
Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

Príprava štúdia matematiky a informatiky na FMFI
UK v anglickom jazyku

ITMS: 26140230008

dopytovo – orientovaný projekt

Moderné vzdelávanie pre vedomostnú spoločnosť/Projekt je spolufinancovaný zo zdrojov EÚ

Rich internet applications:
security of Flash and HTML5

Security of IT infrastructure

Michal Rjaško

2014/2015

Flash vs. HTML

Before HTML5

• Flash is popular because of poor functionality
of HTML environment.
– It allows to add interactive content to websites

(video, animations, rich applications)

• Inconsistent HTML among browsers –
developers need to test their webs in every
browser

• Poor support w3c standards among browsers
(mainly in the most popular IE <= 8)

Websites back in 2003

Websites back in 2003

Websites back in 2003

Websites back in 2003

Flash

• Multiplatform multimedia platform

• Ideal for animations, graphics, videos and simple
games

• Flash file can be embedded into a web page,
where it is played by a browser plugin - Flash
player
– Flash Player is a third-party plugin (made by Adobe)

• Logic of flash applications and games is based on
language ActionScript (currently in version 3.0)
– ActionScript is similar to JavaScript, but contains

types, classes, …

History of Flash

• 1993 - SmartSketch (Jonathan Gay,
FutureWare software)

– Vector graphic editor for Pen PC – computer
controlled by pen

• 1995 – FutureSplash Animator (used by MSN
and Disney)

• 1996 – Macromedia Flash 1.0

• 2005 – Adobe Flash 8.0

History of Flash

Flash 2 1997 Buttons, libraries, stereo audio, improved bitmap integration

Flash 3 1998 Alpha transparency, MP3

Flash 4 1999 Streaming MP3 (preinstalled in IE 5)

Flash 5 2000 ActionScript

Flash 6 2002 Video

Flash 7 2003 Charts & graphs, text effects, ActionScript 2.0

Flash 8 2005 Gif & Png, significant new video codec

Flash 9 2006-2007 ActionScript 3, AVM2, FullScreen, H.264, AAC, Flex Builder 2

Flash 10 2008 3D, advanced text features, AIR

2010-2011 MultiTouch, dynamic streaming, hardware decoding H.264, 64-
bit, Acoustic Echo Cancellation, Flash for Mobile Devices

Flash 11 2011-2013 3D hardware, secure random number generation, protected
dynamic streaming, workers, ...

Flash 12 2014 Mainly focused on mobile application development

Flash is strong platform

It can:

• Send HTTP requests to a different (than original)
domain

• Create socket connections

• Store data on client computer (SharedObjects)

• Access camera, microphone

• Access DOM of its web page

• Execute JavaScript

• Load other Flash files

With emerging HTML5

the future of Flash is uncertain

• Apple refused to support Flash in mobile devices

• Since version 11.1 Adobe does not develop Flash
player for mobile devices

• Versions from 11.2 - plugin for linux only via
„Pepper“ API, currently the only supported
browser in linux is Google Chrome

• Primary orientation on „Premium Video“ and
Games

– Adobe AIR, mobile applications

HTML5 - history

“It must be admitted that many aspects of HTML appear
at first glance to be nonsensical and inconsistent.”

“HTML, its supporting DOM APIs, as well as many of its
supporting technologies, have been developed over a
period of several decades by a wide array of people
with different priorities who, in many cases, did not

know of each other's existence.”

[w3.org/TR/html5/introduction.html#introduction]

HTML5 - history

• 1990-1993 :: first versions derived from SGML,
utilized by CERN

• 1995 :: W3C released HTML 3.0
• 1997 :: HTML 3.2 – many new features
• 1998 :: HTML 4 – used till now. DOM level 1, W3C

decided to develop XHTML
• 2000 :: DOM level 2 - getElementById(), events
• 2000 :: W3C released XHTML 1.0,

– development of XHTML2 started

• 2004 :: DOM level 3

HTML5 - history

• 2004 :: Idea of HTML5 was born, WHATWG founded

– W3C is not participating, but continues to develop
XHTML2

• 2005 :: AJAX, XMLHttpRequest

• 2006 – 2007 :: W3C redecided, now participating in HTML5

• 2007 – now :: WHATWG and W3C cooperate on
standardization of HTML5

• 2012 :: HTML5 W3C Candidate Recommendation

• October 2014 :: HTML5 W3C Recommendation

• 2016 :: HTML 5.1

HTML5 - history

• In July 2012, WHATWG and W3C decided on a
degree of separation

– W3C focuses on specification of a single definitive
standard – “snapshot” of WHATWG

– WHATWG will continues on HTML5 as “living
standard” – features can be added but not
removed

http://en.wikipedia.org/wiki/WHATWG
http://en.wikipedia.org/wiki/W3C

HTML5 – Current status

• HTML5 is finally ready!

