Web Application Security
(Part 1)

Richard Ostertag

Department of Computer Science
Comenius University, Bratislava
ostertag@dcs.fmph.uniba.sk

2016/17

R. Ostertdg (DCS, Comenius University) Web Application Security (1) 1/35

The web sites era (Web 1.0)

P static documents

P browsers used only for retrieving and displaying those documents

> one-way flow of “interesting” information (server — browser)

P typically without user authentication

P every user: equal treatment, the same content

» users do not create presented content

P security threats abused mainly vulnerabilities in the web server
software

» compromised server

> no leakage of sensitive information (all info. already open to public)
» modification of content
P server's storage and bandwidth used to distribute “warez"

R. Ostertdg (DCS, Comenius University) Web Application Security (1) 2/35

The web applications era (Web 2.0)

> interactive dynamic applications

» the browser becomes the operating system, which runs the web
application

> two-way flow of “interesting” information (server <+ browser)

» usually there is users authentication (registration, login)

» each user: different treatment, different personalized content

> users are creating presented content

P security threats are abusing also vulnerabilities in web application

» compromised server / web application

> leakage of sensitive information (personal data, credit card numbers)
> modification of content (money defrauding, attacks on other users)
» use of bandwidth, processing power or storage capacity

> e.g. for creating botnets to send spam or DDoS attacks

R. Ostertdg (DCS, Comenius University) Web Application Security (1) 3/35

Common internet web application functions

» Internet stores » Internet auctions
> Amazon > eBay
> Hej » Aukro
> Alza > Internet casinos
» Social networks > bwin
» Facebook » Web logs
> Twitter > Blogger
» Second life > Web .
» Internet banking i Gmal'l
> Tatrabanka > H?tg:rlla”
> VUB .
» Slovenska sporitelna > Internet media
» Search engines : gl\'\/llg
> Google .
> Bing P Internet encyclopedia
> Baidy > Wikipédia

R. Ostertdg (DCS, Comenius University) Web Application Security (1) 4/35

Common intranet web application functions

» HR applications

» payroll information

» recruitment

» disciplinary procedures
» Key infrastructure

administrative interfaces

> web server

> mail server

» virtualization server
» Collaboration software

» document sharing
» project management

R. Ostertdg (DCS, Comenius University)

» Business applications

> Enterprise Resource Planning
» Customer Rel. Mangement

» Software services

» e-mail web interface

» Traditional desktop applications
migrated to the web

» word processors
» spreadsheets

Web Application Security (1)

5/35

Common web application vulnerabilities

broken authentication
broken access controls
SQL injection

cross-site scripting
information leakage
cross-site request forgery

Source: Dafydd Stuttard, Marcus Pinto: The Web Application Hacker's Handbook

R. Ostertdg (DCS, Comenius University)

Web Application Security (1)

62 %
71%
32%
94 %
78%
92 %

6/35

SSL, PCI — false sense of security

> users are aware of security issues in web applications

> most applications state that they are secure because they use SSL!:
This site is absolutely secure. It has been designed to use 128-bit Secure
Socket Layer (SSL) technology to prevent unauthorized users from

viewing any of your information. You may use this site with peace of

mind that your data is safe with us.

P> organizations also cite their compliance with Payment Card Industry
(PCI) standards:

We take security very seriously. Our web site is scanned daily to ensure
that we remain PCI compliant and safe from hackers.

>
>
>
>

use and maintain a firewall

do not use default passwords

encrypt data transfered over public networks
maintain security policy

> ..

1Source: Dafydd Stuttard, Marcus Pinto: The Web Application Hacker's Handbook
R. Ostertdg (DCS, Comenius University) Web Application Security (1) 7/35

The core security problem

P attacker can submit arbitrary response

» client side safety checks can be circumvented
P attacker does not need to use a web browser to access the application
> attacker (on the client side) can:
> read, modify, delete, or reuse any data that received from the server or
web-browser is sending to the server
> generate new data and inject them into the communication
> manipulate (suppress, modify, repeat) any operations performed on the
client side
» an attacker can manipulate all kinds of data the client operates with:

