Rich internet applications:
security of HTML5

Security of IT infrastructure
Michal Rjasko

Before HTMLS5: Flash

Poor functionality of HTML environment (HTML3
/ HTML4)

Because of the poor functionality, Flash becomes
very popular

— |t allows to add interactive content to websites (video,
animations, rich applications)

Inconsistent HTML among browsers — developers
need to test their webs in every browser

Poor support of w3c standards among browsers
(mainly in the most popular IE <=11)

Websites back in 2003

Bl Web | Images Groups Directory News

1 « Advanced Search
« Preferences

G ¢ R, [T T T T .
' Google Search || I'm Feeling Lucky | Language Tools

Advertise with Us - Search Solutions - Services & Tools - Jobs, Press, & Help

@2003 Google - Searching 3,083,324 ,652 web pages

WIKIPEDIA

The Free Encyilopada

Maio Pags
Receat changes
Raadem page
Current cveas

Websites back in 2003

Main Page ! Recent changes | Prosecsed page | Page history | | specal pages il ce Neg logged in

Printablc version Login ' Help
Co | | Search

Other languages: Dk | Deutsch ! Espatiod | Esperanto | Ersogals | Italiano | Noderlands | E A28 (Nibongo) | Poiski | Porugus | Svenska | 4'X (Zhongwen)

Main Page

From Wikipedia, & free cacyclopodia.

Wikipedia is & muiliagual projxect 1o Creale a complen and a0Curie 0pen content cocyclopedaa, We starmed on Jasuary 15, 2001 &ad are cusrently working oo 132423
Amckes in the English vensioe, Visit the beip page and cxperiment in the sandbox %0 lexm how yow can adit any article right now,

Philosophy, Mathematics, Natural Sclence Writing Articles
Physics - Stagissics Public dosmain and shared rosoustes - Requesied sticics and
imagcs - Brilliant peose and picturcs - Refersocs desk
Applied Arts and Sclences
Wikipedia - Pross coverage - Download Wikipedia: SOL dumps -
Social Sciences
« Lasguage - Lingwistics - Mythology - Political scicoce - Psychology - Sociology In Other Languages
Wikiosstia laguase it - Alsiass - il (A} - Bomsash - Caaik
wm“ Cﬂﬂ Dasce - Ememainmens - fiﬂ um Hobbxs - f"“ Eook ﬁ%‘aw u!“k‘uu:ﬁ‘dblmaw Mu:o ‘
lnﬂ Do I x| o) . .
« Paintine . Prwre . R arerart & Srvwes . Talsuichn . Thasoer . | Latine - Nededands - LA ONdooga) - Sook - Dlandason - Dkl

Websites back in 2003

b New ork(L 5 | N
: "ich hoe Q’hc ﬂ B lmc o TIFFANY & CO.
UPDATED TUESDAY, JANUARY 28, 2003 4:21 PMEY i2e Your Weather s
SEARCH ! A schiAsehi | Loam
Past30Days :| © e Qﬂ}’aaou BEQISTER NOW, If's Free!

By ELISABETH BUMILLER «o7pmeT

In his State of the Union specch tonight,
the president said today that he would aim
to enlist citizens in "some great causes.”

* News Analvsis: A Critical Test for Bush

* Brtain Steps Up Pressure on lrag

Labor Party Leader Concedes
Defeat in Israeli Election

Edtorials/OpEd | By THE ASSOCIATED PRESS 3:50 PMET
Raacors Gpries Labor Party leader Amram Mitzna
conceded defeat in Israel's general election

m today in a telephone call to Prime Minister
Anel Sharon of the Likud party.

NYT Frg_‘; P3ge
orroctivng

m;
Movios
Travel
NYC Guikio

= - e e s - - - . reea

~ MARKETS
Dow Jones Industrials

7,990
7,900
7,850

11 1 3
702030 & 4583 0OT0%
130173 ¢ 023 +002%

83815 & £44 084%
ks 3051

DJlA

Nasdaq
S4P300
W0y Tres. Yield 006
12 eMEY

°\hrkcllpdatc Us. __Qd.‘} ;

. w You on ortfolia

Andres Mohia/The New Yok Times
Bloomberg's Budget Plan
Mayor Michael R. Bloomberg
today proposed more than $550
million in cuts to city services and
$1 billion in revenue froma

MNa vt Aaalala

N e

Websites back in 2003

_Also Availabl Top Photo Browse ndent
SOCVATANES vovies | galleries | Video/OVD | Thpp” | Film
e @2« The Internet Movie Database
Al - Visited by over 13 million movie lovers each month!
[1 @ IMDbPro.com, the new website for the entertainment industry, now features over 24,000 agen
| : Tos
i Movie Showtimes Near You!

