
Rich internet applications:
security of HTML5

Security of IT infrastructure

Michal Rjaško

Before HTML5: Flash

• Poor functionality of HTML environment (HTML3
/ HTML4)

• Because of the poor functionality, Flash becomes
very popular
– It allows to add interactive content to websites (video,

animations, rich applications)

• Inconsistent HTML among browsers – developers
need to test their webs in every browser

• Poor support of w3c standards among browsers
(mainly in the most popular IE <= 11)

Websites back in 2003

Websites back in 2003

Websites back in 2003

Websites back in 2003

Flash

• Multiplatform multimedia platform☺

• Very good for animations, graphics, videos and
simple games

• Flash file can be embedded into a web page,
where it is played by a browser plugin - Flash
player
– Flash Player is a third-party plugin (made by Adobe)

• Logic of flash applications and games is based on
language ActionScript (currently in version 3.0)
– ActionScript is similar to JavaScript, but contains

types, classes, …

Flash was strong platform

It can:

• Send HTTP requests to a different (than original)
domain

• Create socket connections

• Store data on client computer (SharedObjects)

• Access camera, microphone

• Access DOM of its web page

• Execute JavaScript

• Load other Flash files

Security of Flash

• In some ways, Flash has good security architecture
– API controlled for communication with JavaScript

– Secure API for communication with servers from other
domain

– Secure API for communication between two flash
applications

– ...

• However, Flash was launched using browser plugin
– Many performance problems

– Bugs / Problems in AVM (Actionscript Virtual Machine)

With emerging HTML5

Flash is dead

• Apple refused to support Flash in mobile
devices

• Since version 11.1 Adobe does not develop
Flash player for mobile devices

• Browsers ended their support for flash

• Adobe ended development of flash

– Adobe AIR, mobile applications still around, but
dropping

HTML5 - history

“It must be admitted that many aspects of HTML appear
at first glance to be nonsensical and inconsistent.”

“HTML, its supporting DOM APIs, as well as many of its
supporting technologies, have been developed over a
period of several decades by a wide array of people
with different priorities who, in many cases, did not

know of each other's existence.”

[w3.org/TR/html5/introduction.html#introduction]

HTML5 - history

• 1990-1993 :: first versions derived from SGML,
utilized by CERN

• 1995 :: W3C released HTML 3.0
• 1997 :: HTML 3.2 – many new features
• 1998 :: HTML 4 – used till now. DOM level 1, W3C

decided to develop XHTML
• 2000 :: DOM level 2 - getElementById(), events
• 2000 :: W3C released XHTML 1.0,

– development of XHTML2 started

• 2004 :: DOM level 3

HTML5 - history

• 2004 :: Idea of HTML5 was born, WHATWG founded

– W3C is not participating, but continues to develop
XHTML2

• 2005 :: AJAX, XMLHttpRequest

• 2006 – 2007 :: W3C redecided, now participating in HTML5

• 2007 – now :: WHATWG and W3C cooperate on
standardization of HTML5

• 2012 :: HTML5 W3C Candidate Recommendation

• October 2014 :: HTML5 W3C Recommendation

• 2016 :: HTML 5.1

HTML5 - history

• In July 2012, WHATWG and W3C decided on a
degree of separation

– W3C focuses on specification of a single definitive
standard – “snapshot” of WHATWG

– WHATWG continues on HTML5 as “living
standard” – features can be added but not
removed

http://en.wikipedia.org/wiki/WHATWG
http://en.wikipedia.org/wiki/W3C

HTML5 – Current status

• HTML5 is standardized
– After more than a decade of development

– Still evolving standard – some features are dropped,
some are added

• W3C != WHATWG

• Incomplete support of the newest features
among browsers (but quite good and improving)
– Old browsers are still in the game (Old android

devices, IE, ...)

HTML5 – Current status

• W3C specification has about 4.4 MB of text

• WHATWG specification – 707 A4 pages

• This is a lot of implementation work

• Don’t forget about

– CSS3

– JavaScript

– SVG, MathML

– Canvas, etc. etc.

