Wireless network security

Security of IT infrastructure Michal Rjaško

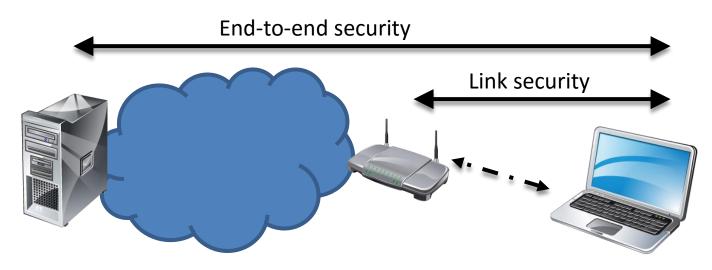
Why is security more of a concern in wireless?

- Physical (in)security
 - Physical connections between devices are replaced by logical associations
 - Sending and receiving messages do not need physical access to the network infrastructure
- Broadcast communications
 - Transmission can be overheard by anyone in range
 - Anyone can generate transmission
 - Which will be received by devices in range
 - Which will interfere with other nearby transmissions and may prevent their correct reception (jamming)

Why is security more of a concern in wireless?

- Eavesdropping is easy
- Sending fake messages is easy
- Replaying previously recorded messages is easy
- Illegitimate access to the network and its services is easy
- Denial of service is easily achieved by jamming
- Pretending to be someone else is easy

Wireless communication security requirements (1)


Design for mobile devices

- Low power consumption
 - Minimize computation complexity of algorithms
 - Minimize network communication
- Limited computational power in mobile devices
- Cryptographic and other security-related algorithms must be simple
- Need to minimize communications overhead for security protocols

Wireless communication security requirements (2)

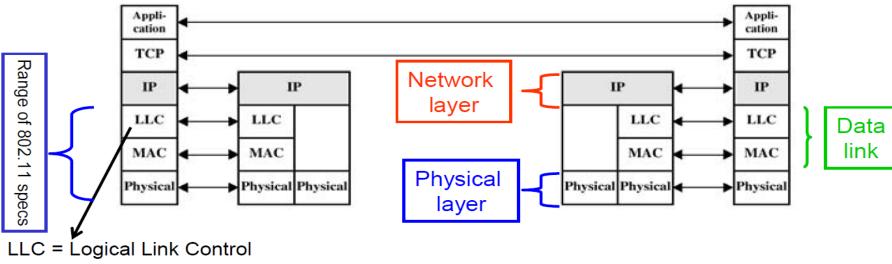
- Confidentiality
 - Messages sent over wireless links must be encrypted
- Authenticity
 - Origin of messages received over wireless links must be verified
- Replay detection
 - Freshness of messages received over wireless links must be verified
- Integrity
 - Integrity of messages received over wireless links must be verified
- Access control
 - Access to the network should be provided only to legitimate entities
 - Access control must be permanent, not only when device joins the network
- Protection against jamming

Link versus end-to-end security

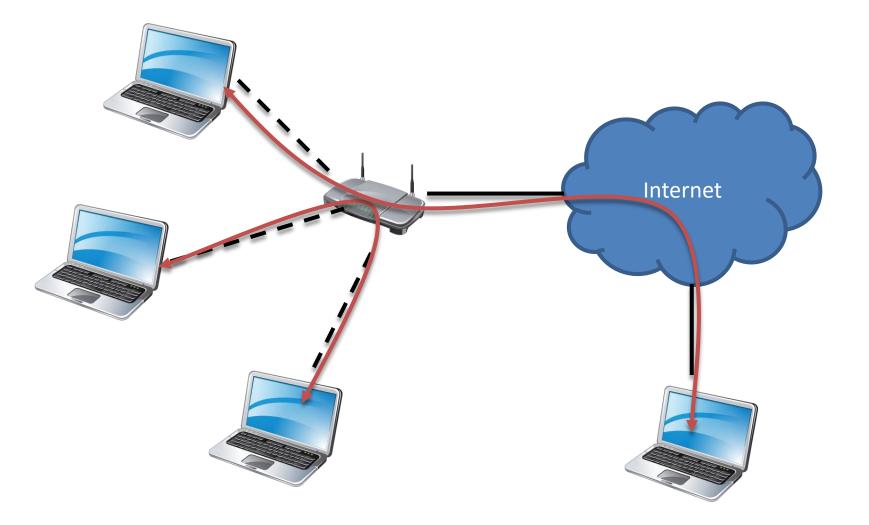
- End-to-end security
 - Provided by network (e.g. IPsec, VPN), transport (TLS) or application layer (e.g. application specific)
- Link security
 - Provided by link layer (802.11 WEP, WPA, 802.11i)

• Standard 802.11 in 1997


Original speed 1 – 2 Mb/s

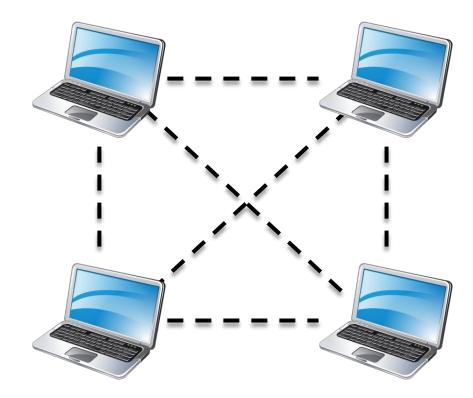

- Specifies 1st and 2nd layer in OSI model
 - Physical layer

– Data layer


- Compatibility of devices is guaranteed by WECA (Wireless Ethernet Compatibility Alliance)
 - Certification
 - Now Wi-Fi Alliance