Type in your city/state (or ZIP code) after following the Showtimes
Dreamcarcher: Showtimes: Official Site

Boat Trip: Showtimes

Piglet's Big Movie: Showtimes

A View from the Top: Showtimes

Agent Cody Banks: Showtimes: Official Site

73 » Polls
r‘%?ﬂ(l// » Dscar nominees

< < » i1 1
o {AL’ Critics list

« Awards news

(/.‘4(‘(1/?/‘1’ * Photos

Tops at the Box Office

© Bringing Down the House
s Szt you'd like local showtimes e-mailed to you directly each Frid
© Tears of the Sun mailer, a free service from Amazon.com and the IMDb.
o Chi
B more Today's IMDb Poll Question Is:

(0 D?i'@ Now that we're getting down to the wire, which film do you think will win the
POl pe the film that you want to win, but the one that you believe probably will wi
+ Dreamcatcher
- A View from the Top Oscar Weekend and Road to the Oscars®

* Boat Trip : The 75th Academy Awards® are Sunday night at 5:30 (P.S.T.)on A
: ﬂﬂm'é”—’—n—i—‘;@ and photos of the event (courtesy of our good friends at WireImage) s

high-steppin’ evening for Chicago well, stranger things have happene
nenise the current ealleries. nrint ot the nominees if vou're the seorek

Flash

Multiplatform multimedia platform ©

Very good for animations, graphics, videos and
simple games

Flash file can be embedded into a web page,
where it is played by a browser plugin - Flash
player

— Flash Player is a third-party plugin (made by Adobe)

Logic of flash applications and games is based on
language ActionScript (currently in version 3.0)

— ActionScript is similar to JavaScript, but contains
types, classes, ...

Flash was strong platform

It can:

 Send HTTP requests to a different (than original)
domain

* Create socket connections

* Store data on client computer (SharedObjects)
* Access camera, microphone

* Access DOM of its web page

* Execute JavaScript

* Load other Flash files

Security of Flash

* |n some ways, Flash has good security architecture
— API controlled for communication with JavaScript

— Secure API for communication with servers from other
domain

— Secure APl for communication between two flash
applications

 However, Flash was launched using browser plugin
— Many performance problems
— Bugs / Problems in AVM (Actionscript Virtual Machine)

With emerging HTML5

Flash is dead

Apple refused to support Flash in mobile
devices

Since version 11.1 Adobe does not develop
Flash player for mobile devices

Browsers ended their support for flash
Adobe ended development of flash

— Adobe AIR, mobile applications still around, but
dropping

HTMLS - history

“It must be admitted that many aspects of HTML appear
at first glance to be nonsensical and inconsistent.”

“HTML, its supporting DOM APIs, as well as many of its
supporting technologies, have been developed over a
period of several decades by a wide array of people
with different priorities who, in many cases, did not
know of each other's existence.”

[w3.org/TR/html5/introduction.html#tintroduction]

HTMLS - history

1990-1993 :: first versions derived from SGML,
utilized by CERN

1995 :: W3C released HTML 3.0
1997 :: HTML 3.2 — many new features

1998 :: HTML 4 — used till now. DOM level 1, W3C
decided to develop XHTML

2000 :: DOM level 2 - getElementByld(), events

2000 :: W3C released XHTML 1.0,
— development of XHTML2 started

2004 :: DOM level 3

HTMLS - history

2004 :: Idea of HTML5 was born, WHATWG founded

— W3Cis not participating, but continues to develop
XHTML2

2005 :: AJAX, XMLHttpRequest
2006 — 2007 :: W3C redecided, now participating in HTML5

2007 — now :: WHATWG and W3C cooperate on
standardization of HTML5

2012 :: HTML5 W3C Candidate Recommendation
October 2014 :: HTML5 W3C Recommendation
2016 :: HTML 5.1

HTMLS - history

* InJuly 2012, WHATWG and W3C decided on a
degree of separation

— W3C focuses on specification of a single definitive
standard — “snapshot” of WHATWG

— WHATWG continues on HTMLS as “living
standard” — features can be added but not
removed

http://en.wikipedia.org/wiki/WHATWG
http://en.wikipedia.org/wiki/W3C

HTML5 — Current status

e HTMLS is standardized
— After more than a decade of development

— Still evolving standard — some features are dropped,
some are added

e W3C = WHATWG
* Incomplete support of the newest features
among browsers (but quite good and improving)

— Old browsers are still in the game (Old android
devices, IE, ...)

