
UNIVERZITA KOMENSKÉHO V BRATISLAVE
FAKULTA MATEMATIKY, FYZIKY A INFORMATIKY

PRÍPRAVA ŠTÚDIA MATEMATIKY A INFORMATIKY NA FMFI UK V
ANGLICKOM JAZYKU

ITMS: 26140230008

DOPYTOVO – ORIENTOVANÝ PROJEKT

Moderné vzdelávanie pre vedomostnú spoločnosť/Projekt je
spolufinancovaný zo zdrojov EÚ



Security incidents, weaknesses and vulnerabilities

Martin Stanek

Department of Computer Science
Comenius University

stanek@dcs.fmph.uniba.sk

Security of IT infrastructure (2013/14)



Content

General discussion

Examples – security failures
Randomness of cryptographic keys
Timing a�acks on comparisons
Adobe password encryption
PKCS #11 and cryptographic tokens
WPS (WiFi Protected Setup)
Encrypted USB drives
Hash tables collisions

Other incidents

Security incidents, weaknesses and vulnerabilities 3 / 31 ,



Introduction

Security incidents and failures
I various causes (or their combination): human factor, criminal activities,

technical vulnerabilities etc.
I impact: “nothing” happened, loss of reputation, cost of

repair/replacement of data and systems, direct financial loss, bankruptcy
etc.

mostly technical failures/vulnerabilities in this lecture
I just examples . . . reality is worse
I National Vulnerability Database (nvd.nist.gov)
I vulnerabilities published: 5289 (2012), 5186 (2013)
I classification (categories, severity etc.)
I “Insu�icient information” not shown on the following chart

Security incidents, weaknesses and vulnerabilities 4 / 31 ,



NVD – vulnerabilities published in 2012 and 2013

 

Format String Vulnerability

Link Following

Configuration

Design Error

OS Command Injections

Race Conditions

Credentials Management

Path Traversal

Other

Authentication Issues

Cryptographic Issues

Cross-Site Request Forgery (CSRF)

Code Injection

SQL Injections

Numeric Errors

Information Leak / Disclosure

Resource Management Errors

Input Validation

Permissions, Priviledges and Access Control

Cross-Site Scripting (XSS)

Buffer Errors

0 100 200 300 400 500 600 700 800

2013

2012

Security incidents, weaknesses and vulnerabilities 5 / 31 ,



Other classifications of vulnerabilities

I Common Weaknesses Enumeration (cwe.mitre.org)
I Common A�ack Pa�ern Enumeration and Classification (capec.mitre.org)

I Open Web Application Security Project (OWASP, www.owasp.org)
I primarily for web applications – vulnerabilities, a�acks, risks
I Testing Guide

I more detailed classifications, description, examples, additional
information

Security incidents, weaknesses and vulnerabilities 6 / 31 ,



Real world – surveys and analyses

[1] IBM X-Force 2013 Mid-Year Trend and Risk Report (September 2013)
[2] EY’s Global Information Security Survey 2013 (October 2013)
[3] Websense Security Predictions for 2014 (2013)
[4] DataLossDB Statistics (datalossdb.org)
[5] Verizon 2013 Data Breach Investigations Report (2013)

. . . etc.

Security incidents, weaknesses and vulnerabilities 7 / 31 ,



Data breaches

I 2013 – the most frequent types of data breaches [4]:
1. Hack – Computer-based intrusion, data may or may not be publicly

exposed (48%)
2. Fraud or scam (usually insider-related), social engineering (8%)
3. Stolen Laptop (generally specified as a laptop in media reports) (7%)
4. Web – Data typically available to the general public via search engines,

public pages, etc. (6%)
5. Unknown or unreported breach type (4%)
6. Discovery of documents not disposed properly (4%)
7. Email communication exposed to unintended third party (4%)

. . . other causes

Security incidents, weaknesses and vulnerabilities 8 / 31 ,



Data breaches – examples (1)

1. University of Veterinary Medicine and Pharmacy in Košice
I January 2014
I leaked personal data of 1500 students
I addresses, ID card numbers, personal identification numbers, . . .
I published PDF in Central register of contracts
I “blacked out” personal data . . . still there, can be copied (selected)