- Two types of devices
 - Wireless stations (STA)
 - Computer, PDA, smartphone, tablet, glasses, watch, ...
 - Access point (AP)
 - Bridge between wireless and wired network
 - Composed of
 - Radio
 - Wired network interface
 - Bridging software
 - Multiple mobile devices are connected to the network via one access point

MAC = Media Access Control


Introduction to Wifi Infrastructure mode

Basic service set (BSS)

Extended service set (ESS)

- SSID (Service Set Identifier) is attached to each packet
- Multiple APs with the same SSID are ESS

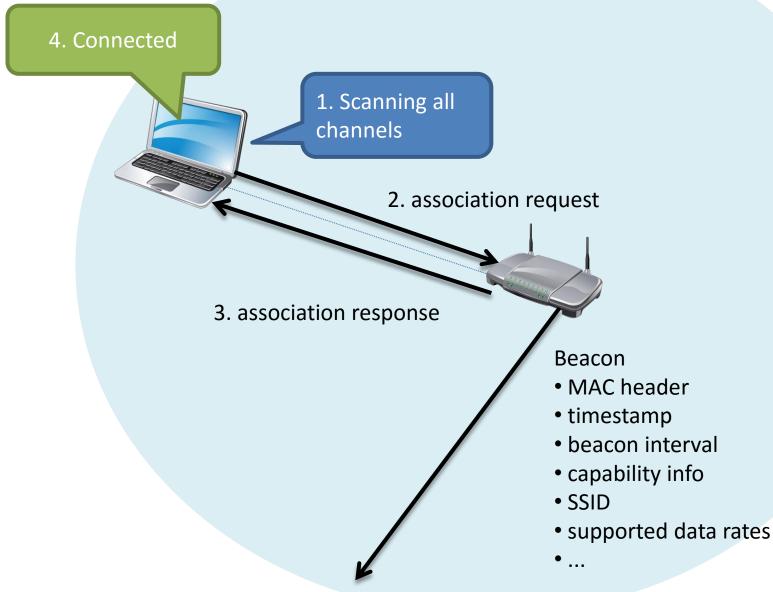
Introduction to Wifi Ad-hoc mode

WiFi standards

- IEEE 802.11 (1997)
 - 2,4 GHz, 1-2Mb/s

– WEP

- IEEE 802.11b (1999)
 2,4 GHz, 11Mb/s
- IEEE 802.11g (2003)
 2,4 GHz, 54 Mb/s
- IEEE 802.11i (2004) – WPA, WPA2


- IEEE 802.11a (1999)
 5GHz, 54 Mb/s
- IEEE 802.11e (2005)
 QoS (Quality of Service)
- IEEE 802.11f (2003)
 - Inter-Access Point
 Protocol
- IEEE 802.11n (2009)
 - More than 100 Mb/s,5GHz and 2,4 GHz

WiFi – Access control types

- No access control (unsecured networks)
- Access control based on MAC address

 It's easy to falsify MAC address
- Hidden SSID
 - AP need not to broadcast SSID
 - Connecting to network requires SSID
 - Attacker can eavesdrop SSID
- Access control based on a shared secret (key) between station and AP
- 802.1x, EAP, RADIUS

Connecting to unsecured network

802.11 WEP Wired Equivalent Privacy

- Part of standard 802.11
- Goal:
 - Make WiFi at least as secure as a wired LAN (with no particular protection mechanisms)
 - WEP was never intended to achieve strong security
- Services:
 - Access control to network
 - Message confidentiality
 - Message integrity

Wireless communication security requirements and WEP

Confidentiality

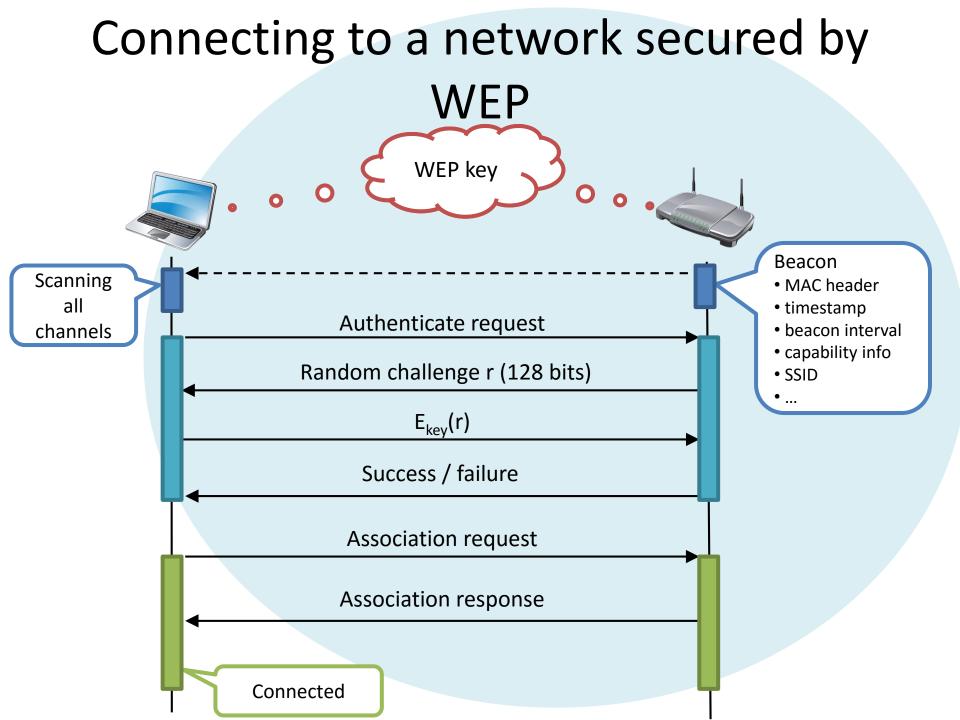
- Messages sent over wireless links must be encrypted
- X Authenticity
 - Origin of messages received over wireless links must be verified