HTML5 — Current status

W3C specification has about 4.4 MB of text
WHATWG specification — 707 A4 pages
This is a lot of implementation work

Don’t forget about
— CSS3

— JavaScript

— SVG, MathML

— Canvas, etc. etc.

HTMLS - Security

* Many new usefull security features / APIs
e But... some say HTMLS itself is a vulnerability

e Secure implementations require:
— Clear specifications
— Manageable amount of work
— Thorough and diverse testing
— Fast and precise feedback loops
— Quick and comprehensive patch deployment

HTMLS5 — Security

Inconsistent and still evolving specs
Browsers rush for implementation

Web developers still build buggy websites
Necessary legacy support

— Old browsers are still around ... governments,
schools, ...

— Old android phones / tablets

HTMLS5

* Main goal:
— Create a simple platform for creating interactive
web applications

— Less XML strictness (compared to XHTML), more
freedom

— Emphasis on security

e HTMLS = HTML + JS + CSS (+ SVG + SQL + ...)

HTML5 vs HTML4 — New features

New form elements

— date, tel, color, number, email, url,...
— Autofocus

— Form element outside form

— Validation on client-side

New attributes Iframe: sandbox, seemless

History API| — allows developer to modify browser
pack / forward list

_ocal storage
ndexedDB — database on client

HTML5 — New features

Geolocation * More semantics:
Notifications — nav, figure, section, ...
SVG, Canvas * CORS —Cross Origin
MathML Resource Sharing

Animations and * WebSockets

transformations WebWorkers

WebGL — 3D acceleration ~ * HSTS: HTTP Strict-

in browser Transport-Security
Audio / Video * (CSP: Content Security

Webfonts Policy
Offline application cache "

HTML5 — New features

HTMLS contains several very usefull security
improvements, but

In general, new features of HTML5 make attacks
easier

— Great number of features — new attack scenarios will
be developed in future

It’s definitely easier to
— Track users (Geolocation, localStorage, history API)

— Cross-site scripting — XSS (CORS, autofocus, new form
elements, ...)

JavaScript and its security

Security from 1995
Two main security requirements

— Restrict malicious websites to access your computer
— Restrict malicious website to access another website

However, today we have all our documents in a
cloud, who cares about attacker not being able to
access your ,,My documents” folder?

— |t's still important to prevent unwanted access to local
resources, but things have changed since 1995

Server B
WWW.b.com

{

Server A
WWW.a.com

Another tab
b.com/index.htm

A

Window.postMessage()

Send and receive data: HTTP,

Ajax Requests

HTTPS, websockets

a.com/index.html

\ 4

Image
a.com/logo.png

Iframe

b.com/ad.html

Javacsript Image
a.com/libjs b.com/ad.gif
Javacsript

b.com/lib.js CSS

4

b.com/styles.css

Local resources

()Jo3ew|meup-seaue)

¥

Client

Processor,
memory

Files, Cookies,
localStorage

Camera, Microphone,
FullScreen, Clipboard

JavaScript

* Same Origin Policy: scripts on a web page cannot
communicate with pages in a different domain

— e.g. script loaded into www.fmph.uniba.sk cannot
communicate with www.virus.com

* However, scripts loaded into the same page can
interact with each other (even from different
domains)

— JavaScript is inherently global

— Scripts can modify global variables, functions, objects
etc. of other scripts.

http://www.virus.com/

A.com

Same-origin policy

Al.htm| S>>

Iframe:
A2.html

B.com

getData:
A3.php

Get image
data:

A4.png

Strictly
controlled

Iframe:
B1l.html

getData:

B3.php

Same-origin policy
what is allowed (usually - see COEP)

A.com

A.com/Index.html

<script src="a.com/lib.js”>

&

function doSomething() {...something good...}

<

<script src=“b.com/lib.js”>

&

function doSomething() {...something bad...}

<

&

<

<link href="b.com/styles.css”

\'4

B.com

&
<

Circumventing same-origin policy:
<script src="“foreignOrigin">

example-2.com

example.com

/ Browser \

Origin=example.com

<script src=
https://example-2.com/x.js>

(function() {...

