R. Ostertdg (DCS, Comenius University)

Secure programming

Richard Ostertag

Department of Computer Science
Comenius University, Bratislava
ostertag@dcs.fmph.uniba.sk

2015/16

Secure programming 1/33

Resources

» CERT Secure Coding Standards (for Java, C, C++)

https://www.securecoding.cert.org/
» Secure Coding Guidelines for the Java Programming Language
http://www.oracle.com/technetwork/java/

seccodeguide-139067.html

» Secure Programming for Linux and Unix HOWTO
http://wuw.dwheeler.com/secure-programs/

M.Sc. Pascal Meunier, Ph.D.: Overview of Secure Programming

v

R. Ostertdg (DCS, Comenius University) Secure programming 2/33

https://www.securecoding.cert.org/
http://www.oracle.com/technetwork/java/seccodeguide-139067.html
http://www.oracle.com/technetwork/java/seccodeguide-139067.html
http://www.dwheeler.com/secure-programs/

Public vulnerability databases and resources

» MITRE's CVE (http://cve.mitre.org/)
» Common Vulnerabilities and Exposures
» Common Vulnerabilities Enumeration

» MITRE's CWE (http://cwe.mitre.org/)
» Common Weakness Enumeration
» Comprehensive CWE Dictionary
http://cwe.mitre.org/data/slices/2000.html
» Top 25 Most Dangerous Software Errors
http://cwe.mitre.org/top25/

» NIST's ICAT (http://icat.nist.gov/)
» based on the CVE
» completes vendor and product information
» adds a classification of vulnerabilities

R. Ostertdg (DCS, Comenius University) Secure programming 3/33

http://cve.mitre.org/
http://cwe.mitre.org/
http://cwe.mitre.org/data/slices/2000.html
http://cwe.mitre.org/top25/
http://icat.nist.gov/

SD3 — Secure by Design, by Default, in Deployment

> the system should be designed with security on mind from the
beginning

» the developer should know what options are dangerous

» all dangerous options should have appropriate default values

» customer doesn’t know the system any better so the installation and
configuration program should provide reasonable defaults

> exceptions should provide warnings

R. Ostertdg (DCS, Comenius University) Secure programming 4 /33

Code analysis

> static (i.e. before the code execution)

> peer review of design and code (e.g. code review)
» applications for coding style verification
» applications for static program analysis
> unused variables
> uninitialized variable
> these problems are hard = only conservative approximation

» dynamic (i.e. checks during runtime to see whether the code meets
the model)
» checking of invariants
» pre-conditions and post-conditions
> all allocated memory is released
> assert

R. Ostertdg (DCS, Comenius University) Secure programming

5/33

Beware of ambiguous programming style

What the author actually intended in the following PHP code?

> if (1%a) ...
> if ($a === false)
> if (Ja ===0)
» if ($a === NULL)
> if (Ja=="")...
» if (Ja==="")
> if ($a === NULL)

R. Ostertdg (DCS, Comenius University) Secure programming 6 /33

Filename extensions of executable files (Windows NT)

\4

After entering command without extension, system gradually tests
extensions from the PATHEXT environment variable.

Default value is ".COM;.EXE;.BAT;.CMD".

Attacker can change executed application by changing the value of
the PATHEXT environment variable.

v

v

v

Similar problems are caused by the PATH environment variable.

> Determines the order of directories in which the system is looking for
program.

> relevant also for Linux

R. Ostertdg (DCS, Comenius University) Secure programming 7/33

White list vs. black list

» security should not be based on enumeration of each dangerous thing
(black list)

> it's easy to miss somethings

> instead, security should be based on denying everything by default,
unless something is explicitly enumerated as safe (white list)

» example of incorrect fix approach::

» try to block a specific exploitation path by using black list
» the attacker will likely find another path which bypasses the black list

R. Ostertdg (DCS, Comenius University) Secure programming 8 /33

Format string vulnerabilities — C

arises by insertion of untrusted data into a format string
» What is the format string?

» printf ("Name: %s (age: %11d)", person, age);
Name: Einstein (age: 133)

» especially dangerous is "%n"

» “Nothing printed. The argument must be a pointer to a signed int,
where the number of characters written so far is stored.”

