

On \mathbb{Z} -flow-continuous maps between cubic graphs

Davide Mattiolo

Department of Computer Science, University of Verona

Abstract

Let M be an abelian group. An M -flow in an oriented graph \vec{G} is an assignment $\phi: E(\vec{G}) \rightarrow M$ such that, at every vertex, the sum of all incoming flow values equals the sum of all outgoing flow values. A map $f: E(\vec{G}) \rightarrow E(\vec{H})$ between the edge sets of two oriented graphs is called M -flow-continuous if $\phi \circ f$ is an M -flow in \vec{G} for every M -flow ϕ in \vec{H} . The Petersen Coloring Conjecture of Jaeger is equivalent to the statement that every bridgeless graph G admits a \mathbb{Z}_2 -flow-continuous map to the Petersen graph.

The existence of M -flow-continuous maps naturally defines a quasi-order \succ_M on the class of finite graphs. In 2017, Šamal proved that the quasi-order $\succ_{\mathbb{Z}_2}$ contains an infinite antichain of cubic graphs and asked whether an antichain can be found if we restrict to cyclically 4-edge-connected cubic graphs. It is known that \mathbb{Z} -flow-continuous maps are also \mathbb{Z}_2 -flow-continuous. In this talk we present an explicit description of \mathbb{Z} -flow-continuous maps when restricted to cyclically 4-edge-connected cubic graphs and show that there is an infinite antichain of snarks in the quasi-order $\succ_{\mathbb{Z}}$.