Normal edge-colorings of cubic graphs

Giuseppe Mazzuoccolo

Department of Computer Science
Verona University, Verona, Italy

November 5th, 2020

Outline

1 Conjectures on Matchings

Outline

1 Conjectures on Matchings
2 Conjectures on Cycles

Outline

1 Conjectures on Matchings
2 Conjectures on Cycles
3 Petersen Coloring Conjecture

Outline

1 Conjectures on Matchings
4 Normal edge-colorings of cubic graphs

2 Conjectures on Cycles
3 Petersen Coloring Conjecture

Outline

1 Conjectures on Matchings
2 Conjectures on Cycles
3 Petersen Coloring Conjecture

4 Normal edge-colorings of cubic graphs
5 Main result

Outline

1 Conjectures on Matchings
2 Conjectures on Cycles
3 Petersen Coloring Conjecture

4 Normal edge-colorings of cubic graphs
5 Main result
6 Further results and open problems

Definitions

Graphs

- A graph may contain parallel edges, but no loop.

Definitions

Graphs

- A graph may contain parallel edges, but no loop.

Definitions

Graphs

- A graph may contain parallel edges, but no loop.
- A simple graph does not contain neither loops nor parallel edges.

Definitions

Graphs

- A graph may contain parallel edges, but no loop.
- A simple graph does not contain neither loops nor parallel edges.
- A pseudograph admit both parallel edges and loops.

Definitions

Edge-colorings

- A graph is k-edge-colorable, if its edges can be colored with k colors such that adjacent edges receive different colors.

3-edge-coloring

4-edge-coloring

Definitions

Edge-colorings

- A graph is k-edge-colorable, if its edges can be colored with k colors such that adjacent edges receive different colors.
- The least k, for which a graph G is k-edge-colorable, is called chromatic index of G and is denoted by $\chi^{\prime}(G)$.

3-edge-coloring

4-edge-coloring

Definitions

Independent edges and Matchings

- A matching is a set of edges of a graph such that any two edges are independent.

Definitions

Independent edges and Matchings

- A matching is a set of edges of a graph such that any two edges are independent.
- A matching is perfect, if it contains $\frac{|V|}{2}$ edges.

Definitions

Independent edges and Matchings

- A matching is a set of edges of a graph such that any two edges are independent.
- A matching is perfect, if it contains $\frac{|V|}{2}$ edges.

Cubic graphs and perfect matchings

Proposition
Any edge of a bridgeless cubic graph G belongs to a perfect matching of G.

Cubic graphs and perfect matchings

Proposition
Any edge of a bridgeless cubic graph G belongs to a perfect matching of G.

Cubic graphs and perfect matchings

Proposition

Any edge of a bridgeless cubic graph G belongs to a perfect matching of G.

Definition

For a bridgeless cubic graph G, let $k(G)$ be the smallest number of perfect matchings covering the edge-set of G.

The Petersen graph P and its 6 perfect matchings

The Petersen graph

The Petersen graph P and its 6 perfect matchings

The Petersen graph

The Petersen graph P and its 6 perfect matchings

The Petersen graph

The Petersen graph P and its 6 perfect matchings

The Petersen graph

The Petersen graph P and its 6 perfect matchings

The Petersen graph

The Petersen graph P and its 6 perfect matchings

The Petersen graph

The Petersen graph P and its 6 perfect matchings

The Petersen graph

The Petersen graph

- Petersen graph has 15 edges, and 6 perfect matchings.

The Petersen graph

- Petersen graph has 15 edges, and 6 perfect matchings.
- There are $\binom{6}{2}=15$ pairs of perfect matchings of P_{10}.

The Petersen graph

- Petersen graph has 15 edges, and 6 perfect matchings.
- There are $\binom{6}{2}=15$ pairs of perfect matchings of P_{10}.
- For each edge $e \in E\left(P_{10}\right)$, there are 2 distinct perfect matchings M and M^{\prime}, such that $M \cap M^{\prime}=\{e\}$.

The Petersen graph

- Petersen graph has 15 edges, and 6 perfect matchings.
- There are $\binom{6}{2}=15$ pairs of perfect matchings of P_{10}.
- For each edge $e \in E\left(P_{10}\right)$, there are 2 distinct perfect matchings M and M^{\prime}, such that $M \cap M^{\prime}=\{e\}$.
- $k\left(P_{10}\right)=5$.

Conjectures of Berge and Berge-Fulkerson

Conjectures of Berge and Berge-Fulkerson

Conjecture (Berge Conjecture-1970)

Conjectures of Berge and Berge-Fulkerson

Conjecture (Berge Conjecture-1970)
For any bridgeless cubic graph $G, k(G) \leq 5$.

Conjectures of Berge and Berge-Fulkerson

Conjecture (Berge Conjecture-1970)
For any bridgeless cubic graph $G, k(G) \leq 5$.

