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Motivation

Motivation

When solving real life problems

large n× n matrix, n . . . millions

numerical method

parallelize the computation

N processes, N ×N blocks (submatrices) BijB11 B12 · · · B1N
...

...
. . .

...
BN1 BN2 · · · BNN


We have a dense matrix!

distribute N blocks to each processor

(geometrically) closely related blocks to the same processor
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Motivation

FEM & BEM

Many points, split into N machines.
(ALL) Decomposing Kn 3 / 24



Motivation

Parallelization

Parallel machine without shared memory.

We prefer parallelization

load balanced

memory balanced

Computation of block Bij , requires

i-th and

j-th parts of the geometry

To each CPU as few di�erent indices as possible.
(e.g. not all blocks from one row)

Not all N2 blocks �t into the memory of one CPU!
(nor all n2 elements of the matrix)

(ALL) Decomposing Kn 4 / 24



Motivation

Parallelization

Parallel machine without shared memory.

We prefer parallelization

load balanced

memory balanced

Computation of block Bij , requires

i-th and

j-th parts of the geometry

To each CPU as few di�erent indices as possible.
(e.g. not all blocks from one row)

Not all N2 blocks �t into the memory of one CPU!
(nor all n2 elements of the matrix)

(ALL) Decomposing Kn 4 / 24



Motivation

Parallelization

Parallel machine without shared memory.

We prefer parallelization

load balanced

memory balanced

Computation of block Bij , requires

i-th and

j-th parts of the geometry

To each CPU as few di�erent indices as possible.
(e.g. not all blocks from one row)

Not all N2 blocks �t into the memory of one CPU!
(nor all n2 elements of the matrix)

(ALL) Decomposing Kn 4 / 24



Motivation

Parallelization

Parallel machine without shared memory.

We prefer parallelization

load balanced

memory balanced

Computation of block Bij , requires

i-th and

j-th parts of the geometry

To each CPU as few di�erent indices as possible.
(e.g. not all blocks from one row)

Not all N2 blocks �t into the memory of one CPU!
(nor all n2 elements of the matrix)

(ALL) Decomposing Kn 4 / 24



Motivation

Block matrix with numbers related to di�culty
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Motivation

Question: which N blocks on which CPU?

one diagonal block (longest computation)

(N − 1) non-diagonal blocks

if Bij then also Bji (same CPU)

if Bij , Bik, and Blj then also Blk

This translates into

decomposing KN into N subgraphs G1, G2, . . . , GN

each with (N − 1)/2 edges

each with as few vertices as possible

First suppose G1, G2, . . . , GN isomorphic to complete graph.
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Graph theory formulation

Graph theory formulation

Decompose KN into N copies of Kk � dense subgraphs.
Necessary condition: N = k2 − k + 1.

Particularly easy if the decomposition is cyclic:

De�nition (Graceful labeling)

Let G be a graph with m edges and a vertex labeling
λ : V (G)→ {0, 1, . . . ,m}. The length of an edge xy is

`(x, y) = min{|λ(x)− λ(y)|, 2m+ 1− |λ(x)− λ(y)|}.

We call f a graceful labeling if the set of edge lengths
{`(x, y) : xy ∈ E(G)} = {1, 2, . . . ,m}.

0 1

46
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Graph theory formulation

Graceful and ρ-labeling

The famous Graceful Tree Conjecture: �All trees graceful.�

Other graphs are interesting as well
Kk is graceful i� k ≤ 4
unicyclic graphs

De�nition (ρ-labeling)

Let G be a graph with m edges nad a vertex labeling
f : V (G)→ {0, 1, . . . , 2m}. The length of xy is
`(x, y) = min{|λ(x)− λ(y)|, 2m+ 1− |λ(x)− λ(y)|}.
We say λ is a ρ-labeling labeling if the set of edge lengths
{`(x, y) : xy ∈ E(G)} = {1, 2, . . . ,m}.

0 1

39

1

3
4 2

5

6
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Graph theory formulation

ρ-labeling

Theorem (Rosa 1967)

A graph G with m edges allows a cyclic decomposition of K2m+1 i� G
has a ρ-labeling.

0 1

39

1

3
4 2

5

6

Not all complete graphs have a ρ-labeling,

in�nitely many complete graphs have.
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Graph theory formulation

Example
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Equivalent formulations

Equivalent formulation

De�nition (perfect di�erence sets)

A set of integers {a1, a2, . . . , ak} ⊆ [0, N ] such that every nonzero residue
modulo N can be uniquely expressed in the form ai − aj .

Example

{0, 1, 4, 6} is a perfect di�erence set for m = 6:
1 = 1− 0, 2 = 6− 4, 3 = 3− 1, 4 = 4− 0, 5 = 6− 1, 6 = 6− 0.

