
cbea

Secure programming

for programmers

RNDr. Richard Ostertág, PhD. (ostertag@dcs.fmph.uniba.sk)

March 30, 2022

Department of Computer Science
Comenius University, Bratislava

mailto:ostertag@dcs.fmph.uniba.sk

Resources

• SEI CERT Coding Standards (for Java, C, C++)
h�ps://www.securecoding.cert.org/

• Secure Coding Guidelines for Java SE
h�ps://www.oracle.com/java/technologies/javase/seccodeguide.html

• Secure Programming HOWTO – Creating Secure So�ware
h�ps://dwheeler.com/secure-programs/

1

https://www.securecoding.cert.org/
https://www.oracle.com/java/technologies/javase/seccodeguide.html
https://dwheeler.com/secure-programs/

Public vulnerability databases and resources

• MITRE’s CVE (h�ps://cve.mitre.org/)
• Common Vulnerabilities and Exposures
• Common Vulnerabilities Enumeration

• MITRE’s CWE (h�ps://cwe.mitre.org/)
• Common Weakness Enumeration
• Comprehensive CWE Dictionary

h�ps://cwe.mitre.org/data/slices/2000.html
• Top 25 Most Dangerous So�ware Errors

h�ps://cwe.mitre.org/top25/

• NIST’s NVD (h�ps://nvd.nist.gov/)
• based on the CVE
• completes vendor and product information
• adds a classification of vulnerabilities

2

https://cve.mitre.org/
https://cwe.mitre.org/
https://cwe.mitre.org/data/slices/2000.html
https://cwe.mitre.org/top25/
https://nvd.nist.gov/

SD3 – Secure by Design, by Default, in Deployment

• the system should be designed with security in mind from the beginning

• the developer should know what options are dangerous

• all dangerous options should have appropriate default values

• customer doesn’t know the system any be�er so the installation and configuration
program should provide reasonable defaults

• exceptions should provide warnings

3

Code analysis

• static (i.e. before the code execution)
• peer review of design and code (e.g. code review)
• applications for coding style verification
• applications for static program analysis

• unused variables
• uninitialized variable
• these problems are hard ⇒ only conservative approximation

• dynamic (checks during runtime, whether the code meets the model)
• checking of invariants
• pre-conditions and post-conditions
• all allocated memory is released
• assert

4

Beware of ambiguous programming style

What the author actually intended in the following PHP code?

• if (!$a) . . .
• if ($a === false)
• if ($a === 0)
• if ($a === NULL)

• if ($a == "{}") . . .
• if ($a === "{}")
• if ($a === NULL)

5

Filename extensions of executable files (Windows NT)

• A�er entering command without extension, system gradually tests extensions from
the PATHEXT environment variable.

• Default value is ".COM;.EXE;.BAT;.CMD".

• A�acker can change executed application by changing the value of the PATHEXT
environment variable.

• Similar problems are caused by the PATH environment variable.
• Determines the order of directories in which the system is looking for program.

• relevant also for Linux

6

Allow list vs. block list

• security should not be based on enumeration of each dangerous thing (block list)
• it’s easy to miss somethings

• instead, security should be based on denying everything by default, unless
something is explicitly enumerated as safe (allow list)

• example of incorrect fix approach:
• try to block a specific exploitation path by using block list
• the a�acker will likely find another path which bypasses the block list

7

Format string vulnerabilities – C

arises by insertion of untrusted data into a format string

• What is the format string?
• printf("Name: %s (age: %11d)", person, age);

Name: Einstein (age: 133)

• especially dangerous is "%n"
• “Nothing printed. The argument must be a pointer to a signed int, where the number

of characters wri�en so far is stored.”

• not knowing that the function interprets the text as the format string
snprintf(str, sizeof(str), "Wrong password (user %s)", username);

syslog(LOG_WARNING, str);
• syslog() uses its second argument as a format string
• username = "einstein%s%s%s%s" likely to cause application crash

• wrong way of string printing: fprintf(log, logmessage);
• correct way: fprintf(log, "%s", logmessage);

8

Format string vulnerabilities – Perl

• let format2.pl have the following content:

1 #!/usr/bin/perl
2 $a = "10";
3 printf("Before: $a\n");
4 printf("$ARGV[0]", $a); # <- !!!
5 printf("After: $a\n");

• fomat2.pl outputs:
Before: 10
A�er: 10

• fomat2.pl 123%n outputs:
Before: 10
123A�er: 3

9

Format string vulnerabilities – PHP

• PHP does not support "%n"

• let format3.php have the following content:

1 #!/usr/bin/php
2 <?php
3 printf("%s","Hello 1!\n");
4 printf("%s%s","Hello 2!\n"); # <- !!!
5 printf("%s","Hello 3!\n");
6 ?>

• fomat3.php outputs:
Hello 1!
PHP Warning: printf(): Too few arguments in format3.php on line 4
Hello 3!