HTML5 - Security

• Many new usefull security features / APIs

• But ... some say HTML5 itself is a vulnerability

• Secure implementations require:

– Clear specifications

– Manageable amount of work

– Thorough and diverse testing

– Fast and precise feedback loops

– Quick and comprehensive patch deployment

HTML5 – Security

• Inconsistent and still evolving specs

• Browsers rush for implementation

• Web developers still build buggy websites

• Necessary legacy support

– Old browsers are still around … governments,
schools, …

– Old android phones / tablets

HTML5

• Main goal:

– Create a simple platform for creating interactive
web applications

– Less XML strictness (compared to XHTML), more
freedom

– Emphasis on security

• HTML5 = HTML + JS + CSS (+ SVG + SQL + …)

HTML5 vs HTML4 – New features

• New form elements
– date, tel, color, number, email, url,...
– Autofocus
– Form element outside form
– Validation on client-side

• New attributes Iframe: sandbox, seemless
• History API – allows developer to modify browser

back / forward list
• Local storage
• IndexedDB – database on client

HTML5 – New features

• Geolocation
• Notifications
• SVG, Canvas
• MathML
• Animations and

transformations
• WebGL – 3D acceleration

in browser
• Audio / Video
• Webfonts
• Offline application cache

• More semantics:
– nav, figure, section, …

• CORS – Cross Origin
Resource Sharing

• WebSockets
• WebWorkers
• HSTS: HTTP Strict-

Transport-Security
• CSP: Content Security

Policy
• …

HTML5 – New features

• HTML5 contains several very usefull security
improvements, but

• In general, new features of HTML5 make attacks
easier
– Great number of features – new attack scenarios will

be developed in future

• It’s definitely easier to
– Track users (Geolocation, localStorage, history API)

– Cross-site scripting – XSS (CORS, autofocus, new form
elements, …)

JavaScript and its security

• Security from 1995

• Two main security requirements

– Restrict malicious websites to access your computer

– Restrict malicious website to access another website

• However, today we have all our documents in a
cloud, who cares about attacker not being able to
access your „My documents“ folder?

– It‘s still important to prevent unwanted access to local
resources, but things have changed since 1995

Server A
www.a.com

Server B
www.b.com

Another tab
b.com/index.htm

a.com/index.html

Javacsript
a.com/lib.js

Files, Cookies,
localStorage

Camera, Microphone,
FullScreen, Clipboard

Ajax Requests
Send and receive data: HTTP,

HTTPS, websockets

Iframe
b.com/ad.html

Local resources

Client
Processor,
memory

Javacsript
b.com/lib.js

Image
a.com/logo.png

CSS
b.com/styles.css

Image
b.com/ad.gifWindow.postMessage()

C
an

vas.d
raw

Im
age

()

JavaScript

• Same Origin Policy: scripts on a web page cannot
communicate with pages in a different domain
– e.g. script loaded into www.fmph.uniba.sk cannot

communicate with www.virus.com

• However, scripts loaded into the same page can
interact with each other (even from different
domains)
– JavaScript is inherently global

– Scripts can modify global variables, functions, objects
etc. of other scripts.

http://www.virus.com/

Same-origin policy
A.com

A1.html
Iframe:
A2.html

getData:
A3.php

Get image
data:

A4.png

B.com

Iframe:
B1.html

getData:
B3.php

Strictly
controlled

Same-origin policy
what is allowed (usually - see COEP)

A.com

A.com/Index.html

<script src=“a.com/lib.js”> function doSomething() {…something good…}

<script src=“b.com/lib.js”> function doSomething() {…something bad…}

<link href=“b.com/styles.css”>

B.com

example.com

Browserexample-2.com

Origin=example.com

<script src=
https://example-2.com/x.js>

(function() {…

Circumventing same-origin policy:
<script src=“foreignOrigin">

AKA – “JSONP”

• “JSON with padding”
<script src=“example.com/jsonp?callback=foo”>

• Returns JSON data “padded” with a call to the
function you specified.
– i.e. returned script

• foo({key: val,…});

• You must trust the origin of the script ... but what
with 3rd party APIs

JSONP and same-origin policy

This pattern injects somebody
else’s code into your

application.

