q

(3) =PV =Q
Herbrandovska baza S je {P,Q}. Nech T je uzavrety sémanticky strom na obr.3.3(a). T ma
uzavrety sémanticky podstrom T” na obr. 3.3(b). Uzol (2) na obr. 3.3(b) je akceptujicim vrcholom.
No dva jeho nasledovniky (4) a (5) st odmietajice vrcholy. Klauzuly, ktoré zodpovedajt vrcholom
(4) a (5) buda =P V =Q a =P V @ v uvedenom poradi. Lahko vidno, Ze tieto dve klauzuly musia
mat kontrarnu dvojicu literdlov a z toho vyplyva, Ze mozu byt predpokladmi pravidla rezu. Ak
spojime =P V =@ a =P V @, dostavame —P. Poznamenavame, 7e =P sa odmieta ¢iasto¢nou
interpretaciou, ktord zodpoveda vrcholu (2). Ak pridame k S klauzulu —P, tak budeme mat
uzavrety sémanticky strom T" pre SU{—P}, zobrazeny na obr. 3.3(c)., kde vrchol (1) je akceptujtici
vrchol. Stcasne moze vzniknit [, a to aplikovanim pravidla rezu k P a =P. Ak pridame O do
SU{—=P}, dostaneme uzavrety sémanticky strom 7" pre SU{-P}U{O}, zobrazeny na obr. 3.3(d).
Opisané ,stahovanie” sémantického stromu v skuto¢nosti zodpoveda nasledujicemu rezolvenénému
odvodeniu pre mnozinu S = {P,-P V Q,-P V -Q}:

(4) -P — rezolventa (2) a (3)

(5) O — rezolventa (4) a (1)

V dalsom budeme pouZzivat uvedeni ideu, aby sme dokézali Gplnost metédy rezolvent,t.j.
zostrojime uzavrety sémanticky strom pre nesplnitelni mnozinu klauzal a postupne spolu s usku-
to¢hovanim metody rezolvent ,stahujeme” strom do jedného vrchola. Skor nez dokazeme vetu o
uplnosti, dokdZeme pomocné tvrdenie.
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T T

(1) TI/ TIII
P -P *) (1)
(2)ﬂp P(s) Su{-P}uU{O}

(c) (d)
OBRAZOK 3.3.

Lema 3.32. Nech C] a C} su instancie Cy a Cy v uvedenom poradi. Ak C' je rezolventa C| a C},
tak existuje taka rezolventa C klauzul C; a Cy, ze C' je inStancia C.

Dokaz: > Ak treba, tak premenujeme premenné v Cy a Cs tak, aby €y a Cs nemali spolo¢né
premenné. Nech L] a L) st literaly, ktoré mozeme vynechat a nech ¢! = (Cjv — Liv) U (Cv —
— Liv), kde v je najvSeobecnejsi unifikdtor L} a —L5. C{ a C} st instancie C7 a Cs v uvedenom
poradi. Preto existuje taka substitucia 6, ze C| = C10 a Cy = Cs6. Nech L},..., L}’ st literdly v C;
— zodpovedajuce L}, t.j. L} = --- = L' = L, (i = 1,2). Ak r; > 1, dostavame najvseobecnejsi
unifikdtor A; pre {L},...,L*}. Nech L; = L} \; (i = 1,2). Pretoze \; je najvieobecnejsi unifikitor,
tak pre vhodnu substiticiu ¢ plati

Li=Li§=Li(\o&) = (LiN)E =L

teda L;& = L!. L; je pritom literal v spojeni C;\; pre C;. Ak r; =1, tak \; = ¢ a L; = L} \;. Nech
A = A1 U Xp. Tak je zrejmé, ze L, je inStancia L;.
Pretoze L} a —L} su unifikovatelné, tak aj L; a —Lo st unifikovatelné. Nech o je najvSeobec-
nejsi unifikator pre Ly a —L,. Nech
C = ((CiN)o — Lio) U ((CaXN)o — Lyo) =
= ((CiNo = ({L1, -, L7 IN0) U ((CaN)a — ({Ls, ..., Ly*}\)o) =

= (Ci(Aoa) = {L},..., LT YA o0)) U (Co(Aoo) — {LL,..., LI} (Ao o))

C je rezolventa C; a Cy. Je zrejmé, ze C' je inStancia C, pretoze
C'=(Clv—Liv) U (Chv — L) =
= ((C10)v — ({Ly, .., L7'})w) U ((Cof)v — ({Ly, ..., L5*}0)v) =
=(C1(@ov)—{Li,....,L7"}(Bov)U(Ca(fov)—{Ls, ..., L3>} (B ov))

a Ao je veobecnejsi ako 6 o v, pretoze A je vSeobecnejsi ako 6 a o je vSobecnejsi ako v. Tym sme
dokazali lemu. <
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Veta 3.33 (Uplnost rezolvenénej metddy). Mnozina klauzil S nie je splnitelna prave vtedy,
ked existuje odvodenie prazdnej klauzuly O z S.