2. Korea Credit Bureau, South Korea
I February–December 2013
I more then 100 million accounts and credit cards information
I South Korea: more than 4 credit cards per person in average
I 40% population a�ected
I names, home addresses, phone numbers, bank account numbers, credit

card details, identification numbers, income, passport numbers, . . .
I contract technician copied the data to portable hard drive (and sold)

Security incidents, weaknesses and vulnerabilities 9 / 31 ,



Data breaches – examples (2)

3. Target, USA
I December 2013
I 40 millions credit and debit cards information

+ additional 70 millions personal information
I card information

+ names, mailing addresses, phone numbers, email addresses
I malware on POS devices

4. Orange, France
I January 2014
I 800 000 customers’ data
I names, mailing addresses, e-mails, phone numbers, customer account IDs

(masked)
I hack (details unknown)

Security incidents, weaknesses and vulnerabilities 10 / 31 ,



Top priorities [2]

I global survey, more than 1900 organizations
I top priorities in 2014:

1. Business continuity/disaster recovery
2. Cyber risks/cyber threats
3. Data leakage/data loss prevention
4. Information security transformation (fundamental redesign)
5. Compliance monitoring

Security incidents, weaknesses and vulnerabilities 11 / 31 ,



Security failures/vulnerabilities . . .

examples

Security incidents, weaknesses and vulnerabilities 12 / 31 ,



Randomness of cryptographic keys

I 2008 – Debian
I modification of openssl source code

I the use of uninitialized memory
I broken initialization of pseudorandom generator . . . initialized by PID only
I at most 98301 unique initialization values overall (depending on particular

platform)
I impact:

I predictable keys for SSH, OpenVPN, DNSSEC, X.509 certificates, session
keys in SSL/TLS, . . .

I using library just for a single DSA signing . . . compromised private key
I similar problem with randomness in Sony Playstation 3 (ECDSA

signatures, 2010)

Security incidents, weaknesses and vulnerabilities 13 / 31 ,



Later . . . in openssl 1.0 source code

/* DO NOT REMOVE THE FOLLOWING CALL TO MD_Update()! */
MD_Update(&m,buf,j);
/* We know that line may cause programs such as

purify and valgrind to complain about use of
uninitialized data. The problem is not, it’s
with the caller. Removing that line will make
sure you get really bad randomness and thereby
other problems such as very insecure keys. */

I Correct and secure implementation of cryptography is not easy
I 7 vulnerabilities in openssl (NVD, published in 2010–2013) with severity

High

Security incidents, weaknesses and vulnerabilities 14 / 31 ,



Timing a�acks on comparisons (Google, Sun, . . . )

I 2009 – Keyczar (Google), Java (Sun), . . .
I common scenario: server compares received HMAC with calculated one
I a�acker’s goal: to get correct HMAC for his own message (“authentic”)
I What is wrong with this code (Python)?

return self.Sign(msg) == sig_bytes

Security incidents, weaknesses and vulnerabilities 15 / 31 ,



What is wrong with this code (Java)?

public static boolean
isEqual(byte digesta[], byte digestb[]) {

if (digesta.length != digestb.length)
return false;

for (int i = 0; i < digesta.length; i++) {
if (digesta[i] != digestb[i])

return false;
}
return true;

}

Security incidents, weaknesses and vulnerabilities 16 / 31 ,



HMAC reconstruction

How long does it take for server to answer/react to incorrect HMAC
I if the first 0, 1, 8 or 15 bytes are correct?
I HMAC reconstruction based on time-variance of responses
I 4th byte:

71 A0 89 00 00 . . . 00
71 A0 89 01 00 . . . 00

. . .
71 A0 89 4A 00 . . . 00 longer time to process?

