
cbea

Web Application Security

RNDr. Richard Ostertág, PhD. (ostertag@dcs.fmph.uniba.sk)

April 7, 2022

Department of Computer Science
Comenius University, Bratislava

mailto:ostertag@dcs.fmph.uniba.sk


The web sites era (Web 1.0)

• static documents

• browsers used only for retrieving and displaying those documents

• one-way flow of “interesting” information (server → browser)

• typically without user authentication

• every user: equal treatment, the same content

• users do not create presented content

• security threats abused mainly vulnerabilities in the web server so�ware

• compromised server
• no leakage of sensitive information (all information already open to public)
• modification of content
• server’s storage and bandwidth used to distribute “warez”

1



The web applications era (Web 2.0)

• interactive dynamic applications

• the browser becomes the operating system, which runs the web application

• two-way flow of “interesting” information (server ↔ browser)

• usually there is users authentication (registration, login)

• each user: di�erent treatment, di�erent personalized content

• users are creating presented content

• security threats are abusing also vulnerabilities in web application
• compromised server / web application

• leakage of sensitive information (personal data, credit card numbers)
• modification of content (money defrauding, a�acks on other users)
• use of bandwidth, processing power or storage capacity

• e.g. for creating botnets to send spam or DDoS a�acks

2



Common internet web application functions

• Internet stores
• Amazon, Alza, Hej

• Social networks
• Facebook, Twi�er, Second life

• Internet banking
• Slovenská sporiteľna, Tatrabanka, VÚB

• Search engines
• Google, Bing, Baidu

• Internet auctions
• eBay, Aukro

• Internet media, TV and radios
• YouTube, Netflix, Hulu, Spotify, Deezer

• Internetové kasína
• bwin

• Internet casinos
• bwin, eTipos, PokerStars

• Web logs
• Blogger, Write.as

• Web mail
• Gmail, Outlook.com, GMX

• Internet media
• CNN, SME

• Internet encyclopedia
• Wikipédia, OEIS.org

3



Common intranet web application functions

• HR applications
• payroll information
• recruitment
• disciplinary procedures

• Key infrastructure administrative interfaces
• web server
• mail server
• virtualization server

• Traditional desktop apps migrated to the web
• word processors
• spreadsheets

• Business applications
• Enterprise Resource Planning
• Customer Rel. Mangement

• So�ware services
• e-mail web interface

• Collaboration so�ware
• document sharing
• project management

• Development tools
• source code version management
• automated testing
• code review

4



Top 10 Web Application Security Risks1

1. Broken Access Control
2. Cryptographic Failures
3. Injection
4. Insecure Design
5. Security Misconfiguration
6. Vulnerable and Outdated Components
7. Identification and Authentication Failures
8. So�ware and Data Integrity Failures
9. Security Logging and Monitoring Failures

10. Server-Side Request Forgery

1Source: OWASP Top Ten (year 2021).

5

https://owasp.org/www-project-top-ten/


SSL, PCI – false sense of security

• users are aware of security issues in web applications

• most applications state that they are secure because they use SSL2:
This site is absolutely secure. It has been designed to use 128-bit Secure Socket Layer (SSL)

technology to prevent unauthorized users from viewing any of your information. You may use

this site with peace of mind that your data is safe with us.

• orgs also cite their compliance with Payment Card Industry (PCI) standards:
We take security very seriously. Our web site is scanned daily to ensure that we remain PCI
compliant and safe from hackers.

• use and maintain a firewall; do not use default passwords;
• encrypt data transferred over public networks; maintain security policy; . . .