Remember what the definition
of XSS was?

Cross Origin Resource Sharing (CORS)

• New feature of HTML5

• Enables JavaScript to access websites from
different domain

• Based on the HTTP header, browser decides
whether to block the given Ajax request or not

– Compared to crossdomain.xml in flash - flash
player loads cross domain policy before the
request and blocks the request without contacting
the server

Cross Origin Resource Sharing
GET

GET / HTTP/1.1

Host: domainB.com

Origin: http://domainA.com

…

HTTP/1.1. 200 OK

Content-type: text/html

Access-Control-Allow-Origin: http://domainA.com

…

[data]

Browser

domainA.
com

domainB.
com

http://domaina.com/
http://domaina.com/

Cross Origin Resource Sharing
POST

Client Server b.com

P
re

fl
ig

h
t

re
q

u
e

st
M

ai
n

 r
eq

u
es

t

OPTIONS /doc HTTP/1.1
Origin: http://a.com

HTTP/1.1 204 No Content
Access-Control-Allow-Origin: http://a.com
Access-Control-Allow-Methods: POST, GET, OPTIONS
Access-Control-Max-Age: 86400

POST /doc HTTP/1.1
Origin: http://a.com
…

HTTP/1.1 200 OK
Access-Control-Allow-Origin: http://a.com
…

http://a.com/
http://a.com/
http://a.com/
http://a.com/

Cross Origin Resource Sharing
images

GET /b.png HTTP/1.1

Host: b.com

Origin: http://a.com

…

HTTP/1.1. 200 OK

Content-type: text/html

Access-Control-Allow-Origin: http://a.com

…

b.com/b.png

…
<script>

Canvas.drawImage(document.getElementById(‘img’));
</script>

<script src=“b.com/script.js” crossOrigin=“anoynymous”>
<link rel=“stylesheet“ href=“b.com/script.js”

crossOrigin=“anoynymous”>

Browser
a.com

crossOrigin=“use-credentials” – cookies for b.com are sent with the request

http://a.com/
http://domaina.com/

Browser

CORS
Access-Control-Allow-Origin: *

User logged in to
www.a.com

User views www.b.com,
The webpage makes

CORS request to a.com

www.a.com
Web server

Cross Origin Resource Sharing

Port / network scanner DEMO:
http://go.ba.net/nmap.html

Cross-Origin-Resource-Policy (CORP)

• The CORP response header conveys a desire that
the browser blocks no-cors* cross-origin/cross-
site requests to the given resource

– Cross-Origin-Resource-Policy: same-site | same-origin
| cross-origin

* no-cors request: without the crossOrigin attribute

Cross-Origin-Embedder-Policy (COEP)

• The COEP response header configures
embedding cross-origin resources into the
document

– Cross-Origin-Embedder-Policy: unsafe-none |
require-corp | credentialless

• Cross-Origin-Embedder-Policy: require-corp
– Blocked:

– Allowed:

Cross-Origin-Opener-Policy (COOP)

• The HTTP Cross-Origin-Opener-Policy (COOP)
response header allows you to ensure a top-level
document does not share a browsing context
group with cross-origin documents.

• wnd = window.open(„http://thirdparty.com“)
– Cross-Origin-Opener-Policy: unsafe-none

– Cross-Origin-Opener-Policy: same-origin-allow-popups

– Cross-Origin-Opener-Policy: same-origin

• Prevents TabNabbing
– See next slides

COOP + COEP and post-Spectre world

• Meltdown / Spectre vulnerabilities
– exploit speculative execution in modern CPUs
– allows an attacker to read sensitive data from memory locations that

should be inaccessible
– can occur through JavaScript code running in a web browser (via some

APIs like SharedArrayBuffer and high-resolution timers)

• Browsers unlock SharedArrayBuffer and high-resolution timers only
if COOP and COEP headers are set
– COEP ensures that a document can only load resources which

explicitly allow themselves
– COOP forces the creation of a new browsing context group

