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Conjectures on Matchings

Definitions

Graphs

A graph may contain parallel edges, but no loop.

A simple graph does not contain neither loops nor parallel edges.

A pseudograph admit both parallel edges and loops.
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Definitions

Edge-colorings

A graph is k -edge-colorable, if its edges can be colored with k colors such that adjacent
edges receive different colors.

The least k , for which a graph G is k -edge-colorable, is called chromatic index of G and is
denoted by χ ′(G).

4−edge−coloring3−edge−coloring
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Conjectures on Matchings

Definitions

Independent edges and Matchings

A matching is a set of edges of a graph such that any two edges are independent.

A matching is perfect, if it contains |V |2 edges.
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Conjectures on Matchings

Cubic graphs and perfect matchings

Proposition

Any edge of a bridgeless cubic graph G belongs to a perfect matching of G.

e

Definition

For a bridgeless cubic graph G, let k(G) be the smallest number of perfect matchings covering
the edge-set of G.
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Conjectures on Matchings

The Petersen graph

Petersen graph has 15 edges, and 6 perfect matchings.

There are
(6

2

)
= 15 pairs of perfect matchings of P10.

For each edge e ∈ E(P10), there are 2 distinct perfect matchings M and M ′, such that
M ∩M ′ = {e}.
k(P10) = 5.
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Conjectures on Matchings

Conjectures of Berge and Berge-Fulkerson

Conjecture (Berge Conjecture-1970)

For any bridgeless cubic graph G, k(G)≤ 5.

Conjecture (Berge-Fulkerson Conjecture-1970)

Any bridgeless cubic graph G contains 6 (not necessarily distinct) perfect matchings, such that
each edge of G belongs to exactly 2 of these perfect matchings.

Observation

Both trivial for 3-edge-colorable cubic graphs.

Observation

Berge-Fulkerson conjecture implies Berge conjecture.

Theorem (G. M., J. Graph Theory (2011))

Conjectures of Berge and Berge-Fulkerson are equivalent.
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Conjectures on Cycles

Definitions

Cycles and Even Subgraphs

A cycle of a graph G is a connected 2-regular subgraph of G.

An even subgraph H of a graph G is a subgraph of G, such that each vertex of H has even
degree in H.

A cycle cover of G is a system C = (C1,C2,C3, . . . ,Ct) of (not necessarily distinct) cycles
of G, such that each edge of G belongs to at least one cycle of C .

For i = 1, ..., t let l(Ci) be the number of edges of Ci , and let l(C ) = ∑
t
i=1 l(Ci).

l(C ) is called the length of the cycle cover C .
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Conjectures on Cycles

Other Conjectures

Conjecture (Cycle Double Cover Conjecture - Szekeres, Seymour 70’s)

Any bridgeless graph G has a cycle cover C = (C1, ...,Ct), such that each edge of G belongs to
exactly 2 of the cycles of C .

Conjecture ((5,2) Even Subgraph Cover Conjecture - Celmins, Preissman 80’s)

Any bridgeless graph G has 5 even subgraphs (E1, ...,E5), such that each edge of G belongs to
exactly 2 of the even subgraphs.

Conjecture (Shortest Cycle Cover Conjecture)

Any bridgeless graph G has a cycle cover C = (C1, ...,Ct), such that l(C )≤ 7
5 · |E |.
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Conjectures on Cycles

The relationship among the three conjectures

Observation

(5,2) Even Subgraph Cover Conjecture implies Cycle Double Cover Conjecture.

Theorem (Jamshy and Tarsi, (1992))

Shortest Cycle Cover Conjecture implies Cycle Double Cover Conjecture.
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Petersen Coloring Conjecture

Definitions

Definition

For a graph G and its vertex v ∈ V(G), let ∂G(v) be the set of edges of G that are incident to v .

Definition

If G and H are two cubic graphs, then an H-coloring of G is a mapping f : E(G)→ E(H) such
that for each vertex v ∈ V(G), there is a vertex w ∈ V(H) with f (∂G(v)) = ∂H(w).

Definition

If G admits an H-coloring f , then we will write H ≺ G.
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Poor, rich edges and normal edge-colorings of cubic graphs

Definition

Let c be a k -edge-coloring of a cubic graph G, and let Sc(w) be the set of colors of edges of G
incident to the vertex w . Then an edge e = uv is

POOR, if |Sc(u)∪Sc(v)|= 3,

RICH, if |Sc(u)∪Sc(v)|= 5.

5 colors 4 colors 3 colors

RICH POOR

Definition

A k -edge-coloring c of a cubic graph G is NORMAL, if any edge of G is poor or rich in c. Denote
by χ ′N(G) the smallest k for which G admits a normal k -edge-coloring (if it does exist).
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Figure 4: A cubic graph that requires 7 colors in a normal coloring.

The bridge is poor. All other edges are rich. It can be shown that χ ′N(G) = 7.
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Question

Does any cubic graph admit a normal k-edge-coloring for some k?

An example

Figure 5: An example of a cubic graph that does not admit a normal coloring.
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Why normal colorings are so important?

Proposition (Jaeger, 1988)

A cubic graph G admits a Petersen Coloring iff χ ′N(G)≤ 5.

Conjecture (Petersen Coloring conjecture restated)

For any bridgeless cubic graph G, we have χ ′N(G)≤ 5.
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Main result

Main question

Question

What is the smallest k, such that for any simple cubic graph G we have χ ′N(G)≤ k?