>

AKA — “JSONP”

e “JSON with padding”
<script src=“example.com/jsonp?callback=foo”>

* Returns JSON data “padded” with a call to the
function you specified.

— i.e. returned script
 foo({key: val,...});

* You must trust the origin of the script ... but what
with 3rd party APIs

JSONP and same-origin policy

This pattern injects somebody
else’s code into your
application.

Remember what the definition
of XSS was?

Cross Origin Resource Sharing (CORS)

e New feature of HTML5

* Enables JavaScript to access websites from
different domain

e Based on the HTTP header, browser decides
whether to block the given Ajax request or not
— Compared to crossdomain.xml in flash - flash

player loads cross domain policy before the
request and blocks the request without contacting

the server

Cross Origin Resource Sharing
GET

domainB.

GET / HTTP/1.1 com
Host: domainB.com

Origin: http://domainA.com ‘;§Vﬂ
Browser C

domainA.

com

HTTP/1.1. 200 OK
Content-type: text/html
Access-Control-Allow-Origin: http://domainA.com

.[.c;lata]

http://domaina.com/
http://domaina.com/

Cross Origin Resource Sharing
POST

Client Server b.com
4'..!’_;

;% OPTIONS /doc HTTP/1.1

= Origin: http://a.com

<

éﬂ <

E HTTP/1.1 204 No Content

Access-Control-Allow-Origin: http://a.com
Access-Control-Allow-Methods: POST, GET, OPTIONS
Access-Control-Max-Age: 86400

v

POST /doc HTTP/1.1
Origin: http://a.com

A

Main request

HTTP/1.1 200 OK
Access-Control-Allow-Origin: http://a.com

http://a.com/
http://a.com/
http://a.com/
http://a.com/

Cross Origin Resource Sharing

images
GET /b.png HTTP/1.1
Host: b.com b.com/b.png
Origin: http://a.com
%)
HTTP/1.1. 200 OK o)
@)

Content-type: text/html
Access-Control-Allow-Origin: http://a.com

& Png & & yny Browser

a.com

<script>
Canvas.drawImage(document.getElementById(‘img’));

</script>

<script src=“b.com/script.js” crossOrigin=“anoynymous”>
<link rel=“stylesheet® href=“b.com/script.js”
crossOrigin=“anoynymous”>

crossOrigin="use-credentials” — cookies for b.com are sent with the request

http://a.com/
http://domaina.com/

CORS

Access-Control-Allow-Origin: *

WWW.a.com
Web server

User views www.b.com,
The webpage makes
CORS request to a.com

User logged in to
WWWw.a.com

Browser

Cross Origin Resource Sharing

Port / network scanner DEMO:
http://go.ba.net/nmap.html

N

HTMLS based JavaScript Network Reconnaissance Tool

Network Scanning Discover My Private IP

IP Address: |127.0.0.1 Start Port: |79 End Port: 83
Protocol :) Cross Origin Requests @ WebSockets
Note:
* Tuned to scan fast internal networks. Scanning public/slow networks would require retuning.
* Worlks onlv on the versions of FireFox, Chrome(recommended) and Safari that support
CrossOriginRequests WebSockets
* Currently works on WINDOWS ONLY.

Cross-Origin-Resource-Policy (CORP)

* The CORP response header conveys a desire that
the browser blocks no-cors* cross-origin/cross-
site requests to the given resource

— Cross-Origin-Resource-Policy: same-site | same-origin
| cross-origin

* no-cors request: without the crossOrigin attribute

Cross-Origin-Embedder-Policy (COEP)

 The COEP response header configures

embedding cross-origin resources into the
document

— Cross-Origin-Embedder-Policy: unsafe-none |
require-corp | credentialless

* Cross-Origin-Embedder-Policy: require-corp

— Blocked:
— Allowed:

Cross-Origin-Opener-Policy (COOP)

e The HTTP Cross-Origin-Opener-Policy (COOP)
response header allows you to ensure a top-level
document does not share a browsing context
group with cross-origin documents.