• program continues, outputing only the empty string
• can be used to suppress log messages

10

Format string vulnerabilities – Python

• Python does not support "%n" nor printf, but does contain the % command.
• let format4.py have the following content:

1 #!/usr/bin/python
2 userdata = {"user": "admin", "pass": "usr123"}
3 passwd = raw_input("Password: ")
4 if (passwd != userdata["pass"]):
5 print ("Wrong password: " + passwd) % userdata
6 else:
7 print "Welcome %(user)s!" % userdata

• a�er executing fomat4.py, the a�acker can enter the magic password:
Password: %(pass)s
Wrong password: usr123

• inconsistency in number of % and arguments leads to an exception
• can be used to suppress log messages (if improperly treated)
• can lead to DoS a�ack (if not catched)

11

Resource exhaustion 1

• shared resources are exposed to a�acks
• operating memory
• disk space
• network bandwidth
• CPU
• entropy (for random number generation)
• process table
• file descriptors
• database and other servers
• analysts
• . . .

• may occur if there is only:
• finite number of resources
• finite amount (e.g. of memory)
• finite performance (e.g. of CPU)

12

Resource exhaustion 2

• generous protocols and algorithms
• unauthenticated usage of computer resources, unwise operational order

• performing a series of complex operations before checking the request’s validity
• e.g. server generates keys right a�er the connection is established, prior the user is

authenticated

• amplification (via broadcast, subscriptions, . . .), asymmetric a�acks
• cost for a�acker is much smaller than for defender
• ICMP ping to broadcast address with a spoofed source IP address of victim (smurf a�ack)

• coding errors turned into vulnerabilities
• memory leaks

• design errors
• absence of access control
• absence of restrictions on resource utilization
• . . .

13

Resource exhaustion 3

• algorithmic complexity a�acks
• exploit worst-case scenario of algorithms

• quicksort: O(n log n) → O(n2)

• hash tables: O(n) → O(n2)

• regular expressions: O(n) → O(2n)

• to fix use algorithms that are not vulnerable

• universal hash algorithms designed to avoid the vulnerability

• statefull protocols are necessarily more vulnerable to DoS a�acks

• to fix, convert them into stateless protocols
• idea: encrypt the state data, and return it to client

• no memory usage
• increased CPU and bandwidth usage trade-o�

14

ReDoS – regular expression denial of service a�ack

• a�er translation of regular expression to NFA with m states, we can proceed as
follow:

• NFA → DFA [conversion O(2m) usually O(m), searching O(n)]
• backtracking path in NFA [searching O(2n) usually O(n)]
• backtracking all paths in NFA in parallel [O(m2n)]
• lazy conversion to DFA during searching [O(m2n)]

• typical evil regular expression is "^(a+)+$"
• the a�acker can apply ReDoS a�ack, if he/she can:

• enter input to exploitable RE (e.g. "aaaaaaaaaa!")
• OWASP Validation Regex Repository:

Java Classname: "^(([a-z])+.)+[A-Z]([a-z])+$"
• cregex = re.compile(r"^(a+)+$")
cregex = re.compile(r"^(([a-z])+.)+[A-Z]([a-z])+$")
match = cregex.match("aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa!");

• enter subexpression into RE (with appropriate RE input)
15

Faulty memory management

• memory leaks

• double free

• use of freed memory

• freeing wrong memory

• memory access to an invalid address

• information leakage
• overwrite sensitive memory to prevent leakage
• prevent passwords and keys from being saved to disk

• virtual memory, swap space – use memory locking
• crash dumps (core files) – disable crash dumps

16

Temporary Files 1

• applications frequently need to use temporary files

• o�en stored in directories accessible to all even for writing
• /tmp
• /var/tmp
• C:\Windows\TEMP
• C:\Users\Name\AppData\Local\Temp
• . . .

• temporary files may be deleted
• as soon as the application does not need them
• when the application terminates
• during startup or shutdown of operating system
• once a day
• . . .

17

Temporary Files 2

• temporary files must have an unpredictable name
• otherwise privileged program can overwrite protected files

• a�acker can create in the /tmp directory symbolic link with predictable name to the
protected file

• otherwise unprivileged program can overwrite user’s files

• a�acker can create in the /tmp directory symbolic link with predictable name to the user
file

• tmpnam() or mktemp() create a such a file name:

1 if (tmpnam(filename)) {
2 tmpfile = fopen(filename, "wb+");
3 ...
4 }

18

Temporary Files 3

• Time of Check to Time of Use (TOCTOU)
• some time passes between obtaining the file name and the file creation

• to overcome this race condition OS support is needed

• in this time somebody can create symbolic link with the same file name

• to avoid this race conditions, functions directly returning open file descriptor
should be used:

• tmpfile()
• mkstemp()

• tmpfile() opens a unique temp. file in binary read/write (w+b) mode
• the file will be automatically deleted when it is closed or the program terminates
• FILE *tempfile = tmpfile(void);

19

Temporary Files 4

• temporary files must be opened with exclusive access and appropriate access rights

• program should remove its temporary files before termination
• saves the disk space
• reduces the chance that a collision will occur in the future