» URL (path parts, GET parameters)

form fields (even hidden)

commented out parts of HTML documents

scripts (review, change)

cookies and other information in HTTP headers (e.g. session ID)

vvyy

P it must be assumed that all inputs are potentially dangerous

R. Ostertdg (DCS, Comenius University) Web Application Security (1) 8/35

Key problem factors

» underdeveloped security awareness
> field of web application security is relatively young (vs. networks, OS)
» custom development
» many web applications are developed in-house by an organization’s own
staff with different skills
P> every application is different and may contain its own unique defects
P deceptive simplicity
» a novice programmer can create a powerful application from scratch
» difference between producing functional code and secure code
> new threats for web applications are conceived at a faster rate than is
now the case for older technologies
> resource constraints (time, money, developers, ...)
» functionality takes precedence over the security
P overextended technologies
» many of the core technologies employed in web applications have been
pushed far beyond the purposes for which they were originally
conceived and unforeseen side effects emerge

R. Ostertdg (DCS, Comenius University) Web Application Security (1) 9/35

Core defense mechanisms

> user access control

P prevent users from gaining unauthorized access
» user input validation

» prevent unwanted behavior of application even for malicious entry
» handling attack

» correct functionality even in the event of a direct attack
» defensive and offensive measures to repel the attack

» application monitoring
» administrator can react immediately

R. Ostertdg (DCS, Comenius University) Web Application Security (1) 10/35

User access control

» basic components:
» identification and authentication

P session management
web application issues a token that identifies the user session

» access control

» fault in any component may lead to unauthorized access

11/35

R. Ostertdg (DCS, Comenius University) Web Application Security (1)

Identification and authentication

» identification

» most often by login name
> authentication

» most often with a password
» the attacker can

» obtain login names

» obtain passwords

» bypass the authentication function
> due design flaw

R. Ostertdg (DCS, Comenius University) Web Application Security (1)

12/35

|dentification and authentication (the classic problems)

> weak passwords

» short
» small alphabet

» from dictionary
> guessable (date of birth)

> quality control (e.g. a dictionary attack)
P the same password to different systems
» no time limit for password age
» password age checks
> keylogger
» virtual keyboard

» one-time passwords
» zero knowledge proofs

» late transition from HTTP to HTTPS

failed login should not differentiate bad name from bad password

v

R. Ostertdg (DCS, Comenius University) Web Application Security (1) 13/35

Session management — session hijacking?

» disclosure of session identifier
» interception of communication
> “Referer” header when switching to other sites
» browser history
P access to the user's computer — extraction of stored cookies, ...

> session ID guessing
> identifier is generated in a predictable manner
(for example simple arithmetic progression)
» identifier has a small range of possible values

» possible protection:
> protection is not easy and 100 % effective
» identifier is not just a random number
» concatenated with the hash of the IP address of the server and the
client, User-Agent header of the client and some secret value
» then the attacker can not simply use a stolen ID

2attacker finds ID of another session and through this ID he is able to join that session and

works under another identity
R. Ostertdg (DCS, Comenius University) Web Application Security (1)

14/35

Session management — cross-site request forgery (CSRF)

P cross-site request forgery, aka. a one-click attack or session riding

P session hijacking requires that the attacker has stolen or guessed ID

v

session riding does not require knowledge of the session ID

» attacker convinces a user to send him constructed request

> convinces him to click on link he created (e.g. in discussion)
> images can send requests too (automatically)

P possible protection:
» not using cookies to store session ID
P> place session ID directly into the URL

» randomly generate and embed authentication tokens to each action
URL

R. Ostertdg (DCS, Comenius University) Web Application Security (1) 15/35

Access control

\4

authenticated users can have access only to certain parts of the site

P attacker can gain unauthorized access using programmers wrong
assumption about how users will interact with the application

» URL tampering — altering parts (especially the GET parameters) of
existing URL
> if the attacker sees URL in the form:
https://www.app.sk/zaznam.php?id=1234
> he can try to enter a URL in the form:
https://www.app.sk/zaznam.php?id=1235
» Forceful browsing — creation of new URLs
P attacker can try to enter a URL like:
https://www.app.sk/zaznam.php.old
» or it may try to enter, for example:
https://www.app.sk/admin.php
» server relies on fact: client can request only URL sent to him

R. Ostertdg (DCS, Comenius University) Web Application Security (1) 16 /35

Input validation — different approaches

>

>
>

reject dangerous inputs
search for known patterns used in attacks
accept safe inputs (allow specified harmless inputs)
input sanitization
> eliminate potential dangerous character sequences (e.g. <script>)
> '<scr<script>ipt>' 7
» '+ ADw-script+AD4-" ?
secure input processing
» parameterized database queries
semantic checks

> input data are syntactically correct (eg account number)
> but not semantically (not my account number)

input must be validated on the server side

» although for a better UX checks are done also on the client side
P best to revalidate in each part of the application

R. Ostertdg (DCS, Comenius University) Web Application Security (1) 17 /35

Code injection

P each language has a specific syntax and specific control characters

> web applications often use different languages
(e.g.: SQL, HTML, JavaScript, XML, HTTP, ...)