– After more than a decade

• W3C != WHATWG, HTML5 != HTML5

• Incomplete support among browsers (but
improving)

– Old browsers are still in the game (IE8, IE7, ...)

HTML5 – Current status

• W3C specification has about 4.4 MB of text

• WHATWG specification – 707 A4 pages

• This is a lot of implementation work

• Don’t forget about

– CSS3

– JavaScript

– SVG, MathML

– Canvas, etc. etc.

HTML5 - Security

• Some say HTML5 itself is a vulnerability

• Secure implementations require:

– Clear specifications

– Manageable amount of work

– Thorough and diverse testing

– Fast and precise feedback loops

– Quick and comprehensive patch deployment

HTML5 – Security

• Inconsistent and still evolving specs

• Browsers rush for implementation

• Web developers build still buggy websites

• Necessary legacy support

– IE7, IE8, IE6 are still around … government,
schools, …

FLASH
HTML5 vs. Flash

Server AServer B

HTML B SWF CMy
SWF A1

SWF A2HTML A

Shared objects
(cookies)

Camera,
Microphone,

Drive

Send and receive data: HTTP,
HTTPS, sockets

Container
scripting

Cross-SWF-
scripting

Local resources

Client
Processor,
memory

Threats

• Bugs in Flash player – AVM

• Decompilation

• Cross-site scripting, Cross-site flashing

• Communication with server, bad cross-domain
policy, DDOS attacks

• Phishing

• Access to local resources (Clipboard, Camera,
Microphone, Harddrive, FullScreen)

• Utilization of processor and memory

Bugs in Flash player – AVM

• Source code is compiled into byte code

• Flash player executes byte code via AVM

– In case of AVM2 its possible that AVM compiles byte
code to machine code (JIT compilation).

• 4 phases: loading, linking, verification, execution

– Phases are overlapping, verification occurs in every
phase

• Bugs and errors in verification process enable
attackers to execute malicious code

Decompilation

• Specification of AVM2 is open

• Bytecode for AVM2 can easily be decompiled

• Attacker can see source code of your
application
– SWF file cannot contain sensitive data

– Such as encryption/authentication with keys
embedded into SWF file

• Phishing attack by decompilation and
modification of application

Flash Sandbox model

• Flash assigns to SWF file “sandbox“ based on
the domain from which the file is
downloaded.

• Communication in the same sandbox is not
restricted

• Communication between different sandboxes
(domains) is strictly controlled

Flash Sandbox model
A.com

A1.swf A2.swf

A3.php A4.html

B.com

B1.swf B2.swf

B3.php B4.html

Strictly
controlled

Flash Sandbox model
A.com

A1.swf

A3.php

B.com

B1.swf

B3.php
http://b.com/crossdomain.xml:
<cross-domain-policy>

<allow-access-from domain=“A.com”/>

</cross-domain-policy>

Security.allowDomain(‘A.com’)

ExternalInterface.addCallback()

Communication with server over HTTP
crossdomain.xml

• SWF file can communicate with server in the same
sandbox (domain) without any restrictions.

• Request outside the sandbox are controlled using
„cross domain policy file“:

<cross-domain-policy>

<allow-access-from domain=“A.com” secure=“true”/>

<site-control permitted-cross-domain-policies=“master-only”>

</cross-domain-policy>

• SWF file can load a non-standard cross domain file (i.e.
different from domain.com/crossdomain.xml) by
calling:

Security.loadPolicyFile(“http://B.com/crossdomain.xml”)

Communication with server – sockets

• Flash supports creating of socket connections
(i.e. outside HTTP protocl)

• Same policies as in the case of HTTP – cross
domain policy file

– allow-access-from can contain ports
ports=“3045,4056”

Browser

Communication with server
Some notes

<allow-access-from domain=“*”>

User logged in to
www.a.com

User views www.b.com,
SWF loads

www.a.com
Web server

Communication with server
Some notes

<allow-access-from domain=“*”>

• DDOS attack:

– MOSAD agent publishes an advertisement on
facebook / gmail / …

– The advertisment is a swf file, which starts
sending requests to http://www.elections.ir
during elections in Iran

http://www.elections.ir/

Communication with server
Some notes

<site-control permitted-cross-domain-policies=“all”>

• Attacker can upload his own cross domain
policy file (e.g. via CMS).