Dékaz: > (=) Predpokladajme, 7e S nie je splnitelna. Nech A = {A;, A>, A5...} je mnoZina
atémov S. Nech T je uzavrety sémanticky strom uvedeny na obr. 3.4.

OBRAZOK 3.4.

Podla Herbrandovej vety (I. variant) T obsahuje konefny uzavrety sémanticky strom 7". Ak
sa T' sklada len z jedného vrchola (korena), tak O musi patrit do S, pretoZe Ziadna ina klauzula
nemoze byt odmietnutd v koreni sémantického stromu. Je zrejmé, ze v tom pripade nidm veta
plati. Predpokladajme, 7e sa T' sklada z viacej ako jedného vrchola. Potom T’ m4 aspon jeden
akceptujuci vrchol. Keby to tak totiz nebolo, tak by mal kazdy vrchol ako potomka (nasledovnika)
aspon jeden neodmietajici vrchol. V tom pripade by sme vS8ak mohli najst nekonecnu vetvu
vychadzajtcu z T', ¢o je v spore s kone¢nostou T".

Nech v je akceptujuci vrchol v T a nech v, a vy st odmietajtce vrcholy, ktoré lezia bez-
prostredne nizsie. Nech I(v) = {my,ma,....,my}, I(v1) = {mi,ma,...,muy,muy1}, I(ve) =
= {my,ma,...,mp,"Mp41}. PretoZe vy a vy st odmietajace vrcholy a v neodmietajaci vrchol,
tak musia existovat dve zakladné instancie C] a C} klauzul Cy a Cy také, ze C| a C) neplatia v
I(vy) a I(v2) v uvedenom poradi, no C] a C} sa nezamietaju I(v). Z toho vyplyva, ze C| musi
obsahovat —m,, ;1 a C} musi obsahovat m,;. Nech L} = —-m,; a L}, = my4+1. Ak vynechame
literaly L} a L}, mozeme dostaf rezolventu C' pre C a C}, a to prave je C' = (C] — L) U(C — LY).
C' musi byt nepravdiva v I(v), pretoze (C] — L}) a (C5 — L}) neplatia v I(v). Podla predchadzaja-
cej lemy existuje také rezolventa C' z Cy a Cs, 7e C' je zakladna instancia C. Nech T" je uzavrety
sémanticky strom pre (S U {C}), ktory dostaneme z T' vynechanim I'ubovolného vrchola alebo
hrany, ktora sa nachadza nizgie nez prvy vrchol, v ktorom sa rezolventa C' odmieta. Je zrejmé, ze
pocet vrcholov v T" je mensi ako pocet vrcholov v T'. Ak aplikujeme vyssie uvedeny postup opat
na T", dostavame dalsiu rezolventu v (SU{C}) a mozeme dostat iny sémanticky strom s mensim
poc¢tom vrcholov. Tento postup opakujeme dovtedy, pokym nevznikne uzavrety sémanticky strom,
ktory sa sklada z len z korenového vrchola. To je mozné len vtedy, ak je odvodend 0. Z toho
vyplyva, Ze existuje odvodenie (] z S.

(«<=) Obratene, predpokldajme, Ze existuje odvodenie O z S. Nech Ry, Rs,..., Ry st re-
zolventy v odvodeni. Predpokladajme, ze S je splnitelna na modeli M. No ak model vyhovuje
klauzulam Cy a Cs, tak musi vyhovovat aj l'ubovolnej ich rezolvente. Z toho vyplyva, ze M vyho-
vuje klauzuldam Ry, Rs, ..., R;. No posledné tvrdenie nemoze platit, pretoze jedna z uvazovanych
relovent je 0. Preto S musi byt nesplnitelna, ¢o sme mali dokazat. <

Priklad 3.34. Uvazujme nasledujicu mnozinu formul:
Fi: (Vz)(C(z) = (W(z) A R(z)))
Fy: (3z)(C(z) A Q(z))
G: (3z)(Q(z) A R(z))

Nagou ulohou je dokazat, ze G je logickym dosledkom Fy a Fy.
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Riesenie: Vytvorime pre Fy, Fy a =G §tandardnt formu a dostaneme nasledujucich 5 klauzul

(1) =C(x) v W(z) z Fy

(2) =C(z) V R(z) z Fy

(3) C(a) z Fy

(4) Qa) z F>

(5) =Q(z) V =R(z) z -G
Tato mnozina klauzil nie je splnitelna. MoéZzeme to dokézat pomocou metédy rezolvent nasledu-
jucim sposobom.