» unexpected side effects can emerge if untreated data from the client
are inserted into the program in any of these languages
> SQL injection
> XPath injection
» HTML injection (markup injection)
CSRF, XSRF: cross-site request forgery
» JavaScript injection
XSS: cross-site scripting

R. Ostertdg (DCS, Comenius University) Web Application Security (1) 18/35

SQL injection

P> select * from Pouzivatelia where Meno="Janko Hrasko'

» input: ' or "=’

select * from Pouzivatelia where Meno="""or ''=

» input: ' and 1=0 union all select * from Tabulka--

"

select * from Pouzivatelia where Meno=""and 1=0 union all select * from Tabulka--'

» sometimes the application returns only part of the result or return
information only indirectly

P error message
P request processing time

R. Ostertdg (DCS, Comenius University) Web Application Security (1) 19/35

SQL injection — real example :-)

ﬁf | Gijs in 't Veld 2- Sledovat
M gintveld

Great to see that my name still causes SQL
errors and that errors thrown are so hacker
friendly. ;-) #integrate2016

Invalid query: You have an error in your SQL
syntax; check the manual that corresponds to
your MariaDB server version for the right
syntax to use near 't Veld', NOW()),
('cc89fdd01eal’, ‘User-Profile’, ":=", ‘free750", ",
", NOW(' at line 1 Whole query: INSERT INTO
newusers (username, attribute, op, value,
callingstationid, displayname, created_at)
VALUES ('cc89fdd01eal’, 'Cleartext-Password’,
t=','70358542', 'cc-89-fd-d0-1e-a0’, 'Gijs in 't
Veld’, NOW()).('cc89fdd01eal’, 'User-Profile’,
=", 'free750", ", ", NOW())

R. Ostertdg (DCS, Comenius University) Web Application Security (1) 20/35

XPath injection

P //user[name/text()='Janko Hrasko’ and password/text()="passwd’]/account/text()

P> input: ' or 1=1or "=

//user[name/text()=""or 1=1 or "'="" and password/text()="passwd’]/account/text()
» input: NoSuchUser'] | P | //user[name/text()='NoSuchUser

//user[name/text()="NoSuchUser’] | P | //user[name/text()="NoSuchUser’ and

password /text()='passwd’] /account/text()

first and last part return nothing = result is the evaluation of P
» in XPath it is not possible to apply access rights (within tags)

P therefore, the second way can get the entire XML document

P> on the other hand, during the SQL injection, attacker will be restricted
solely to the tables where a given application has access

R. Ostertdg (DCS, Comenius University) Web Application Security (1) 21/35

Session cookie

» HttpOnly not set
P this property prevents client-side scripts from accessing the cookie

» Overly broad session cookie domain/path
> attack through other applications sharing the same domain/path

P Persistent session cookie
P> remains valid even after a user closes browser
» often used as part of a “Remember Me" feature
» not sent over SSL
» Modern web browsers support a secure flag for each cookie.
> If the flag is set, the browser will only send the cookie over HTTPS.
> If an application uses both HTTPS and HTTP without the secure flag,
» then cookies set during an HTTPS request will also be sent during
subsequent HTTP requests.
» Disabled
» If the program does not use cookies to transmit session ID,
» then ID is transmitted as an request parameter or as part of the URL.
» Leaves the door open to session fixation and session hijacking attacks.

R. Ostertdg (DCS, Comenius University) Web Application Security (1) 22/35

System misconfiguration

P Least privilege violation
» Password management

» Empty, hard-coded or default password
> Password in config file

» Unprotected

» Protected by weak cryptography

\4

System information leak

> Missing custom error page
» Improper use of SSL

» Weak ciphers or protocols
> Self-signed certificates

R. Ostertdg (DCS, Comenius University) Web Application Security (1) 23 /35

Insecure programming

v

Buffer overflow, integer overflow, format string

v

Exception handling

» Empty catch block, i.e. ignoring exceptions

» Overly-broad catch block (promotes complex error handling code)
Insecure randomness
Failure to begin a new session upon authentication

File access race condition (TOCTOU)
Pointers

» Double free

» Use after free

> Memory leak

» Null dereference

> Leftover debug code

R. Ostertdg (DCS, Comenius University) Web Application Security (1) 24 /35

Insecure compiler optimization — memset

> Secret data is stored in memory.
> The secret data is cleared from memory by overwriting its contents.
» The source code is compiled using an optimizing compiler.

