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Resources

» CERT Secure Coding Standards (for Java, C, C++)

https://www.securecoding.cert.org/
» Secure Coding Guidelines for the Java Programming Language
http://www.oracle.com/technetwork/java/

seccodeguide-139067.html

» Secure Programming for Linux and Unix HOWTO
http://wuw.dwheeler.com/secure-programs/

M.Sc. Pascal Meunier, Ph.D.: Overview of Secure Programming

v
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Public vulnerability databases and resources

» MITRE's CVE (http://cve.mitre.org/)
» Common Vulnerabilities and Exposures
» Common Vulnerabilities Enumeration

» MITRE's CWE (http://cwe.mitre.org/)
» Common Weakness Enumeration
» Comprehensive CWE Dictionary
http://cwe.mitre.org/data/slices/2000.html
» Top 25 Most Dangerous Software Errors
http://cwe.mitre.org/top25/

» NIST's ICAT (http://icat.nist.gov/)
» based on the CVE
» completes vendor and product information
» adds a classification of vulnerabilities
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SD3 — Secure by Design, by Default, in Deployment

> the system should be designed with security on mind from the
beginning

» the developer should know what options are dangerous

» all dangerous options should have appropriate default values

» customer doesn’t know the system any better so the installation and
configuration program should provide reasonable defaults

> exceptions should provide warnings
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Code analysis

> static (i.e. before the code execution)

> peer review of design and code (e.g. code review)
» applications for coding style verification
» applications for static program analysis
> unused variables
> uninitialized variable
> these problems are hard = only conservative approximation

» dynamic (i.e. checks during runtime to see whether the code meets
the model)
» checking of invariants
» pre-conditions and post-conditions
> all allocated memory is released
> assert
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Beware of ambiguous programming style

What the author actually intended in the following PHP code?

> if (1%a) ...
> if ($a === false)
> if (Ja ===0)
» if ($a === NULL)
> if (Ja=="")...
» if (Ja==="")
> if ($a === NULL)
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Filename extensions of executable files (Windows NT)

\4

After entering command without extension, system gradually tests
extensions from the PATHEXT environment variable.

Default value is ".COM;.EXE;.BAT;.CMD".

Attacker can change executed application by changing the value of
the PATHEXT environment variable.

v

v

v

Similar problems are caused by the PATH environment variable.

> Determines the order of directories in which the system is looking for
program.

> relevant also for Linux
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White list vs. black list

» security should not be based on enumeration of each dangerous thing
(black list)

> it's easy to miss somethings

> instead, security should be based on denying everything by default,
unless something is explicitly enumerated as safe (white list)

» example of incorrect fix approach::

» try to block a specific exploitation path by using black list
» the attacker will likely find another path which bypasses the black list
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Format string vulnerabilities — C

arises by insertion of untrusted data into a format string
» What is the format string?

» printf ("Name: %s (age: %11d)", person, age);
Name: Einstein (age: 133)

» especially dangerous is "%n"

» “Nothing printed. The argument must be a pointer to a signed int,
where the number of characters written so far is stored.”

» not knowing that the function interprets the text as the format string
snprintf(str, sizeof(str), "Wrong password (user %s)", username);
syslog(LOG_WARNING, str);

» syslog() uses its second argument as a format string
» username = "einstein%s%s%s%s" likely to cause application crash

» wrong way of string printing: fprintf(log, logmessage);
» correct way: fprintf(log, "%s", logmessage);
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Format string vulnerabilities — Perl

> let format2.pl have the following content:
#!/usr/bin/perl
$a = "10";
printf ("Before: $a\n");
printf ("$ARGV[0]", $a);
printf ("After: $a\n");

» fomat2.pl outputs:
Before: 10
After: 10

» fomat2.pl 123%n outputs:
Before: 10
123After: 3
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Format string vulnerabilities — PHP

» PHP does not support "%n"

> let format3.php have the following content:
#!/usr/bin/php
<?php
printf("%s","Hello 1!\n");
printf("%s%s","Hello 2!\n");
printf("%s","Hello 3!\n");
[

» fomat3.php outputs:
Hello 1!

PHP Warning: printf(): Too few arguments in format3.php on line 4
Hello 3!