2Source: Dafydd Stu�ard, Marcus Pinto: The Web Application Hacker’s Handbook

6



The core security problem

• a�acker can submit arbitrary response
• client side safety checks can be circumvented
• a�acker does not need to use a web browser to access the application
• a�acker (on the client side) can:

• read, modify, delete, or reuse any data that received from the server or web-browser is
sending to the server

• generate new data and inject them into the communication
• manipulate (suppress, modify, repeat) any operations performed on the client side

• an a�acker can manipulate all kinds of data the client operates with:
• URL (path parts, GET parameters)
• form fields (even hidden)
• commented out parts of HTML documents
• scripts (review, change)
• cookies and other information in HTTP headers (e.g. session ID)

• it must be assumed that all inputs are potentially dangerous

7



Key problem factors

• underdeveloped security awareness
• field of web application security is relatively young (vs. networks, OS)

• custom development
• many web apps developed in-house by an organization’s own sta� with di�erent skills
• every application is di�erent and may contain its own unique defects

• deceptive simplicity
• a novice programmer can create a powerful application from scratch
• di�erence between producing functional code and secure code

• new threats for web apps are conceived at a faster rate than for older technologies
• resource constraints (time, money, developers, . . . )

• functionality takes precedence over the security
• overextended technologies

• many of the core technologies employed in web apps have been pushed far beyond the
purposes for which they were originally conceived and unforeseen side e�ects emerge

8



Core defense mechanisms

• user access control
• prevent users from gaining unauthorized access

• user input validation
• prevent unwanted behavior of application even for malicious entry

• handling a�ack
• correct functionality even in the event of a direct a�ack
• defensive and o�ensive measures to repel the a�ack

• application monitoring
• administrator can react immediately

9



User access control

• basic components:
• identification and authentication
• session management

web application issues a token that identifies the user session
• access control

• fault in any component may lead to unauthorized access

10



Identification and authentication

• identification
• most o�en by login name

• authentication
• most o�en with a password

• the a�acker can
• obtain login names
• obtain passwords
• bypass the authentication function

• due design flaw

11



Identification and authentication (the classic problems)

• weak passwords
• short
• small alphabet
• from dictionary
• guessable (date of birth)

• quality control (e.g. a dictionary a�ack)

• the same password to di�erent systems
• no time limit for password age

• password age checks
• keylogger

• virtual keyboard
• one-time passwords
• zero knowledge proofs

• late transition from HTTP to HTTPS
• failed login should not di�erentiate bad name from bad password 12



Session management – session hijacking3

• disclosure of session identifier
• interception of communication
• “Referer” header when switching to other sites
• access to the user’s computer – browser history, extraction of stored cookies, . . .

• session ID guessing
• identifier is generated in a predictable manner (e.g. simple arithmetic progression)
• identifier has a small range of possible values

• possible protection (not easy and 100 % e�ective):
• identifier is not just a random number
• concatenated with the hash of the IP address of the server and the client, User-Agent

header of the client and some secret value
• then the a�acker can not simply use a stolen ID

3a�acker finds ID of another session and through this ID he is able to join that session and works under another identity

13



Session management – cross-site request forgery (CSRF)

• cross-site request forgery, aka. a one-click a�ack or session riding

• session hijacking requires that the a�acker has stolen or guessed ID

• session riding does not require knowledge of the session ID

• a�acker convinces a user to send him constructed request
• convinces him to click on link he created (e.g. in discussion)
• images can send requests too (automatically)

• possible protection:
• not using cookies to store session ID
• place session ID directly into the URL
• randomly generate and embed authentication tokens to each action URL

14



Access control

• authenticated users can have access only to certain parts of the site
• a�acker can gain unauthorized access using programmers wrong assumption about

how users will interact with the application
• URL tampering – altering parts (especially the GET parameters) of existing URL

• if the a�acker sees URL in the form:
h�ps://www.app.sk/zaznam.php?id=1234

• he can try to enter a URL in the form:
h�ps://www.app.sk/zaznam.php?id=1235

• Forceful browsing – creation of new URLs
• a�acker can try to enter a URL like:

h�ps://www.app.sk/zaznam.php.old
• or it may try to enter, for example:

h�ps://www.app.sk/admin.php
• server relies on fact: client can request only URL sent to him

15



Input validation – di�erent approaches

• reject dangerous inputs
search for known pa�erns used in a�acks

• accept safe inputs (allow specified harmless inputs)
• input sanitization

• eliminate potential dangerous character sequences (e.g. <script>)
• ’<scr<script>ipt>’ ?
• ’+ADw-script+AD4-’ ?