- **Replay detection**
- Freshness of messages received over wireless links must be verified
 Integrity
- Integrity of messages received over wireless links must be verified
 Access control
- Access to the network should be provided only to legitimate entities
- Access control must be permanent, not only when device joins the nework
- Protection against jamming

WEP – Access control

- Based on a shared secret key
- Key is shared between all
 - Stations
 - Access points
- All connected stations are able to decrypt messages sent by other stations
- The key is usually manually placed into all stations and APs
 - Nightmare for administrators of large networks

WEP – access control

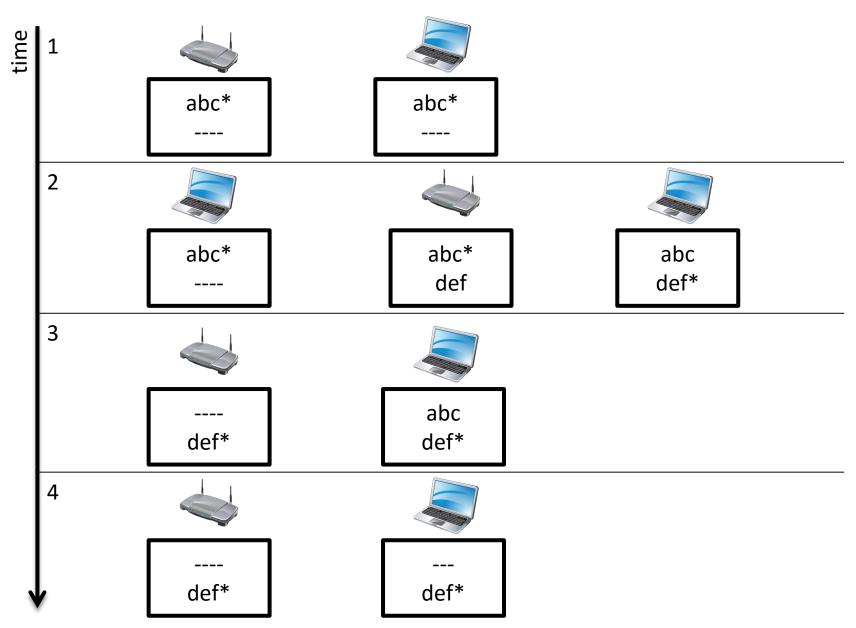

Two types of access control

- Without authentication
 - Everyone can connect to AP
 - However, messages are encrypted, thus STA must know the shared key
- Shared key authentication
 - (see next slide)
- At first glance it seems that the second type is more secure
 - In fact it's quite the opposite (details later)

WEP – access control

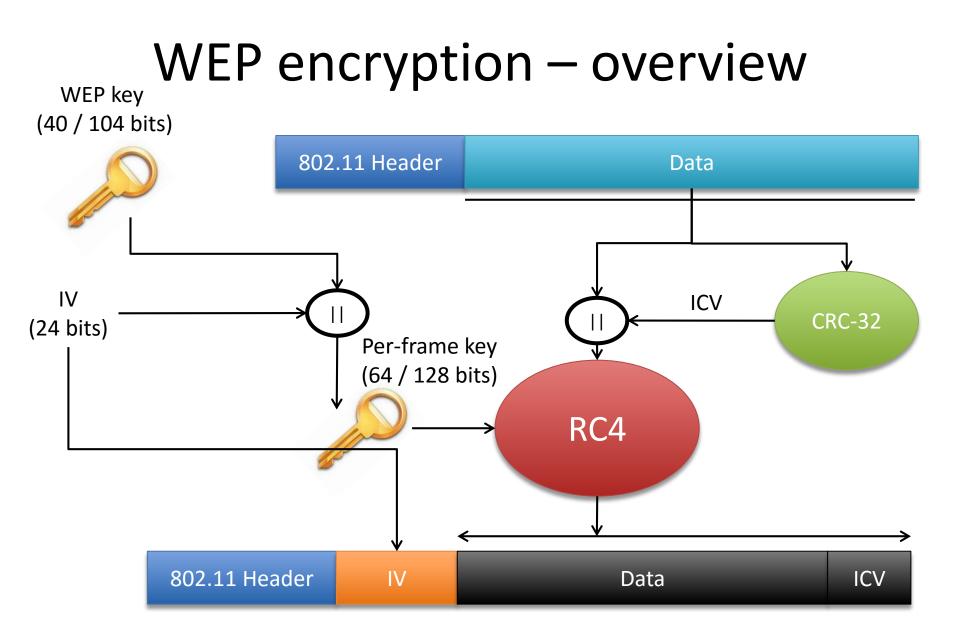
Shared key authentication

- Before connecting to the network, station must authenticate itself
- Authentication is based on simple "challengeresponse" protocol:
 - STA \rightarrow AP: authenticate request
 - AP \rightarrow STA: authenticate challenge (r) //r has 128 bits
 - STA \rightarrow AP: authenticate response ($e_{kev}(r)$)
 - $AP \rightarrow STA$: authentication success/failure
- When STA is authenticated, STA can send "association request" and AP will reply
- If authentication fails, connection is refused