Perfect ruler (Guy 1994) has k distinct marks s.t. any distance
1, 2, 3, 4, . . . , N can be measured. E.g. 0, 1 ,4, 6
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Equivalent formulations

Example (Continued. . . )

Based on the perfect di�erence set {0, 1, 4, 6} for m = 6 we can
decompose K2m+1 = K13 cyclically.

label vertices of K4 by 0, 1, 4, 6

�nd a cyclic decomposition of K13

A 13 by 13 block matrix to 13 machines, so that:

1 computation of diagonal block + 12 non-diagonal blocks to each
process

4 rows (and 4 columns) of the geometry to each process

the higher N (N = 13) the better ratio
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Equivalent formulations
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Equivalent formulations

Yet another formulation

Decomposing a complete graph into complete subgraphs � this seems to
be a design theory problem.

De�nition

A block design (BIBD) is a collection B of b subsets (called blocks) of a
�nite set X of v elements such that any element of X is contained in the
same number r of blocks, every block has the same number k of
elements, and each pair of distinct elements appear together in the same
number λ of blocks.
A symmetric BIBDs are (also known as 2-designs) are denoted as
2− (v, k, λ) designs has b = v. (b ≥ v by Fisher's inequality.)

In our case:
k = k

v = N = k2 − k + 1

b = N (symmetric)
λ = 1
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Known results

Constructions

Su�cient condition: k − 1 is a prime power.

Theorem (Singer 1934)

A perfect di�erence set with k elements exists if k − 1 is a prime power.

However, K7 does not decompose K43.
Neither K11 does not decompose K111.
. . .

Theorem (Hartke, Östergøard, Bryant, El-Zanati 2009)

There exists no (K6 − e)-decomposition of K29.

Overview for k < 100 on web (Baumert):
http://www.ccrwest.org/diffsets/diff_sets/baumert.html
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Main result

Main result (2012/2015)

. . . is the nice application!

Construction for certain (not all) values.

It has been implemented and successfully tested:
Fast BEM matrices of size n up to millions, distributed to hundreds of
nodes N .

n N=31, k=6 N=91, k=10 N=133,k=12
12 288 175 MB, 1 s 200 MB, 1 s 207 MB, 1 s
196 608 353 MB, 53 s 280 MB, 25 s 276 MB, 18 s
786 432 999 MB, 294 s 570 MB, 110 s 535 MB, 99 s
3 145 728 1911 MB, 596 s

Format: average memory [MB], CPU time per process [s]
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Main result

Motivation: railway wheel noise elimination by pro�ling

Courtesy of J. Szweda, Department of Mechanics, V�B � TUO
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More results

Additional constructions

Distribution of processes to N CPUs needs not to be balanced (not
isomorphic subgraphs).

Typical cluster has 2t cores, e.g. 128.

We know how to decompose K133

into 133 subgraphs K12.
Remove 5 rows and columns:

preferably from di�erent K12 subgraphs

obtain some K12, K11, K10, maybe a few smaller

or obtain many K12, K11, one K7

Or for 2014 cores decompose K993 into 933 copies of K31.

A graph theorists say: That's cheating! Yet, it works. . .

Computational time depends on the largest graph:
preferably few small and a many large dense graphs (complete or �almost�
complete graphs).
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More results

Graphs similar to complete graphs.

If it has a ρ-labeling, then it can be used.

all graphs with at most 11 edges have a ρ-labeling

many classes of sparse graphs

By hand up to n = 31:

ρ-labeling of a graph with (n− 1)/2 edges

exceptions n = 28, 29, . . .

. . . di�cult (almost) as for complete graphs

Decomposition needs not to be cyclic

K7 −K3,3 decomposes K25, yet no ρ-labeling.
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More results

Subgraphs need not to be isomorphic

for odd N subgraphs can be isomorphic (exceptions!)
for even N subgraphs cannot be isomorphic (parity)
(simple graph not, though isomorphic digraphs exist)

Lemma

Let r, s be odd. If G decomposes Kr into r copies and H decomposes

G[Ks] into s copies, then a dense graph X on |H| vertices decomposes

Krs into rs copies of X.

Theorem

If r = p2 − p+ 1 and s = q2 − q + 1, then we can decompose Krs into rs
dense (for small s) isomorphic subgraphs on pq vertices.

Example

Decompose K147 (147 = 7 · 21) into 147 isomorphic subgraphs on 15
vertices. (Theoretical optimum: 13 vertices.)
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More results

If N is even. . .

If q is even, we decompose Kpq into pq subgraphs H1, H2, . . . ,Hpq (not
isomorphic).

Lemma

Let p be odd and q even. If G decomposes Kp into p copies and H
decomposes G[Kq] into q copies, then Kpq can be decomposed into pq
dense subgraphs X1, X2, . . . , Xpq each on |H| vertices.

Leads to a recursive construction.
Isolated values (case by case).
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More results

Further approximations

Up to N = 1000 (k ' 40):

constructing dense graphs using a greedy computer search

corresponds to using more CPUs, not N but N ′ > N

not balanced for CPU (nor memory) load

Roughly N ′ .= 7
5N .

We beat this by theoretical constructions, though only for certain values �
using more memory not more CPUs.
E.g. decomposing K559 into 559 isomorphic subgraphs each on 28
vertices.

Theoretical optimum: 25 vertices.
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More results

Optimization?

. . . balance the sums among the subgraphs.
(ALL) Decomposing Kn 23 / 24



More results

Thank you for your attention.
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