» not knowing that the function interprets the text as the format string
snprintf(str, sizeof(str), "Wrong password (user %s)", username);
syslog(LOG_WARNING, str);

» syslog() uses its second argument as a format string
» username = "einstein%s%s%s%s" likely to cause application crash

» wrong way of string printing: fprintf(log, logmessage);
» correct way: fprintf(log, "%s", logmessage);

R. Ostertdg (DCS, Comenius University) Secure programming 9 /33

Format string vulnerabilities — Perl

> let format2.pl have the following content:
#!/usr/bin/perl
$a = "10";
printf ("Before: $a\n");
printf ("$ARGV[0]", $a);
printf ("After: $a\n");

» fomat2.pl outputs:
Before: 10
After: 10

» fomat2.pl 123%n outputs:
Before: 10
123After: 3

R. Ostertdg (DCS, Comenius University) Secure programming

10 /33

Format string vulnerabilities — PHP

» PHP does not support "%n"

> let format3.php have the following content:
#!/usr/bin/php
<?php
printf("%s","Hello 1!\n");
printf("%s%s","Hello 2!\n");
printf("%s","Hello 3!\n");
[

» fomat3.php outputs:
Hello 1!

PHP Warning: printf(): Too few arguments in format3.php on line 4
Hello 3!

» program continues, outputing only the empty string
> can be used to suppress log messages

R. Ostertdg (DCS, Comenius University) Secure programming 11 /33

Format string vulnerabilities — Python

» Python does not support "%n", does not have printf, but does
contain the % (format) command.
> let format4.py have the following content:
#!/usr/bin/python
userdata = {"user": "admin", "pass": "usr123"}
passwd = raw_input("Password: ")
if (passwd != userdata|"pass"]):
print ("Wrong password: " + passwd) % userdata
else:
print "Welcome %(user)s!" % userdata
» after executing fomat4.py, the attacker can enter the magic password:
Password: %(pass)s
Wrong password: usrl23
» inconsistency in number of % and arguments leads to an exception
» can be used to suppress log messages (if improperly treated)
» can lead to DoS attack (if not catched)

R. Ostertdg (DCS, Comenius University) Secure programming 12 /33

Resource exhaustion 1

» shared resources are exposed to attacks
> operating memory
disk space
network bandwidth
CPU
entropy (for random number generation)
process table
file descriptors
database and other servers
analysts

vV vV VY VY VY VY VY VvYY

» may occur if there is only:
» finite number of resources
» finite amount (e.g. of memory)
> finite performance (e.g. of CPU)

R. Ostertdg (DCS, Comenius University) Secure programming 13 /33

Resource exhaustion 2

» generous protocols and algorithms
» unauthenticated usage of computer resources, unwise operational order
> performing a series of complex operations before checking the request’s
validity
> e.g. server generates keys right after the connection is established, prior
the user is authenticated
» amplification (via broadcast, subscriptions, ...), asymmetric attacks

> cost for attacker is much smaller than for defender
> ICMP ping to broadcast address with s spoofed source IP address of
victim (smurf attack)
» coding errors turned into vulnerabilities
» memory leaks
> design errors
» absence of access control
» absence of restrictions on resource utilization
>

R. Ostertdg (DCS, Comenius University) Secure programming 14 / 33

Resource exhaustion 3

» algorithmic complexity attacks
» exploit worst-case scenario of algorithms
» quicksort: O(nlogn) — O(n?)
> hash tables: O(n) — O(n?)
> regular expressions: O(n) — O(2")
> to fix use algorithms that are not vulnerable
> universal hash algorithms designed to avoid the vulnerability

» statefull protocols are necessarily more vulnerable to DoS attacks

» to fix, convert them into stateless protocols
> idea: encrypt the state data, and return it to client

> no memory usage
» increased CPU and bandwidth usage trade-off

R. Ostertdg (DCS, Comenius University) Secure programming 15 / 33

ReDoS — regular expression denial of service attack

» after translation of regular expression to NFA with m states, we can
proceed as follow:
» NFA — DFA [conversion O(2™) usually O(m), searching O(n)]
» backtracking path in NFA [searching O(2") usually O(n)]
» backtracking all paths in NFA in parallel [O(m?n)]
» lazy conversion to DFA during searching [O(m?n)]

» typical evil regular expression is ""(a+)+$"