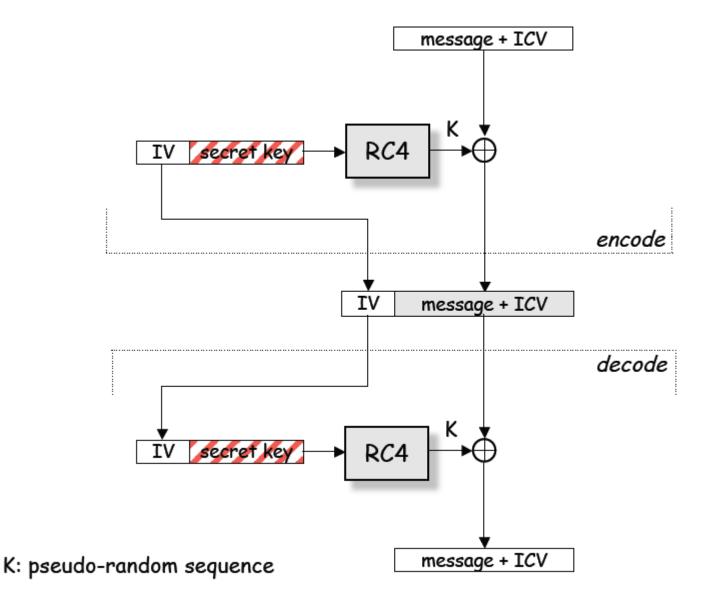

WEP – confidentiality

- Messages are encrypted using RC4 (stream cipher from 1987, designed by Ron Rivest)
 - Process of encryption:
 - For each message
 - RC4 is initialized with the shared key (40-bits / 104 bits)
 - RC4 produces pseudo-random stream of bits ("key stream")
 - The key stream is XORed with the message
 - Deciphering is similar
 - It is important to XOR each message with different "key stream"
 - RC4 is thus initialized with the shared key and initialization vector IV
 - Shared key is the same for each message
 - 24-bit IV is changing with each message

WEP - keys


- Shared key is known for all stations in a group
 - If someone leaves the group, the key must be changed
- Original standard requires 64 bit key for RC4
 - 40 bits were reserved for the secret key and 24 bits for initialization vector
 - After releasing key-length restrictions in USA also 128 bit key was standardized, from which 104 bits are for secret key and 24 bits are for initialization vector
- In case of large networks, it is impossible to change the secret key in all stations at once
- WEP supports multiple secret keys
 - One key is active it is used for message encryption
 - Any key can be used to decrypt messages
 - Each message contains key ID that allows the receiver to find out which key should be used for decryption

WEP – the key change process



WEP – Integrity

- Integrity control by encrypted CRC (Cyclic Redundancy Check)
 - First, ICV (integrity check value) is computed and attached to the end of message
 - ICV has 32 bits
 - Message and ICV are then encrypted
- CRC is based on cyclic self-correcting codes
 - It's designed to detect / correct common errors produced by noise over communication channel
 - Need not to detect intentional errors

WEP – encryption / decryption

- Authentication is one-way only
 - AP is not authenticated to the station
 - Station risks communication with malicious AP
- The same secret key is used for authentication and encryption
 - Weakness in any of the protocols can be used to break the key

- No "session key" is established during authentication
 - Access control is not permanent
 - Once a station is authenticated to the AP, an attacker can send malicious messages using the MAC address of STA
 - correctly encrypted messages cannot be produced by the attacker, but reply of previously overheard messages is still possible

STA can be impersonated:

- Recall the challenge-response protocol for authentication:
 - ...
 - AP \rightarrow STA: r
 - STA → AP: $IV||(r \oplus K)$

— ...

Where K is 128-bit key stream from RC4 initialized on IV and the shared key

//r has 128 bits

• An attacker can compute:

 $r \oplus (r \oplus K) = K$

- Then it can use K to impersonate STA later
 - ...
 - − AP \rightarrow attacker: r'
 - − Attacker \rightarrow AP: IV||r' \oplus K
 - ...

- WEP has no replay protection at all
 - 802.11 does not specify how to compute IV, whether it must be incremented after each message
- The attacker can manipulate messages despite the ICV mechanism and encryption:
 - CRC is linear with respect to XOR:
 - $CRC(X \bigoplus Y) = CRC(X) \bigoplus CRC(Y)$
 - Attacker observes (M||CRC(M)) ⊕K, where K is a key stream from RC4
 - For each ΔM , the attacker can compute CRC(ΔM)
 - Hence, the attacker can compute:

 $((M | |CRC(M)) \bigoplus K) \bigoplus (\Delta M | |CRC(\Delta M)) =$ $((M \bigoplus \Delta M) | |(CRC(M) \bigoplus CRC(\Delta M))) \bigoplus K =$ $((M \bigoplus \Delta M) | |CRC(M \bigoplus \Delta M)) \bigoplus K$

- IV reuse
 - IV space is too small 24 bits
 - 16,777,216 possible values
 - After around 17 mil., all IVs are reused
 - A busy AP at 11 Mbps can use whole IV space in 7 hours
 - The same IV used in two messages M₁, M₂ means, that they were encrypted with the same key stream K
 - Hence, the attacker can compute

 $- C_1 \bigoplus C_2 = (K \bigoplus M_1) \bigoplus (K \bigoplus M_2) = M_1 \bigoplus M_2$