* wnd = window.open(, http://thirdparty.com®)

— Cross-Origin-Opener-Policy: unsafe-none

— Cross-Origin-Opener-Policy: same-origin-allow-popups
— Cross-Origin-Opener-Policy: same-origin

* Prevents TabNabbing

— See next slides

COOP + COEP and post-Spectre world

* Meltdown / Spectre vulnerabilities
— exploit speculative execution in modern CPUs

— allows an attacker to read sensitive data from memory locations that
should be inaccessible

— can occur through JavaScript code running in a web browser (via some
APIs like SharedArrayBuffer and high-resolution timers)

* Browsers unlock SharedArrayBuffer and high-resolution timers only
if COOP and COEP headers are set

— COEP ensures that a document can only load resources which
explicitly allow themselves

— COOP forces the creation of a new browsing context group

 COOP and COEP guarantees that only cooperating resources are
present in the same browsing context group (i.e. same process)

— No risk of leeking sensitive information via such vulnerabilities

(Reverse) TabNabbing

»
»

Legit page Malicious page

<
<

Opener.location = ,phishing site.com’

e Userclicks on a link, new tab opens

* Malicious page redirects the original tab to a
phishing site, which looks the same as the
original

(Revese) TabNabbing

<html>
<body>

<a

href="bad.example. com,,
target="_blank">

click me

<button
onclick="window.open('htt

ps://bad.example.com‘)“>c
lick me</button>

</body>
</html>

<html>
<body>
<script>
if (window.opener) {

window.opener.location =

"https://phish.example.co
mll;

}
</script>
</body>
</html>

(Simple) TabNapping

var windowHandle = window.open('https://goodsite.example’)
// sleep for some time, and suddenly...
windowHandle.location.replace('https://hacked.example"')

TabNabbing - prevention

<a href=bad.example.com target="_blank" rel="noopener
noreferrer">click me

window.open(url, name, 'noopener,noreferrer’)

Cross-Origin-Opener-Policy: same-origin-allow-popups
| same-origin
— Response header

Modern browsers try to implement heuristics and
better defaults to combat tabnabbing attacks
— most browsers these days treat links that have

target="_blank" as rel="noopener" by default unless
explicitly specified

Iframes

A.com

iframe.document

.images[@].src = €..”;

Iframe
a.com/sidebar.html

parent.document.write()

J

Attempt to access DOM of an
iframe b.com throws an
exception

3 _ € I .
oo ,

Iframe
b.com/ad.html

... but what if we do not trust content of iframe from our domain a.com?
(e.g. user provided the content of the iframe)

Iframe sandbox

* Possibility to put Iframe into ,sandbox”
* One can specify what is allowed and what not

e <jiframe src=“infected.html” sandbox=“...”>

No sandbox attribute Javascript runs normally

sandbox attribute JavaScript, Flash disabled

sandbox=“allow-scripts” JavaScript enabled
doeeumentcookie
loealSteragel)

sessionStorage()

Window.postMessage()

* Normally, scripts on different pages are
allowed to communicate with each other if

and only if they have the same origin

* targetWindow.postMessage() provides a
controlled mechanism to securely circumvent

this restriction (if used properly)

Window.postMessage()

e Script at A.Com calls:

wnd.postMessage(message,
targetOrigin, [transfer]);

e Script at b.com receives event:

window.addEventListener("message",
receiveMessage, false);

function receiveMessage(event) {
if (event.origin !== "https://a.com")
return;

/] ...

Window.postMessage()

* Always specify targetOrigin

— A malicious site can change the location of the
window without your knowledge

* Always verify the senders identity

— And check syntax of the message, since a sender
you trust can have a security hole

Content Security Policy

* Protection against XSS attacks

* In HTTP header, server specifies from which
domains client can download data

Usage:

e Content-Security-Policy: script-src 'self’
https://apis.google.com

* |t's possible to specify CSP for different types
of data:

— connect-src, font-src, frame-src, img-src, media-
src, object-src, style-src

https://apis.google.com/

Content Security Policy

* Need to split resources into separate files

* “inline” <script> is blocked

— It’s possible to enable inline scripts via “unsafe-inline”
parameter — not recommended (does not prevent XSS
attacks)

* Supports error reporting
— report-uri /my_amazing_csp_report_parser;
— Browser will send list of blocked resources

— Only ,,reporting” mode supported, no resources are
actually blocked

HTTP Strict Transport Security

* Users visits HTTPS sites mostly via redirect
from HTTP site

— Under some circumstances, attacker can block the
redirection

e SSL stripping attack

GET http://www.a.com

REDIRECT https://www.a.com

Browser ¥

GET https://www.a.com

HTTP Strict Transport Security
(SSL stripping attack)