» program continues, outputing only the empty string
> can be used to suppress log messages
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Format string vulnerabilities — Python

» Python does not support "%n", does not have printf, but does
contain the % (format) command.
> let format4.py have the following content:
#!/usr/bin/python
userdata = {"user": "admin", "pass": "usr123"}
passwd = raw_input("Password: ")
if (passwd != userdata|"pass"]):
print ("Wrong password: " + passwd) % userdata
else:
print "Welcome %(user)s!" % userdata
» after executing fomat4.py, the attacker can enter the magic password:
Password: %(pass)s
Wrong password: usrl23
» inconsistency in number of % and arguments leads to an exception
» can be used to suppress log messages (if improperly treated)
» can lead to DoS attack (if not catched)
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Resource exhaustion 1

» shared resources are exposed to attacks
> operating memory
disk space
network bandwidth
CPU
entropy (for random number generation)
process table
file descriptors
database and other servers
analysts

vV vV VY VY VY VY VY VvYY

» may occur if there is only:
» finite number of resources
» finite amount (e.g. of memory)
> finite performance (e.g. of CPU)
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Resource exhaustion 2

» generous protocols and algorithms
» unauthenticated usage of computer resources, unwise operational order
> performing a series of complex operations before checking the request’s
validity
> e.g. server generates keys right after the connection is established, prior
the user is authenticated
» amplification (via broadcast, subscriptions, ... ), asymmetric attacks

> cost for attacker is much smaller than for defender
> ICMP ping to broadcast address with s spoofed source IP address of
victim (smurf attack)
» coding errors turned into vulnerabilities
» memory leaks
> design errors
» absence of access control
» absence of restrictions on resource utilization
>
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Resource exhaustion 3

» algorithmic complexity attacks
» exploit worst-case scenario of algorithms
» quicksort: O(nlogn) — O(n?)
> hash tables: O(n) — O(n?)
> regular expressions: O(n) — O(2")
> to fix use algorithms that are not vulnerable
> universal hash algorithms designed to avoid the vulnerability

» statefull protocols are necessarily more vulnerable to DoS attacks

» to fix, convert them into stateless protocols
> idea: encrypt the state data, and return it to client

> no memory usage
» increased CPU and bandwidth usage trade-off
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ReDoS — regular expression denial of service attack

» after translation of regular expression to NFA with m states, we can
proceed as follow:
» NFA — DFA [conversion O(2™) usually O(m), searching O(n)]
» backtracking path in NFA [searching O(2") usually O(n)]
» backtracking all paths in NFA in parallel [O(m?n)]
» lazy conversion to DFA during searching [O(m?n)]

» typical evil regular expression is ""(a+)+$"

» the attacker can apply ReDoS attack, if he/she can:
> enter input to exploitable RE (e.g. "aaaaaaaaaal")
» OWASP Validation Regex Repository:
Java Classname: "(([a-z])+.)+[A-Z]([a-2])+$
> cregex = re.compile(r""(a+)+$")
cregex = re.compile(r""(([a-z])+.)+[A-Z]([a-2])+$")
match = cregex.match("aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaal");

> enter subexpression into RE (with appropriate RE input)
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Faulty memory management

» memory leaks

» double free

» use of freed memory

» freeing wrong memory

> memory access to an invalid address

» information leakage

> overwrite sensitive memory to prevent leakage
» prevent passwords and keys from being saved to disk

> virtual memory, swap space — use memory locking
> crash dumps (core files) — disable crash dumps
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Temporary Files 1

» applications frequently need to use temporary files
» often stored in directories accessible to all even for writing
> /tmp
> /var/tmp
» C:\Windows\TEMP
» C:\Users\Name\AppData\Local\Temp
>

» temporary files may be deleted

» as soon as the application does not need them

» when the application terminates

» during startup or shutdown of operating system
> once a day
>
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Temporary Files 2

» temporary files must have an unpredictable name
» otherwise privileged program can overwrite protected files

> attacker can create in the /tmp directory symbolic link with predictable
name to the protected file

» otherwise unprivileged program can overwrite user's files
> attacker can create in the /tmp directory symbolic link with predictable
name to the user file
» tmpnam() or mktemp() create a such a file name:
if (tmpnam(filename)) {
tmpfile = fopen(filename,"wb+");
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Temporary Files 3

» Time of Check to Time of Use (TOCTOU)
> some time passes between obtaining the file name and the file creation
> to overcome this race condition OS support is needed

> in this time somebody can create symbolic link with the same file name

> to avoid this race conditions, functions directly returning open file
descriptor should be used:

> tmpfile()
» mkstemp()

» tmpfile() opens a unique temp. file in binary read/write (w+b) mode

» the file will be automatically deleted when it is closed or the program
terminates
» FILE *tempfile = tmpfile(void);
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Temporary Files 4

» temporary files must be opened with exclusive access and appropriate
access rights
» program should remove its temporary files before termination

> saves the disk space
» reduces the chance that a collision will occur in the future

» abandoned temporary files are not rare = variety of tools to clean
temporary directories

» manually by the administrator
» cron daemon deleting a few days old temporary files
» cleaning at system startup