- Weak RC4 keys
 - For some seed values (called weak keys), the beginning of the RC4 output is **not really random**
 - If a weak key is used, first few bytes of the output reveals a lot of information about the key
 - Some IV values produce weak keys for RC4
 - The attacker will know that, since IV is sent in clear
 - WEP encryption can be broken by capturing a few million messages

WEP – lesson learnt

- Engineering security protocols is difficult
 - One can combine otherwise strong building blocks in a wrong way and obtain insecure system at the end
 - Example 1:
 - Stream ciphers alone are OK
 - Challenge-response protocols for entity authentication are OK
 - But they shouldn't be combined with the same key
 - Example 2:
 - Encrypting a message digest to obtain an ICV doesn't work if the message digest function is linear with respect to the encryption function
- Avoid the use of WEP (if possible)

Overview of IEEE 802.11i

- After the collapse of WEP, IEEE started to develop a new security architecture – 802.11i
- Main novelties in 802.11i with respect to WEP
 - Access control model is based on 802.1X (EAP, Radius)
 - Possibility to use strong cryptographic protocols as TLS
 - Authentication process results in a shared session key (prevents session hijacking)
 - Different functionalities (encryption, integrity) use different keys derived from the session key using one way function
 - Better integrity control
 - Better encryption

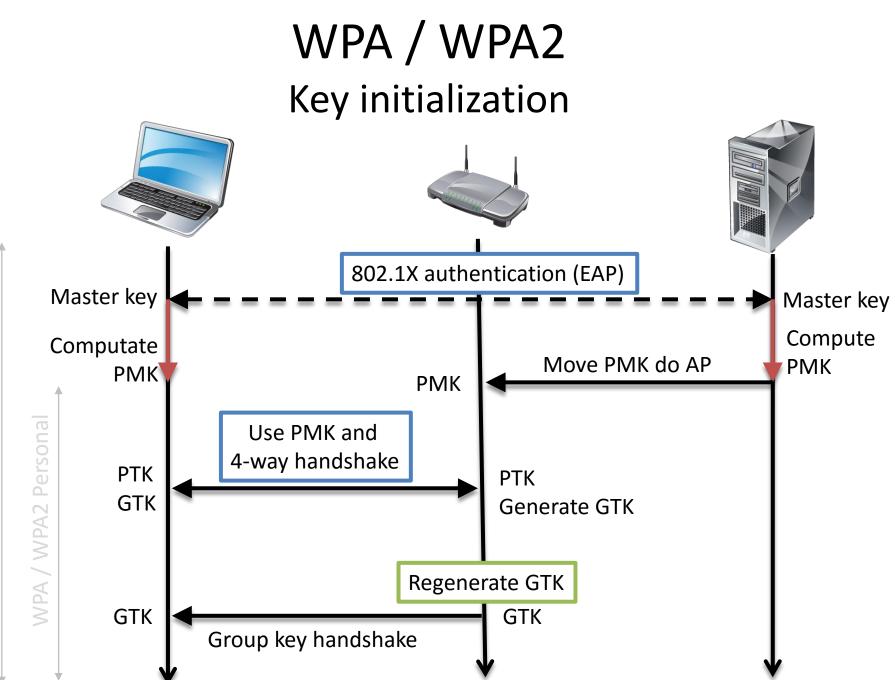
IEEE 802.11i standard

- Defines the concept RSN (Robust Security Network)
 - Integrity protection and encryption is based on AES
 - Nice solution but incompatible with old hardware
 - Known as WPA2 (WiFi Protected Access 2)
- Defines also protocol TKIP (Temporal Key Integrity Protocol)
 - Encryption based on RC4, but WEP problems have been avoided
 - Integrity protection based on Michael
 - Ugly solution, but works on old hardware
 - Known as WPA (WiFi Protected Access)

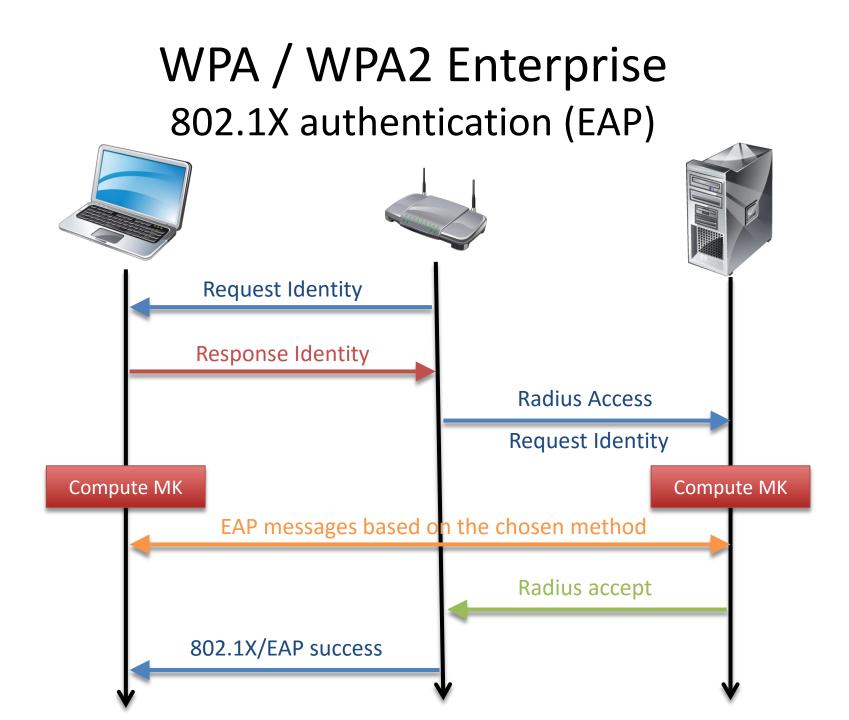
802.11 – Security solutions comparison

	WEP	WPA	WPA2
Access control	pre-shared key	802.1X / pre-shared key	802.1X / pre-shared key
Authentication	-	EAP / pre-shared key	EAP / pre-shared key
Encryption	RC4	TKIP (RC4)	AES / TKIP

