
Web Application Security
(Part 2)

Bezpečnosť IT infraštruktúry

RNDr. Richard Ostertág, PhD.
KI FMFI UK Bratislava

ostertag@dcs.fmph.uniba.sk

Setup – OWASP WebGoat 7.0.1

• https://github.com/WebGoat/WebGoat

• follow easy run for non-developers instructions

– download webgoat-container-7.0.1-war-exec.jar

– from cmd execute: java -jar webgoat-…-war-exec.jar

• requires Java VM ≥ 1.6 (JDK 1.7 recommended)
– we use Java SE Runtime Environment 8u74
– http://www.oracle.com/technetwork/java/javase/downloads/index.html

– visit http://localhost:8080/WebGoat

– login with user name “guest” and password “guest”

https://github.com/WebGoat/WebGoat
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://localhost:8080/WebGoat

Setup – OWASP Zed Attack Proxy 2.4.3

• https://github.com/zaproxy/zaproxy/wiki/Downloads

– download and run installer

• Windows versions require Java 7 to run

– run the proxy (start ZAP 2.4.3 from start menu)

• change default port 8080 (used by WebGoat) to 8888
– Ctrl+Alt+O > Local Proxy > Port

• we obtain the proxy running on localhost:8888

• alternatives are:

– OWASP WebScarab Project or OWASP WebScarab NG

• both are obsolete

https://github.com/zaproxy/zaproxy/wiki/Downloads

Setup – Burp Suite Free Edition

• https://portswigger.net/burp/download.html
– download free edition burpsuite_free_v1.6.32.jar

– from command line execute:
java -jar burpsuite_free_v1.6.32.jar

or double-click the jar file

– Proxy > Options > Edit > Bind to port: 8888 > OK

– check Running checkbox

• run either ZAP or Burp Suite Free
– depending on which one is better suited for

selected task

– following examples will use ZAP

https://portswigger.net/burp/download.html

Configure IE for proxy

• check the option:
Tools > Internet Options > Connections > LAN
settings > Use proxy server

• uncheck the option:
Bypass proxy server for local addresses

• in the following fields enter:
Address: localhost Port: 8888

• in advanced settings verify that exceptions
field is empty

Form authentication over HTTP

• login again and intercept submission of login form

• POST request:
POST http://localhost:8080/WebGoat/j_spring_security_check HTTP/1.1

Proxy-Connection: keep-alive

Content-Length: 29

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8

Origin: http://localhost:8080

Upgrade-Insecure-Requests: 1

Content-Type: application/x-www-form-urlencoded

Referer: http://localhost:8080/WebGoat/login.mvc

Accept-Language: sk,en-US;q=0.8,en;q=0.6,cs;q=0.4

Cookie: JSESSIONID=C45C8FB63949D3D4D4FA8D99644D2930

Host: localhost:8080

username=guest&password=guest

• see also Insecure Communication: Insecure Login

Basic authorization

• (this example is not implemented in WebGoat)
• GET request:

GET /webgoat/attack HTTP/1.1
Host: localhost

• response:
HTTP/1.1 401 Unauthorized
Server: Apache-Coyote/1.1
WWW-Authenticate: Basic realm="WebGoat Application"

• browser displays a dialog box for entering username
and password

• after that the following request is generated:
GET /webgoat/attack HTTP/1.1
Host: localhost
Authorization: Basic Z3Vlc3Q6Z3Vlc3Q=

• base64 decoding of Z3Vlc3Q6Z3Vlc3Q=
– in ZAP use Ctrl+E > Decode
– guest:guest

Injection Flaws: String SQL Injection

• "SELECT * FROM user_data WHERE
last_name = '" + accountName + "'"

• Enter your last name: ' OR '1'='1

• SELECT * FROM user_data WHERE
last_name = '' OR '1'='1'

• Mitigation: parametrized SQL queries
String query = "SELECT * FROM user_data WHERE

last_name = ?";
PreparedStatement statement =

connection.prepareStatement(query, ...);
statement.setString(1, accountName);
ResultSet answer_results = statement.executeQuery();

Injection Flaws: Numeric SQL Injection

• SELECT * FROM weather_data WHERE
station = [station]

• intercept request for Columbia

– ZAP > Set break on all request (green button to red)
GET http://localhost...&menu=1100&station=101&SUBMIT=Go! HTTP/1.1

