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Motivation |||||

When solving real life problems
m large n X n matrix, n ... millions
m numerical method
m parallelize the computation

m N processes, N x N blocks (submatrices) B;;
B Bz -+ Bin
By1 Bn2 -+ Bnanw

We have a dense matrix!
m distribute NV blocks to each processor

m (geometrically) closely related blocks to the same processor

(ALL) Decomposing K, 2/24



B ——
FEM & BEM Iyl

Many points, split into N machines.
(ALL) Decomposing K, 3/24



Parallelization |||||

Parallel machine without shared memory.

We prefer parallelization
m |oad balanced

= memory balanced

(ALL) Decomposing K, a/24



Parallelization |||||

Parallel machine without shared memory.

We prefer parallelization
m |oad balanced

= memory balanced

Computation of block B;;, requires
m i-th and
m j-th parts of the geometry

(ALL) Decomposing K, a/24



Parallelization |||||

Parallel machine without shared memory.

We prefer parallelization
m |oad balanced

= memory balanced

Computation of block B;;, requires
m i-th and
m j-th parts of the geometry

To each CPU as few different indices as possible.
(e.g. not all blocks from one row)

(ALL) Decomposing K, a/24



Parallelization |||||

Parallel machine without shared memory.

We prefer parallelization
m |oad balanced

= memory balanced

Computation of block B;;, requires
m i-th and
m j-th parts of the geometry
To each CPU as few different indices as possible.

(e.g. not all blocks from one row)

Not all N2 blocks fit into the memory of one CPU!
(nor all n? elements of the matrix)

(ALL) Decomposing K, a/24



Block matrix with numbers related to difficulty !
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Question: which N blocks on which CPU?
= one diagonal block (longest computation)

m (N — 1) non-diagonal blocks
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Question: which N blocks on which CPU?
= one diagonal block (longest computation)
m (N — 1) non-diagonal blocks
m if B;; then also Bj; (same CPU)
m if B;j;, B, and By; then also By,

This translates into
m decomposing Ky into N subgraphs G1,Go,...,GN
m each with (IV —1)/2 edges

m each with as few vertices as possible

First suppose G1,Ga, .. .,Gy isomorphic to complete graph.

(ALL) Decomposing K, 6 /24



Graph theory formulation |||||

Decompose Ky into N copies of K}, — dense subgraphs.
Necessary condition: N = k? — k + 1.
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Graph theory formulation |||||

Decompose Ky into N copies of K}, — dense subgraphs.
Necessary condition: N = k? — k + 1.

Particularly easy if the decomposition is cyclic:

Definition (Graceful labeling)

Let G be a graph with m edges and a vertex labeling
A:V(G) = {0,1,...,m}. The length of an edge xy is

(x,y) = min{[A(z) = A(y)|, 2m +1 = [AMz) = A(y)[}.

We call f a graceful labeling if the set of edge lengths
{(,y) oy € BG)} = {1,2,...,m}.

6 4

0 1
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Graceful and p-labeling |||||

The famous Graceful Tree Conjecture: “All trees graceful.”
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Graceful and p-labeling |||||

The famous Graceful Tree Conjecture: “All trees graceful.”

Other graphs are interesting as well
m K} is graceful iff £ <4
= unicyclic graphs

Definition (p-labeling)

Let G be a graph with m edges nad a vertex labeling
f:V(G) = {0,1,...,2m}. The length of zy is

Uz, ) = min{|A@) — A(R)], 2m +1— |A@) — AR
We say A is a p-labeling labeling if the set of edge lengths
{l(z,y) : 2y € E(G)} ={1,2,...,m}.

0 1 1
4 2
9 6 3

(ALL) Decomposing K, 8/24



Graph theory formulation

p-labeling |||||

Theorem (Rosa 1967)

A graph G with m edges allows a cyclic decomposition of Koy, 11 iff G
has a p-labeling.

0 1 1
4 2
9 6 3
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Graph theory formulation

p-labeling |||||

Theorem (Rosa 1967)

A graph G with m edges allows a cyclic decomposition of Koy, 11 iff G
has a p-labeling.

0 1 1
4 2
9 6 3

m Not all complete graphs have a p-labeling,

m infinitely many complete graphs have.

(ALL) Decomposing K, 9/24



Graph theory formulation

Example

O O
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Equivalent formulation |||||

Definition (perfect difference sets)

A set of integers {a1,as,...,ar} C [0, N] such that every nonzero residue
modulo IV can be uniquely expressed in the form a; — a;.
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Definition (perfect difference sets)

A set of integers {a1,as,...,ar} C [0, N] such that every nonzero residue
modulo IV can be uniquely expressed in the form a; — a;.

SEME

{0,1,4,6} is a perfect difference set for m = 6:
1=1-0,2=6—-4,3=3—-1,4=4—-0,5=6—-1,6=6—0.
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Equivalent formulation |||||

Definition (perfect difference sets)

A set of integers {a1,as,...,ar} C [0, N] such that every nonzero residue
modulo IV can be uniquely expressed in the form a; — a;.