802.11 – Security solutions comparison


	WEP	WPA	WPA2
Cipher	RC4	RC4	AES
Key size	40 (104) bits	128 bits encryption 64 bits authentication	128 bits
IV size	24 bits	48 bits	48 bits
Integrity protection	CRC-32	Michael	CBC-MAC
Header integrity	-	Michael	CBC-MAC
Replay protection	-	Sequential IV	Sequential IV
Key management	-	EAP (802.1x)	EAP (802.1x)

IEEE 802.11i Access control

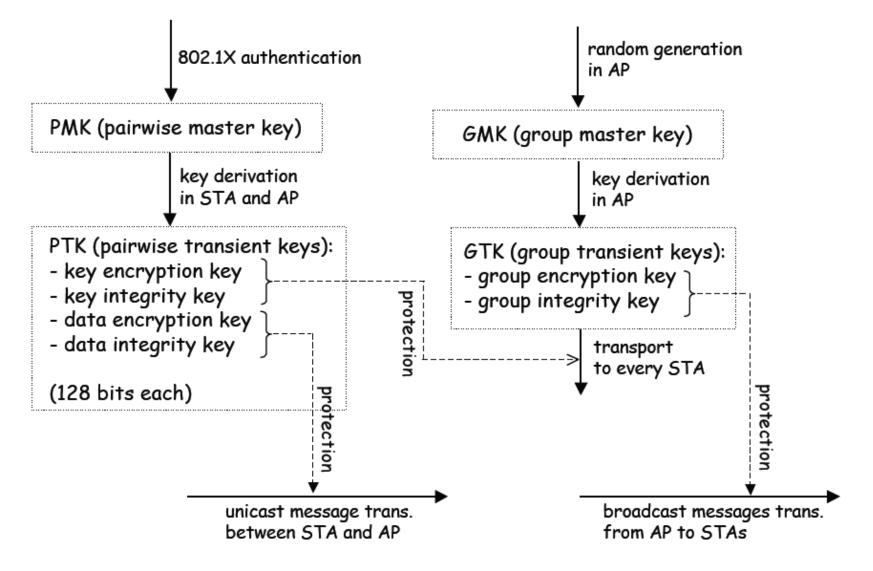

- Personal use
 - Shared key as in WEP
 - WPA-Personal, WPA2-Personal
- Enterprise use
 - 802.1X (EAP, Radius)
 - WPA-Enterprise, WPA2-Eterprise
 - Result of the authentication protocol is a master key (MK) between the station and authentication server.
 - Master key is valid only for the particular session

IEEE 802.11i Key initialization

- Automatic: utilizes 802.1X
 - After 802.1X, station and authentication server compute Pairwise Master Key (PMK) from Master Key (MK)
 - Authentication server sends PMK to AP
 - Station and AP use PMK to generate PTK (Pairwise Transient Key)
 - Used to encrypt message between AP and one STA
 - Computed using 4-way handshake protocol
 - Then AP generates GTK (Group Transient Key)
 - Used to encrypt broadcast messages from AP to all STAs
- Manual
 - WPA/WPA2-Personal
 - PMK is computed from the pre-shared key, otherwise the same as automatic

WPA / WPA2 Enterprise

4-way handshake protokol


Initiated by AP and used for

- Verification that both sides know PMK
- Exchange random values to be used in the generation of PTK
- Send GTK

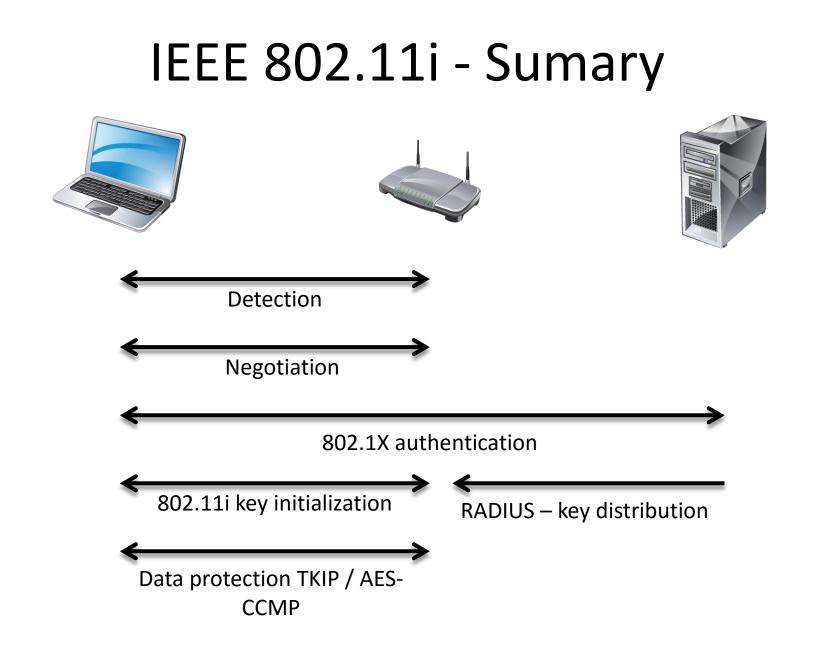
- MIC_{кік} Message Integrity Code (computed using key-integrity key)
- KeyReplayCtr used for replay protection