<allow-access-from domain=“A.com” secure=“false”/>

• Possible transfer of data over unsecure HTTP
protocol (even if the SWF file was loaded via
HTTPS).

Communication with server
Some notes

• How to obtain access to an inaccessible
domain

evil.swf friend.swf

Security.allowDomain(‘A.com’)

A.com C.com

data.php

<allow-access-from

domain=“A.com”>

<allow-access-

from

domain=“B.com”>

B.com

Cross-site scripting
attribute allowScriptAccess

• Embedding of SWF file in HTML:

<object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"

codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab#version=6,0,0,0"
width="100%" height="100%">

<param name="src" value="mymovie.swf">

<param name="allowScriptAccess" value="sameDomain">

<embed src="mymovie.swf" width="100%" height="100%"

allowScriptAccess="sameDomain"

type="application/x-shockwave-flash"

pluginspage="http://www.macromedia.com/go/getflashplayer">

</object>

Cross-site scripting
allowScriptAccess

• By using the attribute allowScriptAccess we
can restrict access of a SWF file to JavaScript

• Possible values:

– never – no acces to JavaScript / DOM

– sameDomain – SWF file from the same domain
can access JavaScript / DOM of the web page

– always – SWF files from any domain can access
JavaScript - dangerous!

Cross-site scripting
allowScriptAccess=“always”

Cross-site scripting
FlashVars

• FlashVars are used for sending data from HTML to
Flash player:
<object classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"

codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.cab#version=6,0,0,0"
width="100%" height="100%">

<param name="src"
value="myad.swf?clickthru=http://www.sme.sk">

<param name="allowScriptAccess" value="sameDomain">
<param name=“flashVars"

value=“clickthru=http://www.sme.sk">

• It’s possible to execute javascript using FlashVars
– mymovie.swf?clickthru=javascript:alert(document.coo

kie);

Cross-site scripting
XSS tunneling

• HTTP tunel over XSS channels.

– SWF file can download data using JavaScript calls
(otherwise inaccessible for attacker)

• E.g. data protected by IP verification, VPN or classical
authentication

ad.swf

http://a.com/page.html

allowScriptAccess=“always”

new
Ajax.Request(…)

userList.php

a.com

b.com

A

Cross-Site flashing
• Flash can launch another flash

– Function Security.allowDomain(‘*’)

– A1.swf can access methods and properties of B1.swf
and vice-versa

– Possible data exploitation or manipulation with
functionality of the SWF file

A1.swf B1.swf

Security.allowDomain(‘A.com’)

A.com B.com

• allowScriptAccess=“always”

• If A1.swf loads B1.swf, B1.swf has access to
JavaScript of A1.html

• Possible XSS attack

Cross-Site flashing
Some notes

AA1.swf B1.swf

http://a.com/A1.html

allowScriptAccess=“always”

Cross-Site flashing
Some notes

Two ways how to load another SWF file:

var swfloader:SWFLoader = new SWFLoader();

swfloader.load('http://b.com/b1.swf');

versus
var r:URLRequest = new URLRequest('http://b.com/b1.swf')

var loader:URLLoader = new URLLoader(request);

loader.dataFormat = URLLoaderDataFormat.BINARY;

loader.load(request);

...

swfloader.load(loader.data);

In the second case the loaded SWF file has the same
sandbox as the loader

Access to local resources

• Proccessor:

– Flash player allows to terminate script after 15s of
execution

– Till version 11.4 flash application runs in single thread

– Multiple “Flash” workers supported since 11.4

• Memory:

– Flash player does not restrict amount of memory used
by Flash application

Access to local resources

• Hard drive:
SharedObjects – cookies for Flash.