SEME

{0,1,4,6} is a perfect difference set for m = 6:
1=1-0,2=6—-4,3=3—-1,4=4—-0,5=6—-1,6=6—0.

Perfect ruler (Guy 1994) has k distinct marks s.t. any distance
1,2,3,4,...,N can be measured. E.g. 0,1 ,4,6

|01 4 6
| I
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Equivalent formulations

Example (Continued. . .)

Based on the perfect difference set {0,1,4,6} for m = 6 we can
decompose Kop+1 = K3 cyclically.
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Equivalent formulations

Example (Continued. . .)
Based on the perfect difference set {0,1,4,6} for m = 6 we can
decompose Kop+1 = K3 cyclically.

m label vertices of K4 by 0,1,4,6

m find a cyclic decomposition of K3

A 13 by 13 block matrix to 13 machines, so that:
m 1 computation of diagonal block + 12 non-diagonal blocks to each
process
= 4 rows (and 4 columns) of the geometry to each process
m the higher N (N = 13) the better ratio

(ALL) Decomposing K, 12 / 24



Equivalent formulations

Example
0 1 1
4 3 2
9 6 3 A
0l1/2[3/4/5]6/7[8]910[11]12
0
1
2
3
4
5
6
7
8
9
10
11
12
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Yet another formulation |||||

Decomposing a complete graph into complete subgraphs — this seems to
be a design theory problem.

Definition

A block design (BIBD) is a collection B of b subsets (called blocks) of a
finite set X of v elements such that any element of X is contained in the
same number r of blocks, every block has the same number & of
elements, and each pair of distinct elements appear together in the same
number A of blocks.

A symmetric BIBDs are (also known as 2-designs) are denoted as

2 — (v, k, \) designs has b = v. (b > v by Fisher's inequality.)

(ALL) Decomposing K, 14 / 24



Equivalent formulations

Yet another formulation |||||

Decomposing a complete graph into complete subgraphs — this seems to
be a design theory problem.

Definition

A block design (BIBD) is a collection B of b subsets (called blocks) of a
finite set X of v elements such that any element of X is contained in the
same number r of blocks, every block has the same number & of
elements, and each pair of distinct elements appear together in the same
number A of blocks.

A symmetric BIBDs are (also known as 2-designs) are denoted as

2 — (v, k, \) designs has b = v. (b > v by Fisher’s inequality.)

In our case:
mk=k
mov=N=k—k+1
mb=N (symmetric)
)=

(ALL) Decomposing K, 14 / 24



Constructions |||||

Sufficient condition: k& — 1 is a prime power.
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Sufficient condition: k& — 1 is a prime power.
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Constructions |||||

Sufficient condition: k& — 1 is a prime power.

Theorem (Singer 1934)

A perfect difference set with k elements exists if k — 1 is a prime power.

However, K; does not decompose Ky 3.
Neither K11 does not decompose Ki17.

Theorem (Hartke, Osterggard, Bryant, EIl-Zanati 2009)

There exists no (K¢ — e)-decomposition of Kg.

Overview for k < 100 on web (Baumert):
http://www.ccrwest.org/diffsets/diff_sets/baumert.html
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——
Main result (2012/2015) il

. ..is the nice application!
Construction for certain (not all) values.

It has been implemented and successfully tested:

Fast BEM matrices of size n up to millions, distributed to hundreds of
nodes N.

n N=31, k=6 N=91, k=10 N=133,k=12

12 288 175 MB, 1s 200 MB, 1s 207 MB, 1 s
196 608 3563 MB, 563 s | 280 MB, 25 s 276 MB, 18 s
786 432 | 999 MB, 294 s | 570 MB, 110s | 535 MB, 99 s
3 145 728 1911 MB, 596 s

Format: average memory [MB], CPU time per process [s]
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Motivation: railway wheel noise elimination by profiling

(ALL)

NODAL soLUTION

sup =1
REG=1484

N

o
_en-07
ORE_(Passenger Coach)

13420 265206 TA0E08
202806 326206

La71z-06

AN

~S30E-06

-60sE-06

Courtesy of J. Szweda, Department of Mechanics, V5B — TUO

Decomposing K,

17 / 24



Additional constructions |||||

Distribution of processes to N CPUs needs not to be balanced (not
isomorphic subgraphs).

Typical cluster has 2! cores, e.g. 128.
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Additional constructions |||||

Distribution of processes to N CPUs needs not to be balanced (not
isomorphic subgraphs).

Typical cluster has 2! cores, e.g. 128. We know how to decompose K33
into 133 subgraphs K1s.
Remove 5 rows and columns:

m preferably from different K15 subgraphs
m obtain some K19, K11, K19, maybe a few smaller
m or obtain many Ko, Ky1, one K7

Or for 2014 cores decompose Kgg3 into 933 copies of K31.
A graph theorists say: That's cheating! VYet, it works. ..