» The compiler identifies and removes clearing as unnecessary because
the memory is not used subsequently.

R. Ostertdg (DCS, Comenius University) Web Application Security (1) 25/35

Insecure compiler optimization — memset example

#include <stdio.h>
#include <string.h>

1
2

3

4 void clear(void) {

5 char pwd[257];

6 gets(pwd);

7 memset(pwd, 0, sizeof (pwd));

s puts(pwd); // we will comment this line later
9

R. Ostertdg (DCS, Comenius University) Web Application Security (1)

26 /35

Insecure compiler optimization — with puts

1 clear():

2 pushq
3 subq
4 leaq
5 movq
6 callq
7 xorl
8 movl
9 movq
10 callq
11 movq
12 callq
13 addq
L4 popq
15 retq

R. Ostertdg (DCS, Comenius University)

%rbx

$272, Yrsp
(%rsp), %rbx
%rbx, Y%rdi
gets

Y%esi, Y%hesi
$257, ‘hedx
%rbx, %rdi
memset
%rbx, %rdi
puts

$272, Yrsp
%rbx

Web Application Security (1)

Oclear()

imm

Tmm

imm

0z110

0z101

0z110

27/35

Insecure compiler optimization — without puts

1 clear(): # @clear()

2

3 subq $264, Y%rsp # imm = 0x108
4 leaq (hrsp), ‘%hrdi

5

6 callg gets

7

8

9

13 addgq $264, Y%rsp # iamm = 0x108
15 retq

R. Ostertdg (DCS, Comenius University) Web Application Security (1) 28 /35

Insecure compiler optimization — pointer arithmetic

» An arithmetic overflow on a pointer is undefined behavior.
» Array bounds check could be mistakenly optimized out.

» If an array bounds check involves computing an illegal pointer and
then determining that the pointer is out of bounds, some compilers
will optimize the check away.

R. Ostertdg (DCS, Comenius University) Web Application Security (1) 29/35

Insecure compiler optimization — pointer arithmetic

» Following C code:
#include <stdio.h>

void wrap(unsigned long len) {
char *buf;

if (buf + len < buf)

1
2
3
a
5
6
7 puts("0K");
s}

» translates to:

1 wrap(unsigned long): # Ourap (unsigned long)
2 retq

» Even if buf + len < buf is possible (check for arithmetic overflow)
call to puts is optimized away.

R. Ostertdg (DCS, Comenius University) Web Application Security (1) 30/35

Handling attacks

P developers must assume that application will be directly targeted by
dedicated and skilled attackers

» handling attacks requires:

» handling errors

» audit logs

» alerting administrators
P reacting to attacks

R. Ostertdg (DCS, Comenius University) Web Application Security (1) 31/35

Handling attacks — handling errors

P it is virtually inevitable that some unanticipated errors will occur

» it is difficult to anticipate every possible way in which a malicious user
may interact with the application

» application should handle unexpected errors

» recovering from error
» presenting an appropriate error message

» administrator — detailed
» user — brief

R. Ostertdg (DCS, Comenius University) Web Application Security (1) 32/35

Handling attacks — audit logs

» invaluable source of information when investigating intrusion attempts
P logs help to detect:

» what happened

» what vulnerabilities were exploited

» which data have been stolen

» the attacker’s identity

> the following events should always be recorded:
successful and failed login
» change of password
> important transactions (e.g. funds transfers)
P access attempts that are blocked by the access control mechanisms
» requests containing known attack strings
» indicate overtly malicious intentions

v

R. Ostertdg (DCS, Comenius University) Web Application Security (1) 33/35

Handling attacks — alerting administrators

» administrators can solve the problem online (instead of retrospective
offline analysis)
P> block attackers IP addresses
» set up a trap

» warning should come if:
» untypical usage

» a large number of requests from a single IP in a short time
> a large number of transfers of funds from different accounts into a
single account

> client responses / requests contains

» known attacks patterns
» changed hidden data (from normal users)

R. Ostertdg (DCS, Comenius University) Web Application Security (1) 34 /35

Handling attacks — reacting to attacks

> system can react automatically by

> attackers session termination

> slowing the response to the attacker's IP address
» blocking the attacker’s IP address

» warning attacked user

» more time for administrators

R. Ostertdg (DCS, Comenius University) Web Application Security (1) 35/35