• URL encode: 101 or 1=1↦ 101+or+1%3D1

– ZAP > Ctrl+E > Encode

• replace the red part with encoded string

• ZAP > Submit and continue (play button)

Injection Flaws: Numeric SQL Injection

• WebGoat switched to a parameterized query

– after successful attack

• the same attack doesn’t work anymore:

– Error parsing station as a number:
For input string: "101 or 1=1"

Injection Flaws:
Blind Numeric SQL Injection

• 101 AND ((SELECT pin FROM pins WHERE
cc_number='1111222233334444') > ????)
– Account number is valid. (> 2000)
– Invalid account number. (> 3000)

• capture request for validation of account number 101:
http://localhost:8080/WebGoat/attack?Screen=737&menu=1100

&account_number=101&SUBMIT=Go!

• select red number, right click, Fuzz…
• Payloads… > Add… > Strings > 2362, 2363, 2364, 2365 > Add > OK
• Processors… > Add… > Prefix String >

101 AND ((SELECT pin FROM pins WHERE cc_number='1111222233334444') =
> Add

• Add… > Postfix String >) > Add
• Add… > URL Encode > Add > OK
• Message Processors > Add… > Tag Creator > Regex: valid. > Tag: PIN > Add
• Start Fuzzer, find response marked PIN ↦ PIN is 2364

Injection Flaws:
Blind String SQL Injection

• "SELECT * FROM user_data
WHERE userid = " + accountNumber

• 101 AND (SUBSTRING(
(SELECT name FROM pins

WHERE cc_number='4321432143214321'),
1, 1) = 'J')

• 2, 1) = 'i')

• 3, 1) = 'l')

• 4, 1) = 'l')

Injection Flaws: Modify and Add Data
with SQL Injection

• (these examples are not implemented in WebGoat)

• Modify Data with SQL Injection
– use ; to separate commands

– '; UPDATE salaries SET salary=9999999
WHERE userid='jsmith

• Add Data with SQL Injection
– use ; to separate commands

– '; INSERT INTO salaries VALUES ('cwillis', 999999); --

Session Management Flaws:
Hijack a Session 1/4

• if the session ID is not complex and random
– then the application is susceptible to session-based

brute force attacks

• if the attacker is able to find the right session ID
– then the server skips authentication and attaches the

attacker into current session of the victim

• intercept request to Hijack a Session
– use Burp Suite Free Edition

– Proxy > Intercept is on

– submit form with any user name and password

Session Management Flaws:
Hijack a Session 2/4

• remove WEAKID=… from
– GET request (remove “&WEAKID=19550-1…4”)
– Cookies (remove “; WEAKID=19550-1…4” if exists)

• exists only if you already submitted the form

• right click > Send to Sequencer
• switch to Sequencer
• Token Location Within Response

– Cookie > WEAKID=11227-1…8

• Start live capture
– wait for 5000 tokens

• Stop > Analyze now
• Character-level analysis > Transitions

WEAKID: Character Transition Analysis

• Transition from 1 to 1 is too common at position 1.

• Transition from 1 to anything else is too rare.

• This ID has not enough entropy.
– Only 5th and 19th character are changing.

JSESSIONID: Character Trans. Analysis

Session Management Flaws:
Hijack a Session 3/4

• WEAKID cookie is easy to predict:
– The first part of the cookie is a sequential number

– The second part is milliseconds

• Proxy > Right click > Send to Repeater

• Press Go until Set-Cookie: WEAKID=20647-1…2
skips in sequential ID part by more than one.
– somebody else get this missing ID (of 20677-1..579???)

• WEAKID=20676-1…579186

• WEAKID=20678-1…579976

• We need to find the missing milliseconds part.

Session Management Flaws:
Hijack a Session 4/4

• go to Proxy
• insert “&WEAKID= 20677-1..579???)” into request
• Right click > Send to Intruder > Positions > Clear §
• Select ??? > Add §
• Payloads > Payload type: Numbers
• Payload Options

– From: 500 > To: 976 > Step: 1
– Min integer digits: 3 > Max: 3
– Min fraction digits: 0 > Max: 0

• Options > Grep – Match > Clear > Yes
– Add: “* Invalid username”

• Start attack > OK
• Request missing “* Invalid username” contains wanted WEAKID.