• COOP and COEP guarantees that only cooperating resources are
present in the same browsing context group (i.e. same process)
– No risk of leeking sensitive information via such vulnerabilities

(Reverse) TabNabbing

• User clicks on a link, new tab opens

• Malicious page redirects the original tab to a
phishing site, which looks the same as the
original

Legit page Malicious page

Opener.location = ‚phishing site.com‘

(Revese) TabNabbing

<html>
<body>

 <a
 href="bad.example.com„
 target="_blank">
 click me

 <button
onclick="window.open('htt
ps://bad.example.com‘)“>c
lick me</button>
</body>

</html>

<html>
<body>
<script>
if (window.opener) {

window.opener.location =
"https://phish.example.co
m";

}
</script>

</body>
</html>

(Simple) TabNapping

var windowHandle = window.open('https://goodsite.example')

// sleep for some time, and suddenly...

windowHandle.location.replace('https://hacked.example')

TabNabbing - prevention

• <a href=bad.example.com target="_blank" rel="noopener
noreferrer">click me

• window.open(url, name, 'noopener,noreferrer‘)

• Cross-Origin-Opener-Policy: same-origin-allow-popups
| same-origin
– Response header

• Modern browsers try to implement heuristics and
better defaults to combat tabnabbing attacks
– most browsers these days treat links that have

target="_blank" as rel="noopener" by default unless
explicitly specified

Iframes
A.com

Iframe
a.com/sidebar.html

Iframe
b.com/ad.html

iframe.document
.images[0].src = ‘…’;

parent.document.write() parent.document.write()

iframe.document
.images[0].src = ‘…’;

Attempt to access DOM of an
iframe b.com throws an
exception

… but what if we do not trust content of iframe from our domain a.com?
(e.g. user provided the content of the iframe)

Iframe sandbox

• Possibility to put Iframe into „sandbox“

• One can specify what is allowed and what not
• <iframe src=“infected.html” sandbox=“...”>

No sandbox attribute Javascript runs normally

sandbox attribute JavaScript, Flash disabled

sandbox=“allow-scripts” JavaScript enabled
document.cookie
localStorage()
sessionStorage()

Window.postMessage()

• Normally, scripts on different pages are
allowed to communicate with each other if
and only if they have the same origin

• targetWindow.postMessage() provides a
controlled mechanism to securely circumvent
this restriction (if used properly)

Window.postMessage()

• Script at A.Com calls:
wnd.postMessage(message,

targetOrigin, [transfer]);

• Script at b.com receives event:
window.addEventListener("message",
receiveMessage, false);

function receiveMessage(event) {
if (event.origin !== "https://a.com")

return;
// ...

}

Window.postMessage()

• Always specify targetOrigin

– A malicious site can change the location of the
window without your knowledge

• Always verify the senders identity

– And check syntax of the message, since a sender
you trust can have a security hole

Content Security Policy

• Protection against XSS attacks

• In HTTP header, server specifies from which
domains client can download data

Usage:
• Content-Security-Policy: script-src 'self'

https://apis.google.com

• It’s possible to specify CSP for different types
of data:
– connect-src, font-src, frame-src, img-src, media-

src, object-src, style-src

https://apis.google.com/

Content Security Policy

• Need to split resources into separate files

• “inline” <script> is blocked
– It’s possible to enable inline scripts via “unsafe-inline”

parameter – not recommended (does not prevent XSS
attacks)

• Supports error reporting
– report-uri /my_amazing_csp_report_parser;

– Browser will send list of blocked resources

– Only „reporting“ mode supported, no resources are
actually blocked

HTTP Strict Transport Security

• Users visits HTTPS sites mostly via redirect
from HTTP site

– Under some circumstances, attacker can block the
redirection

• SSL stripping attack

Browser A.com

GET http://www.a.com

REDIRECT https://www.a.com

GET https://www.a.com

HTTP Strict Transport Security
(SSL stripping attack)