Conjecture (Berge-Fulkerson Conjecture-1970)

Conjectures of Berge and Berge-Fulkerson

Conjecture (Berge Conjecture-1970)
For any bridgeless cubic graph $G, k(G) \leq 5$.

Conjecture (Berge-Fulkerson Conjecture-1970)
Any bridgeless cubic graph G contains 6 (not necessarily distinct) perfect matchings, such that each edge of G belongs to exactly 2 of these perfect matchings.

Conjectures of Berge and Berge-Fulkerson

Conjecture (Berge Conjecture-1970)

For any bridgeless cubic graph $G, k(G) \leq 5$.

Conjecture (Berge-Fulkerson Conjecture-1970)
Any bridgeless cubic graph G contains 6 (not necessarily distinct) perfect matchings, such that each edge of G belongs to exactly 2 of these perfect matchings.

Observation
Both trivial for 3-edge-colorable cubic graphs.

Conjectures of Berge and Berge-Fulkerson

Conjecture (Berge Conjecture-1970)

For any bridgeless cubic graph $G, k(G) \leq 5$.

Conjecture (Berge-Fulkerson Conjecture-1970)

Any bridgeless cubic graph G contains 6 (not necessarily distinct) perfect matchings, such that each edge of G belongs to exactly 2 of these perfect matchings.

Observation

Both trivial for 3-edge-colorable cubic graphs.

Observation

Conjectures of Berge and Berge-Fulkerson

Conjecture (Berge Conjecture-1970)

For any bridgeless cubic graph $G, k(G) \leq 5$.

Conjecture (Berge-Fulkerson Conjecture-1970)

Any bridgeless cubic graph G contains 6 (not necessarily distinct) perfect matchings, such that each edge of G belongs to exactly 2 of these perfect matchings.

Observation

Both trivial for 3-edge-colorable cubic graphs.

Observation

Berge-Fulkerson conjecture implies Berge conjecture.

Conjectures of Berge and Berge-Fulkerson

Conjecture (Berge Conjecture-1970)

For any bridgeless cubic graph $G, k(G) \leq 5$.

Conjecture (Berge-Fulkerson Conjecture-1970)

Any bridgeless cubic graph G contains 6 (not necessarily distinct) perfect matchings, such that each edge of G belongs to exactly 2 of these perfect matchings.

Observation
Both trivial for 3-edge-colorable cubic graphs.

Observation

Berge-Fulkerson conjecture implies Berge conjecture.

Theorem (G. M., J. Graph Theory (2011))

Conjectures of Berge and Berge-Fulkerson

Conjecture (Berge Conjecture-1970)

For any bridgeless cubic graph $G, k(G) \leq 5$.

Conjecture (Berge-Fulkerson Conjecture-1970)
Any bridgeless cubic graph G contains 6 (not necessarily distinct) perfect matchings, such that each edge of G belongs to exactly 2 of these perfect matchings.

Observation

Both trivial for 3-edge-colorable cubic graphs.

Observation

Berge-Fulkerson conjecture implies Berge conjecture.

Theorem (G. M., J. Graph Theory (2011))

Conjectures of Berge and Berge-Fulkerson are equivalent.

Definitions

Cycles and Even Subgraphs

- A cycle of a graph G is a connected 2-regular subgraph of G.

Definitions

Cycles and Even Subgraphs

- A cycle of a graph G is a connected 2-regular subgraph of G.

Definitions

Cycles and Even Subgraphs

- A cycle of a graph G is a connected 2-regular subgraph of G.
- An even subgraph H of a graph G is a subgraph of G, such that each vertex of H has even degree in H.

Definitions

Cycles and Even Subgraphs

- A cycle of a graph G is a connected 2 -regular subgraph of G.
- An even subgraph H of a graph G is a subgraph of G, such that each vertex of H has even degree in H.
- A cycle cover of G is a system $\mathscr{C}=\left(C_{1}, C_{2}, C_{3}, \ldots, C_{t}\right)$ of (not necessarily distinct) cycles of G, such that each edge of G belongs to at least one cycle of \mathscr{C}.

Definitions

Cycles and Even Subgraphs

- A cycle of a graph G is a connected 2-regular subgraph of G.
- An even subgraph H of a graph G is a subgraph of G, such that each vertex of H has even degree in H.
- A cycle cover of G is a system $\mathscr{C}=\left(C_{1}, C_{2}, C_{3}, \ldots, C_{t}\right)$ of (not necessarily distinct) cycles of G, such that each edge of G belongs to at least one cycle of \mathscr{C}.
- For $i=1, \ldots, t$ let $I\left(C_{i}\right)$ be the number of edges of C_{i}, and let $I(\mathscr{C})=\sum_{i=1}^{t} I\left(C_{i}\right)$.

$$
\begin{aligned}
& l\left(C_{1}\right)=4 \\
& l\left(C_{2}\right)=3 \\
& l\left(C_{3}\right)=8 \\
& l(C)=15
\end{aligned}
$$