(6) R(a) — rezolventa (3) a (2)
(7) —~R(a) — rezolventa (5) a (4)
(8) O — rezolventa (7) a (6)

Preto je G logickym dosledkom Fy a Fs.

3.6. Stratégia vymazavania

V predchadzajtcej ¢asti sme dokazali iplnost metody rezolvent. Tato metdda je efektivnejsia
ako metédy, ktoré sa pouzivali predtym. No nie prili§ rozvazne aplikovanie pravidla rezu moze
indukovat velké mnozstvo zbyto¢nych klauzil. Na to, aby sme sa o tom presveddili, uvedieme
jednoduchy priklad:

Majme mnozinu klauzal S = {PV Q,-PV Q,P V —-Q,—~P V =~Q}. Metddou rezolvent chceme
ukazat, ze mnozina S nie je splnitelna.

Aplikicia metédy rezolvent pre mnozinu S spoéiva vo vycisleni vietkych rezolvent vsetkych
dvojic klauzil S, pridani tychto rezolvent k mnozine S, urceni v8etkych dalsich rezolvent a v
opakovani tohto procesu dotial, pokym nedostaneme prazdnu klauzulu 0. To znamen4, Ze tvorime
sekvencie S°, S1, 52, ..., kde

S0 =9
S™ = {rezolventy C; a C> [ Cy € (S°U---US"™ ") A Co € S,_1}) n=12,...

Tato metdda sa nazyva metoda nasyjtenia irovne. Inymi slovami, postupujeme nasledovne: Najprv
zapiSeme klauzuly (SO u---u S”_l) v istom poradi a potom vy¢islime rezolventy porovnavajac
kazdt klauzulu C; € (S°U---US™™!) s klauzulou Co € S™~!, ktord sa nachédza po C;. Ked
utvorime rezolventu, pripieme ju na koniec zoznamu, ktory bol dovtedy vytvoreny. Ak pouzijeme
uvedent metédu na mnozinu klauzal S z prikladu, zostrojime sekvencie S°, S, S2, ..., obsahujtce
38 klauzdl a ako 39. sa objavi prazdna klauzula O.

Vytvorili sme vela klauztl, ktoré v naSom pripade nepotrebujeme, t.j. st nadbytoéné. Modzu
to byt napriklad tautolégie. Pretoze tautologia je pravdiva v Tubovolnej interpretécii, tak ak ju
vynechédme z nejakej nesplnitelnej mnoziny klauzil, mnozina zostavajicich klauzil je nesplnitelné.
Z toho vyplyva, 7e tautolégia nemd vyplyv na vysledok, a teda nie je potrebné ju vytvarat. Ak
ju teda vytvorime, tak ju treba vynechat. V opa¢nom pripade modze davat s inymi klauzulami
nadbyto¢né klauzuly (jedna a ta ist4 klauzula vznikne viackrat). Dalej mozu vznikat niektoré
klauzuly viackrat, aj ked nepouzijeme tautologiu. Vznikd ndm teda vela zbytocnosti. Na rieSenie
nadbytoc¢nosti rozoberieme v dalfom stratégiu vymazéavania.

Definicia 3.35. Klauzula C je podklauzulou D (alebo pohlcuje D) prave vtedy, ked existuje taka
substitiucia o, 7e Co C D. D nazyvame nadklauzulou C.

Priklad 3.36. Nech C = P(z) a D = P(a) V Q(a). Ak 0 = {a/z}, tak Co = P(a). Pretoze
Co C D, tak C je podklauzula D.

Poznamenavame, Ze ak D je identické C' alebo D je instancia C, tak D je nadklauzula C.
Stratégia vymazavania spoc¢iva vo vynechavani ubovolnych tautologii a nadklauzil, kde je to
mozné. Uplnost vymazévania zavisi od toho, ako sa vynechavaju tautolégie a nadklauzuly.
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Robime to nasledujtacim spésobom (pouZivame ju spolu s metédou nasytenia tirovne): Najprv
vypisujeme klauzuly (S’O u---u S"‘l) v istom poradi. Potom vypisujeme rezolventy tak, ze po-
rovnavame kazdd klauzulu C; € (S°U---US™™ ') s klauzulou Cy € S™~!, ktor4 je zapisand po
C1. Ked ziskame rezolventu, tak ju zapisujeme na koniec zoznamu, ak nie je tautologia a nie je
pohltena ziadnou klauzulou zo zoznamu. V opa¢nom pripade ju vynechavame.

