

Univerzita Komenského v Bratislave Fakulta matematiky, fyziky a informatiky

Príprava štúdia matematiky a informatiky na FMFI UK v anglickom jazyku

ITMS: 26140230008

dopytovo – orientovaný projekt

Moderné vzdelávanie pre vedomostnú spoločnosť/Projekt je spolufinancovaný zo zdrojov EÚ

Security of IT infrastructure Virtual Private Networks (VPN)

RNDr. Jaroslav Janáček, PhD.

Motivation

- physical private networks
 - means of physical security can be used to protect transmitted data against external attackers
 - can be easily used only for small range networks in protected environment
 - difficult for long range networks
 - e.g. interconnection of remote branches
 - inflexible
 - needs physical secure communication lines

Motivation

- Is not it sufficient to deal with security on higher network layers (transport, application)?
 - it is not always possible it requires cooperation with the applications
 - it is often good security practise to have multiple protection layers
 - software contains bugs that can be often exploited
 - the probability of simultaneous occurrence of two phenomena is often much lower that the probabilities of occurrence of the individual phenomena

The Role of VPN

- creation of secure communication channel
 - protection of confidentiality and integrity of the transmitted data and authentication of the endpoints
- on network or link layer
- transparent for higher layers
 - without the need of cooperation with the applications

Implementation of VPN

- cryptographic means
 - encryption
 - HMAC
 - authentication
 - key management
 - PKI
 - static pre-shared secret

VPN Scenarios

- secure interconnection of several private physical networks across a public network
 - e.g. interconnection of several physically dislocated branches
- secure connection of a remote computer across a public network to a protected network
 - e.g. connection of a home computer, or of a notebook in some remote location to a protected network (e.g. to the office)

Negative Aspects of VPN

- VPN creates a "hole" to the protected network
 - the remote computer connected via a VPN is usually treated in the same way as a computer connected directly to the protected network,
 - but it also has (or can have) other connections to the outside world that are not under control of the protected network's administrator.
- Usage of VPN has to be controlled using means of organizational security.

Specific solutions

- IPsec
 - optional part of IPv6 and IPv4
 - protocols AH, ESP, ISAKMP/IKE, IKEv2
 - different implementations on many platforms
 - not always fully compatible
- OpenVPN
 - open-source product
 - key management based on SSL/TLS
 - Linux, Windows, Mac OS X, Solaris, ...BSD, ...

IPsec

- cryptographic protection of confidentiality and/or integrity and authentication of endpoints on the network layer
- operations are driven by a policy (SPD = Security Policy Database)
 - accept the packet without modification
 - drop the packet
 - apply an IPsec transformation to the packet

Security Policy Database (SPD)

- the record for the packet being processed is looked up in SPD according to
 - the source and destination IP address
 - the transport layer protocol and port numbers
- the record specifies the transformation
 - IPsec mode
 - IPsec protocol
 - tunnel endpoint IP addresses (in tunnel mode)

Security Association (SA)

- SA describes security parameters of a unidirectional communication channel providing specific security services to protect the transmitted data
 - SPI (Security Parameters Index)
 - identifies SA at the recipient
 - mode
 - protocol
 - cryptographic algorithms
 - cryptographic keys

Transport vs. tunnel mode

- transport mode
 - IPsec header (AH, ESP) is inserted between the IP header and the transport layer header
 - provides for security between the endpoint computers
- tunnel mode
 - the original IP packet is wrapped into a new packet
 - new IP header and IPsec header are added
 - the new IP packet can have different source and destination addresses – the endpoints of the tunnel
 - typically used for VPN between networks

AH Protocol (51)

- integrity protection
 - of fixed fields of the IP header preceding the AH header
 - of transport layer (and higher) data
 - of the entire original IP packet in the tunnel mode
- protection against replay-attack
 - 32 (or 64) bit sequence number
- AH fields
 - next header, payload length, SPI, seq #, ICV

ESP Protocol (50)

- protection of confidentiality and/or integrity
 - of transport layer (and higher) data
 - of the entire original IP packet in the tunnel mode
- protection against replay-attack
- ESP fields
 - SPI, seq #
 - data, padding, padding length, next header
 - ICV

AH vs. ESP

- both can provide integrity protection
 - AH covers fixed fields of the IP header
 - ESP does not cover the IP header
- interaction with NAT
 - AH cannot be used if there is a NAT in the network path
 - ESP can be **partially** used
 - it may be difficult to distinguish individual ESP flows
 - solution encapsulation to UDP datagrams

SA and key management

- manually
- ISAKMP/IKE
 - ISAKMP SA management protocol and a framework for key management
 - IKE key management protocol
 - 2 phases
 - 1st phase establishment of ISAKMP SA bidirectional secure communication channel
 - 2nd phase creation of pairs of SA for AH/ESP
 - authentication using PKI or a pre-shared secret

SA and key management

- IKEv2
 - an attempt to improve ISAKMP/IKE
 - functionally similar (2 phases as well)
 - incompatible
 - authentication
 - PKI
 - pre-shared secret
 - EAP

IPsec support

- ISAKMP/IKE
 - Windows 2000/XP/Vista
 - Windows Server 2008/2008
 - Linux, OpenBSD, ...
- IKEv2
 - Windows 7
 - Windows Server 2008 R2
 - Linux, OpenBSD, ...

OpenVPN

- protection of confidentiality and integrity and authentication of endpoints
- protection against replay-attack
- UDP or TCP
 - no problems with passing through NAT (in TCP mode it even supports passing through CONNECT capable web proxy)
- IP or L2 (link layer) tunnel
 - tun/tap network interface

OpenVPN – key management

- static (pre-shared) keys
- SSL/TLS
 - server authentication
 - using PKI
 - client authentication
 - using PKI
 - name + password

IPsec vs. OpenVPN

• IPsec

- transport mode
- was mandatory in IPv6 (later proposed to become optional)
- supported by many OS
- OpenVPN
 - simpler key management protocols
 - no problems with passing through NAT and firewalls
 - tunnel presented as a virtual network interface
 - common implementation 100% compatibility across platforms
 - also supports L2 tunnels