Browser Evil router A.com

GET http://www.a.com

>
REDIRECT REDIRECT
http://www.a.com https://www.a.com
< <
GET http://www.a.com GET https://www.a.com
> >

 DATA http://www.a.com | DATA https://www.a.com

HTTP Strict Transport Security

e HTTP header, which minimizes possibility of SSL

stripping attack
« Strict-Transport-Security: max-age=2592000;
includeSubDomains

— Browser remembers (for specified amount of time)
that it must access the website only via HTTPS

— All requests to the site are transformed to HTTPS
requests
* First request to the server (and first request after
HSTS header expires) is vulnerable to SSL
stripping attack

X-Frame-Options

* Protection against ,,Clickjacking” attacks

— attacker opens the desired webpage in Iframe on
top of which it places its hidden content.

— Enables attacker to hijack clicks and key presses
* [n a HTTP header, it’s possible to restrict
viewing page in IFrame:

— X-Frame-Options: DENY | SAMEORIGIN |
ALLOW-FROM origin

* Introduced by Microsoft in IE8

Access to local resources

* Proccessor:

— Browsers allow to terminate script after several
seconds of script unresponsiveness

* Memory:

— No general restriction, browsers have their
(configurable) limits

— Chrome has limit cca 1gb

 window.performance.memory.jsHeapSizelLimit

Access to local resources

* Storage:

- localStorage, sessionStorage
* Have limits, approx. 5MB

— IndexedDB

* Have limits, but bigger than localStorage

— Using HTMLS5 you can read and write local files

* Reading of files

— Only by using <input type=‘file’ onchange="“fileSelected(e)”>
DOM element

— Clicking on the element opens system dialog for file selection and
gives javascript access to the selected file.

* Writing to files:
— Only via download link:
— var url = window.URL.createObjectURL(data);

Attack DEMO: file jacking

* |t’s possible to upload an entire directory in
HTML5

— <input type="file” directory>
e http://kotowicz.net/wu/

* Chrome “select folder” dialog can confuse
users (see demo)

http://kotowicz.net/wu/

Attack DEMO: file jacking

* Krystof Kotowicz created a page simulating the file
jacking attack

— Mostly visitor interested in web security

— In 13 months 298 clients (217 IP) uploaded some folder
(mostly downloads)

— Many interesting files:
* Downloads/#BeNaughtyLive.com/
 Downloads/#GoliveTrannies.com/

— Even private data

* onlinePasswords.txt
* Faktura_numer_26 2011 <company>.pdf

Attack DEMO: file jacking

Download custom-built hacking tricks

Built on—-demand just for you!

by Krzysztof Kotowicz | more info

I've got some gifts for you. I gathered some of the latest hacking tricks for all browsers, spiced it up with an
algorithm that will send you a ZIP file crafted especially for you based on your answers. Just fill out the shol
quiz and wait for the file download.

2. Choose techniques to include:
B SQL injection
M xss

Clickjacking
W APT
Who's the greatest of them all?
® HBGary
® lcamtuf
® kevin mitnick
Browser you're targetting
® chrome
® msie
® firefox
® opera
® other webkit based (android, safari, ...)
® other
ElT will only use the techniques mentioned in the book for legitimate purposes.
Choose download location

Download to...

Access to local resources

* Clipboard

— Various approaches

 Document.execCommand() depracted API
* Clipboard API

— Sometimes needs permission from user
— Writing to clipboard in chrome does not need a permission

* “paste event” — event contains data

— Reading data possible only in “paste” event handler (i.e. when
user presses CTRL+V)

e Camera, Microphone
— Browser asks for permission

Access to local resources

 Fullscreen

— demo

Covert channels

e ,Covert channel”is a mechanism enabling
communication between two applications even if the
security model directly restricts the communication

 Web applications contain many ,,covert channel”
vulnerabilities

* E.g.using CSS
— An attacker spoofs a webpage with a list of URL addresses

— Based on the color of the links, the attacker can determine
which pages a user has visited

— Fix: Modify function getComputedStyle() and other
JavaScript functions so that they always return color as the
link is not visited

Covert channels

 Example 2: Cache — based attack
— If an image is in browser’s cache, it is loaded much faster

— An attacker can spoof a webpage with several images and
check how long it takes to load each image

— Can be used to find your location (assuming that Google
maps has map images near your location cached)

 Example 3: DNS cache

— If adomainis in browser‘s DNS cache, it is loaded a bit
faster

HTML5: Conclusion

HTMLS5 quite good functionality, it has replaced Flash
HTMLS has many exciting features and extensions