Summary of prior results

By previous example, we have k ≥ 7.

L. D. Andersen in 1992 proved that any simple cubic graph admits a 10-edge-coloring, such
that each edge is rich (i.e. Strong Edge Coloring). Thus k ≤ 10.

R. Šámal and H. Bı́lková in 2012 proved that any simple cubic graph admits a normal
9-edge-coloring. Thus k ≤ 9.

Theorem (G.M.,V.Mkrtchyan, J. Graph Theory (2020))

For any simple cubic graph G, we have χ ′N(G)≤ 7.
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Nowhere-zero flows

The elementary Abelian group Z3
2

Let Z3
2 be the set of all binary triples. It is an abelian group of order 8 with respect to the sum,

where the unit element is (0,0,0).

Definition

Let G be a graph and let f : E(G)→ Z3
2−{(0,0,0)} be a mapping. f is called a nowhere-zero

Z3
2-flow of G, if for each vertex v of G, we have f (∂G(v)) = (0,0,0).

100

001

001
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100

100

001

Theorem (Jaeger’s 8-flow theorem)

Any bridgeless (not necessarily cubic) graph admits a nowhere-zero Z3
2-flow.
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Main result

Proof idea of our main result: bridgeless cubic graphs

Z3
2-flows induces normal 7-edge-colorings in bridgeless cubic graphs

Let f be a nowhere-zero Z3
2-flow (guaranteed by Jaeger’s 8-flow theorem). Clearly, it is a

7-edge-coloring. Let e = uv be any edge of G. We have e ∈ ∂G(u)∩∂G(v).

If |Sf (u)∩Sf (v)| ≥ 2, then Sf (u) = Sf (v) hence e is poor in f .

If {f (e)}= Sf (u)∩Sf (v), then clearly e is rich in f .
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Main ideas of our proof

1) We need to improve a bit some classical results on nowhere-zero flows by adding some
LOCAL CONSTRAINS
2) Normal edge-colorings arising from 8-flows satisfy some ADDITIONAL PROPERTIES
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Lemma (1)

Let G be a 4-edge-connected (pseudo)graph. Then G admits a nowhere-zero Z2
2-flow

such that
any two prescribed edges receive the same flow value
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Let G be a bridgeless cubic graph. Then G admits a nowhere-zero Z3
2-flow

such that any
prescribed edge e ∈ E(G) is poor
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Normal edge-colorings arising from 8-flows satisfy some additional properties

Bridge

It could be that we use 7 different colors! There is NOT enough “space” to assign a color to the
bridge in the original graph.
This is not the case by using 8-flow! Here, there is enough “space” to assign a color to the bridge
in the original graph
(NOTE: it is not completely trivial).
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Main result

Proof idea of our main result: simple cubic graphs with bridges

Step 1: subdivisions of bridgeless cubic graphs

Next we show that if G′ is a simple graph obtained from a bridgeless cubic graph G by
subdividing one of its edges once and adding a pendant edge incident to the unique degree-two
vertex, then χ ′N(G

′)≤ 7.

Step 2: arbitrary simple cubic graphs

Finally, we complete the proof of the main theorem by showing that for any simple cubic graph G
we have χ ′N(G)≤ 7.
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Further results and open problems

Bridgeless cubic graphs

Proving χ ′N(G)≤ 7 in the class of bridgeless cubic graphs is relatively easy (8-flow
theorem).

Proving χ ′N(G)≤ 5 in the class of bridgeless cubic graphs amounts to proving Petersen
Coloring conjecture, which seems to be very hard.

Conjecture (Intermediate conjecture)

For any bridgeless cubic graph G, we have χ ′N(G)≤ 6.
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Further results and open problems

It is only proved for special classes of snarks.
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Further results and open problems

A different approach

Question:

What is the minimum number of abnormal edges in a 5-edge-coloring of a bridgeless cubic
graph?

A related open problem:

Conjecture (Samal 2011)

Let G be a cubic bridgeless graph, M a perfect matching of G. Then, there is a 5-edge-coloring
of G so that every edge not in M is either rich or poor.

A proof of the conjecture implies that every bridgeless cubic graph G admits a proper
5-edge-coloring with at most 1

3 |E(G)| abnormal edges, but....

Proposition (Jin, Kang 2019)

Every bridgeless cubic graph G has a proper 5-edge-coloring such that at most 1
5 |E(G)| edges

are abnormal.
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Further results and open problems

A sublinear approximation?

All previous result produces linear approximations!

What about a sublinear approximation?

Proposition V.Mkrtchyan, G.M. 2020

Showing a sublinear bound for the number of abnormal edges with respect to the order of a
bridgeless cubic graph G is as hard as proving Petersen coloring conjecture.

Moreover, we prove results of the following type:

Proposition V. Mkrtchyan, G.M. 2020

The following statements are equivalent:
(a) Any (cyclically) k -edge-connected cubic graph G admits a proper 5-coloring c, such that the
number of abnormal edges is at most 2k +1.
(b) There exists a sublinear function f, such that every (cyclically) k -edge-connected cubic graph
G admits a proper 5-coloring c with at most f (|V(G)|) abnormal edges.
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Further results and open problems

THANKS FOR YOUR ATTENTION!
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