• abandoned temporary files are not rare ⇒ variety of tools to clean temporary
directories

• manually by the administrator
• cron daemon deleting a few days old temporary files
• cleaning at system startup

• these tools are also prone to a�acks
• by replacing the temporary file with symbolic link to another file
• by direct creation of symbolic link to another file

20

Temporary Files 5

1 char sfn[15] = "/tmp/ed.XXXXXX";
2 FILE *sfp; int fd = -1;
3 if ((fd = mkstemp(sfn)) == -1 ||
4 (sfp = fdopen(fd, "w+")) == NULL) {
5 if (fd != -1) {
6 unlink(sfn); close(fd);
7 }
8 /* handle error condition */
9 }
10 unlink(sfn); /* unlink immediately */
11 /* use temporary file */
12 close(fd);

If there is a process that has the file open, unlink() only removes the file from the
directory, but the file is physically deleted later, when it is closed by all processes.

21

Java – final modifier

• final class can not be extended

• final method can not be overridden in subclasses

• final variable can be assigned only once

• if class neither method is not final, then a�acker can create subclass with
overridden method

• this can leads to unexpected behavior

• extensibility vs. security

22

Bu�er overflow

1 // save to attack.c
2 #include <stdio.h>
3
4 const char* password="SuperSecretPassword123";
5
6 struct {
7 char buf[100];
8 char* name;
9 } user;
10
11 void main(void)
12 {
13 user.name = user.buf;
14 printf("Enter user name: ");
15 scanf("%[^\n]", user.name); // %s
16 printf("%s\n", "... processing user name ...");
17 printf("%s\n", user.name);
18 }

23

Bu�er overflow

gcc -no-pie attack.c

objdump -x a.out | grep password

0000000000404040 g O .data 0000000000000008 password

location of global variable password in data segment (it is just pointer to a string)

objdump -s -j .data a.out

Contents of section .data:
404030 00000000 00000000 00000000 00000000

404040 04204000 00000000 . @.....

so secret string is on address 0x042040

24

Bu�er overflow – remote exploit

perl -e ’print "a"x104; print "\x40\x20\x04"; print "\x00"x5’ | ./a.out

Enter user name: ... processing user name ...

SuperSecretPassword123

25

Unsecure compiler optimizations – memset

• Secret data is stored in memory.

• Secret data is deleted from the memory by overwriting its contents.

• The source code is compiled using an optimizing compiler.

• The compiler identifies and removes the overwrite as unnecessary because the
memory has no later use.

26

Unsecure compiler optimizations – memset example

1 #include <stdio.h>
2 #include <string.h>
3

4 void clear(void) {
5 char pwd[257];
6 gets(pwd);
7 memset(pwd, 0, sizeof(pwd));
8 puts(pwd); // we will comment out this line later
9 }

27

Unsecure compiler optimizations – with puts

1 clear(): # @clear()
2 pushq %rbx
3 subq $272, %rsp # imm = 0x110
4 leaq (%rsp), %rbx
5 movq %rbx, %rdi
6 callq gets
7 xorl %esi, %esi
8 movl $257, %edx # imm = 0x101
9 movq %rbx, %rdi
10 callq memset
11 movq %rbx, %rdi
12 callq puts
13 addq $272, %rsp # imm = 0x110
14 popq %rbx
15 retq

28

Unsecure compiler optimizations – without puts

1 clear(): # @clear()
2

3 subq $264, %rsp # imm = 0x108
4 leaq (%rsp), %rdi
5

6 callq gets
7

8

9

10

11

12

13 addq $264, %rsp # imm = 0x108
14

15 retq
29

Unsecure compiler optimizations – pointer arithmetic

• Arithmetic overflow on pointer leads to undefined behaviour.

• Array boundary check can be removed by optimization.

• If the array boundary check includes the evaluation of an invalid pointer with the
subsequent test if the evaluated pointer is out of bounds, then some optimizing
compilers can remove this check.

30

Unsecure compiler optimizations – pointer arithmetic

1 #include <stdio.h>
2 void wrap(unsigned long len) {
3 char *buf;
4 if (buf + len < buf)
5 puts("OK");
6 }

the above program will be translated into:

1 wrap(unsigned long): # @wrap(unsigned long)
2 retq

Although the condition buf + only < buf can be met (arithmetic overflow check), the
compiler removes the puts call during optimization.

31

Unsecure compiler optimizations – undefined behavior

1 #include <cstdlib>
2 typedef int (*Function)();
3 static Function Do;
4

5 static int EraseAll() {
6 return system("rm -rf /");
7 }
8 void NeverCalled() {
9 Do = EraseAll;
10 }
11 int main() {
12 return Do(); // calling an uninitialized pointer
13 } // to a function (null) -> undef. behavior

32

Unsecure compiler optimizations – undefined behavior

1 NeverCalled(): # @NeverCalled()
2 ret
3 main: # @main
4 mov edi, offset .L.str
5 jmp system # TAILCALL
6 .L.str:
7 .asciz "rm -rf /"

The optimized code in the main function deletes all files.

33