> these tools are also prone to attacks

> by replacing the temporary file with symbolic link to another file
» by direct creation of symbolic link to another file
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Temporary Files 5

char sfn[15] = "/tmp/ed.XXXXXX";
FILE *sfp; int fd = -1;
if ((fd = mkstemp(sfn)) == -1 ||
(sfp = fdopen(fd, "w+")) == NULL) {
if (£d '= -1) {
unlink(sfn); close(fd);
}
/* handle error condition */
}
unlink(sfn); /* unlink immediately */
/* use temporary file x*/
close(fd);

If there is a process that has the file open, unlink() only removes the file
from the directory, but the file is physically deleted later, when it is closed
by all processes.
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Java — final modifier

» final class can not be extended
» final method can not be overridden in subclasses
» final variable can be assigned only once

» if class neither method is not final, then attacker can create subclass
with overridden method

» this can leads to unexpected behavior

> extensibility vs. security
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Buffer overflow

// save to attack.c
##include <stdio.h>

const char* password="SuperSecretPassword123";

struct {
char buf[100]; char* name;
} user;

void main(void)

{
user .name=user.buf;
printf ("Enter user name: "); scanf("s",user.name);
printf("%s\n","... processing user name ...");
printf ("%s\n",user.name) ;

}
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Buffer overflow

gcc attack.c

objdump -x a.out | grep password

08042028 g 0 .data 00000004 password
location of global variable password in data segment
(it is just pointer to a string)

objdump -s -j .data

Contents of section .data:

08042020 00000000 00000000 80850408

so secret string is on address 0x08048580

"remote" exploit:
perl -e ’print "a" x 100; print "\x80\x85\x04\x08"’ | ./a.out
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NET Framework — Securing State Data

> the best way to protect data in memory is to declare the data as
private
> but even this data is subject to access

> highly trusted code, that can reference the object, can get and set its
private members using reflection mechanisms

» highly trusted code can effectively get and set private members if it can
access the corresponding data in the serialized form of the object

» under debugging, private data can be read
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NET Framework — Securing Method Access

» some methods might not be suitable to allow arbitrary untrusted code
to call, e.g. if method

» provide some restricted information
> believe any information passed to it

» how to restrict methods that are not intended for public use but still
must be public

> limit the method access to callers of a specified identity — (e.g. strong
name)

» use following attribute for restricted method:
[StrongNameldentityPermissionAttribute(SecurityAction. Demand,
PublicKey="...hex...", Name="App", Version="x.y.z.0")]
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.NET Framework — Permissions View Tool

» permview [/output filename] [/decl] manifestfile
» manifestfile can be either

» standalone file
> incorporated in a portable executable (PE) file

» /decl — displays all declarative security at the assembly, class, and
method level for the assembly specified by manifestfile

» permview /decl myAssembly.exe
> the result is on next slide
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.NET Framework — Permissions View Tool

Microsoft (R) .NET Framework Permission Request Viewer.
Version 1.0.2204.18 Copyright (C) Microsoft Corp. 1998-2000

Assembly RequestMinimum permission set:

<PermissionSet class="System.Security.PermissionSet" version -:
<Unrestricted/>

</PermissionSet>

Method A::myMethod() LinktimeCheck permission set:
<PermissionSet class="System.Security.PermissionSet" version='
<Permission class="System.Security.Permissions.ReflectionP
mscorlib, Ver=1.0.2204.2, Loc=’’, SN=03689116d3a4ae33"
version="1">
<MemberAccess/>
</Permission>
</PermissionSet>
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NET Framework — Securing Exception Handling 1/3

void Main()
{
try { Sub();
except (Filter()) { Console.WriteLine("catch"); }

}
bool Filter () {
Console.WriteLine("filter"); return true;

}
void Sub()
{
try {
Console.WriteLine("throw");
throw new Exception();
}
finally { Console.WritelLine("finally"); }
}

R. Ostertdg (DCS, Comenius University) Secure programming 30/ 33



NET Framework — Securing Exception Handling 2/3

In Visual C++ and Visual Basic, a filter expression further up the stack
runs before any finally statement. The catch block associated with that
filter runs after the finally statement. Previous code prints the following:

Throw
Filter
Finally
Catch
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NET Framework — Securing Exception Handling 3/3

The filter runs before the finally statement, so security issues can be
introduced by anything that makes a state change where execution of
other code could take advantage. For example:

try {
Alter_Security_State();
// This means changing anything (state variables,
// switching unmanaged context, impersonation, and
// so on) that could be exploited if malicious
// code ran before state is restored.
Do_some_work();

}
finally {

Restore_Security_State();

// This simply restores the state change above.
}
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.NET Framework —Race Conditions in the Dispose Method

If Dispose implementation is not synchronized, it is possible for Cleanup to
be called by first one thread and then a second thread before myObj is set
to null. Whether this is a security concern depends on what happens when
the Cleanup code runs.

void Dispose()

{
if ( myObj != null )
{
Cleanup (myQbj) ;
myObj = null;
}
+
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