Definitions

Cycles and Even Subgraphs

- A cycle of a graph G is a connected 2-regular subgraph of G.
- An even subgraph H of a graph G is a subgraph of G, such that each vertex of H has even degree in H.
- A cycle cover of G is a system $\mathscr{C}=\left(C_{1}, C_{2}, C_{3}, \ldots, C_{t}\right)$ of (not necessarily distinct) cycles of G, such that each edge of G belongs to at least one cycle of \mathscr{C}.
- For $i=1, \ldots, t$ let $I\left(C_{i}\right)$ be the number of edges of C_{i}, and let $I(\mathscr{C})=\sum_{i=1}^{t} I\left(C_{i}\right)$.
- $I(\mathscr{C})$ is called the length of the cycle cover \mathscr{C}.

$$
\begin{aligned}
& l\left(C_{1}\right)=4 \\
& l\left(C_{2}\right)=3 \\
& l\left(C_{3}\right)=8 \\
& l(C)=15
\end{aligned}
$$

Other Conjectures

Conjecture (Cycle Double Cover Conjecture - Szekeres, Seymour 70's)

Other Conjectures

Conjecture (Cycle Double Cover Conjecture - Szekeres, Seymour 70's)
Any bridgeless graph G has a cycle cover $\mathscr{C}=\left(C_{1}, \ldots, C_{t}\right)$, such that each edge of G belongs to exactly 2 of the cycles of \mathscr{C}.

Other Conjectures

Conjecture (Cycle Double Cover Conjecture - Szekeres, Seymour 70's)
Any bridgeless graph G has a cycle cover $\mathscr{C}=\left(C_{1}, \ldots, C_{t}\right)$, such that each edge of G belongs to exactly 2 of the cycles of \mathscr{C}.

Conjecture ((5,2) Even Subgraph Cover Conjecture - Celmins, Preissman 80's)

Other Conjectures

Conjecture (Cycle Double Cover Conjecture - Szekeres, Seymour 70's)

Any bridgeless graph G has a cycle cover $\mathscr{C}=\left(C_{1}, \ldots, C_{t}\right)$, such that each edge of G belongs to exactly 2 of the cycles of \mathscr{C}.

Conjecture ($(5,2)$ Even Subgraph Cover Conjecture - Celmins, Preissman 80's)

Any bridgeless graph G has 5 even subgraphs $\left(E_{1}, \ldots, E_{5}\right)$, such that each edge of G belongs to exactly 2 of the even subgraphs.

Other Conjectures

Conjecture (Cycle Double Cover Conjecture - Szekeres, Seymour 70's)

Any bridgeless graph G has a cycle cover $\mathscr{C}=\left(C_{1}, \ldots, C_{t}\right)$, such that each edge of G belongs to exactly 2 of the cycles of \mathscr{C}.

Conjecture $((5,2)$ Even Subgraph Cover Conjecture - Celmins, Preissman 80's)

Any bridgeless graph G has 5 even subgraphs $\left(E_{1}, \ldots, E_{5}\right)$, such that each edge of G belongs to exactly 2 of the even subgraphs.

Conjecture (Shortest Cycle Cover Conjecture)

Other Conjectures

Conjecture (Cycle Double Cover Conjecture - Szekeres, Seymour 70's)

Any bridgeless graph G has a cycle cover $\mathscr{C}=\left(C_{1}, \ldots, C_{t}\right)$, such that each edge of G belongs to exactly 2 of the cycles of \mathscr{C}.

Conjecture ($(5,2)$ Even Subgraph Cover Conjecture - Celmins, Preissman 80's)

Any bridgeless graph G has 5 even subgraphs $\left(E_{1}, \ldots, E_{5}\right)$, such that each edge of G belongs to exactly 2 of the even subgraphs.

Conjecture (Shortest Cycle Cover Conjecture)

Any bridgeless graph G has a cycle cover $\mathscr{C}=\left(C_{1}, \ldots, C_{t}\right)$, such that $I(\mathscr{C}) \leq \frac{7}{5} \cdot|E|$.

The relationship among the three conjectures

The relationship among the three conjectures

Observation

The relationship among the three conjectures

Observation
$(5,2)$ Even Subgraph Cover Conjecture implies Cycle Double Cover Conjecture.

The relationship among the three conjectures

Observation

$(5,2)$ Even Subgraph Cover Conjecture implies Cycle Double Cover Conjecture.

Theorem (Jamshy and Tarsi, (1992))

The relationship among the three conjectures

Observation

$(5,2)$ Even Subgraph Cover Conjecture implies Cycle Double Cover Conjecture.

Theorem (Jamshy and Tarsi, (1992))
Shortest Cycle Cover Conjecture implies Cycle Double Cover Conjecture.

The relationship among the five conjectures

The relationship among the five conjectures

The relationship

The relationship among the five conjectures

The relationship

Figure 1: The relationship among the five conjectures.

Definitions

Definitions

Definition

Definitions

Definition
For a graph G and its vertex $v \in V(G)$, let $\partial_{G}(v)$ be the set of edges of G that are incident to v.