GET http://www.a.com

REDIRECT
https://www.a.com

GET http://www.a.com

Evil routerBrowser A.com

REDIRECT
http://www.a.com

GET https://www.a.com

DATA https://www.a.comDATA http://www.a.com

HTTP Strict Transport Security

• HTTP header, which minimizes possibility of SSL
stripping attack

• Strict-Transport-Security: max-age=2592000;
includeSubDomains

– Browser remembers (for specified amount of time)
that it must access the website only via HTTPS

– All requests to the site are transformed to HTTPS
requests

• First request to the server (and first request after
HSTS header expires) is vulnerable to SSL
stripping attack

X-Frame-Options

• Protection against „Clickjacking“ attacks
– attacker opens the desired webpage in Iframe on

top of which it places its hidden content.

– Enables attacker to hijack clicks and key presses

• In a HTTP header, it’s possible to restrict
viewing page in IFrame:
– X-Frame-Options: DENY | SAMEORIGIN |
ALLOW-FROM origin

• Introduced by Microsoft in IE8

Access to local resources

• Proccessor:

– Browsers allow to terminate script after several
seconds of script unresponsiveness

• Memory:

– No general restriction, browsers have their
(configurable) limits

– Chrome has limit cca 1gb
• window.performance.memory.jsHeapSizeLimit

Access to local resources

• Storage:
- localStorage, sessionStorage

• Have limits, approx. 5MB

– IndexedDB
• Have limits, but bigger than localStorage

– Using HTML5 you can read and write local files
• Reading of files

– Only by using <input type=‘file’ onchange=“fileSelected(e)”>
DOM element

– Clicking on the element opens system dialog for file selection and
gives javascript access to the selected file.

• Writing to files:
– Only via download link:
– var url = window.URL.createObjectURL(data);

Attack DEMO: file jacking

• It’s possible to upload an entire directory in
HTML5

– <input type=“file” directory>

• http://kotowicz.net/wu/

• Chrome “select folder” dialog can confuse
users (see demo)

http://kotowicz.net/wu/

Attack DEMO: file jacking

• Krystof Kotowicz created a page simulating the file
jacking attack
– Mostly visitor interested in web security
– In 13 months 298 clients (217 IP) uploaded some folder

(mostly downloads)
– Many interesting files:

• Downloads/#BeNaughtyLive.com/
• Downloads/#GoLiveTrannies.com/
• ..

– Even private data
• onlinePasswords.txt
• Faktura_numer_26_2011_<company>.pdf
• …

Attack DEMO: file jacking

Access to local resources

• Clipboard
– Various approaches

• Document.execCommand() depracted API

• Clipboard API
– Sometimes needs permission from user

– Writing to clipboard in chrome does not need a permission

• “paste event” – event contains data
– Reading data possible only in “paste” event handler (i.e. when

user presses CTRL+V)

• Camera, Microphone
– Browser asks for permission

Access to local resources

• Fullscreen

– demo

Covert channels

• „Covert channel“ is a mechanism enabling
communication between two applications even if the
security model directly restricts the communication

• Web applications contain many „covert channel“
vulnerabilities

• E.g. using CSS
– An attacker spoofs a webpage with a list of URL addresses
– Based on the color of the links, the attacker can determine

which pages a user has visited
– Fix: Modify function getComputedStyle() and other

JavaScript functions so that they always return color as the
link is not visited

Covert channels

• Example 2: Cache – based attack
– If an image is in browser‘s cache, it is loaded much faster

– An attacker can spoof a webpage with several images and
check how long it takes to load each image

– Can be used to find your location (assuming that Google
maps has map images near your location cached)

• Example 3: DNS cache
– If a domain is in browser‘s DNS cache, it is loaded a bit

faster

• ...