— Many features - many vulnerabilities

Encourage users to use updated modern browsers

— Legacy support is a pain anyway

When creating a web application start with an
established JavaScript framework (react, angularijs,
vue.js)

Adopt HTML5 security features

— ...to protect users with HTML5-enabled browsers

References

Flashsec Wiki
OWASP — Finding vulnerabilities in flash applications

Adobe Flash Player 10 security white paper

— http://www.adobe.com/devnet/flashplayer/articles/flash playerl0 se
curity wp.html

HTML 5 rocks
— http://www.htmI5rocks.com/

http://blog.kotowicz.net
http://www.andlabs.org
https://onlinecloudsec.com/

https://cheatsheetseries.owasp.org/cheatsheets/HTML5 Security
Cheat Sheet.html#ttabnabbing

https://developer.mozilla.org/

http://www.adobe.com/devnet/flashplayer/articles/flash_player10_security_wp.html
http://www.adobe.com/devnet/flashplayer/articles/flash_player10_security_wp.html
http://www.html5rocks.com/
http://blog.kotowicz.net/
http://www.andlabs.org/
https://onlinecloudsec.com/
https://cheatsheetseries.owasp.org/cheatsheets/HTML5_Security_Cheat_Sheet.html#tabnabbing
https://cheatsheetseries.owasp.org/cheatsheets/HTML5_Security_Cheat_Sheet.html#tabnabbing
https://developer.mozilla.org/

	Slide 1: Rich internet applications: security of HTML5
	Slide 2: Before HTML5: Flash
	Slide 3: Websites back in 2003
	Slide 4: Websites back in 2003
	Slide 5: Websites back in 2003
	Slide 6: Websites back in 2003
	Slide 7: Flash
	Slide 8: Flash was strong platform
	Slide 9: Security of Flash
	Slide 10: With emerging HTML5 Flash is dead
	Slide 11: HTML5 - history
	Slide 12: HTML5 - history
	Slide 13: HTML5 - history
	Slide 14: HTML5 - history
	Slide 15: HTML5 – Current status
	Slide 16: HTML5 – Current status
	Slide 17: HTML5 - Security
	Slide 18: HTML5 – Security
	Slide 19: HTML5
	Slide 20: HTML5 vs HTML4 – New features
	Slide 21: HTML5 – New features
	Slide 22: HTML5 – New features
	Slide 23: JavaScript and its security
	Slide 24
	Slide 25: JavaScript
	Slide 26: Same-origin policy
	Slide 27: Same-origin policy what is allowed (usually - see COEP)
	Slide 28
	Slide 29: AKA – “JSONP”
	Slide 30: JSONP and same-origin policy
	Slide 31: Cross Origin Resource Sharing (CORS)
	Slide 32: Cross Origin Resource Sharing GET
	Slide 33: Cross Origin Resource Sharing POST
	Slide 34: Cross Origin Resource Sharing images
	Slide 35: CORS
	Slide 36: Cross Origin Resource Sharing
	Slide 37: Cross-Origin-Resource-Policy (CORP)
	Slide 38: Cross-Origin-Embedder-Policy (COEP)
	Slide 39: Cross-Origin-Opener-Policy (COOP)
	Slide 40: COOP + COEP and post-Spectre world
	Slide 41: (Reverse) TabNabbing
	Slide 42: (Revese) TabNabbing
	Slide 43: (Simple) TabNapping
	Slide 44: TabNabbing - prevention
	Slide 45: Iframes
	Slide 46: Iframe sandbox
	Slide 47: Window.postMessage()
	Slide 48: Window.postMessage()
	Slide 49: Window.postMessage()
	Slide 50: Content Security Policy
	Slide 51: Content Security Policy
	Slide 52: HTTP Strict Transport Security
	Slide 53: HTTP Strict Transport Security (SSL stripping attack)
	Slide 54: HTTP Strict Transport Security
	Slide 55: X-Frame-Options
	Slide 56: Access to local resources
	Slide 57: Access to local resources
	Slide 58: Attack DEMO: file jacking
	Slide 59: Attack DEMO: file jacking
	Slide 60: Attack DEMO: file jacking
	Slide 61: Access to local resources
	Slide 62: Access to local resources
	Slide 63: Covert channels
	Slide 64: Covert channels
	Slide 65: HTML5: Conclusion
	Slide 66: References