Definitions

Definition

For a graph G and its vertex $v \in V(G)$, let $\partial_{G}(v)$ be the set of edges of G that are incident to v.

Definition

Definitions

Definition

For a graph G and its vertex $v \in V(G)$, let $\partial_{G}(v)$ be the set of edges of G that are incident to v.

Definition

If G and H are two cubic graphs,

Definitions

Definition

For a graph G and its vertex $v \in V(G)$, let $\partial_{G}(v)$ be the set of edges of G that are incident to v.

Definition

If G and H are two cubic graphs, then an H-coloring of G is a mapping $f: E(G) \rightarrow E(H)$ such that for each vertex $v \in V(G)$, there is a vertex $w \in V(H)$ with $f\left(\partial_{G}(v)\right)=\partial_{H}(w)$.

Definitions

Definition

For a graph G and its vertex $v \in V(G)$, let $\partial_{G}(v)$ be the set of edges of G that are incident to v.

Definition

If G and H are two cubic graphs, then an H-coloring of G is a mapping $f: E(G) \rightarrow E(H)$ such that for each vertex $v \in V(G)$, there is a vertex $w \in V(H)$ with $f\left(\partial_{G}(v)\right)=\partial_{H}(w)$.

Definition

Definitions

Definition

For a graph G and its vertex $v \in V(G)$, let $\partial_{G}(v)$ be the set of edges of G that are incident to v.

Definition

If G and H are two cubic graphs, then an H-coloring of G is a mapping $f: E(G) \rightarrow E(H)$ such that for each vertex $v \in V(G)$, there is a vertex $w \in V(H)$ with $f\left(\partial_{G}(v)\right)=\partial_{H}(w)$.

Definition

If G admits an H-coloring f, then we will write $H \prec G$.

An example of an H -coloring

An example of an H-coloring

An example: $H \prec G$

An example of an H -coloring

An example: $H \prec G$

Figure 2: An example of an H -coloring of G .

Petersen coloring conjecture

In 1988, Jaeger presented a conjecture, that has unified the conjectures about perfect matchings and cycle covers.

Petersen coloring conjecture

In 1988, Jaeger presented a conjecture, that has unified the conjectures about perfect matchings and cycle covers.

Conjecture (Petersen Coloring conjecture, 1988)

Petersen coloring conjecture

In 1988, Jaeger presented a conjecture, that has unified the conjectures about perfect matchings and cycle covers.

Conjecture (Petersen Coloring conjecture, 1988)
Every bridgeless cubic graph admits a Petersen coloring (i.e. $P \prec G$)

Consequences of Petersen Coloring conjecture

Consequences of Petersen Coloring conjecture

Consequences of Petersen Coloring conjecture

Observation
Petersen Coloring conjecture implies Berge-Fulkerson conjecture.

Consequences of Petersen Coloring conjecture

Observation
Petersen Coloring conjecture implies Berge-Fulkerson conjecture.

Observation

Consequences of Petersen Coloring conjecture

Observation

Petersen Coloring conjecture implies Berge-Fulkerson conjecture.

Observation
Petersen Coloring conjecture implies $(5,2)$ Even Subgraph Cover Conjecture.

Consequences of Petersen Coloring conjecture

Observation

Petersen Coloring conjecture implies Berge-Fulkerson conjecture.

Observation
Petersen Coloring conjecture implies $(5,2)$ Even Subgraph Cover Conjecture.

Observation

Consequences of Petersen Coloring conjecture

Observation

Petersen Coloring conjecture implies Berge-Fulkerson conjecture.

Observation
Petersen Coloring conjecture implies $(5,2)$ Even Subgraph Cover Conjecture.

Observation

Petersen Coloring conjecture implies Shortest Cycle Cover Conjecture.

The relationship among the six conjectures

The relationship among the six conjectures

The relationship

The relationship among the six conjectures

The relationship

Figure 3: The relationship among the six conjectures.

Poor, rich edges and normal edge-colorings of cubic graphs

Definition

Let c be a k-edge-coloring of a cubic graph G, and let $S_{c}(w)$ be the set of colors of edges of G incident to the vertex w. Then an edge $e=u v$ is

- POOR, if $\left|S_{c}(u) \cup S_{c}(v)\right|=3$,
- RICH, if $\left|S_{c}(u) \cup S_{c}(v)\right|=5$.

Poor, rich edges and normal edge-colorings of cubic graphs

Definition

Let c be a k-edge-coloring of a cubic graph G, and let $S_{c}(w)$ be the set of colors of edges of G incident to the vertex w. Then an edge $e=u v$ is

- POOR, if $\left|S_{c}(u) \cup S_{c}(v)\right|=3$,
- RICH, if $\left|S_{c}(u) \cup S_{c}(v)\right|=5$.

Definition

A k-edge-coloring c of a cubic graph G is NORMAL, if any edge of G is poor or rich in c. Denote by $\chi_{N}^{\prime}(G)$ the smallest k for which G admits a normal k-edge-coloring (if it does exist).