Priklad 3.37. Priklad na pouzitie tohto postupu je na obr. 3.5.

S =25% (1) PvVvQ
(2) -P Vv Q
(3) PV =Q
4)  -PV-Q
St (5) Q z (1) a (2)
(6) P z (1) a (3)
(7) Pz (2)a(4)
(8) -Q  z(l)a(4)
S2:(9) O z(5)a(8)

OBRAZOK 3.5.

Poznamenavame, 7e tento zoznam je omnoho kratsi ako zoznam, ktory sme vytvorili predtym.
Z toho vyplyva, Ze stratégia vymazavania moze zlepsit efektivnost metody rezolvent.

Aby sme mohli pouzit stratégiu vymazavania, musime vediet rie§it otazku, ¢i je klauzula tau-
tolégia alebo ¢i je jedna z klauzil podklauzulou druhej. Lahgie sa urcuje, & je klauzula tautolégia
— staci preverit vyskyt kontrarnych dvojic. No preverenie podklauzil nie je také jednoduché.
OpiSeme algoritmus preverenia vlastnosti ,,byt podklauzulou”.

Nech C a D su klauzuly. Nech 6{ay/z1,...,an/z,}, kde x1,..., 2, sG premenné, ktoré sa
vyskytuja v D a ay, ..., a, si nové rozne konstanty, ktoré sa nevyskytuju v C alebo D. PoloZime
D=L{VLyV---VLy. PotomDl =1LV L6V ---V L,,0. Poznamenavame, ze D6 je zakladna
klauzula. =D8 = —~L10 A -+ A =L,,0. Nasledujuci algoritmus preveruje, ¢i je C podklauzulou D.

Algortimus pohltenia
Krok 1. Nech W = {=L6,...,-L,0}.

Krok 2. Kladieme k =0 a U°® = {C}

Krok 3. Ak UF obsahuje O, tak koniec: C je podklauzula D. V opa¢nom pripade kladieme
Uk+1 = {rezolventa Cy a Cy | Oy € UF A Cy € W

Krok 4. Ak U**! je prazdna mnozina ), tak koniec: C nie je podklauzula D. V opa¢nom pripade

kladieme k = k + 1 a prejdeme ku kroku 3.

OBRAZOK 3.6. Algoritmus pohltenia

Poznamenavame, 7e v tomto algoritme je kazda klauzula v U**! o jeden literal kratsia ako
klauzula v U*, z ktorej sme ju dostali. Preto sa v postupnosti U, U, ... musi vyskytnif mnozina,
ktora obsahuje OJ alebo prazdna mnoZzina. Algoritmus pohltenia je korektny, t.j. C je podklauzula
D préave vtedy, ked algoritmus zakoncuje pracu na 3. kroku. To mozno dokézat nasledujiicim
sposobom.

Dékaz: > (1) Ak C je podklauzula D , tak existuje taka substittcia o, ze Co C D. Z toho vyplyva,
7ze C(o 06) C DO. Takym sposobom literaly C'(o o §) mozeme vynechat pouzitim jednotkovych



VYBRANE PARTIE Z LOGIKY W 29

zakladnych klauzal vo W. C(o086) je instancia C. Z toho vyplyva, Ze literdly v C' moZeme vynechat
pouzitim jednotkovych klauzil vo W. To znamena, Ze nakoniec najdeme U*, obsahujiicu 0. Preto
algoritmus zakoncuje pracu na 3. kroku.

(2) Obrétene, ak algoritmus zakoncuje pracu na 3. kroku, tak dostdvame odmietnutie, ako na
obr.3.7, kde By, ..., B, st klauzuly z W, Ry je rezolventa C' a By a R; je rezolventa R; 1 a B;_ 1

3 3

prei=2,...,r. Potom C(ogooy0---00,.) ={=By,~Bi,...,mB,.} C D6.

C
By

Ry
By

R,

OBRAZOK 3.7.

Nech A = 0ggpoo0y0:---00,. Potom CA C Df. Nech o je substiticia, ktora dostaneme z A
zamenou v kazdom komponente A, a to tak, Zze a; zamenime z; pre ¢ = 1,...,n. Potom Co C D
Z toho vyplyva, ze C je podklauzula D, ¢o bolo treba dokazat.