» the attacker can apply ReDoS attack, if he/she can:
> enter input to exploitable RE (e.g. "aaaaaaaaaal")
» OWASP Validation Regex Repository:
Java Classname: "(([a-z])+.)+[A-Z]([a-2])+$
> cregex = re.compile(r""(a+)+$")
cregex = re.compile(r""(([a-z])+.)+[A-Z]([a-2])+$")
match = cregex.match("aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaal");

> enter subexpression into RE (with appropriate RE input)

R. Ostertdg (DCS, Comenius University) Secure programming 16 / 33

Faulty memory management

» memory leaks

» double free

» use of freed memory

» freeing wrong memory

> memory access to an invalid address

» information leakage

> overwrite sensitive memory to prevent leakage
» prevent passwords and keys from being saved to disk

> virtual memory, swap space — use memory locking
> crash dumps (core files) — disable crash dumps

R. Ostertdg (DCS, Comenius University) Secure programming 17 / 33

Temporary Files 1

» applications frequently need to use temporary files
» often stored in directories accessible to all even for writing
> /tmp
> /var/tmp
» C:\Windows\TEMP
» C:\Users\Name\AppData\Local\Temp
>

» temporary files may be deleted

» as soon as the application does not need them

» when the application terminates

» during startup or shutdown of operating system
> once a day
>

R. Ostertdg (DCS, Comenius University) Secure programming 18 / 33

Temporary Files 2

» temporary files must have an unpredictable name
» otherwise privileged program can overwrite protected files

> attacker can create in the /tmp directory symbolic link with predictable
name to the protected file

» otherwise unprivileged program can overwrite user's files
> attacker can create in the /tmp directory symbolic link with predictable
name to the user file
» tmpnam() or mktemp() create a such a file name:
if (tmpnam(filename)) {
tmpfile = fopen(filename,"wb+");

R. Ostertdg (DCS, Comenius University) Secure programming 19 / 33

Temporary Files 3

» Time of Check to Time of Use (TOCTOU)
> some time passes between obtaining the file name and the file creation
> to overcome this race condition OS support is needed

> in this time somebody can create symbolic link with the same file name

> to avoid this race conditions, functions directly returning open file
descriptor should be used:

> tmpfile()
» mkstemp()

» tmpfile() opens a unique temp. file in binary read/write (w+b) mode

» the file will be automatically deleted when it is closed or the program
terminates
» FILE *tempfile = tmpfile(void);

R. Ostertdg (DCS, Comenius University) Secure programming 20 /33

Temporary Files 4

» temporary files must be opened with exclusive access and appropriate
access rights
» program should remove its temporary files before termination

> saves the disk space
» reduces the chance that a collision will occur in the future

» abandoned temporary files are not rare = variety of tools to clean
temporary directories

» manually by the administrator
» cron daemon deleting a few days old temporary files
» cleaning at system startup

> these tools are also prone to attacks

> by replacing the temporary file with symbolic link to another file
» by direct creation of symbolic link to another file

R. Ostertdg (DCS, Comenius University) Secure programming 21 /33

Temporary Files 5

char sfn[15] = "/tmp/ed.XXXXXX";
FILE *sfp; int fd = -1;
if ((fd = mkstemp(sfn)) == -1 ||
(sfp = fdopen(fd, "w+")) == NULL) {
if (£d '= -1) {
unlink(sfn); close(fd);
}
/* handle error condition */
}
unlink(sfn); /* unlink immediately */
/* use temporary file x*/
close(fd);

If there is a process that has the file open, unlink() only removes the file
from the directory, but the file is physically deleted later, when it is closed
by all processes.

R. Ostertdg (DCS, Comenius University) Secure programming 22 /33

Java — final modifier

» final class can not be extended
» final method can not be overridden in subclasses
» final variable can be assigned only once

» if class neither method is not final, then attacker can create subclass
with overridden method

» this can leads to unexpected behavior

> extensibility vs. security

R. Ostertdg (DCS, Comenius University) Secure programming 23 /33

Buffer overflow

// save to attack.c
##include <stdio.h>

const char* password="SuperSecretPassword123";

struct {
char buf[100]; char* name;
} user;

void main(void)

{
user .name=user.buf;
printf ("Enter user name: "); scanf("s",user.name);
printf("%s\n","... processing user name ...");
printf ("%s\n",user.name) ;