HTML5: Conclusion

• HTML5 quite good functionality, it has replaced Flash

• HTML5 has many exciting features and extensions
– Many features → many vulnerabilities

• Encourage users to use updated modern browsers
– Legacy support is a pain anyway

• When creating a web application start with an
established JavaScript framework (react, angularjs,
vue.js)

• Adopt HTML5 security features
– ...to protect users with HTML5-enabled browsers

References

• Flashsec Wiki
• OWASP – Finding vulnerabilities in flash applications
• Adobe Flash Player 10 security white paper

– http://www.adobe.com/devnet/flashplayer/articles/flash_player10_se
curity_wp.html

• HTML 5 rocks
– http://www.html5rocks.com/

• http://blog.kotowicz.net
• http://www.andlabs.org
• https://onlinecloudsec.com/
• https://cheatsheetseries.owasp.org/cheatsheets/HTML5_Security_

Cheat_Sheet.html#tabnabbing
• https://developer.mozilla.org/

http://www.adobe.com/devnet/flashplayer/articles/flash_player10_security_wp.html
http://www.adobe.com/devnet/flashplayer/articles/flash_player10_security_wp.html
http://www.html5rocks.com/
http://blog.kotowicz.net/
http://www.andlabs.org/
https://onlinecloudsec.com/
https://cheatsheetseries.owasp.org/cheatsheets/HTML5_Security_Cheat_Sheet.html#tabnabbing
https://cheatsheetseries.owasp.org/cheatsheets/HTML5_Security_Cheat_Sheet.html#tabnabbing
https://developer.mozilla.org/

	Slide 1: Rich internet applications: security of HTML5
	Slide 2: Before HTML5: Flash
	Slide 3: Websites back in 2003
	Slide 4: Websites back in 2003
	Slide 5: Websites back in 2003
	Slide 6: Websites back in 2003
	Slide 7: Flash
	Slide 8: Flash was strong platform
	Slide 9: Security of Flash
	Slide 10: With emerging HTML5 Flash is dead
	Slide 11: HTML5 - history
	Slide 12: HTML5 - history
	Slide 13: HTML5 - history
	Slide 14: HTML5 - history
	Slide 15: HTML5 – Current status
	Slide 16: HTML5 – Current status
	Slide 17: HTML5 - Security
	Slide 18: HTML5 – Security
	Slide 19: HTML5
	Slide 20: HTML5 vs HTML4 – New features
	Slide 21: HTML5 – New features
	Slide 22: HTML5 – New features
	Slide 23: JavaScript and its security
	Slide 24
	Slide 25: JavaScript
	Slide 26: Same-origin policy
	Slide 27: Same-origin policy what is allowed (usually - see COEP)
	Slide 28
	Slide 29: AKA – “JSONP”
	Slide 30: JSONP and same-origin policy
	Slide 31: Cross Origin Resource Sharing (CORS)
	Slide 32: Cross Origin Resource Sharing GET
	Slide 33: Cross Origin Resource Sharing POST
	Slide 34: Cross Origin Resource Sharing images
	Slide 35: CORS
	Slide 36: Cross Origin Resource Sharing
	Slide 37: Cross-Origin-Resource-Policy (CORP)
	Slide 38: Cross-Origin-Embedder-Policy (COEP)
	Slide 39: Cross-Origin-Opener-Policy (COOP)
	Slide 40: COOP + COEP and post-Spectre world
	Slide 41: (Reverse) TabNabbing
	Slide 42: (Revese) TabNabbing
	Slide 43: (Simple) TabNapping
	Slide 44: TabNabbing - prevention
	Slide 45: Iframes
	Slide 46: Iframe sandbox
	Slide 47: Window.postMessage()
	Slide 48: Window.postMessage()
	Slide 49: Window.postMessage()
	Slide 50: Content Security Policy
	Slide 51: Content Security Policy
	Slide 52: HTTP Strict Transport Security
	Slide 53: HTTP Strict Transport Security (SSL stripping attack)
	Slide 54: HTTP Strict Transport Security
	Slide 55: X-Frame-Options
	Slide 56: Access to local resources
	Slide 57: Access to local resources
	Slide 58: Attack DEMO: file jacking
	Slide 59: Attack DEMO: file jacking
	Slide 60: Attack DEMO: file jacking
	Slide 61: Access to local resources
	Slide 62: Access to local resources
	Slide 63: Covert channels
	Slide 64: Covert channels
	Slide 65: HTML5: Conclusion
	Slide 66: References