An example of a normal edge-coloring of a cubic graph

An example of a normal edge-coloring of a cubic graph

An example

An example of a normal edge-coloring of a cubic graph

An example

Figure 4: A cubic graph that requires 7 colors in a normal coloring.

An example of a normal edge-coloring of a cubic graph

An example

Figure 4: A cubic graph that requires 7 colors in a normal coloring.

The bridge is poor.

An example of a normal edge-coloring of a cubic graph

An example

Figure 4: A cubic graph that requires 7 colors in a normal coloring.

The bridge is poor. All other edges are rich.

An example of a normal edge-coloring of a cubic graph

An example

Figure 4: A cubic graph that requires 7 colors in a normal coloring.

The bridge is poor. All other edges are rich. It can be shown that $\chi_{N}^{\prime}(G)=7$.

An example of a cubic graph without a normal k-edge-coloring

An example of a cubic graph without a normal k-edge-coloring

An example of a cubic graph without a normal k-edge-coloring

Question

Does any cubic graph admit a normal k-edge-coloring for some k ?

An example of a cubic graph without a normal k-edge-coloring

Question
Does any cubic graph admit a normal k-edge-coloring for some k ?

An example

An example of a cubic graph without a normal k-edge-coloring

Question

Does any cubic graph admit a normal k-edge-coloring for some k ?

An example

Figure 5: An example of a cubic graph that does not admit a normal coloring.

Why normal colorings are so important?

Why normal colorings are so important?

Proposition (Jaeger, 1988)

Why normal colorings are so important?

Proposition (Jaeger, 1988)
A cubic graph G admits a Petersen Coloring iff $\chi_{N}^{\prime}(G) \leq 5$.

Why normal colorings are so important?

Proposition (Jaeger, 1988)
A cubic graph G admits a Petersen Coloring iff $\chi_{N}^{\prime}(G) \leq 5$.

Conjecture (Petersen Coloring conjecture restated)

Why normal colorings are so important?

Proposition (Jaeger, 1988)
A cubic graph G admits a Petersen Coloring iff $\chi_{N}^{\prime}(G) \leq 5$.

Conjecture (Petersen Coloring conjecture restated)
For any bridgeless cubic graph G, we have $\chi_{N}^{\prime}(G) \leq 5$.

Main question

Main question

Main question

Question

What is the smallest k, such that for any simple cubic graph G we have $\chi_{N}^{\prime}(G) \leq k$?

Main question

Question

What is the smallest k, such that for any simple cubic graph G we have $\chi_{N}^{\prime}(G) \leq k$?

Summary of prior results

Main question

Question

What is the smallest k, such that for any simple cubic graph G we have $\chi_{N}^{\prime}(G) \leq k$?

Summary of prior results

- By previous example, we have $k \geq 7$.

Main question

Question

What is the smallest k, such that for any simple cubic graph G we have $\chi_{N}^{\prime}(G) \leq k$?

Summary of prior results

- By previous example, we have $k \geq 7$.
- L. D. Andersen in 1992 proved that any simple cubic graph admits a 10 -edge-coloring, such that each edge is rich (i.e. Strong Edge Coloring). Thus $k \leq 10$.

Main question

Question

What is the smallest k, such that for any simple cubic graph G we have $\chi_{N}^{\prime}(G) \leq k$?

Summary of prior results

- By previous example, we have $k \geq 7$.
- L. D. Andersen in 1992 proved that any simple cubic graph admits a 10-edge-coloring, such that each edge is rich (i.e. Strong Edge Coloring). Thus $k \leq 10$.
- R. Šámal and H. Bílková in 2012 proved that any simple cubic graph admits a normal 9 -edge-coloring. Thus $k \leq 9$.

Main question

Question

What is the smallest k, such that for any simple cubic graph G we have $\chi_{N}^{\prime}(G) \leq k$?

Summary of prior results

- By previous example, we have $k \geq 7$.
- L. D. Andersen in 1992 proved that any simple cubic graph admits a 10 -edge-coloring, such that each edge is rich (i.e. Strong Edge Coloring). Thus $k \leq 10$.
- R. Šámal and H. Bíková in 2012 proved that any simple cubic graph admits a normal 9 -edge-coloring. Thus $k \leq 9$.

Theorem (G.M., V.Mkrtchyan, J. Graph Theory (2020))

Main question

Question

What is the smallest k, such that for any simple cubic graph G we have $\chi_{N}^{\prime}(G) \leq k$?

Summary of prior results

- By previous example, we have $k \geq 7$.
- L. D. Andersen in 1992 proved that any simple cubic graph admits a 10 -edge-coloring, such that each edge is rich (i.e. Strong Edge Coloring). Thus $k \leq 10$.
- R. Šámal and H. Bíková in 2012 proved that any simple cubic graph admits a normal 9 -edge-coloring. Thus $k \leq 9$.