. . .
71 A0 89 FF 00 . . . 00

I usually multiple measures required for a single value (noise)
I statistical evaluation of measurements

Security incidents, weaknesses and vulnerabilities 17 / 31 ,



Constant-time comparison (Java)

public static boolean
isEqual(byte[] digesta, byte[] digestb) {

if (digesta.length != digestb.length)
return false;

int result = 0;
for (int i = 0; i < digesta.length; i++) {

result |= digesta[i] ^ digestb[i];
}
return result == 0;

}

Security incidents, weaknesses and vulnerabilities 18 / 31 ,



Adobe password encryption

I 2013, Adobe
I data breach, 38 million active users account information exposed
I 150 million user accounts overall
I passwords are encrypted (the key was not leaked)

. . . using 3DES (block cipher with 8 B block) in ECB mode
I result:

I equal password substring [1-8], [9-16] easily identifiable
I guess using password hits (part of account information), e.g.

“numbers 123456”, “c’est 123456”
“1*6”, “sixones”
“q w e r t y”, “6 long qwert”

Security incidents, weaknesses and vulnerabilities 19 / 31 ,



The most frequent passwords from Adobe’s database

1. 123456 (≈ 1,9 million)
2. 123456789 (≈ 446 thousand)
3. password (≈ 345 thousand)
4. adobe123 (≈ 211 thousand)
5. 12345678
6. qwerty
7. 1234567
8. 111111
9. photoshop

10. 123123

11. 1234567890
12. 000000
13. abc123
14. 1234
15. adobe1
16. macromedia
17. azerty
18. iloveyou
19. aaaaaa
20. 654321

Security incidents, weaknesses and vulnerabilities 20 / 31 ,



The most frequent passwords

source: Splashdata 2013, based on leaked passwords, comparison with 2012

1. 123456 (+ 1)
2. password (− 1)
3. 12345678
4. qwerty (+ 1)
5. abc123 (− 1)
6. 123456789 (new)
7. 111111 (+ 2)
8. 1234567 (+ 5)
9. iloveyou (+ 2)

10. adobe123 (new)
11. 123123 (+ 5)
12. admin (new)
13. 1234567890 (new)

14. letmein (− 7)
15. photoshop (new)
16. 1234 (new)
17. monkey (− 11)
18. shadow
19. sunshine (− 5)
20. 12345 (new)
21. password1 (+ 4)
22. princess (new)
23. azerty (new)
24. trustno1 (− 12)
25. 000000 (new)

Security incidents, weaknesses and vulnerabilities 21 / 31 ,



PKCS #11 and cryptographic tokens

I PKCS #11 – Cryptographic Token Interface Standard
I defines interface for using tokens
I tokens: HSM, smart cards (various types), so�ware tokens
I generating keys, encryption and decryption, signing and verification of

digital signatures, . . .
I private and secret keys can have additional “security” a�ributes

I sensitive – cannot be read or exported from token in clear
I unextractable – cannot be read or exported from token at all (even

encrypted)
I wrap – can be used to encrypt (wrap) other keys
I decrypt – can be used to decrypt data

. . . + rules on se�ing and combining a�ributes

I standard is not explicit about all situations
I implementations di�er

Security incidents, weaknesses and vulnerabilities 22 / 31 ,



Examples of PKCS #11 vulnerabilities

I some token allowed export of sensitive or unextractable key in clear
I wrap/decrypt a�ack:

I keys: k1 (sensitive), k2 (wrap, decrypt)
1. wrap . . . {k1}k2
2. decrypt . . .k1

I variant with importing a new key k2 into the token (then a single “wrap”
su�ices)

I variant with creating two copies of k2, while the first one is “wrap” a the
second one is “decrypt”

I other problems related to change a�ributes of keys
I 2010, 18 commercially available tokens tested

. . . 10 tokens “broken” (a�ack found, o�en multiple a�acks)
e.g. 7 tokes happily exported sensitive or unextractable keys in clear

I for detail, see
secgroup.dais.unive.it/projects/security-apis/tookan/

Security incidents, weaknesses and vulnerabilities 23 / 31 ,

secgroup.dais.unive.it/projects/security-apis/tookan/


WPS (WiFi Protected Setup)

I 2011
I goal: easy (and secure) method to add an device to network
I implementation:

I 8 digit PIN code authentication (printed on a sticker)
I theoretically 108 possibilities
I practically: response to incorrect PIN leaks an information whether the

first half of the PIN is wrong
last digit is a checksum

I 104 + 103 possibilities

I WPS can’t be turned o� in some WiFi routers

Security incidents, weaknesses and vulnerabilities 24 / 31 ,



Encrypted USB drives

I 2010; Kingstone, SanDisk, Verbatim
I FIPS 140-2 Level 2 certification; AES-256 encryption
I reality:

I encryption key does not depend on user’s password
I USB key unlocks if some expected string (fixed, password- and

device-independent) is received

Security incidents, weaknesses and vulnerabilities 25 / 31 ,



Hash tables collisions

I 2011; Oracle, Microso�, PHP, Apache Tomcat, . . .
I analogous problem found originally in 2003; Perl, Squid
I hash table – data structure for storing (key/data) pairs

I average complexity O(n) for inserting/deleting/finding n elements
I worst case complexity O(n2) for n elements (when keys collide)

I problem: colliding keys can be generated easily
I parameters of HTTP POST requests are parsed into hash table

automatically
I DoS a�ack on web server:
∼70-100kbits/s⇒ one i7 core busy (2011, PHP)

Security incidents, weaknesses and vulnerabilities 26 / 31 ,



Hashing for hash tables
I Java 6 (java.lang.String, method public int hashCode())

I 32-bit arithmetic (int), si denotes an i-th character of an (s1,…,n):

n∑
i=1

31n−i · si

I PHP 5 (algorithm DJBX33A, 32-bit arithmetic), s0 is constant 5381

n∑
i=0

33n−i · si

I ASP.NET (algorithm DJBX33X), s0 is constant 5381

n⊕
i=0

33n−i · si

I easy to find large multicollisions

Security incidents, weaknesses and vulnerabilities 27 / 31 ,



Solutions

I limit the size of POST requests, limit CPU for single request, etc.
I be�er hash function

I for example randomized hashing – the function dependent on randomly
chosen parameter (when process starts)

Security incidents, weaknesses and vulnerabilities 28 / 31 ,



Other incidents (1)

I NSA
I 2013; approx. 1.7 million files
I Showden (contractor)
I gradual publication of documents and files, global surveillance programs

I tools and methods, e.g. see Tailored Access Operations (TAO) catalog
I identities of cooperating companies and governments
I identities of ISPs and platforms that NSA has penetrated or a�empted to

penetrate
I foreign o�icials and systems that NSA has targeted

I Associated Press
I April 2013
I AP Twi�er account hacked:
Breaking: Two Explosions in the White House and Barack Obama is Injured.

I 136 billion USD from the S&P’s 500 Index in two minutes

Security incidents, weaknesses and vulnerabilities 29 / 31 ,



Other incidents (2)

I Network Time Protocol – DoS a�acks
I NTP amplification a�ack (amplification factor 19)
I single 234-byte request . . . 10 packets response (total 4 460 bytes).
I MONLIST command (IP addresses of the last 600 machines interacting

with an NTP server)
I February 2014 . . . reported DDoS a�ack with 400 Gbps tra�ic

I State-sponsored malware
I high sophistication, multiple modules, targeted
I Stuxnet – a�acking Iranian nuclear program (discovered in 2010)
I Duqu (similar to Stuxnet) – information capture (e.g. keystrokes),

(discovered in 2011)
I Flame (similar to Stuxnet) – information capture (discovered in 2012)
I Mask/Careto – information capture (discovered in 2013)

Security incidents, weaknesses and vulnerabilities 30 / 31 ,



Other incidents (3)

I RSA (1)
I 2011; targeted a�ack on RSA (part of EMC)
I SecurID tokens (one-time passwords, two-factor authentication), market

leader
I replacing 40 million tokens

I NIST, RSA
I 2013
I NIST standard includes Dual Elliptic Curve Deterministic Random Bit

Generator (Dual EC DRBG)
I Dual EC DRBG proposed by NSA
I RSA: Dual EC DRBR default in BSAFE toolkit
I RSA: 10 million USD deal with NSA (Reuters)
I possible trapdoor in Dual EC DRBR (strong suggestion)

Security incidents, weaknesses and vulnerabilities 31 / 31 ,