Computational time depends on the largest graph:

preferably few small and a many large dense graphs (complete or “almost”
complete graphs).

(ALL) Decomposing K, 18 / 24
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If it has a p-labeling, then it can be used.
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Graphs similar to complete graphs. |||||

If it has a p-labeling, then it can be used.
m all graphs with at most 11 edges have a p-labeling

® many classes of sparse graphs

By hand up to n = 31:
m p-labeling of a graph with (n — 1)/2 edges
m exceptions n = 28,29, ...

... difficult (almost) as for complete graphs

Decomposition needs not to be cyclic

K7 — K33 decomposes K»s, yet no p-labeling.
reference?

(ALL) Decomposing K, 19 / 24



Subgraphs need not to be isomorphic |||||

m for odd N subgraphs can be isomorphic (exceptions!)

m for even N subgraphs cannot be isomorphic (parity)
(simple graph not, though isomorphic digraphs exist)
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More results

Subgraphs need not to be isomorphic |||||

m for odd N subgraphs can be isomorphic (exceptions!)
m for even N subgraphs cannot be isomorphic (parity)
(simple graph not, though isomorphic digraphs exist)

Lemma

Let r,s be odd. If G decomposes K, into r copies and H decomposes
G|K;] into s copies, then a dense graph X on |H| vertices decomposes

K, into rs copies of X.
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Subgraphs need not to be isomorphic |||||

m for odd N subgraphs can be isomorphic (exceptions!)
m for even N subgraphs cannot be isomorphic (parity)
(simple graph not, though isomorphic digraphs exist)

Lemma

Let r,s be odd. If G decomposes K, into r copies and H decomposes
G[K] into s copies, then a dense graph X on |H| vertices decomposes
K, into rs copies of X.

Ifr=p?>—p+1ands=q>—q+1, then we can decompose K, into rs
dense (for small s) isomorphic subgraphs on pq vertices.

SEE

Decompose K147 (147 = 7 - 21) into 147 isomorphic subgraphs on 15
vertices.
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Subgraphs need not to be isomorphic |||||

m for odd N subgraphs can be isomorphic (exceptions!)
m for even N subgraphs cannot be isomorphic (parity)
(simple graph not, though isomorphic digraphs exist)

Lemma

Let r,s be odd. If G decomposes K, into r copies and H decomposes
G|K;] into s copies, then a dense graph X on |H| vertices decomposes
K, into rs copies of X.

Ifr=p?>—p+1ands=q>—q+1, then we can decompose K, into rs
dense (for small s) isomorphic subgraphs on pq vertices.

Decompose K147 (147 = 7 - 21) into 147 isomorphic subgraphs on 15

vertices. (Theoretical optimum: 13 vertices.)
(ALL) Decomposing K, 20 / 24



If NV is even. .. |||||

If ¢ is even, we decompose K, into pq subgraphs Hi, Ho, ..., Hp, (not
isomorphic).
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If NV is even. .. |||||

If ¢ is even, we decompose K, into pq subgraphs Hi, Ho, ..., Hp, (not
isomorphic).

Lemma

Let p be odd and q even. If G decomposes K, into p copies and H
decomposes G[K,| into q copies, then K,, can be decomposed into pq
dense subgraphs X1, X, ..., X,q each on |H| vertices.
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If NV is even. .. |||||

If ¢ is even, we decompose K, into pq subgraphs Hi, Ho, ..., Hp, (not
isomorphic).

Lemma

Let p be odd and q even. If G decomposes K, into p copies and H
decomposes G[K,| into q copies, then K,, can be decomposed into pq
dense subgraphs X1, X, ..., X,q each on |H| vertices.

Leads to a recursive construction.
Isolated values (case by case).

(ALL) Decomposing K, 21 /24



Further approximations |||||

Up to N = 1000 (k ~ 40):

m constructing dense graphs using a greedy computer search
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Up to N = 1000 (k ~ 40):
m constructing dense graphs using a greedy computer search
m corresponds to using more CPUs, not N but N/ > N
® not balanced for CPU (nor memory) load

Roughly N’ = IN.

We beat this by theoretical constructions, though only for certain values —
using more memory not more CPUs.

E.g. decomposing K559 into 559 isomorphic subgraphs each on 28
vertices.

(ALL) Decomposing K, 22 /24



Further approximations |||||

Up to N = 1000 (k ~ 40):
m constructing dense graphs using a greedy computer search
m corresponds to using more CPUs, not N but N/ > N
® not balanced for CPU (nor memory) load

Roughly N’ = IN.

We beat this by theoretical constructions, though only for certain values —
using more memory not more CPUs.

E.g. decomposing K559 into 559 isomorphic subgraphs each on 28
vertices.

Theoretical optimum: 25 vertices.

(ALL) Decomposing K, 22 /24



Optimization? |||||

... balance the sums among the subgraphs.
(ALL) Decomposing K, 23 /24



More results

Thank you for your attention.
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