Theorem (G.M.,V.Mkrtchyan, J. Graph Theory (2020))
For any simple cubic graph G, we have $\chi_{N}^{\prime}(G) \leq 7$.

Nowhere-zero flows

The elementary Abelian group \mathbb{Z}_{2}^{3}
Let \mathbb{Z}_{2}^{3} be the set of all binary triples. It is an abelian group of order 8 with respect to the sum, where the unit element is $(0,0,0)$.

Nowhere-zero flows

The elementary Abelian group \mathbb{Z}_{2}^{3}
Let \mathbb{Z}_{2}^{3} be the set of all binary triples. It is an abelian group of order 8 with respect to the sum, where the unit element is $(0,0,0)$.

Definition

Let G be a graph and let $f: E(G) \rightarrow \mathbb{Z}_{2}^{3}-\{(0,0,0)\}$ be a mapping. f is called a nowhere-zero \mathbb{Z}_{2}^{3}-flow of G, if for each vertex v of G, we have $f\left(\partial_{G}(v)\right)=(0,0,0)$.

Nowhere-zero flows

The elementary Abelian group \mathbb{Z}_{2}^{3}

Let \mathbb{Z}_{2}^{3} be the set of all binary triples. It is an abelian group of order 8 with respect to the sum, where the unit element is $(0,0,0)$.

Definition

Let G be a graph and let $f: E(G) \rightarrow \mathbb{Z}_{2}^{3}-\{(0,0,0)\}$ be a mapping. f is called a nowhere-zero \mathbb{Z}_{2}^{3}-flow of G, if for each vertex v of G, we have $f\left(\partial_{G}(v)\right)=(0,0,0)$.

Nowhere-zero flows

The elementary Abelian group \mathbb{Z}_{2}^{3}

Let \mathbb{Z}_{2}^{3} be the set of all binary triples. It is an abelian group of order 8 with respect to the sum, where the unit element is $(0,0,0)$.

Definition

Let G be a graph and let $f: E(G) \rightarrow \mathbb{Z}_{2}^{3}-\{(0,0,0)\}$ be a mapping. f is called a nowhere-zero \mathbb{Z}_{2}^{3}-flow of G, if for each vertex v of G, we have $f\left(\partial_{G}(v)\right)=(0,0,0)$.

Theorem (Jaeger's 8-flow theorem)

Any bridgeless (not necessarily cubic) graph admits a nowhere-zero \mathbb{Z}_{2}^{3}-flow.

Proof idea of our main result: bridgeless cubic graphs

\mathbb{Z}_{2}^{3}-flows induces normal 7 -edge-colorings in bridgeless cubic graphs
Let f be a nowhere-zero \mathbb{Z}_{2}^{3}-flow (guaranteed by Jaeger's 8-flow theorem). Clearly, it is a 7 -edge-coloring. Let $e=u v$ be any edge of G. We have $e \in \partial_{G}(u) \cap \partial_{G}(v)$.

Proof idea of our main result: bridgeless cubic graphs

\mathbb{Z}_{2}^{3}-flows induces normal 7-edge-colorings in bridgeless cubic graphs
Let f be a nowhere-zero \mathbb{Z}_{2}^{3}-flow (guaranteed by Jaeger's 8-flow theorem). Clearly, it is a 7 -edge-coloring. Let $e=u v$ be any edge of G. We have $e \in \partial_{G}(u) \cap \partial_{G}(v)$.

- If $\left|S_{f}(u) \cap S_{f}(v)\right| \geq 2$, then $S_{f}(u)=S_{f}(v)$ hence e is poor in f.

Proof idea of our main result: bridgeless cubic graphs

\mathbb{Z}_{2}^{3}-flows induces normal 7-edge-colorings in bridgeless cubic graphs
Let f be a nowhere-zero \mathbb{Z}_{2}^{3}-flow (guaranteed by Jaeger's 8-flow theorem). Clearly, it is a 7 -edge-coloring. Let $e=u v$ be any edge of G. We have $e \in \partial_{G}(u) \cap \partial_{G}(v)$.

- If $\left|S_{f}(u) \cap S_{f}(v)\right| \geq 2$, then $S_{f}(u)=S_{f}(v)$ hence e is poor in f.

Proof idea of our main result: bridgeless cubic graphs

\mathbb{Z}_{2}^{3}-flows induces normal 7-edge-colorings in bridgeless cubic graphs
Let f be a nowhere-zero \mathbb{Z}_{2}^{3}-flow (guaranteed by Jaeger's 8-flow theorem). Clearly, it is a 7 -edge-coloring. Let $e=u v$ be any edge of G. We have $e \in \partial_{G}(u) \cap \partial_{G}(v)$.

- If $\left|S_{f}(u) \cap S_{f}(v)\right| \geq 2$, then $S_{f}(u)=S_{f}(v)$ hence e is poor in f.
- If $\{f(e)\}=S_{f}(u) \cap S_{f}(v)$, then clearly e is rich in f.