- **AP:** Generate random A_r
- **AP** \rightarrow **STA**: A_r | KeyReplayCtr
 - **STA:** Generate random S_r Compute PTK from A_r, S_r, PMK
- **STA** \rightarrow **AP**: S_r | KeyReplayCtr | MIC_{KIK}
 - **AP:** Compute PTK and verify MIC Generate GTK
- **AP** → **STA**: $A_r | KeyReplayCtr+1$ $| {GTK}_{KEK} | MIC_{KIK}$
 - STA: Verify MIC and install keys
- **STA** \rightarrow **AP**: KeyReplayCtr+1 | MIC_{KIK}
 - **AP:** Verify MIC and install keys

IEEE 802.11i key hierarchy

4-way handshake protokol PTK computation

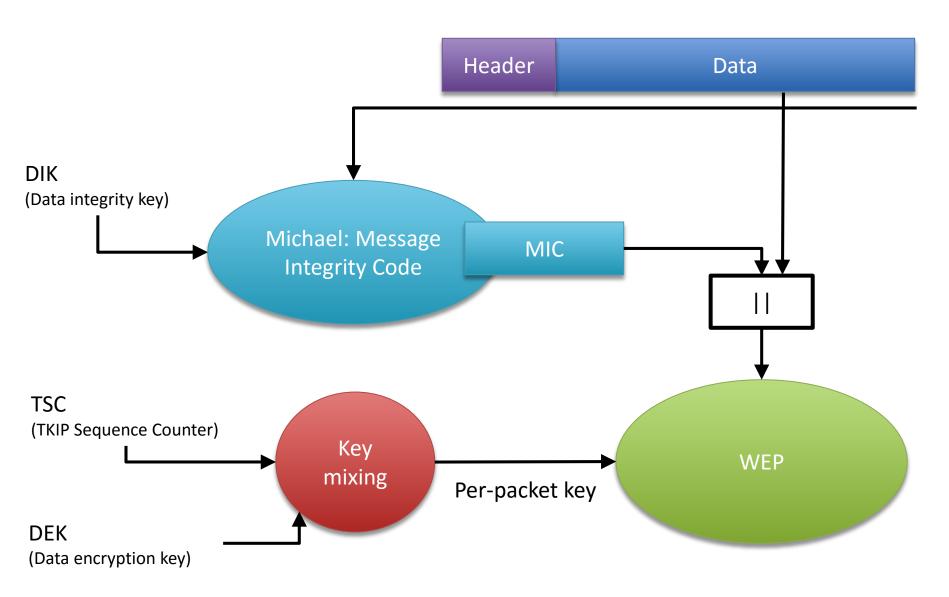
• In case of TKIP:

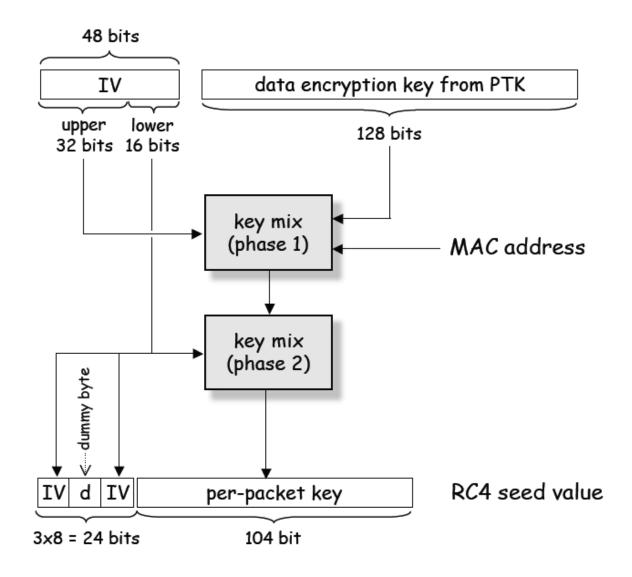

- Prf-512(PMK, AP MAC, STA MAC, A_r , S_r) =

= KEK | KIK | DEK | DIK

MAC (phisical) address

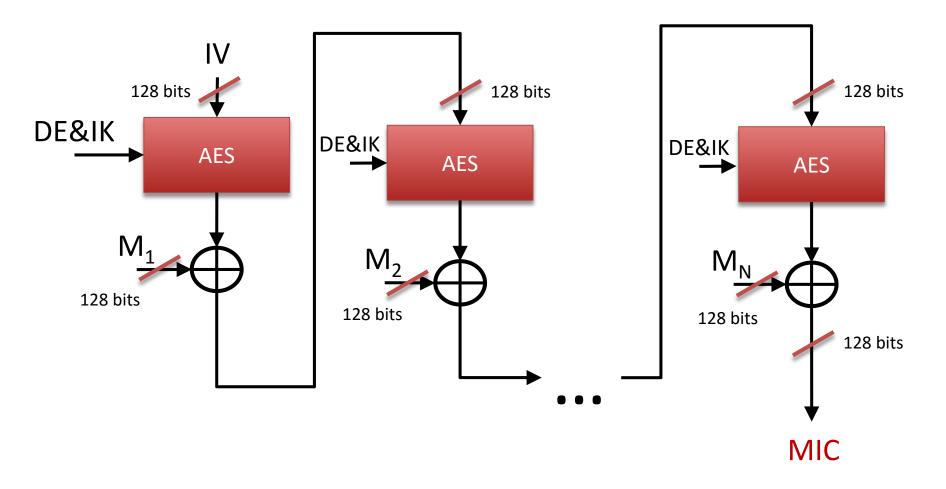
- In case of AES-CCMP:
 - Prf-384(PMK, AP MAC, STA MAC, A_r , S_r) = = KEK | KIK | DE&IK