}

R. Ostertdg (DCS, Comenius University) Secure programming 24 /33

Buffer overflow

gcc attack.c

objdump -x a.out | grep password

08042028 g 0 .data 00000004 password
location of global variable password in data segment
(it is just pointer to a string)

objdump -s -j .data

Contents of section .data:

08042020 00000000 00000000 80850408

so secret string is on address 0x08048580

"remote" exploit:
perl -e ’print "a" x 100; print "\x80\x85\x04\x08"’ | ./a.out

R. Ostertdg (DCS, Comenius University) Secure programming 25 /33

NET Framework — Securing State Data

> the best way to protect data in memory is to declare the data as
private
> but even this data is subject to access

> highly trusted code, that can reference the object, can get and set its
private members using reflection mechanisms

» highly trusted code can effectively get and set private members if it can
access the corresponding data in the serialized form of the object

» under debugging, private data can be read

R. Ostertdg (DCS, Comenius University) Secure programming 26 / 33

NET Framework — Securing Method Access

» some methods might not be suitable to allow arbitrary untrusted code
to call, e.g. if method

» provide some restricted information
> believe any information passed to it

» how to restrict methods that are not intended for public use but still
must be public

> limit the method access to callers of a specified identity — (e.g. strong
name)

» use following attribute for restricted method:
[StrongNameldentityPermissionAttribute(SecurityAction. Demand,
PublicKey="...hex...", Name="App", Version="x.y.z.0")]

R. Ostertdg (DCS, Comenius University) Secure programming 27 /33

.NET Framework — Permissions View Tool

» permview [/output filename] [/decl] manifestfile
» manifestfile can be either

» standalone file
> incorporated in a portable executable (PE) file

» /decl — displays all declarative security at the assembly, class, and
method level for the assembly specified by manifestfile

» permview /decl myAssembly.exe
> the result is on next slide

R. Ostertdg (DCS, Comenius University) Secure programming 28 /33

.NET Framework — Permissions View Tool

Microsoft (R) .NET Framework Permission Request Viewer.
Version 1.0.2204.18 Copyright (C) Microsoft Corp. 1998-2000

Assembly RequestMinimum permission set:

<PermissionSet class="System.Security.PermissionSet" version -:
<Unrestricted/>

</PermissionSet>

Method A::myMethod() LinktimeCheck permission set:
<PermissionSet class="System.Security.PermissionSet" version='
<Permission class="System.Security.Permissions.ReflectionP
mscorlib, Ver=1.0.2204.2, Loc=’’, SN=03689116d3a4ae33"
version="1">
<MemberAccess/>
</Permission>
</PermissionSet>

R. Ostertdg (DCS, Comenius University) Secure programming 29 /33

NET Framework — Securing Exception Handling 1/3

void Main()
{
try { Sub();
except (Filter()) { Console.WriteLine("catch"); }

}
bool Filter () {
Console.WriteLine("filter"); return true;

}
void Sub()
{
try {
Console.WriteLine("throw");
throw new Exception();
}
finally { Console.WritelLine("finally"); }
}

R. Ostertdg (DCS, Comenius University) Secure programming 30/ 33

NET Framework — Securing Exception Handling 2/3

In Visual C++ and Visual Basic, a filter expression further up the stack
runs before any finally statement. The catch block associated with that
filter runs after the finally statement. Previous code prints the following:

Throw
Filter
Finally
Catch

R. Ostertdg (DCS, Comenius University) Secure programming 31/33

NET Framework — Securing Exception Handling 3/3

The filter runs before the finally statement, so security issues can be
introduced by anything that makes a state change where execution of
other code could take advantage. For example:

try {
Alter_Security_State();
// This means changing anything (state variables,
// switching unmanaged context, impersonation, and
// so on) that could be exploited if malicious
// code ran before state is restored.
Do_some_work();

}
finally {

Restore_Security_State();

// This simply restores the state change above.
}

R. Ostertdg (DCS, Comenius University) Secure programming 32/33

.NET Framework —Race Conditions in the Dispose Method

If Dispose implementation is not synchronized, it is possible for Cleanup to
be called by first one thread and then a second thread before myObj is set
to null. Whether this is a security concern depends on what happens when
the Cleanup code runs.

void Dispose()

{
if (myObj != null)
{
Cleanup (myQbj) ;
myObj = null;
}
+

R. Ostertdg (DCS, Comenius University) Secure programming 33/33