• Maximal size of objects per domain is 100 KB, user can
change it

– Flash application can upload/read local files (also
multiple files at once)
• Only by using FileReference class

• FileReference.browse opens system dialog for file
selection

• The method can only be called in „user-event handler”,
i.e. when handling mouse-click or key-press

• FileReference.download opens system “save file” dialog

Access to local resources

• Clipboard
– Storing data to clipboard possible only in “user-event

handler”
• Clipboard.generalClipboard.setData()

– Reading data possible only in “paste” event handler
(i.e. when user presses CTRL+V)
• Clipboard.generalClipboard.getData()

• Camera, Microphone
– Flash player asks for permission

– Access can be granted / restricted in Flash player
settings

Access to local resources

• Fullscreen
– Enabled since version 9
– Key ESC always ends fullscreen mode
– Fullscreen can be launched only in “user-event” handler

• Access to keyboard is limited in fullscreen mode
(DEMO)
– Till version 10 all keys were restricted
– Since version 10 only “non-printing” keys are allowed –

arrows, space, tab, enter …
– Since version 11.3 all keys are allowed – special attribute

allowFullScreenInteractive
• Flash player asks for permission

Flash: summary

It’s necessary to:

• Limit access of Flash to JavaScript when
loading external SWF files

• Take care of JavaScript in FlashVars

• Take care of scripting between SWF-SWF from
different domains

• Cross-domain policy file

HTML5
Flash vs. HTML5

HTML5

• Main goal:

– Create a simple platform for creating interactive
web applications

– Less XML strictness (compared to XHTML), more
freedom

– Emphasis on security

• HTML5 = HTML + JS + CSS (+ SVG + SQL + …)

HTML5 – New features

• New form elements
– date, tel, color, number, email, url,...

– Autofocus

– Form element outside form

– Validation on client-side

• New attributes Iframe: sandbox, seemless

• History API

• Local storage

• SQLLite – database on client

HTML5 – New features

• Geolocation
• Notifications
• SVG, Canvas
• MathML
• Animations and

transformations
• WebGL – 3D acceleration

in browser
• Audio / Video
• Webfonts
• Offline application cache

• More semantics:
– nav, figure, section, …

• CORS – Cross Origin
Resource Sharing

• WebSockets
• WebWorkers
• HSTS: HTTP Strict-

Transport-Security
• CSP: Content Security

Policy
• …

HTML5 – New features

• HTML5 contains several security improvements,
but

• In general, new features of HTML5 make attacks
easier
– Great number of new features – new attack scenarios

will be developed in future

• It’s definitely easier to
– Track users (Geolocation, localStorage, history API)

– Cross-site scripting – XSS (CORS, autofocus, new form
elements, …)

JavaScript and its security

• Security from 1995

• Two main security requirements
– Restrict malicious websites to access your

computer

– Restrict malicious website to access another
website

• However, if you have all your documents in a
cloud, who cares about attacker not being
able to access your „My documents“ folder?

JavaScript

• Same Origin Policy: scripts on a web page cannot
communicate with pages in a different domain
– e.g. script loaded into www.fmph.uniba.sk cannot

communicate with www.virus.com

• However, scripts loaded into the same page can
interact with each other (even from different
domains)
– JavaScript is inherently global

– Scripts can modify global variables, functions, objects
etc. of other scripts.

http://www.virus.com/

example.com

Browserexample-2.com

<script src=“foreignOrigin">
Same-Origin Loophole

Origin=example.com

<script src=
https://example-2.com/x.js>

(function(window,
undefined) {…

Circumventing same-origin policy

AKA – “JSONP”

• “JSON with padding”

<script src=“example.com/jsonp?callback=foo”>

• Returns JSON data “padded” with a call to the
function you specified.
– i.e. returned script

• foo({key: val,…});

• You hope…it’s still script!

JSONP and same-origin policy

This pattern injects somebody
else’s code into your

application.

Remember what the definition
of XSS was?

Cross Origin Resource Sharing

• New feature of HTML5

• Enables JavaScript to access websites from
different domain

• Similar principle to crossdomain.xml in Flash

• Based on the HTTP header, browser decides
whether to block the given Ajax request or not
– Compared to crossdomain.xml, CORS has a drawback -

flash player loads cross domain policy before the
request and blocks the request without contacting the
server

Cross Origin Resource Sharing

GET / HTTP/1.1

Host: domainB.com

Origin: http://domainA.com

…

HTTP/1.1. 200 OK

Content-type: text/html

Access-Control-Allow-Origin: http://domainA.com

…

[data]

Browser

domainA.
com

domainB.
com

http://domaina.com/
http://domaina.com/

Cross Origin Resource Sharing

Port / network scanner DEMO: \

Iframe sandbox

• Possibility to put Iframe into „sandbox“

• One can specify what is allowed and what not
• <iframe src=“infected.html” sandbox=“...”>