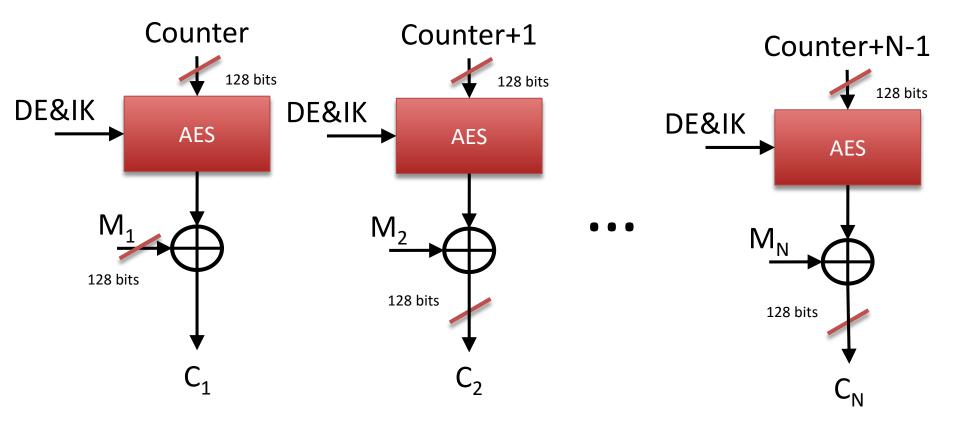

Prf-512 / Prf-384 – pseudo-random function with output length 512 / 384 bits.


WPA – Encryption TKIP

- Runs on old hardware, which supports RC4
- 128 bit secret key
- Weaknesses from WEP are eliminated
 - New integrity protection Michael
 - Generates nonlinear 8 byte MIC (Message Integrity Code) together with 32 bit CRC
 - IV is 48-bit TKIP sequence counter (TSC)
 - Replay protection, with a new session key TSC is set to 0 and incremented with each message

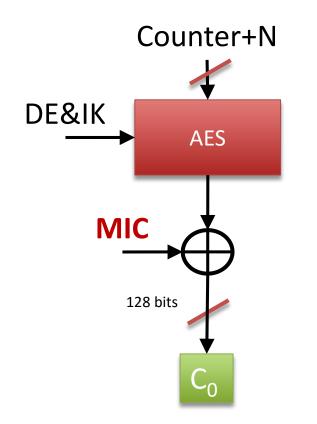
TKIP - encryption


TKIP – keys for RC4


WPA2 AES-CCMP

- WPA2 is based on AES with key length 128 bits
- CCMP means CTR mode and CBC-MAC
 - Integrity control based on CBC-MAC (with AES as a block cipher)
 - Encryption runs in CTR mode (with AES)
- Same key for encryption and authentication but with different IV
- Incompatible with WEP, needs new hardware.

WPA2 integrity control CBC-MAC



WPA2 encryption Counter mode

WPA2 encryption Counter mode (2)

Wireless communication security requirements and WPA

Confidentiality

- Messages sent over wireless links must be encrypted
- Authenticity
 - Origin of messages received over wireless links must be verified
- **Replay detection**
 - Freshness of messages received over wireless links must be verified
- / Integrity
 - Integrity of messages received over wireless links must be verified
 - Access control
 - Access to the network should be provided only to legitimate entities
 - Access control must be permanent, not only when device joins the nework
 - Protection against jamming

Conclusion

- In general, attacking wireless networks is easier than attacking wired networks
 - The attacker does not need to have physical access to the network infrastructure
- Original protection of WiFi networks WEP
 - Big security flaws, do not use
- Security standard 802.11i
 - Access control based on 802.1X
 - Better key management
 - TKIP (WPA)
 - Runs on old hardware
 - Utilizes RC4
 - Eliminates weaknesses of WEP
 - AES-CCMP (WPA2)
 - CTR mode and CBC-MAC
 - Requires new hardware

Wi-Fi Protected Setup (WPS) Insecurities (home nets)

- A standard that attempts to allow easy establishment of a secure wireless home network
- The standard allows four usage modes aimed at a home network user adding a new device to the network:
 - PIN Method (e.g., enter the PIN on AP into the client)
 - Push-Button-Method (a user simultaneously pushes a button on the AP and the client)
 - Near-Field-Communication Method (bring the client close to the AP)
 - USB Method
- In December 2011 researcher Stefan Viehböck reported a design and implementation flaw that makes brute-force attacks against PIN-based WPS feasible to perform on WPS-enabled Wi-Fi networks
 - A successful attack on WPS allows unauthorized parties to gain access to the network
- The only effective workaround is to disable WPS
 - Impossible on some APs

Wi-Fi Protected Setup (WPS)

- WPS using PIN
 - 8 digit PIN, the last digit is checksum
 - 7 unknown digits = 10 000 000 combinations
- When STA attempts to gain access
 - AP reports validity of first and second halves separately
 - number of guesses need is reduces to $10\ 000 + 1\ 000 = 11\ 000$
 - Can be performed in few hours at most
- AP should slow od disable WPS after several wrong guesses
 - Not implemented in some devices