• secure input processing
• parameterized database queries

• semantic checks
• input data are syntactically correct (eg account number)
• but not semantically (not my account number)

• input must be validated on the server side
• although for a be�er UX checks are done also on the client side
• best to revalidate in each part of the application 16



Code injection

• each language has a specific syntax and specific control characters

• web applications o�en use di�erent languages
(e.g.: SQL, HTML, JavaScript, XML, HTTP, . . . )

• unexpected side e�ects can emerge if untreated data from the client are inserted
into the program in any of these languages

• SQL injection
• XPath injection
• HTML injection (markup injection)

CSRF, XSRF: cross-site request forgery
• JavaScript injection

XSS: cross-site scripting

17



SQL injection

• select * from Pouzivatelia where Meno=’Janko Hrasko’

• input: ’ or ’’=’
select * from Pouzivatelia where Meno=’’ or ’’=’’

• input: ’ and 1=0 union all select * from Tabulka--
select * from Pouzivatelia where Meno=’’ and 1=0 union all select * from Tabulka--’

• sometimes the application returns only part of the result or return information only
indirectly

• error message
• request processing time

18



SQL injection – real example :-)

19



Session cookie

• H�pOnly not set – should prevents client-side scripts from accessing the cookie
• Overly broad session cookie domain/path

• a�ack through other applications sharing the same domain/path
• Persistent session cookie

• remains valid even a�er a user closes browser
• o�en used as part of a “Remember Me” feature

• not sent over SSL
• Modern web browsers support a secure flag for each cookie.

• If the flag is set, the browser will only send the cookie over HTTPS.
• If an application uses both HTTPS and HTTP without the secure flag,

• then cookies set during an HTTPS will also be sent during subsequent HTTP requests.

• Disabled
• If the program does not use cookies to transmit session ID,

• then ID is transmi�ed as an request parameter or as part of the URL.

• Leaves the door open to session fixation and session hijacking a�acks.
20



System misconfiguration

• Least privilege violation

• Password management
• Empty, hard-coded or default password
• Password in config file

• Unprotected
• Protected by weak cryptography

• System information leak

• Missing custom error page

• Improper use of SSL
• Weak ciphers or protocols
• Self-signed certificates

21



Insecure programming

• Bu�er overflow, integer overflow, format string
• Exception handling

• Empty catch block, i.e. ignoring exceptions
• Overly-broad catch block (promotes complex error handling code)

• Insecure randomness

• Failure to begin a new session upon authentication

• File access race condition (TOCTOU)
• Pointers

• Double free
• Use a�er free
• Memory leak
• Null dereference

• Le�over debug code

22



Handling a�acks

• developers must assume that application will be directly targeted by dedicated and
skilled a�ackers

• handling a�acks requires:
• handling errors
• audit logs
• alerting administrators
• reacting to a�acks

23



Handling a�acks – handling errors

• it is virtually inevitable that some unanticipated errors will occur
• it is di�icult to anticipate every possible way in which a malicious user may interact

with the application

• application should handle unexpected errors
• recovering from error
• presenting an appropriate error message

• administrator – detailed
• user – brief

24



Handling a�acks – audit logs

• invaluable source of information when investigating intrusion a�empts
• logs help to detect:

• what happened
• what vulnerabilities were exploited
• which data have been stolen
• the a�acker’s identity

• the following events should always be recorded:
• successful and failed login
• change of password
• important transactions (e.g. funds transfers)
• access a�empts that are blocked by the access control mechanisms
• requests containing known a�ack strings

• indicate overtly malicious intentions

25



Handling a�acks – alerting administrators

• administrators can solve the problem online (instead of retrospective o�line
analysis)

• block a�ackers IP addresses
• set up a trap

• warning should come if:
• untypical usage

• a large number of requests from a single IP in a short time
• a large number of transfers of funds from di�erent accounts into a single account

• client responses / requests contains

• known a�acks pa�erns
• changed hidden data (from normal users)

26



Handling a�acks – reacting to a�acks

• system can react automatically by
• a�ackers session termination
• slowing the response to the a�acker’s IP address
• blocking the a�acker’s IP address
• warning a�acked user

• more time for administrators

27