Priklad 3.38. Nech C = =P(z) V Q(f(z),a) a D = =P(h(y)) V Q(f(h(y)),a) V =P(z). Zistite,
& C je podklauzula D.

Riesenie:

(1) y a z stt premenné v D. Nech 6 = {b/y,c/z}. Poznamenavame, Ze b a ¢ sa nevyskytuji
v C a D. Potom D = —P(h(b)) V Q(f(h(b)),a) V =P(c). Preto -D8 = P(h(b)) A
A =Q(f(h(b)),a) A P(c). Z toho vyplyva, Ze

U ={-P(z) vV Q(f(2),a)}
(2) Pretoze U° neobsahuje O, tak dostévame:
Ut = {Q(f(h(b)), ). ~P(h(b)),Q(f(c),a)}
(3) Pretoze U! nie je prazdna a neobsahuje O, tak dostaneme U? = {O0}.

(4) Pretoze U? obsahuje O, tak algoritmus konéi svoju ¢innost, mozeme teda urobif zaver,
7e C' je podklauzula D.

Priklad 3.39. Nech C' = P(z,z) a D = P(f(x),y) V P(y, f(z)). Zistite, ¢i C je podklauzula D.
Riesenie:
(1) = a y st premenné v D. Vyberieme nové konstanty a, b rozne od Tubovolnych kongtént v

C aD. Nech § = {a/z,b/y}. Potom Db = P(f(a),b) V P(b, f(a)). ~DO = =P(f(a),b) A
A =P(b, f(a)). Takymto sposobom

W = {=P(f(a),b),=P(b, f(a))}
U° = {P(z,2)}
(2) Pretoze U° neobsahuje O, tak dostaneme

Ul =90
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(3) Pretoze U' je prazdna, tak algoritmus konéi svoju ¢innost a mézeme urobit zéaver, ze C
nie je podklauzula D.

3.7. Niektoré priklady na pouZitie metédy rezolvent

Priklad 3.40. Majme formuly
(1) P> S
(2) S=>U
(3) P
4) U
Mame dokazat, ze (4) vyplyva z (1), (2) a (3).
Riesenie: Najskor vyjadrime v8etky tvrdenia v §tandardnej forme. Takym sposobom dostavame
(1'y =P Vv S
(2) -SvVvU
(37) P
4) U
Zamietnutim dokdzeme, Ze U je logicky dosledok z (1'), (2'), (3'). Urobime negéciu (4') a dostavame
nasledujuci dokaz:

(1) =P VvV S

(2) =S VU

(3) P

(4) ~U — negéacia zaveru

(5) S — rezolventa (3) a (1)
(6) U — rezolventa (5) a (2)
(7) O — rezolventa (6) a (4)

Priklad 3.41.

e Predpoklad: Studenti st ob¢ania.

e Zaver: Hlasy studentov sii hlasy ob¢anov.
Riesenie: Nech

e S(z) oznacuje ,,z je Student”

e (C(r) oznacuje ,,x je obCan”

e V(z,y) znamena ,z je hlas y”

Takym spoésobom mozeme napisat:

e Predpoklad: (Vy)(S(y) = C(y))

o Zaver: (Vz)((3y)(S(y) A V(z,y)) = 3y)(C(2) A V(z,2)))
Lubovol'ny hlas mézeme priradit §tudentovi alebo inému obé&anovi. Standardna forma predpokladu
je:

(1) =S(y) v C(y)

Dalej, pretoze

—

/N

(v2) (Gy)(S@) A V(z.y) = (F)(CE) A V(z,2))) =
= ~((v2) () (~5(9) v ~V(w,9) V (3)(C(2) A V(3,2))) =
= ~((¥0) () (32) (=S () v ~V(2,9) V (C(2) A V(3,2)))) =

= (30) @) (%) (SW) A Viz.y) A (<C() V =V (2.2))
dostavame tri klauzuly pre negaciu zaveru:

(2) S(b)
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(3) V(a,b)
(4) ~C(2) v ~V(a,2)
Dokaz zakon¢ujeme nasledujicim sposobom:

(5) C(b) —z(1)a(2)
(6) —V(a,b) —z(4)a(d)
(7) O —z(3)a(6)

Predpokladajme, Ze b je §tudent, a je hlas Studenta b, a nie je hlas zZiadneho ob¢ana. Pretoze b je
Student, b je ob¢an. Okrem toho, a nemo6ze byt hlas b, pretoze b je ob¢an. A to nie je moZné.