Main ideas of our proof

1) We need to improve a bit some classical results on nowhere-zero flows by adding some LOCAL CONSTRAINS
2) Normal edge-colorings arising from 8 -flows satisfy some ADDITIONAL PROPERTIES

Classical results on Nowhere-Zero Flows with LOCAL CONSTRAINS

Lemma (1)

Let G be a 4-edge-connected (pseudo)graph. Then G admits a nowhere-zero \mathbb{Z}_{2}^{2}-flow

Classical results on Nowhere-Zero Flows with LOCAL CONSTRAINS

Lemma (1)

Let G be a 4-edge-connected (pseudo)graph. Then G admits a nowhere-zero \mathbb{Z}_{2}^{2}-flow such that any two prescribed edges receive the same flow value

Classical results on Nowhere-Zero Flows with LOCAL CONSTRAINS

Lemma (1)

Let G be a 4-edge-connected (pseudo)graph. Then G admits a nowhere-zero \mathbb{Z}_{2}^{2}-flow such that any two prescribed edges receive the same flow value

Lemma (2)
Let G be a bridgeless cubic graph. Then G admits a nowhere-zero \mathbb{Z}_{2}^{3}-flow

Classical results on Nowhere-Zero Flows with LOCAL CONSTRAINS

Lemma (1)

Let G be a 4-edge-connected (pseudo)graph. Then G admits a nowhere-zero \mathbb{Z}_{2}^{2}-flow such that any two prescribed edges receive the same flow value

Lemma (2)

Let G be a bridgeless cubic graph. Then G admits a nowhere-zero \mathbb{Z}_{2}^{3}-flow such that any prescribed edge $e \in E(G)$ is poor

Classical results on Nowhere-Zero Flows with LOCAL CONSTRAINS

Lemma (1)

Let G be a 4-edge-connected graph. Then G admits a nowhere-zero \mathbb{Z}_{2}^{2}-flow such that any two prescribed edges receive the same flow value

Lemma (2)

Let G be a bridgeless cubic graph. Then G admits a nowhere-zero \mathbb{Z}_{2}^{3}-flow such that any prescribed edge e $\in E(G)$ is poor

Classical results on Nowhere-Zero Flows with LOCAL CONSTRAINS

Lemma (1)

Let G be a 4-edge-connected graph. Then G admits a nowhere-zero \mathbb{Z}_{2}^{2}-flow such that any two prescribed edges receive the same flow value

Lemma (2)

Let G be a bridgeless cubic graph. Then G admits a nowhere-zero \mathbb{Z}_{2}^{3}-flow such that any prescribed edge e $\in E(G)$ is poor

Lemma (3)

Let G be a bridgeless cubic graph. Then G admits a nowhere-zero \mathbb{Z}_{2}^{3}-flow

Classical results on Nowhere-Zero Flows with LOCAL CONSTRAINS

Lemma (1)

Let G be a 4-edge-connected graph. Then G admits a nowhere-zero \mathbb{Z}_{2}^{2}-flow such that any two prescribed edges receive the same flow value

Lemma (2)

Let G be a bridgeless cubic graph. Then G admits a nowhere-zero \mathbb{Z}_{2}^{3}-flow such that any prescribed edge e $\in E(G)$ is poor

Lemma (3)

Let G be a bridgeless cubic graph. Then G admits a nowhere-zero \mathbb{Z}_{2}^{3}-flow such that any two prescribed incident edges e, $f \in E(G)$ are rich

Normal edge-colorings arising from 8-flows satisfy some additional properties

Normal edge-colorings arising from 8-flows satisfy some additional properties

Normal edge-colorings arising from 8-flows satisfy some additional properties

Normal edge-colorings arising from 8-flows satisfy some additional properties

It could be that we use 7 different colors! There is NOT enough "space" to assign a color to the bridge in the original graph.

Normal edge-colorings arising from 8-flows satisfy some additional properties

This is not the case by using 8-flow! Here, there is enough "space" to assign a color to the bridge in the original graph
(NOTE: it is not completely trivial).

Proof idea of our main result: simple cubic graphs with bridges

Step 1: subdivisions of bridgeless cubic graphs

Proof idea of our main result: simple cubic graphs with bridges

Step 1: subdivisions of bridgeless cubic graphs
Next we show that if G^{\prime} is a simple graph obtained from a bridgeless cubic graph G by subdividing one of its edges once and adding a pendant edge incident to the unique degree-two vertex, then $\chi_{N}^{\prime}\left(G^{\prime}\right) \leq 7$.

Proof idea of our main result: simple cubic graphs with bridges

Step 1: subdivisions of bridgeless cubic graphs

Next we show that if G^{\prime} is a simple graph obtained from a bridgeless cubic graph G by subdividing one of its edges once and adding a pendant edge incident to the unique degree-two vertex, then $\chi_{N}^{\prime}\left(G^{\prime}\right) \leq 7$.