• Better control what is allowed than
allowScriptAccess attribute in Flash

No sandbox attribute Javascript runs normally

sandbox attribute JavaScript, Flash disabled

sandbox=“allow-scripts” JavaScript enabled
document.cookie
localStorage()
sessionStorage()

Content Security Policy

• Protection against XSS attacks

• In HTTP header, server specifies from which
domains client can download data

Usage:
• Content-Security-Policy: script-src 'self'

https://apis.google.com

• It’s possible to specify CSP for different types
of data:
– connect-src, font-src, frame-src, img-src, media-

src, object-src, style-src

https://apis.google.com/

Content Security Policy

• Need to split resources into separate files

• “inline” <script> is blocked
– It’s possible to enable inline scripts via “unsafe-inline”

parameter – not recommended (does not prevent XSS
attacks)

• Supports error reporting
– report-uri /my_amazing_csp_report_parser;

– Browser will send list of blocked resources

– Only „reporting“ mode supported, no resources are
actually blocked

HTTP Strict Transport Security

• Users visits HTTPS sites mostly via redirect
from HTTP site

– Under some circumstances, attacker can block the
redirection

• SSL stripping attack

Browser A.com

GET http://www.a.com

REDIRECT https://www.a.com

GET https://www.a.com

HTTP Strict Transport Security
(SSL stripping attack)

GET http://www.a.com

REDIRECT
https://www.a.com

GET http://www.a.com

Evil routerBrowser A.com

REDIRECT
http://www.a.com

GET https://www.a.com

DATA https://www.a.comDATA http://www.a.com

HTTP Strict Transport Security

• HTTP header, which minimizes possibility of SSL
stripping attack

• Strict-Transport-Security: max-age=2592000;
includeSubDomains

– Browser remembers (for specified amount of time)
that it must access the website only via HTTPS

– All requests to the site are transformed to HTTPS
requests

• First request to the server (and first request after
HSTS header expires) is vulnerable to SSL
stripping attack

X-Frame-Options

• Protection against „Clickjacking“ attacks
– attacker opens the desired webpage in Iframe on

top of which it places its hidden content.

– Enables attacker to hijack clicks and key presses

• In a HTTP header, it’s possible to restrict
viewing page in IFrame:
– X-Frame-Options: DENY | SAMEORIGIN |
ALLOW-FROM origin

• Introduced by Microsoft in IE8

Attack DEMO: file jacking

• It’s possible to upload an entire directory in
HTML5

– <input type=“file” directory>

• http://kotowicz.net/wu/

• Chrome “select folder” dialog can confuse
users (see demo)

http://kotowicz.net/wu/

Attack DEMO: file jacking

• Krystof Kotowicz created a page simulating the file
jacking attack
– Mostly visitor interested in web security
– In 13 months 298 clients (217 IP) uploaded some folder

(mostly downloads)
– Many interesting files:

• Downloads/#BeNaughtyLive.com/
• Downloads/#GoLiveTrannies.com/
• ..

– Even private data
• onlinePasswords.txt
• Faktura_numer_26_2011_<company>.pdf
• …

Attack DEMO: file jacking

Conclusion

• HTML5 is replacing Flash
• HTML5 has many new existing features and

extensions
– Many features → many vulnerabilities

• Encourage users to update browsers
– Legacy support is a pain anyway

• When creating a web application start with an
established JavaScript library (jQuery)

• Adopt HTML5 security features
– ...to protect users with HTML5-enabled browsers

Symantec Internet Security Threat

Symantec Internet Security Threat
Report 2011

Symantec Internet Security Threat
Report 2011

Symantec Internet Security Threat
Report 2010

References

• Flashsec Wiki
• OWASP – Finding vulnerabilities in flash applications
• Adobe Flash Player 10 security white paper

– http://www.adobe.com/devnet/flashplayer/articles/flash_
player10_security_wp.html

• Symantec Internet Security Threat Report
– http://www.symantec.com/threatreport/

• HTML 5 rocks
– http://www.html5rocks.com/

• http://blog.kotowicz.net
• http://www.andlabs.org

http://www.adobe.com/devnet/flashplayer/articles/flash_player10_security_wp.html
http://www.symantec.com/threatreport/
http://www.html5rocks.com/
http://blog.kotowicz.net/
http://www.andlabs.org/