Step 2: arbitrary simple cubic graphs

Proof idea of our main result: simple cubic graphs with bridges

Step 1: subdivisions of bridgeless cubic graphs

Next we show that if G^{\prime} is a simple graph obtained from a bridgeless cubic graph G by subdividing one of its edges once and adding a pendant edge incident to the unique degree-two vertex, then $\chi_{N}^{\prime}\left(G^{\prime}\right) \leq 7$.

Step 2: arbitrary simple cubic graphs

Finally, we complete the proof of the main theorem by showing that for any simple cubic graph G we have $\chi_{N}^{\prime}(G) \leq 7$.

Bridgeless cubic graphs

Bridgeless cubic graphs

- Proving $\chi_{N}^{\prime}(G) \leq 7$ in the class of bridgeless cubic graphs is relatively easy (8-flow theorem).

Bridgeless cubic graphs

- Proving $\chi_{N}^{\prime}(G) \leq 7$ in the class of bridgeless cubic graphs is relatively easy (8-flow theorem).
- Proving $\chi_{N}^{\prime}(G) \leq 5$ in the class of bridgeless cubic graphs amounts to proving Petersen Coloring conjecture, which seems to be very hard.

Bridgeless cubic graphs

- Proving $\chi_{N}^{\prime}(G) \leq 7$ in the class of bridgeless cubic graphs is relatively easy (8-flow theorem).
- Proving $\chi_{N}^{\prime}(G) \leq 5$ in the class of bridgeless cubic graphs amounts to proving Petersen Coloring conjecture, which seems to be very hard.

Conjecture (Intermediate conjecture)

Bridgeless cubic graphs

- Proving $\chi_{N}^{\prime}(G) \leq 7$ in the class of bridgeless cubic graphs is relatively easy (8-flow theorem).
- Proving $\chi_{N}^{\prime}(G) \leq 5$ in the class of bridgeless cubic graphs amounts to proving Petersen Coloring conjecture, which seems to be very hard.

Conjecture (Intermediate conjecture)

For any bridgeless cubic graph G, we have $\chi_{N}^{\prime}(G) \leq 6$.

A different approach

Question:

What is the minimum number of abnormal edges in a 5 -edge-coloring of a bridgeless cubic graph?

A different approach

Question:

What is the minimum number of abnormal edges in a 5 -edge-coloring of a bridgeless cubic graph?

A related open problem:

Conjecture (Samal 2011)

Let G be a cubic bridgeless graph, M a perfect matching of G. Then, there is a 5 -edge-coloring of G so that every edge not in M is either rich or poor.

A different approach

Question:

What is the minimum number of abnormal edges in a 5 -edge-coloring of a bridgeless cubic graph?

A related open problem:

Conjecture (Samal 2011)

Let G be a cubic bridgeless graph, M a perfect matching of G. Then, there is a 5 -edge-coloring of G so that every edge not in M is either rich or poor.

A proof of the conjecture implies that every bridgeless cubic graph G admits a proper 5-edge-coloring with at most $\frac{1}{3}|E(G)|$ abnormal edges, but....

A different approach

Question:

What is the minimum number of abnormal edges in a 5 -edge-coloring of a bridgeless cubic graph?

A related open problem:

Conjecture (Samal 2011)

Let G be a cubic bridgeless graph, M a perfect matching of G. Then, there is a 5 -edge-coloring of G so that every edge not in M is either rich or poor.

A proof of the conjecture implies that every bridgeless cubic graph G admits a proper 5 -edge-coloring with at most $\frac{1}{3}|E(G)|$ abnormal edges, but....

Proposition (Jin, Kang 2019)

Every bridgeless cubic graph G has a proper 5 -edge-coloring such that at most $\frac{1}{5}|E(G)|$ edges are abnormal.

A sublinear approximation?

All previous result produces linear approximations!

A sublinear approximation?

All previous result produces linear approximations! What about a sublinear approximation?

A sublinear approximation?

All previous result produces linear approximations!
What about a sublinear approximation?

Proposition V.Mkrtchyan, G.M. 2020

Showing a sublinear bound for the number of abnormal edges with respect to the order of a bridgeless cubic graph G is as hard as proving Petersen coloring conjecture.

A sublinear approximation?

All previous result produces linear approximations!
What about a sublinear approximation?

Proposition V.Mkrtchyan, G.M. 2020

Showing a sublinear bound for the number of abnormal edges with respect to the order of a bridgeless cubic graph G is as hard as proving Petersen coloring conjecture.

Moreover, we prove results of the following type:

Proposition V. Mkrtchyan, G.M. 2020

The following statements are equivalent:
(a) Any (cyclically) k-edge-connected cubic graph G admits a proper 5 -coloring c, such that the number of abnormal edges is at most $2 k+1$.
(b) There exists a sublinear function \mathfrak{f}, such that every (cyclically) k-edge-connected cubic graph G admits a proper 5 -coloring c with at most $f(|V(G)|)$ abnormal edges.

THANKS FOR YOUR ATTENTION!

